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Abstract

Largely driven by advances in communication and information technology, as
the increasing availability and accuracy of GPS technology and the miniatonzd

wireless communication devices, Location—Based Services (LBS) atmeounsly

gaining popularity. Innovative LBSes integrate knowledge about thes us® the
service. Such knowledge can be derived by analyzing the locationfdagars. Such
data contain two unique dimensiospaceandtime, which need to be analyzed.

The objectives of this thesis are three—fold. First, to extend popular datagmin
methods to the spatio—temporal domain. Second, to demonstrate the usedtithess
extended methods and the derived knowledge in two promising LBS exantjes.
nally, to eliminate privacy concerns in connection with spatio—temporal datagninin
by devising systems for privacy—preserving location data collection anichgnin

To this extent, Chapter 2 presents a general methodofiggting to extend a
popular data mining method, namely rule mining, to the spatio—temporal domain. By
considering the characteristics of a number of real-world data so@hapier 2 also
derives a taxonomy of spatio—temporal data, and demonstrates the asefafrthe
rules that the extended spatio—temporal rule mining method can discovdrapiet
4 the proposed spatio—temporal extension is applied to find long, shaetidens
in trajectories of moving objects. Empirical evaluations show that the extended
thod and its variants, using high—level SQL implementations, are effectile ftwo
analyzing trajectories of moving objects.

Real-world trajectory data about a large population of objects moving aver e
tended periods within a limited geographical space is difficult to obtain. To aid th
development in spatio—temporal data management and data mining, Chaptel-3 de
ops a Spatio—Temporal ACTivity Simulator (ST-ACTS). ST-ACTS usesmbeu of
real-world geo—statistical data sources and intuitive principles to efééctienerate
realistic spatio—temporal activities of mobile users.

Chapter 5 proposes an LBS in the transportation domain, namely cab-gsharin
To deliver an effective service, a unique spatio—temporal groupirgitio is pre-
sented and implemented as a sequence of SQL statements. Chapter 6 identifies a
scalability bottleneck in the grouping algorithm. To eliminate the bottleneck, the
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chapter expresses the grouping algorithm as a continuous streamiguergata
stream management system, and then devises simple but effective spatmralemp
partitioning methods for streams to parallelize the computation. Experimenthsresu
show that parallelization through adaptive partitioning methods leads to-ggesd
of orders of magnitude without significantly effecting the quality of the gnogip
Spatio—temporal stream partitioning is expected to be an effective methodlé& sc
computation—intensive spatial queries and spatial analysis methods @nstre

Location—Based Advertising (LBA), the delivery odlevantcommercial infor-
mation to mobile consumers, is considered to be one of the most promising lsusines
opportunities amongst LBSes. To this extent, Chapter 7 describes anraB#&fvork
and an LBA database that can be used for the management of mobile adg.aUs
simulated but realistic mobile consumer population and a set of mobile ads, the LBA
database is used to estimate the capacity of the mobile advertising channek-The e
timates show that the channel capacity is extremely large, which is evidenee fo
strong business case, but it also necessitates adequate user controls.

When data about users is collected and analyzed, privacy naturatyniesca
concern. To eliminate the concerns, Chapter 8 first presents a gra-iramework
in which location data is anonymized through spatio—temporal generalizatidn, a
then proposes a system for collecting and mining anonymous location datar-Ex
imental results show that the privacy—preserving data mining componeuveis
patterns that, while probabilistic, are accurate enough to be useful for biBes.

To eliminate any uncertainty in the mining results, Chapter 9 proposes a system
for collectingexacttrajectories of moving objects in a privacy—preserving manner. In
the proposed system there are no trusted components and anonymizatidorispd
by the clients in a P2P network via data cloaking and data swapping. Realistic sim-
ulations show that under reasonable conditions and privacy/anonyrttitygsethe
proposed system is effective.
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Chapter 1

Introduction

Recent advances in communication and information technology, such asitbasn

ing accuracy of GPS technology and the miniaturization of wireless communmicatio
devices pave the road for Location—Based Services (LBS). To achigh quality

for such services, data mining techniques are used for the analysisnfge@mount

of data collected from location—aware mobile devices. The objectives ofhibéés

are three—fold. First, since the two most important attributes of the data cdllecte
arelocationandtime, the thesis investigates general methods for extending existing
data mining methods to the spatio—temporal domain. Second, using two promising
LBSes, the thesis demonstrates the usefulness of the knowledge thatedrdeted

by the spatio—temporal data mining methods. Finally, since privacy is a majer con
cern to users of LBSes, the thesis considers location privacy in cbonedgth col-
lection and data mining of location traces (trajectories) of users.

In the thesis the following setting and broad definitions are assumed. Mobile
users carry location—enabled mobile terminals (PDA, mobile phone, etc) cBido—
enabled it is meant that applications running on the mobile terminal have the ability
to get the current, historical, or potentially even future locations of the mobée u
Localization of the mobile terminals can be achieved through a wide variety-of po
sitioning technologies, including but not limited to, cellular network based pasitio
ing, GPS based positioning, geo—referenced sensor based positionawgn geo—
referenced user entry. Mobile users access LBSes through their ntefiiaals.

An LBS is a service that has one or more of the following characteristicsSLB$

is either explicitly or implicitly requested by the users via the mobile terminal. An
LBS delivers its service selectively based on the context of the mobile Tibere
are many aspects of user—context, however in this thesis the followingcasfeects
are considered: the current, historical and future locations of the aisgipossible
user—patterns in the user location data, and common patterns in the locatiohaata
group of users.
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Data mining, the process of finding, e.g., associations, or in general stter
within large amounts of data, often stored in relational databases, haapglsd
successfully in the past to increase business revenue. More rectdynining has
been suggested to be useful to derive context for user—friendletBSlarge part of
this context for many LBSes can be described by general patternsriacisaties.

One type of user activity isvhereandwhenusers were in the past. Data mining
methods for such activities have to consider two additional dimensions, namecly
spatial thetemporalor jointly the spatio—temporatlimension, and are referred to as
spatio—temporal data mining methods. Due to the unique nature of the two additiona
dimensions, i.e., the cardinality of the dimensions are potentially extremely large,
and the temporal dimension is cyclic for some types of applications, mining spatio—
temporal patterns poses additional challenges. To address these gés|l€hapter

2 presents a general methodologiyoting to extend heavily researched rule mining
methods, in particular association rule mining. By considering the charaiczio$

a number of real-world data sources, Chapter 2 also derives a taxarfaspgtio—
temporal data, and demonstrates the usefulness of the rules that theeebdpatio—
temporal rule mining method can mine.

Chapter 4 uses pivoting to extend a projection—based frequent itemsegminin
method to discover spatio—temporal sequential patterns, i.e., frequéss rouGPS
traces. The extended method, through (either region—based or rivearkbased)
spatio—temporal generalization, first preprocesses the GPS tracesiio gjmtio—
temporal itemsets. Then, a variant of a database projection based dlegadrit
itemset mining method prunes the search space by making use of the minimum
length and sharable requirements and avoids the generation of the etipbnem-
ber of sub-routes of long routes. Considering alternative modelling aptawrtra-
jectories leads to the development of two effective variants of the method— SQ
based implementations are described, and extensive experiments ondielifiere
and large—scale synthetic data show the effectiveness of the method eautiaitgs.

Simulation is widely accepted in database research as a low—cost method to pro
vide synthetic data for designing and testing novel data types and acctssdme
This is even more so the case for trajectory data, where the availabilitylefuedd
data about a large population of moving objects is limited. Prior researchigedd
a number of moving object simulators that model the physical aspects of mobility
to various degrees, but fail to adequately address the impostaniél and geo—
demographicahspects of mobility. Modelling the latter aspects gives rise to unique
spatio—temporal data distributions with regularities. Hence, to aid the devaibpme
spatio—temporal data management and data mining, Chapter 3 developsTH-AC
Spatio—Temporal ACTivity Simulator. ST-ACTS uses a nhumber of real—vgmts-
statistical data sources and intuitive principles to generate realistic spatiarsmp
activities of mobile users. ST-ACTS considers that (1) objects (repiagemobile
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users) move from one spatio—temporal location to another with the objeéper-o
forming a certain activity at the latter location; (2) not all users are equaliyylito
perform a given activity; (3) certain activities are performed at cettaiations and
times; and (4) activities exhibit regularities that can be specific to a singteouse
to groups of users. Experiments demonstrate that ST-ACTS is effeativihat the
characteristics of the generated data correspond to the input modelgiara.

Clustering, the process of finding groups of similar objects among a latgé se
objects, is another common general data mining technique. Clustering the-spatio
temporal domains have been largely neglected in the past. However, pgeCha
demonstrates, answering service requests in meaningful spatio—temmaps can
yield promising LBSes. The chapter presents one such LBS in the traasgor
domain (cab—sharing) along with a meaningful grouping method for thefispser-
vice. The grouping method uses a number of approximations and heurisfind to
a near—optimal solution in the combinatorial problem space. The groupingdeth
is expressed as a small set of standard SQL queries. Based on syd#tetiterived
from ST-ACTS, the chapter demonstrates that the proposed methodfectively
group together cab—requests, making cab—sharing a new, promisingahtdas-
portation.

Chapter 6 outlines how the grouping algorithm can be adapted to facilitate-large
scale collective transportation systems, for example a ride—sharing systsvaver,
Chapter 6 identifies a scalability bottleneck in the grouping algorithm. To elimi-
nate the bottleneck, the chapter (1) expresses the grouping algorithooasraious
stream query in a data stream management system, and (2) devises singfledsut
tive spatio—temporal partitioning methods for streams to parallelize the computation
Extensive experimental results show that the parallel implementation using simple
adaptive partitioning methods can achieve speed—ups of severad ofdeagnitude
without significantly effecting the quality of the grouping.

Another highly promising LBS lies in the mobile advertising domain. The suc-
cess of mobile advertising hinges on the ability to deliver aelgvantinformation
to the mobile consumer. Chapter 7 investigates models for Location—Base&d-Adv
tising (LBA) where the relevance of a mobile ad depends on at least twarsa¢l)
the proximity of the mobile consumer to the product or service being advertised, and
(2) thematchbetween the product or service and thierestof the mobile consumer.
While the consumer can express his/her inteegglicitly, as demonstrated, it can
also beimplicitly inferred through data mining. To give indications for the business
potential of LBA, using synthetic data from ST-ACTS, the chapter gigstmates for
the capacity of the LBA channel both in the explicit and implicit case. Resutts sh
that the capacity of the Location—Based Advertising channel is rathes, latgch is
evidence for a strong business case, but it also necessitates effesgiv-controls for
the received mobile ads, some of which are proposed in the chapter.
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To receive LBSes, users have to be willing to disclose their current, iciakor
or future locations. Such a disclosure naturally raises concerns amengséns
about potentially being tracked and followed. Hence, to assure useptacce of
LBSes, the privacy of users is of great importance. To this extent, €tz and 9
address location privacy concerns in connection with data mining of usatidns.
More specifically, Chapter 8 proposes a privacy—preserving locdate collection
and mining system. The system uses a general framework that allows csgoro
data to be anonymized through spatio—temporal generalization, thusvimgsei-
vacy. The data mining component of the system mines anonymized location data
and derives probabilistic spatio—temporal patterns. A privacy—presemethod is
proposed for the core data mining tasKiafling dense spatio—temporal region
extensive set of experiments evaluate the method, comparing it to its neacypri
preserving equivalent. The experiments show that the framework allows pat
terns to be found, even when privacy is preserved.

The anonymization process proposed in Chapter 8 introduces soméaimtyen
the patterns. To eliminate this uncertainty in patterns, Chapter 9 first adapteamn
bines existing privacy definitions to derive privacy definitions of vagistiengths for
location data. Then the chapter presents a complete system for the ppvesgrving
collection ofexacttrajectories. The system is composed of an untrusted server and
clients communicating in a P2P network. Location data is anonymized in the system
using data cloaking and data swapping techniques. Experiments on simulated b
alistic movement data indicate that the proposed system is effective uadeneble
conditions and privacy / anonymity settings.

The contents of this thesis are based on the contents of papers thatthave e
been published, are to appear, or are under consideration for gidslica

Since Chapters 2 to 9 are based on individual publications, they ar@sdited
and can be read in isolation. Since some of these chapters are closely, riblisten-
tails a certain amount of overlap. In particular, some of the methods and $ee ba
data used in the data generator, ST-ACTS, in Chapter 3, are also usecestitha-
tions in Chapter 7. Hence, there is a strong correspondence betwet@amSe8.4 and
3.5.4, and Sections 7.5.3 and 7.4, respectively. Furthermore, sinceC35-4 used
to generate synthetic data for experiments in most of the papers and sncfdr
extensively throughout the chapters, it is placed early in the thesis. Simdarbe
Chapter 6 provides a scalable implementation of the algorithm presented ite€hap
5, the motivation in Section 5.1, the problem definition in Section 5.2, the service
description in Section 5.3, and the description of the basic algorithm in Seclon 5
closely correspond to Sections 6.1, 6.3.1, 6.3.2, and 6.3.3, respediv&lly, since
both Chapters 8 and 9 consider location privacy in connection with data mifing
trajectories, the motivations and review of related work in Section 8.1 are similar
that presented in Sections 9.1 and 9.2.
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The papers that the thesis is based on are listed below. Papers 3 arai@aded
journal versions of the conference papers 9 and 10, respectiviegpters 2 to 9 are
based on papers 1 to 8, respectively.

1.

10.

G. Gidbfalvi and T. B. Pedersen. Spatio—Temporal Rule Mining: Issues and
Techniques. IfProc. of the 7th International Conference on Data Warehousing
and Knowledge Discovery, DaWakolume 3589 of Lecture Notes in computer
Science, pp. 275-284, Springer, 2005.

. G. Gidbfalviand T. B. Pedersen. ST-ACTS: A Spatio—Temporal Activity Sim-

ulator. InProc. of the 14th ACM International Symposium on Geographic
Information Systems, ACM-GIfp. 155-162, ACM, 2006.

. G. Gidbfalvi and T. B. Pedersen. Mining Long, Sharable Patterns in Trajecto-

ries of Moving Objects. To appear (Beoinformatica35 pages, 2008.

. G. Gidbfalvi and T. B. Pedersen. Cab—Sharing: An Effective, DoorBlums¥,

On-Demand Transportation Service. Rroc. of the 6th European Congress
and Exhibition on Intelligent Transport Systems and Services,200&/.

. G. Gidbfalvi, T. B. Pedersen, T. Risch, and E. Zeitler. Highly Scalable Trip

Grouping for Large—Scale Collective Transportation Systems. To appea
Proc. of the 11th International Conference on Extending Databasentatyy,
EDBT, 12 pages, 2008.

. G. Gidbfalvi, H. R. Larsen, and T. B. Pedersen. Estimating the Capacity of the

Location—Based Advertising Channel. To appeamirnational Journal of
Mobile Communications, IJIM8 pages, Inderscience Publishers, 2008.

. G. Gidbfalvi, X. Huang, and T. B. Pedersen. Privacy—Preserving Datalglin

on Moving Object Trajectories. IRroc. of the 8th International Conference
on Mobile Data Management, MDN2007.

. G. Gidbfalvi, X. Huang, and T. B. Pedersen. Privacy—Preserving Tiajgc

Collection. Submitted tahe 2008 ACM SIGMOD International Conference
on Management of Data, SIGMQD2 pages, 2008.

. G. Gidbfalvi and T. B. Pedersen. Mining Long, Sharable Patterns in Trajec-

tories of Moving Objects. IfProc. of the 3rd Workshop on Spatio—Temporal
Database Management, STDB&blume 174 of Online Proceedings of CEUR-
WS, pp. 49-58, CEUR-WS, 2006.

G. Gidfalvi, H. R. Larsen, and T. B. Pedersen. Estimating the Capacity of
the Location—Based Advertising Channel. Rroc. of the 2007 International
Conference on Mobile Business, ICIMip. 2, IEEE Computer Society, 2007.






Chapter 2

Spatio—Temporal Rule Mining:
Issues and Techniques

Recent advances in communication and information technology, such asitbasn

ing accuracy of GPS technology and the miniaturization of wireless communmicatio
devices pave the road for Location—Based Services (LBS). To achigh quality

for such services, spatio—temporal data mining techniques are neddsgaper de-
scribes experiences with spatio—temporal rule mining in a Danish data mining com-
pany. First, a number of real world spatio—temporal data sets are dahdehding to

a taxonomy of spatio—temporal data. Second, the paper describesral geetnod-
ology that transforms the spatio—temporal rule mining task to the traditional tharke
basket analysis task and applies it to the described data sets, enablitigriahds-
sociation rule mining methods to discover spatio—temporal rules for LBS. Finally
unique issues in spatio—temporal rule mining are identified and discussed.

2.1 Introduction

Several trends in hardware technologies such as display devicesibelss/ com-
munication combine to enable the deployment of mobile, Location—Based Service
(LBS). Perhaps most importantly, global positioning systems (GPS) amtieg
increasingly available and accurate. In the coming years, we will withegdarge
guantities of wirelessly Internet—worked objects that are location—enahbtbdapa-

ble of movement to varying degrees. These objects include consumegsGiRRS

and GPS enabled mobile—phone terminals and personal digital assistants tou
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carrying on-line and position—aware cameras and wrist watches, \&hitlecom-
puting and navigation equipment, etc.

These developments pave the way to a range of qualitatively new typdeiofét-
based services [56]. These types of services, which either make litde semre of
limited interest in the context of fixed—location, desktop computing, includéictra
coordination and management, way—finding, location—aware advertistegrated
information services, e.g., tourist services.

A single generic scenario may be envisioned for these location—baseceser
Moving service users disclose their positional information to services hatse this
and other information to provide specific functionality. To customize the inierac
between the services and users, data mining techniques can be appliecbt@dis
interesting knowledge about the behavior of users. For example, godwsers can
be identified exhibiting similar behavior. These groups can be charactdrased
on various attributes of the group members or the requested servicagnsegq of
service requests can also be analyzed to discover regularities in suenses. Later
these regularities can be exploited to make intelligent predictions abous @isterre
behavior given the requests the user made in the past. In addition, thitekiyggxcan
also be used for delayed modification of the services, and for longer-steategic
decision making [57].

An intuitively easy to understand representation of this knowledge is in terms
of rules. Arule is an implication of the formd = B, where A and B are sets
of attributes. The idea of mining association rules and the subproblem of mining
frequent itemset was introduced by Agrawal et al. for the analysis dfehbasket
data [1]. Informally, the task of mining frequent itemsets can be definechdindj
all sets of items that co—occur in user purchases more than a userddefimbeer of
times. The number of times items in an itemset co—occur in user purchases ésldefin
to be thesupportof the itemset. Once the set of high—support, so cdileguent
itemsets have been identified, the task of mining association rules can beldefine
finding disjoint subsets! and B of each frequent itemset such that the conditional
probability of items inB given the items i is higher than a user—defined threshold.
The conditional probability of3 given A is referred to as theonfidenceof the rule
A = B. Given that coffee and cream are frequently purchased togetiégha
confidence rule might be that “60% of the people who buy coffee alsaclegm.”
Association rule mining is an active research area. For a detailed revieeatier is
referred to [40].

Spatio—temporal (ST) rules can be eitleaplicit or implicit. Explicit ST rules
have a pronounced ST component. Implicit ST rules encode depensitetieeen
entities that are defined by spatial (north—of, within, close—to,...) arnefoporal
(after, before, during,...) predicates. An example of an explicit 3& ig1 “Busi-
nessmen drink coffee at noon in the pedestrian street district.” An exaohple
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implicit ST rule is: “Middle—aged single men often co—occur in space and time with
younger women.” This paper describes experiences with ST rule mining iDdh-
ish spatial data mining company, Geomatic.

The task of finding ST rules is challenging because of the high cardinalityeof
two added dimensions: space and time. Additionally, straight—forward appfiazt
association rule mining methods cannot always extract all the interestingdatge
in ST data. For example, consider the previous implicit ST rule example, which
extracts knowledge about entities (people) with different attributes égeade) that
interact in space and time. Such interaction will not be detected when associa
rule mining is applied in straight—forward manner. This creates a need tarexp®
special properties of ST data in relation to rule mining, which is the focus of this
paper.

The contributions of the paper are as follows. First, a number of redtv&ir
data sets are described, and a taxonomy for ST data is derived. S$éwwmiag
the taxonomy, the described data sets, and the desirable LBSes in mincgralgen
methodology is devised that projects the ST rule mining task to traditional market
basket analysis. The proposed method can in many cases efficiently elitiaate
above mentioned explosion of the search space, and allows for the eligad\both
implicit and explicit ST rules. Third, the projection method is applied to a number
of different type of ST data such that traditional association rule mining rdetare
able to find ST rules which are useful for LBSes. Fourth, as a natethsion to the
proposed method, spatio—temporally restricted mining is described, whichmia so
cases allows for further quantitative and qualitative mining improvementslliysina
a number of issues in ST rule mining are identified, which point to possibleefutur
research directions.

Despite the abundance of ST data, the number of algorithms that mine such data
is small. Since the pioneering work of [2], association rule mining methods were
extended to the spatial [21, 22, 48, 63], and later to the temporal dimer&ijpn [
Other than in [70, 95], there has been no attempts to handle the combinatian of th
two dimensions. In [95] an efficient depth—first search style algorithmivisngto
discover ST sequential patterns in weather data. The method does nabdpiibyre
the spatial dimension as no spatial component is present in the rules, gedemal
spatial predicate defines the dependencies between the entities. la @tom-
up, level-wise, and a faster top—down mining algorithm is presented to dis&dv
periodic patterns in ST trajectories. While the technique can naturally be dpplie
to discover ST event sequences, the patterns found are only within la sivent
sequence.

The remainder of the paper is organized as follows. Section 2.2 introdunes-
ber of real world ST data sets, along with a taxonomy of ST data. In Secigma?2
general methodology is introduced that projects the ST rule mining task to tie tra
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tional market basket analysis or frequent itemset mining task. The prdgposblem
projection method is also applied to the example data sets such that traditiat ass
ation rule mining methods are able to discover ST rules for LBSes. Finalltio8sc
2.4 and 2.5 identify unique issues in ST rule mining, conclude, and point teefutu
work.

2.2 Spatio—Temporal Data

Data is obtained by measuring some attributes of an entity/phenomena. When thes
attributes depend on the place and time the measurements are taken, the deta is re
to as ST data. Hence such ST measurements not only include the measilvatbattr
values about the entity or phenomena, but also two special attribute vallgesition
value,wherethe measurement was taken, and a time valenthe measurement
was taken. Disregarding these attributes, the non—ST rule “Businessinkrcof-

fee” would result in annoying advertisements sent to businessmen wha #re
middle of an important meeting.

2.2.1 Examples of ST Data Sets

The first ST data set comes from the “Space, Time, and Man” (STM) gir[86]—

a multi—disciplinary project at Aalborg University. In the STM project atitig of
thousands of individuals are continuously registered through GPBleehmobile
phones, referred to as mobile terminals. These mobile terminals, integrated with
various GIS services, are used to determine close-by services ssiobpss Based

on this information in certain time intervals the individual is prompted to select from
the set of available services, which s/he currently might be using. Uposeteistion,
answers to subsequent questions can provide a more detailed informaaiantize
nature of the used service. Some of the attributes collected include: locatidimee
attributes, demographic user attributes, and attributes about the sers@mbsThis
data set will be referred to as STM in the following.

The second ST data set is a result of a project carried out by the Géaten-
hagen Development Council (Hovedstadens Udviklingd R-HUR)). The HUR pro-
ject involves a number of city busses each equipped with a GPS receilagatop,
and infrared sensors for counting the passengers getting on andeafflabus stop.
While the busses are running, their GPS positions are continuously sampleagito
detailed location information. The next big project of HUR will be to employ chip
cards as payment for the travel. Each passenger must have an iatlisfiio card
that is read when getting on and off the bus. In this way an individual payde
pendent on the person and the length of the travel can be obtainedafBhedorded
from the chip cards can provide valuable passenger information. Wiadyzad, the
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data can reveal general travel patterns that can be used for Snggeswv and better
bus routes. The chip cards also reveal individual travel patternshvdaio be used
to provide a customized LBS that suggests which bus to take, taking capacities
correct delays into account. In the following, the data sets from the fickssacond
projects of HUR will be referred to as HUR1 and HUR2, respectively.

The third ST data set is the publicly available INFATI data set [53], whiche®
from the intelligent speed adaptation (INtelligent FArtTllpasning (INFARoject
conducted by the Traffic Research Group at Aalborg University. ddtia set records
cars moving around in the road network of Aalborg, Denmark over a geficev-
eral months. During this period, periodically the location and speeds ofitiseace
sampled and matched to corresponding speed limits. This data set is inter&siing,
captures the movement of private cars on a day-to—day basis, i.e., thadailty
patterns of the drivers. Additional information about the project cambed in [58].
This data set will be referred to as INFATI in the following.

Finally, the last example data set comes from the Danish Meteorology Institute
(DMI) and records at fixed time intervals atmospheric measurements like tamper
ture, humidity, and pressure for Denmark for 5 km grid cells. This date setique
in that unlike the other data sets it does not capture ST characteristics ofgmat+
jects, but nonetheless is ST. This data set will be referred to as DMI imtoaing.

2.2.2 A Taxonomy of ST Data

Data mining in the ST domain is yet largely unexplored. There does not eig&n e
any generally accepted taxonomy of ST data. To analyze such data it igamipior
establish a taxonomy.

Perhaps the most important criterion for this categorization is whether the mea-
sured entities armobileor immobile The ST data in the DMI data set is immobile
in the sense that the temperature or the amount of sunshine does not oroveni
location to the other, but rather, as a continuous phenomenon, changésititste
value over time at a given location. On the other hand, the observed entities in
other four data sets are rather mobile.

Another important criterion for categorization is whether the attribute valties o
the measured entities asgatic or dynamic There are many examples of static at-
tributes values but perhaps one that all entities possess is a unique idelifie
namic attributes values change over time. This change can be slow andlgfikéu
in the case of the age of an observed entity, or swift and abrupt, like inathee af
an activity performed by the observed entity, which starts at a particular tich&aat
for a well-specified time interval only.
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2.3 Spatio—Temporal Baskets

Following the methodology of market basket analysis, to extract ST rulesdiven
data set, one needs to define iEImsandbaskets This task is important, since any
possible knowledge that one can extract using association rule mining raetfibd
be about the possible dependencies of the items within the baskets.

2.3.1 Mobile Entities with Static and Dynamic Attributes

Consider the STM data; it is mobile in nature and has several static and dynamic
attributes. Base data contains the identity and some demographic attributes of the
user, and the activity performed by user at a particular location and timehdfu
attributes of the locations where the activity is performed are also availabje. B
applying association rule mining on this base data one can find possibledéepes
between the activities of the users, the demographics of the users, thetehiatics

of the locations there the activities are performed, and the location and time of th
activities. Since the location and time attributes are items in the baskets one may find
{Strgget,noon,businessman@aés a frequent itemset and from it the association
rule {Strgget,noon,businessnjan- {cafe}. Straget being a famous pedestrian street
district in central Copenhagen in Denmark, this rule clearly has both a lspatla
temporal component and can be used to advertise special deals d@f ahogf on
Strgget to businessmen who are in the area around noon.

In the INFATI data set, a record in the base data contains a location, a time, a
driver identifier, and the current speed of the car along with the maximunvedio
speed at the particular location. The possible knowledge one can disgoapply-
ing association rule mining on the base data is where and when driveraudicufar
driver occur(s) and/or speed(s) frequently. However, one maga@nae pivot this ta-
ble of base data records such that each new row represents ani@Taed records
the car identifiers that happen to be in that region. Applying associatiormiale
ing on these ST baskets one may find which cars co—occur frequenthade smd
time. Such knowledge can be used to aid intelligent rideshare servicas. atso be
valuable information for constructing traffic flow models and for discowgetiavel
patterns. While the possible knowledge discovered may be valuable faircappli-
cations, the extracted rules are not clearly ST, i.e.: there explicit ST component
in them. In fact the same set of cars may frequently co—occur at s&¥VEnagions
which may be scattered in space and time. Nonetheless, it can be argusith¢kat
the “co—occurrence” between the items in the ST baskets is actually an &itgiee
in itself, the extracted rules ammplicitly ST.

An alternative to this approach might be to restrict the mining of the ST baskets
to larger ST regions. While this may seem useless at first, since the baskats th
selves already define more fine—grained ST regions, it has sevesaltades. First,
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Base Data Records from INFATI

Location Time CarlD
1 07:30 A
; 8;2? i Spatio-temporal Baskets
3 Location| Time CarlDs
2 8;;21 g 1 07:30 AB
" 2 07:31 A,B,C
3 07:32 A e N3 07:32 AC
3 07:32 C ivoting - :
: 3 16:20 AB
3 16:20 A 2 16:21 A.B
3 16:20 B i 16:22 AB
2 16:21 A
2 16:21 B
1 16:22 A
1 16:22 B

Figure 2.1: Process of Pivoting to Obtain ST Baskets from INFAT| Baa@a D

it allows the attachment of an explicit ST component to each extracted ruden&e
it enhances the quality of the extracted rules. Finally, it significantly spepdike
mining process, as no two itemsets from different regions are combinettiadd
as a candidate. Figure 2.1 shows the process of pivoting of some exasuplds
abstracted from the INFATI data set. Figure 2.2 shows the processeantisr of
spatio—temporally restricted and unrestricted mining of the ST baskets. Inxthis e
ample the shown frequent itemsets are based on an absolute minimum sdgort o
in both cases, however in the restricted case specifying a relative mininpporsu
would yield more meaningful results. Naturally the adjective “relative”nefe the
number of baskets in each of the ST regions. Figure 2.2 also shows the izien-
tioned qualitative differences in the result obtained from spatio—tempoestyicted
vs. unrestricted mining. While the frequent co—occurrence of carsd\Barand
cars A and C are detected by unrestricted mining, the information that cansl A a
B are approximately equally likely to co—occur in area Al in the morning as in the
afternoon, and that cars A and C only co—occur in area Al in the mornmgsged.
Similar pivoting techniques based on other attributes can also reveal tirigres
information. Consider the data set in HUR2 and the task of finding frequiatty
elled routes originating from a given ST region. In the HUR2 data set @deds
generated every time a user starts and finishes using a transportatime sditvis
record contains the identifier of the user, the transportation line usetharatation
and time of the usage. For simplicity assume that a trip is defined to last at most 2
hours. As a first step of the mining, one can retrieve all the recordsadhatithin
the ST region of the origin. Following, one can retrieve all the records waMmours
of the users that belonged to the first set. By pivoting on the user—idesitifiee can
derive ST baskets that contain locations where the user generatesiclvgenaking
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Spatio-temporal Baskets
Location| Time CarlDs
Spatio-temporal region 1: 1 07:30 AB

Area = A1 Period = 07:30-07:40 2 07:31 AB,C
3 07:32 AC
Spatio-temporal region 2: 3 16:20 AB
Area = A1 Period = 16:20-16:30 2 16:21 A.B
1 16:22 A,B

Spatio-temporally
Restricted Mining

Spatio-temporally
Unrestricted Mining

Area Period ltemset | Support

A1_| 7:30-7:40 {A} 3

AT T 730740 @l > Itemset | Support
Al_|_7:30-7:40 {C} 2 {A} 6

A1 | 7:30-7:40 {AB} 2 {B} 5

A1 | 7:30-7:40 | {AC} 2 (C) >

A1 |16:20-16:30] _ {A} 3

A1 [16:20-16:30] (B} 3 {A.B} 5

A1 | 16:20-16:30 | {AB} 3 {A.C} 2

Figure 2.2: Process and Results of Spatio—Temporally Restricted vs.sttichex
Mining of ST Baskets.

use of a transportation service. Applying association rule mining to the geede
ST baskets one may find frequently travelled routes originating from &fisp8d
region. The pivoting process for obtaining such ST baskets and thiksre§ mining
such baskets is illustrated in a simple example in the light bordered box of Figure
2.3. Naturally, the frequent itemset mining is only applied to the "Unique Locsition
column of the ST baskets. As before the minimum support is set to 2. Congjder
the spatial relation between the locations one might consider altering theutes ro
to better meet customer needs. For example, if locations A and C are clogely 0
road network, but no bus line exists with a suitable schedule between A,aheérC
in light of the evidence, i.e., support of A,B,C is 2, such a line can be addete
that while the discovered frequent location sets do not encode any tahnelation
between the locations, one can achieve this by simply placing ST regions ir§ad the
baskets as items. The pivoting process and the results of mining are shoke in
dark bordered box of Figure 2.3. The discovered ST itemsets can hedjjuistiag
timetables of busses to best meet customer needs.

2.3.2 Immobile Entities with Static and Dynamic Attributes

So far the examples considered data sets that are mobile and have eithedgtatic
namic, or both types of attribute values. Now consider an immobile ST data with
mostly dynamic attribute values, as the DMI data set. The base data can bd aigwe
transactions in a relational table with a timestamp, a location identifier and some at-
mospheric measurements like temperature, humidity, and pressure. Cgstter
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Base Data Records from HUR2

Spatio-temporal Baskets

User |Location| Time | Line | ON/OFF 0 - -
08:00 | User _[Locations] Unique Locations]
X A 08:00 7 ON N X ABB.C ABC
X B 08:15 7 OFF Pivoting ) v A'B':)’E Aé DE
X B 08:20 14 ON — .
X C 08:25 | 14 | OFF Z | ABBC ABC
Y A 08:00 | 7 ON Frequent ltemset
Y B 085 | 7 | OFF Mining
Y D 08:18 18 ON
Y E 08:25 18 OFF
Z A 08:00 7 ON Itemset | Support
z B 08:15 7 OFF (A} 3
Z B 0820 | 14 ON B 3
Z Cc 0825 | 14 | OFF c >
(AB] 3
(AC) 2
{AB.C] 2
Itemset Support |

Spatio-temporal Baskets
User Spatio-temporal Regions
X A 0800, B_0815, B_0820, C_0825
Y A 0800, B_0815, D_0818, E_0825
V4 A 0800, B_0815, B_0820, C_0825

{A 0800}
{B_0815)
(C 0825
{A_0800,B_0815}
{A 0800,C 0825}
{A_0800,B_0815,C_0825}

Frequent

Mining

N fw|w|e|w

Figure 2.3: ST Baskets and Frequent Itemset Mining for HUR2.

geographical locations A, B, C, and D depicted in Figure 2.4, one mighteested

in trends like, when the temperature in regions A and B is high and the peeissur
regions A and C is low, then at the same time the humidity in region D is medium.
By applying something similar to the pivoting techniques above, one can esticit
information as follows. For each record concatenate the location identifigrshe
atmospheric measurements. Then, for each distinct time interval when mesis

are taken, put all concatenated values, each of which is composedazitmifoiden-
tifier and an atmospheric measurement, into a single, long ST basket. Byrpieido
association mining on the derived ST baskets one can obtain the desirgl@#ge.

As an illustrative example, depicted in Figure 2.4, consider the four neighbo
ing cells A, B, C, and D and the corresponding measurements of tempe&jure
humidity (H), and pressure (P) at three different times. Items in the STebmake
derived by concatenating a location identifier followed by an attribute syarmbhn
attribute value. Hence, the item ‘ATlo" in the ST basket at time ‘08:00" ensdhke
fact that at ‘08:00’ at location ‘A’ the temperature (‘T’) was low (‘lo’Notice that
the extracted knowledge refers to specific locations. If one is interestebtamn-
ing knowledge about the inter—dependencies of these attributes relaty@age) to
one another, for each base data record at each distinct time intervalmdesure-
ments are taken, an ST basket can be constructed that encodes meassifeom
neighboring cells only. So, for example considering the immediate 8 neigllbors
a cell and assuming three different attributes the number of items in eacht limsk
3 4+ 8 x 3 = 27. Considering a five—by—five relative neighborhood centered around
a cell the number of items in each basket is 75, and the number of possibletiemse
given three possible attribute values for each of the attributgd®isz 6.1 x 1034,
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Base Data Records from DMI Geographical Locations
Location| Time T H P
A 08:00 lo hi hi
B_[0800] lo | hi hi A B
C 08:00 hi me me
D 08:00 | me me me
A 09:00 | me hi me
B 09:00 hi lo lo
C 09:00 lo lo me C D
D 09:00 lo hi hi
A 10:00 lo hi hi
B 10:00 [ hi lo lo
C 10:00 | hi hi me Longest Frequent ltemset (out of 157)
D 10:00 [ 1o hi hi {BThi,BHlo,BPlo,CPme,DTlo,DHhi,DPhi}
Spatio-temporalBaskets m
Time Spatial Measurements
08:00 ATlo,AHhi,APhi,BTlo,BHhi,BPhi,CThi,CHme,CPme,DTme,DHme,DPme
09:00 ATme,AThi,APme,BThi,BHIo,BPlo,CTlo,CHIo,CPme,DTlo,DHhi,DPhi
10:00 ATlo,AHhi,APhi,BThi,BHlo,BPIlo,CThi,CHhi,CPme,DTlo,DHhi,DPhi

Figure 2.4: ST Baskets and Frequent Itemset Mining of DMI.

To reduce complexity, top—down and bottom—up mining can occur at diffepatial
and temporal granularities.

While in the above examples the type of ST data that was analyzed and the type
of ST knowledge that was extracted is quite different the underlyingl@nokrans-
formation method—referred to gBvoting—is the same. In general, one is given
base records with two sets of attributésnd B, which are selected by a data mining
expert and can contain either spatial, temporal and/or ordinary attribBtesting
is then performed by grouping all the base records based oA-th#ribute values
and assigning thé—attribute values of base records in the same group to a single
basket. Bellow, attributes il are referred to apivoting attributes orpredicates
and attributes inB are referred to apivotedattributes olitems Depending on the
type of the pivoting attributes and the type of the pivoted attributes the obthased
kets can be eitheordinary, spatial tempora) or ST baskets. Table 2.1 shows the
different types of baskets as a function of the different types ofipages used to
construct the baskets and the different types of items placed in the haBketsym-

| prediitemtype|| s—i | t=i | st-i | ordinary—i|
s—predicate || s-b | st-b s-b
t—predicate | st-b | t-b t-b
st—predicate || st-b | st-b | st-b st-b

other—predicate| s—b | t-b | st-b | ordinary—b

Table 2.1: Types of Baskets as a Function of Predicate Type and Iteen Typ
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| basket/mining type| s—r [ t-r [ st-r [ unr |

s—basket X X
t—basket X X
st-basket X | X X X
other—basket X

Table 2.2: Possible Mining Types of Different Types of Baskets.

bols s, t, st, i, and b in the table are used to abbreviate the terms ‘spatial’, t@impo
‘spatio—temporal’, ‘items’, and ‘baskets’ respectively.

In the “co—occurrence” mining task, which was earlier illustrated on theAINIF
data, the concept of restricted mining is introduced. This restriction is peshile
to a side effect of the pivoting technique. When a particular basket istremted,
the basket is assigned the value of the pivoting attribute as an implicit labeln Whe
this implicit basket label contains a spatial, temporal, or ST component, regrictin
the mining to a particular spatial, temporal, or ST subregion becomes a naissal p
bility. It is clear that not all basket types can be mined using spatial, temporal
restrictions. Table 2.2 shows for each basket type the type of restriétiongning
that are possible. The symbols s, t, st, r, and unr in the table are usedréviabb
ate the terms ‘spatial’, ‘temporal’, ‘spatio—temporal’, ‘restricted’, andrastricted’
respectively.

2.4 Issues in Spatio—Temporal Rule Mining

The proposed pivoting method naturally brings up questions about fliggsind
efficiency. In cases where the pivoted attributes include spatial andipotal com-
ponents, the number of items in the baskets is expected to be large. Thusythern
and length of frequent itemsets or rules is expected to grow. Bottom-up;uése
algorithms are expected to suffer from excessive candidate genethtistiop—down
mining methods seem more feasible. Furthermore, due to the presencg tdfnger
patterns, the extraction of all frequent patterns has limited use for analgsisich
cases closed or maximal frequent itemsets can be mined.

Useful patterns for LBSes are expected to be present only in ST ggabse
hence spatio—temporally restricted rule mining will not only make the proposed me
thod computationally more feasible, but will also increase the quality of thdtresu
Finding and merging patterns in close—by ST subregions is also expectedravénp
efficiency of the proposed method and the quality of results.

Placing concatenated location and time attribute values about individual entities
as items into an ST basket allows traditional association rule mining methods to ex-
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tract ST rules that represent ST event sequences. ST evennsegumn have nu-
merous applications, for example an intelligent ride—sharing applicationhvihits
common routes for a set of commuters and suggests rideshare possibilitiemto th
Such an application poses a new requirement on the discovered itemse&dy,na
they primarily need to be “long” rather than frequent (only a few people shidire

a given ride, but preferably for a long distance). This has the followmgications
and consequences. First, all subsets of frequent and long itemsels@feequent,
but not necessarily long and of interest. Second, due to the low suggoiitement

a traditional association rule mining algorithm, disregarding the length requiteme
would explore an excessive number of itemsets, which are frequenabutever be
part of a long and frequent itemset. Hence, simply filtering out “short” itésresiter
the mining process is inefficient and infeasible. New mining methods are thé&zate
efficiently use the length criterion during the mining process.

2.5 Conclusions and Future Work

Motivated by the need for ST rule mining methods, this paper establishedreotayo
for ST data. A general problem transformation method was introducédd gav-
oting, which when applied to ST data sets allows traditional association rule mining
methods to discover ST rules. Pivoting was applied to a number of ST datal-sets
lowing the extraction of both explicit and implicit ST rules useful for LBSagaky,
some unique issues in ST rule mining were identified, pointing out possiblarobse
directions.

Future work will devise and empirically evaluate algorithms for both genaxhl a
spatio—temporally restricted mining, and more specialized types of mining stioh as
ride—sharing suggestions. Especially, algorithms that take advantage albdve—
mentioned “long rather than frequent” property of rideshare rules wilhteresting
to explore.



Chapter 3

ST-ACTS: A Spatio—Temporal
Activity Simulator

Creating complex spatio—temporal simulation models is a hot issue in the area of
spatio—temporal databases [80]. While existing Moving Object SimulatorsS$ylO
address differenphysicalaspects of mobility, they neglect the importaocial and
geo—demographicalspects of it. This paper presents ST-ACTS, a Spatio—Temporal
ACTivity Simulator that, using various geo—statistical data sources and ietpitin-
ciples, models the so far neglected aspects. ST-ACTS considers thhjdafs (rep-
resenting mobile users) move from one spatio—temporal location to anotheheith
objective of performing a certain activity at the latter location; (2) not adrsigre
equally likely to perform a given activity; (3) certain activities are perfed at cer-

tain locations and times; and (4) activities exhibit regularities that can béisge@
single user or to groups of users. Experimental results show that SITSA&able to
effectively generate realistic spatio—temporal distributions of activitieg;wmake

it essential for the development of adequate spatio—temporal data mamagerde
data mining techniques.

3.1 Introduction

Simulation is widely accepted in database research as a low—cost methoditte pro
synthetic data for designing and testing novel data types and access méituaihg
objects databases are a particular case of databases that reprdseahage changes
related to the movement of objects. To aid the development in moving objecadatab

19
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research, a number of Moving Object Simulators (MOSs) have beetogedd8,51,
77,81,83,91].

The so far developed MOSs have been using parameterizable randotiofis
and road networks to model different physical aspects of the movingtsbgich
as their extent, environment and mobility—but they all neglect some importast fa
When moving objects represent mobile users, most of the time the reasonver mo
ment is due to a clear objective. Namely, users move from one spatio—tdigoara
tion to another to accomplish some task, from hereon termed as perfornidty,ac
at the latter location. For example, people do not just spend most of thetsrdgh
a particular location, they contemeto be with their loved ones, to relax, eat and
sleep. Similarly, people do not just spend most of their working days apartic-
ular location, they go to a real-world facility, theuork place with the intention of
working. Finally, based on their habits and likes, in their spare time, people(@no
less regularly) go to other real-world facilities, which they like and arelyyear

To model the above mentioned social aspects of mobility is important for two
reasons. First, the locations and times where activities can be perforrdethean
patterns in these performed activities define a unique spatio—temporal udistiib
of moving objects that is essential for spatio—temporal database manageeent.
ond, the social aspects of mobility are essential when one wishes to esfiediti—
temporal knowledge about the regularities in the behavior of mobile uskesfidld
of spatio—temporal data mining is concerned with finding these regularitieator p
terns. To develop efficient and effective spatio—temporal data manageme data
mining techniques, large sets of spatio—temporal data is needed; and whtlernec
enabled mobile terminals are increasingly available on the market, such dadeesets
not readily available.

Hence, to aid the development in spatio—temporal data management and data
mining techniques, this paper presents ST-ACTS, a probabilistic, pararabter
spatio—temporal activity simulator, which is based on a number of real-watél d
sources consisting of:

¢ fine—grained geo—demographic population,
¢ information about businesses and facilities, and
e related consumer surveys.

The importance of the use of real-world data sources in ST-ACTS lies in the
fact, that they form a realistic base for simulation. Concretely, variablesnatty
given data source are dependent, and perhaps most importantly penddat. For
example, there is a strong dependence between the education and treapiers
come of people. The variables are also geo—dependent, due to theafasiilar
people or similar businesses tend to form clusters in the geographicel $pather-
more, variables are geo—dependent across the different dataesoulior example,
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people working in bio—technology tend to try to find homes close to work pliaces
that business branch. Using real-world data from various commerdaktgistical
databases and common sense principles, ST-ACTS captures some ofdke totd
modelled, yet important, characteristics of spatio—temporal activity data.

The remainder of this paper is organized as follows. Section 3.2 reviews re
lated work. Section 3.3 defines the objectives of the simulation model. Section 3.4
describes in detail the source data that forms the basis for the simulation r8edel.
tion 3.5 describes each component of the simulator and how the source ukd is
each component. Section 3.6 evaluates the simulation model in terms of its efficienc
and its simulation objectives by examining the characteristics of some simulated data
Finally Section 3.7 concludes and points to future research directions.

3.2 Related Work

Due to the short history of spatio—temporal data management, scientific work o
spatio—temporal simulation can be restricted to a handful of publicationsfirEhe
significant spatio—temporal simulator is GSTD (Generate Spatio—Tempdeg![P4].
Starting with a distribution of points or rectangular objects, at every time stdipGS
recalculates positional and shape changes of objects based on pamadetdom
functions. Through the introduction of a new parameter for controlling blamge of
direction and the use of rectangular objects to model obstacles, GSTDnsledts®
simulate more realistic movements, suchpasferred movemengroup movements
and obstructed movemefit7]. Since most objects use a network to get from one
location to the other, Brinkhoff presents a framework for network-¢haseving ob-
ject simulation [8]. The behavior of a moving object in this framework is infheeh

by (1) the attributes of the object having a particular object class, (2)dimbined
effects of the locations of other objects and the network capacity, anti€3pca-
tion of external objects that are independent of the network. These $orsuknd
frameworks primarily model the physical aspects of mobility. While they caneall b
extended to model the social aspects, i.e., the objective for movement aredjthe
larities in these objectives, they do not pursue to do so.

Nonetheless, the importance of modelling these social aspects of mobility is
pointed out in [8]. In comparison, ST-ACTS focuses on these sogialcés of mo-
bility while placing only limited constrains on the physical aspects of mobility. In
effect, the problem solved by the above MOSs is orthogonal to the pratérad
by ST-ACTS.

In Oporto [81]—a realistic scenario generator for moving objects motivayeal
fishing application—the moving behavior of objects is influenced by otheeresta-
tionary or moving, objects of various object types. The influence betwbgtts
of different types can either be attraction or repulsion. While the repuksnd at-
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tractive influence of other objects is an objective for movement, unlike STSA
Oporto does not allow the modelling of regularities in these objectives.

The GAMMA [51] (Generating Artificial Modeless Movement by genetic—a\g
rithm) framework represents moving object behavior as a trajectory in taédoe
temporal space and proposes two generic metrics to evaluate trajectosgt$atéhe
generation of trajectories is treated as an optimization problem and is solvad by
genetic algorithm. With appropriately modified genetic operators and fitngssacr
the framework is used to generate cellular network trajectories that asefrdyg as
possible cross cell boarders, and symbolic location trajectories thatlfibitemo-
bility patterns similar to those present in a set of real-life sample trajectories giv
as input, (2) conform to real-life constraints and heuristics. Based rapleaac-
tivity trajectories, the GAMMA framework can be configured to generat&iic
trajectories that contain real-life activity patterns. While the generated todagEs
will be similar to the input trajectories, since they are symbolic, they will, as the in-
put trajectories implicitly assume a location—dependent context, (see thifduntial
principle in Section 3.3). To simulate spatio—temporal activities of an entire pop-
ulation, a representative sample of context—dependent trajectoriesdisdhdmit is
hard to obtain. In comparison, ST-ACTS, based on intuitive principlesamnuhber
of real-life geo—statistical data sources, is able to generate realistic4patforal
activity data that takes this location—dependent context of activities intuatc

Time geography [46] is a conceptual basis/paradigm for human spaces¢ime

havior which considers (1) the indivisibility or corporeality of the humandition;
(2) that humans typically operate over finite intervals of space and time;d 3)ettu-
ral laws and social conventions that partially constrain space—time behanib(4)
that humans are purposive. ST-ACTS models some aspects of this paiadiy
concrete, implemented data generator.

3.3 Problem Statement

Existing MOSs capture onlghysicalaspects of mobility, i.e., thmmovemenbf the
objects, adequately. However, to aid the development of spatio—tem@baatén-
agement and data mining methodescialaspects of mobility that arise from human
behavioral patterns should be captured by a model. The most importacippem
that govern these social aspects of mobility are:

First Principle: People move from a given location to another location witloln
jective of performing some activigt the latter location.

Second Principle: Not all people are equally likely to perform a given activity. The
likelihood of performing an activitdepends on the interest of a given person,
which in turn depends on a number of demographic variables.
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Third Principle: Theactivities performed by a given person are highly context de-
pendent Some of the more important parts of this context are: the current
location of the person, the set of possible locations where a given adaiity
be performed, the current time, and the recent history of activities thaethe
son has performed.

Fourth Principle: The locations of facilities where a given activity can be per-
formed, arenot randomly distributedbut are influenced by the locations of
other facilities and the locations of the users those facilities serve.

The first principle can be thought of as an axiom that is in relation to Newton’
first law of motion. Movement that is motivated by the sole purpose of moveameht
does not obey this principle—for example movement arising from outdaaciee
activities—are not modelled.

The second principle can be rectified by many examples from real life. Two
of these examples are that elderly people are more likely to go to a pharmacy tha
younger people and younger people are more likely to go to a pop or myolert
than elderly people.

The third, perhaps most important principle, is due to several factost, Fiove-
ment is a necessary (not always pleasurable) requirement to pestomm activity,
and hence in most cases the amount of movement required to do so is minimized by
the actor, i.e., people tend to go to a&d#ifiat is near by. Second, activities are not
performed with equal likelihood at different times. For example, most pdeptkto
go to work in the morning hours as opposed to other parts of the day; qosrsity
the likelihood of performing that activity during in the morning is higher than dur
ing other periods of the day. Furthermore, due to their nature, differetities
have different durations. The duration of a given activity puts a natunastraint
on the possibility of performing another activity while the previous activity lasts
For example, people tend to start to work from the morning hours for aidnraf
approximately 8 hours; consequently the likelihood of grocery shoppimiggl the
same period is lower than otherwise. Finally, while a person may perforrotiaitya
with a very high likelihood, the activities performed by the person are notdeatlp
independent. For example, it is very unlikely that even a person who lilespd
rock concerts a lot, goes to several performances during the samd&a¢wening.

The fourth principle is mainly a result of the supply—and—demand laws of eco
nomics. Locations of facilities are mainly influenced by competition, market cost,
and market potential. For example, even though the cost of establishingraiso
salon on the outskirts of town might be low, the market potential might not even
compensate this low cost. Hence it is very unlikely that one will finds segeral
larium salons on one city block. The spatial process that gives rise ttidosaf
facilities is a complex, dynamic process with feed—back, which is govemdteb
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laws of competitive markets. Hence, using a snapshot of the spatial diistnitmi
real-world facilities as contextual information forms a reasonable basiefmtruct-
ing a realistically model of spatio—temporal activities that can be performiase
facilities.

The primaryqualitativeobjective of the simulation model is to capture the above
described governing principles of human behavioral patterns anceisedfto as the
validity of the simulation model. In addition, the simulation model has to achieve a
number ofguantitativeobjectives. First, the simulation model has tcdffectivei.e.,
it has to be able to generate large amounts of synthetic data within a reastimable
Second, the simulation model has togmameterizablgi.e., based on user—defined
parameters it has to be able to generate synthetic data sets with differenasize
characteristics. Finally, the simulation model has tocbeect i.e., the synthetic
data produced by model has to have the same statistical properties withtrespe
patterns as it is defined by the model parameters and inputs.

3.4 Source Data

The source data used in the simulation model are commercial products of Ggoma
a Danish company specializing in geo—demographic data and analysis ft seg-
mentation, business intelligence, and direct marketing [28]. Due to the cotamerc
nature of these data sets, the methods of their exact derivations ardeatescribed
herein. Nonetheless, concepts and principles used in the derivatioesgrand the
resulting relevant contents of the databases are explained below.

3.4.1 conzoor® Demographic Data

conzoon® is a commercial database product that contains fine—grained, geo—demo-
graphic information about Denmark’s population [28]. The variablesdtbstribe the
statistical characteristics of the population can be divided into three grpepson
housing unitandhouseholdsariables. These variables and the number of categories
for each is shown in Table 3.1.

In Table 3.1, variables that have “type” in their names are categoricables;
variables that have “count” in their name are counts of the correspormtitities
within a 100—meter grid cell; and finally, the rest of the variables are coniguo
variables that have been categorized into categories that are meariorgfudrket
segmentation.

Since, for example in the countryside, the number of persons, houseairaldits
could be very low in a 100—meter grid cell, grid cells are grouped togethemiasm-
ingful, large enough clusters to comply with social and ethical norms arst e
the privacy of individuals. The basis for clustering is twofold: geobyaand the
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referred entity| conzoon® variable categories
person count 1
age 9

person education type 9

employment status type| 12
employment branch type 12
unit count

house type

house ownership type
house area
household count
family type

fortune

personal income

housing unit

household

o 0ROk orRr

Table 3.1: Variables in conzodfh

publicly available one—to—one housing information. The intuition behind this Isas
also twofold. First, people living in a given geographical region (be s¢hstiate, a
county, a postal district) are similar in some sense; for example, they migatehav
more similar political orientation from people living in another geographiggibre
Second, people living in similar houses are likely to be similar in other demoigraph
variables; for example an established family with a stable source of income é& mor
likely to be able to buy a larger, more expensive house than a person sthatgtted
his/her career. As mentioned earlier, to preserve the privacy of indilsdthe clus-
ters are constrained to contain at least some fixed number of houseBtddistics
for the variables, depending on the sensitivity of the information containéteim,
are obtained from Statistics Denmark [85] for clusters constructed gif@oriate
level of cluster size constraint, for example 20, 50, 100, and 150 holdseper clus-
ter. In case of a continuous variable, for example age, counts of thesponding
entities (in this case persons in the cluster) are obtained for the cateddhiegien
variable.

Due to this constrained geo—clustering method, the con®bolusters obtained
comply with the social and ethical norms and preserve the privacy of thddnd
ual, yet the statistics obtained are accurate enough for effective nsagyptenta-
tion. This segmentation results in grouping the Danish population into 29 cof200
types, which are defined for each 100—meter grid cell. Cosmopolitan (}yipeoBe
example of the 29 conzod®types. Comparing the demographics of type 3 to the
demographics of the rest of Denmark’s population givesdémmographic profilef
the type. This profile is partially shown in Figure 3.1. It roughly describdidu-
als that are more likely: to be middle aged (30-59 years old), to live in laities c
in larger, multi-family houses that are either owned by them or are privatalseto
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Type 3 — Cosmopolitan vs Denmark

T T T
Type3 15.9 % DK 15.1 %
Type3 05.6 % DK 06.1 %
Type3 05.7 % DK 06.4 %
Type3 07.5% DK 08.6 %
Type3 16.5% DK 14.7 %
Type315.4% DK 14.2 %
Type315.4% DK 13.8 %
Type3 06.7 % DK 06.9 %
Type311.3% DK 14.1 %
Type3 09.7 % DK 24.2 %
Type3 05.0 % DK 04.1 %
Type3 01.4 % DK 01.6 %
Type324.5% DK 36.5 %
Type3 05.6 % DK 05.0 %
Type319.8% DK 14.2 %
Type3 02.6 % DK 01.6 %
Type3 26.0 % DK 07.2 %
Type3 05.5 % DK 05.4 %
Type3 04.0 % DK 03.7 %
Type3 02.3% DK 01.2 %
Type314.7% DK 05.9 %
Type310.8 % DK 08.0 %
Type3 23.2% DK 31.4%
Type3 00.5% DK 01.0 %
Type3 02.1% DK 04.1 %
Type3 02.2% DK 03.3 %
Type3 02.9 % DK 02.6 %
Type3 09.8% DK 12.0 %
Type3 07.5% DK 07.4 %
Type3 20.0 % DK 19.5 %
Type3 00.2 % DK 01.7 %
Type3 04.4% DK 07.8 %
Type300.3 % DK 00.3 %
Type301.8% DK 03.1%
Type3 07.8% DK 09.1 %
Type3 03.4% DK 03.2 %
Type3 12.4 % DK 06.9 %
Type3 24.3% DK 18.0 %
Type3 00.4 % DK 00.3 %
Type3 20.0 % DK 19.5 %
Type311.0 % DK 11.0 %
Type3 14.1 % DK 19.4 %

pp_age_0_11

pp_age_12_16
pp_age_17_22
pp_age_23_29
pp_age_30_39
pp_age_40_49
pp_age_50_59
pp_age_60_65
pp_age_66plus
hp_edu_basicSchool
hp_edu_generalUpperSchool
hp_edu_vocationalUpperSchool
hp_edu_vocationalTraining
hp_edu_shortHigh
hp_edu_mediumHigh
hp_edu_bachelor
hp_edu_longHighResearch
hp_edu_unknown
pp_empl_self
pp_empl_topManagement
pp_empl_upperLevel
pp_empl_mediumLevel
pp_empl_basicLevel
pp_empl_cashBenefit
pp_empl_earlyRetirement
pp_empl_jobReleasePension
pp_empl_student
pp_empl_oap

pp_empl_rest
pp_empl_restChildren
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pp_empl_manufacturing
pp_empl_supply
pp_empl_construction
pp_empl_trade
pp_empl_transport
pp_empl_financial
pp_empl_public
pp_empl_unknown
pp_empl_notOccupiedChildren
pp_empl_notOccupiedAdult
pp_empl_notOccupiedOldAge
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Index weighted by households
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Figure 3.1: Partial Profile of conzodType 3.

be mostly couples with children, to have a medium to long higher education, to hold
higher level or top management positions in the financial or public sectbtpdrave

a better household economy (both in terms of wealth and income) than thgavera
Dane.

3.4.2 mobidK" Daily Movement Data

mobidK" is an upcoming, commercial database product that contains detailed in-
formation about the daily movement of the Danish population between home and
work [28]. Again, to preserve the privacy of users, the movementidatggregated

to non—overlapping and connected geographical regions. It issemied in a rela-
tional database format asfrom_region, to_region, count), meaning that from the
geographical regiofrom_region, countnumber of people move on a daily basis for
work to the geographical regido_region In ST-ACTS, these geographical regions
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are parishes, which on average contain 1176 households, and @Smétr grid
cells?.

3.4.3 bizmark" Business Data

bizmark" is a commercial database product that contains detailed information about
Danish businesses both in the public and the private sector [28]. Some oh#é+
to—one information that is available about businesses is their location, theenoimb
employees working in them, the physical size of the business facility, andtdre in
national branch codes the businesses fall under. Detailed but ageplegformation
about the employees within businesses is also available for appropriaterIbTihﬁma
clusters, which are constructed taking into account geography, lsgdingnch, busi-
ness size in term of number of employees and physical size of the buticdig,

and various other descriptive business variables.

3.4.4 GallupPC® Consumer Survey Data

GallupPC® is a commercial database product and as the name suggests, it contains
detailed survey responses of consumers about their demographicssisteuch as
culture, hobbies, and sports; household consumptions, purchadsiitg; ti@nsporta-

tion habits; views on various subjects; attitudes and exposure to varivagiad-
ment media [26]. The questions in the surveys are yes/no questions. Sonadae
magnitude of the response of an individual survey subject to a speg#stiqn, the
original yes/no question is re—phrased with a reference to a time—fregudarval.

For example the original yes/no question “Do you go to the library?” is nagasu

to 7 yes/no questions using the following time—frequency intervals: daily / almos
daily; 3-4 times a week; 1-2 times a week; 1-3 times a month; 1-5 times every 6
month; seldom, and never.

3.5 ST-ACTS: Spatio—Temporal ACTivity Simulator

In this section, main components of ST-ACTS and their use of the sourcésdata
described. In the description a simulated person, who performs activitigmen
and space, will be abbreviated as a simperson. A MATLAB toolbox forA&TFS
can be downloaded for research purposes ftatp://www.geomatic.dk/
research/ST--ACTS/

The commercial version of mobidk contains the same information for smaller, neighborhood
clusters that on average contain 230 households and 38 100—meteeltgid
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Figure 3.2: Correlation between education and income.

3.5.1 Drawing Demographic Variables for Simpersons

The conzoor® source data contains accurate, detailed demographic information
about the population aggregated to a cluster level. As described in Sectidn 3
continuous variables are discretized into categories. Clusters contaitsdou all
categories for all variables. Having the exact number of personsjiwunits, and
households at a grid cell level, and assuming the same distribution of varialthe
individual grid cells as in the cluster they belong to, counts for all categdoieall
variables are calculated at a grid cell level. A simperson is assigned apafeg

a given variable proportional to the counts of the categories for the giagable in
the grid cell the simperson lives in. In short, a category for the variablesigraed to
the simperson according to the distribution of the variable. To draw assigga#es
for variables without replacement, corresponding counts in the giviencgtl are
decremented. Since counts of some of the variables in the grid cell refatities
other than persons, but are variables that are part of the demograpizibles that
describe a person, these counts are adjusted to sum to the numberooisgarthe
cell.

3.5.2 Skewing Distributions Based on Correlations

The above described method for assigning categories for demograptables has
one major flaw: demographic variables are not independent. For exanepbelti
cation type variable has a strong correlation with the personal income learigiis
correlation is illustrated in Figure 3.2. Correlations are calculated betwegrethe
centages of the categorized variables, and samples are weighted bynberrof
persons in the cells. From the colorbar on the side one can see that slaskies
mean stronger negative correlations and lighter shades mean strosgiepmrre-
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Distribution of variable group: p_age —— [Selected: 5] Distribution of variable group: p_emplState
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Figure 3.3: Drawing Samples Without Replacement from Correlated, Mrétea
Distributions.

lations. The correlations support the common knowledge that people hagher
education levels tend to have better paying jobs. Similar correlations existéetw
other variables.

To remedy the above described flaw, which could result in unrealisticramsigt
of categories for variables to simpersons, the assignment is modifiedwingreat-
egories from skewed variable distributions that try to embed the correldt@nsgen
the variables as follows. For a given simperson, the category for the/dirsble,
age, is drawn without replacement from unskewed distribution of the agable.
An example of this distribution and the result of the draw is shown in the top most
left subgraph of Figure 3.3, where for the age variable the categorgssdrawn,
which represents that the simperson is in the age group 30-39. The distribfi
the second variable, education, is shown in the second—from—top |eftagibof
Figure 3.3. Given this distribution, categories 4, 6 and 8 are most likely tsbe a
signed to the simperson for the education variable. However, the cornsdsibown
in the third left subfigure of Figure 3.3) between the age category 5 amchédn
variable reveal positive correlations for categories 1 and 4, andainegorrelation
for category 8 for the education variable. After normalizing (shifting to mBathe
correlations, the original distribution of the education variable is skewqulrywise
multiplying the raw counts of categories of the education variable and the hipecha
correlations for the education variable given that the age category airtipgerson
is 5. This skewed distribution is shown in the bottom left subgraph of Fig@rarsd
is used for sampling the education variable, resulting in the education catégor
vocational training. Values for further variables are drawn from scedistributions
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that take into account the categories for the previously drawn varidbleskewing
the distribution of the current variable by the average of the normalizedlatons
for the so far drawn categories. This process is shown from top to battaire right
subfigures of Figure 3.3, where given that the age category a the siompier5 and
the education category is 4 for the third variable, employment state, the patejo
is drawn.

3.5.3 Assigning Simpersons to Work Places / Schools

Activities can be divided into two groupéree time activitiesandmandatory activ-
ities. While the notion of “mandatory” activity may differ from person to person,
for the purposes of simulation, ST-ACTS considers goingdieooland work as
mandatory activities. The rest of the activities in ST-ACTS are considezedime
activities.

With respect to mandatory activities, simpersons can be divided into troepgr
retired, worker, and student. For the retired simpersons, it can bmaddhat they
enjoy the fruits of a hard—working life and have no mandatory activitiesns€o
quently, they spend the majority of the time either at home or performing free time
activities. The following paragraphs describe the methods in ST-ACT t(eair
usage of the base data) for assigning simpersons in the worker andtgjuoleps to
their work places and schools respectively.

Assigning Worker Simpersons to Work Places:Simpersons in the worker group
are assigned tavork placesin two steps. In the first step, given tlheme parish
and employment branch of the simperson, the parish—to—parish commutbabpro
ities, and the spatial distribution of businesses in branchesyla parishis assigned

to the simperson. In the second step, given the employment branch thamthe s
person works in, businesses in the same branch that are located in theavish

of the simperson are retrieved from bizmark Finally, proportional to the number
of employees that work in the selected businesses, the simperson isifistibalty
assigned to one of the businesses / work places.

Assigning Student Simpersons to SchoolsSimpersons in the student group are
assigned to schools in two steps. In the first step, depending on theagedajrthe
simperson, he or she is assigned to either one of the four educationatiostiypes,
oris assigned to be “notin school” and hence is considered to a membenwbtker
group. In the second step, educational institutions of the simpersongatazhal
institution type are retrieved from bizmark and the simperson is assigned to the
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institution that is closest to the simperson’s hdmikhe following paragraph explains
the first of these steps in more detail.

Simpersons in the student group can be divided into four subgroues! lnes
which one, if any, of the four educational institution types they attend: kgadten,
primary school, secondary school, or college / university. As desgrdiove, each
simperson below age 30 is assigned to one of the four age grfiugs], [12, 16],
[17,22], and[23,29]. Assuming all simpersons up to age 5 or 6 go to kindergarten
(or daycare centers), simpersons infthe 1] age group are assigned with equal like-
lihood to either a kindergarten, or a primary school. For each of the rengaimiae
age groups, based on information obtained from Statistics Denmark [85}ytiva-
bilities of attending one of the four education institution types are deriveitivare
shown in the table:

| || [12-16] | [17-22] | [23-29] |
primary school 0.9198| 0.0235| 0.0002
secondary school || 0.0654| 0.4639| 0.0552
college / university|| 0.0000| 0.1194| 0.2365
not in school 0.0148| 0.3933| 0.7081

Then, given the age group of the simperson and the correspondibghjlities, the
simperson is assigned to either one of the three educational institution type&e
“not in school” and is considered to be a member of the worker group.

3.5.4 Daily Activity Probabilities

A subset of the GallupP® consumer survey questions, described in Section 3.4.4
represent activities that require the movement of the consumer. Somesefdbe
tivities are shown on the y—axis of Figure 3.4. To preserve space arity,cthe
following, additional activities are included in the model, but are excludeah fihe
figure: art exhibition, church, pop/rock concert, museum, post offieater, solar-
ium, hairdresser, and shopping. The shopping activity is further gigdedi into 22
subtypes of shopping that are tied to a particular brand or type of store.

Using the geo—demographic parts of the surveys, each survey sistgssigned
to one of the 29 conzoof types. To derive a single indicator for how likely a
given conzoor? type is to perform a given activity, the answers to the re—phrased
time—frequency questions are normalized and averaged as follows e@st,time—
frequency interval for an activity is normalized to represent the pritibabf per-
forming the given activity on an average day. For example, a subjeditigoreply
to the question "Do you perform activityn times during a period\t?” equivalently

2The Danish public school system is controlled by the municipalities, whiclgrassudents to
educational institutions that are nearby. Locations of these institutionsigiilty planned to meet the
needs of the population.
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Figure 3.4: Sample Daily Activity Probabilities.

means that the probability of that subject to perform actiuityn any given day is
P(a) = n/day(At), whereday is a function that returns the number of days in
period At. P(a) is equivalently referred to as thgaily Activity Probability (DAP)

of activity a. Second, these daily activity probabilities of individual subjects of a
given conzoorf® type are averaged. Figure 3.4 shows a sample of these daily ac-
tivity probabilities for a subset of the conzortypes. From the figure it can be
seen, for example, that a college student is most likely to go to a library, enairee
discotheque, or a fitness center; while a retired farmer is the least likelyfarme
these activities. Since the figure has the same probability scale, it alsdsrévata
depending on type, going to a fitness center is about a 7 to 22 times moreritequ
or popular activity as going to classical concerts. As mentioned befdreAGTS
includes the daily activity probabilities of 35 activities for 29 conzédtypes.

3.5.5 Activity Simulation with Spatio—Temporal Constraints

A simple, random, discrete event activity simulator can be constructed assolkt
every time step, a random subset of the simpersons is chosen to perf@ctiaty.
Then, for each selected simperson, given his/her con®otype and the associated
daily activity probabilities, an activity is assigned. Then, each selected ssompés
moved to the closest facility, where his/her assigned activity can be petbrThis
simple simulator does not model several spatio—temporal constraints ontithie ac
ties. In the following, these constraints are discussed, and for eacprdpesed
modelling solution that ST-ACTS implements is presented.
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Temporal Activity Constraint: Certain activities are more likely to be performed
during specific periods than others. For example, people in the work ferd to
leave their homes for work at the beginning of a workday. Consequeéhdysame
people are less likely to go to a discotheque, which is presumably closéuly doe
same period. To model thEemporal Activity ConstrainfTAC), ST-ACTS allows

the user to define for each of the three population groups the probabittieach

of the activities for every hour of every day of the week. These bitiias are
used to limit the ability of the simperson to perform certain activities during certain
time periods. They are not to be confused with the conZ8dype dependerdaily
activity probabilities which encode the activity preference of each type. Through
the TACs ST-ACTS allows the modelling of opening hours, and to some degree
sequential patterns. The TACs of an activity are defined by a 7 by 24 matrare
columns represent hours of the day, and rows represent dayswédie

Activity Duration Constraint: Not all activities take the same amount of time. For
example people usually work 6-10 hours, spend about 2 hours in a Girem80
minutes in a grocery store. To model this, from the starting timestamp of an ac-
tivity a that is assigned to a simpersens becomesccupiedfor doecypied(a) time
steps. During this period is not assigned any other activities. In ST-ACPS{iv-

ity Duration Constraint(ADC) for each activity are probabilistically drawn from the
user—defined activity duration distributions, which is normally distributed witarme

'U(Sm:cupied(a) and Variancer(soncupied (a) .

Minimum Elapsed Time Between Activity Repetition Constraint: While people
prefer some activities over others, it is very unlikely that they would rejhessame,
even if preferred, activity many times, one—after—the—other within a pleoitd. For
example, itis very unlikely, that even a very active simperson, right faftishing his
workout at the fitness center, decides to go to a fithess center agairconisaint is
modelled in ST-ACTS through the user—defigg,s.q(a), activity—dependerilin-
imum Elapsed Time Constrai(METC). The constraint is enforced by maintaining a
recent history of activities for each simperson and validating newly detinities
against it.

Maximum Distance Constraint: For most activities there ismaximum distance
person is willing to travel. This maximum distance represents a spatial constnain
the activities that a simpersanwill perform, given the current location afand the
locations of facilities, where a selected activitycan be performed. Hence, during
the simulation if there is no suitable facility farwithin maximum distance of the
current location ofs, the activity is considered invalid for, and s becomes idle.
TheMaximum Distance ConstraifiMDC) is controlled by a user—defined, activity—
dependent parameter in ST-ACTS.
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Figure 3.5: Discrete Event Simulation in ST-ACTS.

Physical Mobility Constraint: To move from one location to another takes time.
While detailed simulation of this movement is not an objective of ST-ACTS, ba-
sic physical mobility constraints are modelled. After a facilftyfor an activity a

is selected for a simpersaf s is moved afterd..,s time steps to the new loca-
tion. d44ns IS calculated based on the Euclidian distadde km between the current
location of s and the location of facilityf, assuming a constant speed. This con-
stant speed, in km/h, is probabilistically drawn from the distributipeed (d) =
max (5, N (3d,d?)). speed(d) assigns lower speeds to shorter, and higher speeds
(with larger variance) to longer distances. It, to some extent, captures comoutes

of transportation, i.e., people tend to walk on shorter trips, use public weasipn

or bicycle on slightly longer trips, and use a car or commuting train on everetong
trips.

3.5.6 Discrete Event Simulation

Using the conceptual building blocks presented so far, the discreté vanlation
performed in ST-ACTS can be summarized as shown in Figure 3.5. Thehfiest
comments indicate that named data sets are used in the simulation, but are-hot use
defined parameters of it. Arguments to ST-ACTS, shown on line 1, are #re us
defined parameters that have been described in the previous pasgp line 2
demographic variables are assigned to simpersons based on skeiabtevdistri-
butions. On line 3 simpersons are assigned to work places and schoolme@n

at time stept = 1 (Monday, 00:00) all simpersons are initialized to be at “home”
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Figure 3.6: CPU and I/O Times for Simulations.

doing activity “home to stay” until the early morning hours. Following thes@mre
cessing steps, at every time stepn line 6, currently unoccupied (free) simpersons
are found. Then, on line 7 for each free simperson a valid action is fanodrd-

ing to the daily activity probabilities (DAP) of actions for the conzd®rype of

the simperson. Actions are valid, if they both meet the temporal activity camistra
(TAC) and the minimum elapsed time constraint (METC). On line 8 valid facilities
are found for these valid activities. Facilities are valid if they meet the maximum dis
tance constraint (MDC). On line 9, activity durations are drawn that meeidtivity
duration constraint (ADC). On line 10, according to the distances to thgnass
activities, transition times are calculated. Finally, on line 11, information abeut th
newly assigned activities are stored and the activity histories are upadatduefaf-
fected simpersons.

3.6 Evaluation of the Simulation

ST-ACTS was implemented and tested in MATLAB running on Windows XP on a
3.6GHz Pentium 4 processor with 1.5 GB main memory. The geographicalt exten
of ST-ACTS was restricted to the municipalities of Copenhagen and Frelerik
in Denmark. In this extent, the number of simpersons is 590,050 (178,82€&dretir
268,615 workers, and 142,609 students), the number of working pate264,129
in 193,299 businesses, and the number of facilities is 10,544. Simulatioriraepés
were performed for a time step lengthAfl" = 5 minutes. To test the performance
of ST-ACTS, in all experiments “strict” TACs were set on the two most likelwac
ities, go “home to visit” and go “home to stay”. TACs of other activities wergaet
model opening hours of corresponding facilities. As a result a simpgrsdarms
on averag®.6 + 3.2 activities per day.

To evaluate the effectiveness of ST-ACTS, simulations were perforonehify-
ing sizes of randomly selected subsets of simpersons during the coarsigfe day
(24 hours). Figure 3.6 shows both the CPU times (right y—axis) and the I/Cidime
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logging the events (left y—axis). Both of these quantities scale approxintiaiedyly
with the number of simpersons. In short, the simulation is fast and scales well.

In a larger experiment activities of the total population for the course ofla f
week have been simulated. The table below shows the output of ST-ACGTE fo
cosmopolitan type simperson during the course of a day.

| a.begin | a.loc(x) [ a.loc(y) | a.end | a.name |
8:35 | 722941 | 6172634 15:50 | work / school
17:05| 720408| 6173933| 17:45 Fakta
18:55| 721350| 6177550| 20:20 | home to visit
20:45| 723555| 6175390| 21:10 solarium
21:50 | 723483| 6175299| 23:30 cinema
23:40 | 721350| 6177550| 8:25| home to stay

The simulation, without logging the individual events and only keeping statistics
about activities, took 98 minutes. To evaluate the validity of ST-ACTS, the gath
ered statistics have been analyzed. Due to space limitation, only some reshiss of
analysis are discussed in detail, while others are only summarized.

To evaluate ST-ACTS’s ability to generate the correct distribution of acsyitie
the input DAPs have been compared to the simulated DAPs, shown in Figure 3.7
While, due to the previously mentioned “strict” TACs, the simulated DAPs aratabo
4 times higher than the input DAPs, the relative simulated DAPs among activities is
similar to the input DAPs. By using less “strict” TACs, i.e.: allowing simpersons to
go home earlier after work, the scale of simulated DAPs match that of the iddeg D
Differences in the relative DAPs can be explained by the effects of spatigporal
constraints on activities.

Figure 3.7: Input and Simulated DAPSs.

To evaluate ST-ACTS'’s ability to control temporal constraints on activitmsis
for each assigned activity for every hour—of—day and day—ofkwesze maintained.
Figure 3.8 shows the average number of assigned activities for eactolieday av-
eraged over the days—of-week. Due to the large variation in frequanayts for
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Figure 3.8: Validity of ST-ACTS in Terms of TACs.

different activities in different periods of the day, the base 2 logarithineguency
counts are shown. From the figure it can be seen that certain grofpspeertain
activities at certain times of the day more frequently than other groups. xaon-e
ple, it can be seen that the retired group is more likely to perform activitigagiu
working hours, simply because they are free to do so. Opening and gltisias
of facilities is also controlled by the parameters. For example, no one goés-to d
cotheques during the day, and no one goes to shopping centers in the ofititie
night.

To evaluate ST-ACTS'’s ability to control spatial constraints on activities, the
daily distance travelled to work by an average simper2di{2.3 km) was compared
to the total daily distance travelled by an average simper8anif 3.6 km). While
for the same numbers no ground truth was available to evaluate againstiecing
the average 9.6 activities per day the numbers seem reasonable. Theaedndaliz
has also been verified that no trips violate the activity—dependent maximtsnais
criteria.
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3.7 Conclusions and Future Work

Realistic models that simulate the spatio—temporal activities of users, andthence
distribution of moving objects, are essential to facilitate the development of ade
gquate spatio—temporal data management and data mining techniques. In #ris pap
ST-ACTS, the first of such simulators is presented. Experimental rebiolis that,
using a number of real-world geo-statistical data sources and intuitiveiies,
ST-ACTS is able to effectively generate realistic spatio—temporal activigy. da
is also demonstrated that the generated data has the same characterisigg@&s it
fined by the user—controllable model parameters. ST-ACTS has been inmpdeine
in MATLAB and is available for research purposes.

While the correspondence between the characteristics of the geneasteand
the model parameters is demonstrated, the accuracy of the simulation haseto be n
essarily affected by the limited modelling of physical aspects of mobility. Hence in
future work, integrating the output of ST-ACTS as an input to sophisticetedork—
based moving object simulation as in [8] is planned. Such a more complex simulator
will provide synthetic data sets that can aid the development in telematics, intelligen
transportation systems, and location—based services.



Chapter 4

Mining Long, Sharable Patterns in
Trajectories of Moving Objects

The efficient analysis of spatio—temporal data, generated by movingtebije@n
essential requirement for intelligent location—based services. Spatiositainnples

can be found by constructing spatio—temporal baskets, from which traalitgsoci-
ation rule mining methods can discover spatio—temporal rules. When the items in the
baskets are spatio—temporal identifiers and are derived from trajectdrieoving
objects, the discovered rules represent frequently travelled roudesofe applica-
tions, e.g., an intelligent ride—sharing application, these frequent rorgemby in-
teresting if they are long and sharable, i.e., can potentially be shareddnakesers.
This paper presents a database projection based method for efficidrdlgtierg such
long, sharable frequent routes. The method prunes the searchispaking use

of the minimum length and sharable requirements and avoids the generatian of th
exponential number of sub—routes of long routes. Considering altezmabdelling
options for trajectories, leads to the development of two effective varadnie me-
thod. SQL—-based implementations are described, and extensive expgsrimdioth

real life— and large—scale synthetic data show the effectiveness of thedrend its
variants.

4.1 Introduction

In recent years Global Positioning Systems (GPS) have become inglyaeiail-
able and accurate in mobile devices. As a result large amounts of spatio+#mpo
data is being generated by users of such mobile devices, referredhovirsg ob-

39
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jectsin the following. Trajectories of moving objects, or trajectories for shom-co
tain regularities or patterns. For example, a person tends to drive alnsogtvesek-
day to work approximately at the same time using the same route. The benefits of
finding such regularities or patterns is many—fold. First, such patternbealprthe
efficient management of trajectories. Second, they can be used to faciéitades
Location—Based Services (LBS). One LBS example is an intelligent ridestpgpli-
cation, which finds sharable routes for a set of commuters and suggbsthare
possibilities to them, is considered. Such a rideshare application can bessible
solution to the ever increasing congestion problems of urban transpontati@orks.

Patterns in trajectories for an intelligent rideshare application are only sttere
ing if those patterns are sharable by multiple commuters, are reoccurrqgefray,
and are worthwhile pursuing, i.e., are long enough for the savings to cwajefor
the coordination efforts. The discovery of Long, Sharable Patter&®)lin trajec-
tories is difficult for several reasons. Patterns do not usually exisgaiee whole
trajectory. As a example, consider two commutérand B living in the same area
of town, leaving for work approximately the same time, and working in the same
part of town. Given the underlying road network and traffic conditidosa given
support threshold the middle part of the trips of the two commuters may besfnequ
the initial and final parts may not. In recent work [30] a general prolitamsforma-
tion method, calleghivoting was proposed for the analysis of spatio—temporal data.
Pivoting is the process of grouping a set of records based on a aétibfites and
assigning the values of likely another set of attributes to groups or bas¥etting
applied to spatio—temporal data allows the construction of spatio—tempokatbas
which can be mined with traditional association rule mining algorithms. When the
items in the baskets are spatio—temporal identifiers and are derived fljeotdraes,
the discovered rules represent frequently travelled routes. While ¢xeseseveral
efficient association rule mining methods [40], the straight—forward apijaicaf
these algorithms to spatio—temporal baskets representing trajectories sshlefdéar
two reasons. First, all sub—patterns of frequent patterns are atggefre but not
interesting, as longer patterns are preferred. Second, the supiperiba used in
association rule mining algorithms is inadequate for a rideshare applicatiors i.e.,
frequent itemset representing a frequent trajectory pattern, may lperseg by a
single commuter on many occasions and hence presents no rideshantgioippo

In this paper, to overcome the above difficulties of finding LSPs in trajestasie
novel method is given. According to a new support criterion, the prgasethod
first efficiently filters the trajectories to contain only sub—trajectories thatfra-
quent. Next, it removes trajectories that do not meet the minimum length criterion.
Then it alternates two steps until there are undiscovered LSPs. Thstdipsentails
the discovery of a LSP. The second step entails the filtering of trajectoyidiseb
previously discovered pattern. An advantage of the proposed methoel éagle of
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implementation in commercial Relational Database Management Systems (RDBM-
Ses). To demonstrate this, a SQL-based implementation is described. Gogside
the global modelling of trajectories, leads to the development of two othertigée
variants of the proposed method. The effectiveness of the method amdi#ste are
demonstrated on the publicly available INFATI data, which contains trajestofie
cars driving on a road network, and on a number of large—scale syntla¢a sets.

The herein presented work is novel in several aspects. It is the foshgider the
problem of mining LSPs in trajectories. It describes a novel transformatimhthe
relationship between the problem of mining LSPs in trajectories and miningegntqu
itemsets. Finally, it describes an effective method with a simple SQL-implementation
to mine such LSPs in trajectories.

The remainder of the paper is organized as follows. Section 4.2 reviéaisde
work. Section 4.3 describes the transformation, the use of the framewdr&-in
guent itemset mining, and formally defines the task of mining LSPs in trajectories.
Section 4.4 discusses aima method for mining LSPs and points out its shortcom-
ings. Section 4.5 describes the proposed algorithm and a SQL-based im{aitame
for mining LSPs. Section 4.6 presents alternative modelling of trajectories@nd
rives variants of the proposed method based on these modelling optiati®nSEe7
presents detailed experimental results. Finally, Section 4.8 concludeams (o
future research.

4.2 Related Work

Frequent pattern mining is a core field in data mining research. Since theolust

tion to the problem of frequent itemset mining [1, 2], various specialized inrong

data structures have been proposed to improve the mining efficiencyiGderf an
overview. It has been recognized that the set of all frequent itemstets iarge for
analytical purposes and the information they contain is redundant. To yetimisd

two modification to the task have been proposed: mining of Closed Fredeprgdts
(CFI) and mining of maximal frequent itemsets. A frequent iten3§és closedif no
itemsetY” exists with the same support Assuch thatX c Y. A frequent itemseX

is maximalif no frequent itemseY” exists such thak’ C Y. Prominent methods that
efficiently exploit these modifications to the problem are MAFIA [9], GenN#,
CLOSET [76], CLOSET(+) [98], and CHARM [104]. Later in the paparrela-
tionship between the problems of mining LSPs in trajectories and mining CFls are
described. While CFI mining methods can be modified to find the desired solution
that meets thsharablecriterion, they employ complex data structures and their im-
plementation is quite involved; hence their augmentation is difficult. In particalar,
projection—based CFI mining algorithm that employs an in-memory FP—tree-to rep
resent itemsets, would need to be modified at every node to maintain a sdtraftdis
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objects at that have transactions associated with them that support thet iteatse
is represented by the node. In comparison, the herein presented méthituting
on work presented in [84]—exploits the power of commercial RDBMSs, iyigld
simple, but effective solution.

Since trajectories are temporally ordered sequences of locationsnsiatjpat-
tern mining [3] naturally comes to mind. However, a straight forward intéation
of trips as transactions and application of a state—of-the—art closecfresequen-
tial pattern mining algorithm [103] does not yield the desired solution, sincdsn th
case sequences of frequent sub—trajectories would be foundeFudte, since the
trajectories can contain hundreds of items, closedness checking oéfreitemsets
even for prominent methods would be computationally expensive. Intargengle
elements of trajectories as transactions and applying closed sequential pattiag
could find frequent sub—trajectories. However a number of probleises. dfirst, to
meet the sharable criterion, the in-memory data structures would need similar, n
trivial augmentation as described above. Second, since patterns itdriggcould
be extremely long, even state—of-the—art sequential mining methods 8)%yaold
have a difficulties handling patterns of such lengths. Third, patterns irctivaies
repeat themselves, which cannot be handled by traditional sequerttexhpaining
algorithms. The extraction of spatio—temporal periodic patterns from trajests
studied in [70], where a bottom-up, level-wise, and a faster top—down niigog
rithm is presented. Although the technique is effective, the patterns fanendithin
the trajectory of a single moving object. In comparison, the herein preseratubd
effectively discovers long, sharable, periodic patterns.

Moving objects databases are particular cases of spatio—temporal sttdbat
represent and manage changes related to the movement of objects.séarg@®m-
ponent to such databases are specialized spatio—temporal indices shetSaatio—
Temporal R—tree (STR—tree) and Trajectory—Bundle tree (TB—tré&) fn STR—
tree organizes line segments of a trajectory according to both their spajarpes
and the trajectories they belong to, while a TB—tree only preserves tragsctdf
trajectories are projected to the time—of—day domain, STR—tree index vaiubs o
projected trajectories could be used as an alternative representati@jeotdries.
While this approach would reduce the size of the problem of mining LSPs in tra-
jectories, it would not solve it. In comparison, the herein presented metioelss
the problem of mining LSPs in trajectories, which is orthogonal, but notlatee to
indexing of trajectories.

In [97] a way to effectively retrieve trajectories in the presence of nigigege-
sented. Similarity functions, based on the longest sharable subsegaendefined,
facilitating an intuitive notion of similarity between trajectories. While such an effi-
cient similarity search between the trajectories will discover similar trajectdhes,
usefulness of this similarity in terms of length and support would not be explicit.
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Figure 4.1: From Trajectories to Transactions.

In comparison, there herein proposed method returns only patterns tieattmee
user—specified support and length constraints. Furthermore, thedrgjpatterns
returned by the proposed method are explicit, as opposed to the only imptieitz=a
contained in similar trajectories.

4.3 Long, Sharable Patterns in Trajectories

The following section describes a novel transformation of raw trajectorias trans-
formation allows (1) the formulation of the problem of mining LSPs in trajectories
in a framework similar to that used in frequent itemset mining, (2) to establish a
relationship between the two problems.

4.3.1 From Trajectories to Transactions

The proposed transformation of raw trajectories consists of three sdepsification

of trips, projection of the temporal dimension, and spatio—temporal regiostigu
tion. It is assumed that locations of moving objects are sampled over a longyhisto
That is, a raw trajectory is a long sequencéafy, t) measurements at regular time
intervals.

Identification of Trips

A trip is a temporally consecutive set or sequence of measurements sufdr tha
any measurement; in the sequence, the sum of spatial displacement during the
k measurements immediately following;, denoteddy, is larger than some user—
defined displacement, Trips can be identified in a straight—forward manner by lin-
early scanning through a trajectory, and calculatipgusing a look—ahead window
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of £ measurements. That is, scanning through the total trajectory from the-begin
ning, the first measurement for whidlh > 4§, signals the beginning of the first trip.
Consecutive measurements are part of this trip until a measurement igdefach
which d;, < 6§, which signals the end of the first trajectory. Trips following the first
trip are detected in the same fashion from the remaining part of the total trgjecto
Figure 4.1(a) shows three example trips that are derived from the tg&dtoey of

one moving object.

Projection of the Temporal Dimension

Since frequent patterns within a single object’s trajectory are expectegpéat
themselves daily, the temporal dimension of the so identified trips is projectad dow
to the time—of-day domain. This projection is essential to discover the dailydperio
nature of patterns in trajectories. Mining patterns with other periodicity caa-be
cilitated by projections of the temporal domain to appropriate finer, or cokensss
of granularity. Finer levels of granularity can be used to detect patteithstorter
periodicity. For example, a delivery person might use a different roggpeiding on
the time—of—hour knowing that at the given time of the hour certain traffiditions
arise, which make an otherwise optimal delivery route sub—optimal. Thetibetec
of these patterns in delivery routes requires the projection of the temgionah-
sion to the time—of-hour domain. Conversely, coarser levels of granutaitybe
used to detect patterns with longer periodicity. For example, a person nisijttis
bank only at the end of pay periods. The detection of this pattern regbegsro-
jection of the temporal dimension to the day—of-month domain. Finally, to discover
the pattern that the above mentioned person makes these visits to his baclapatur
mornings following the end of pay periods, requires the projection of thedeahp
domain to a combination of the day—of-month, the day—of—-week, and theofhart—
day domains. Performing different projections is part of the inherentlgtiter and
only semi—automatic process of doing data mining when the exact format othe p
terns searched for is not known beforehand. Figure 4.1(b) shavgrtjection of
the temporal dimension to the time—of—day domain for the three trips identified in
Figure 4.1(a). Since the projection of a single database record is a btista op-
eration, the total processing time of this transformation step is optimal and linear in
the number of database records.

Spatio—Temporal Generalization and Substitution

Trajectories are noisy. One source of this noise is due to imprecise GPS mea-
surements. From the point of view of patterns in such trajectories, sligidata®
of trajectories from the patterns can be viewed as noise. Examples otisuih
tions could be due to a few minute delay, or to the usage of different lanéseon
route. Hence, while a person might be driving from home to work at aqpiately
the same time of day using approximately the same route, the chance of two identi-
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Figure 4.2: Process / Outcome of Map Matching.

cal trajectories is highly unlikely. Consequently, patterns in raw trajectarie$ew

and certainly not long. Thus, patterns have to be mined in trajectories ehegyare-

sented in a generalized way, yielding general patterns in trajectoriese dieeat least
two different approaches to achieve this generalization of trajectoggn—based
spatio—temporal generalization and road network based spatio—tempoesh{iza-

tion.

In the region—based spatio—temporal generalization approach indiicluat)
measurements of a trajectory are discretized and mapped to the spatio—tempora
gions they fall into. Thus, a generalized trajectory is constructed bytigubsy
(z,y,t) measurements with the spatio—temporal regions they map to. If within a tra-
jectory multiple(z, y, t) measurements map to the same spatio—temporal region, they
are substituted with a single instance of the corresponding spatio—temegiah.r
The box in Figure 4.1(b) represents such a spatio—temporal regione &gmon—
based spatio—temporal substitution of a single database record caridagdalsing
simple arithmetics from the spatial and temporal coordinates, the processingftime
this transformation step is optimal and linear in the number of database records

In the road network based spatio—temporal generalization approgels{hare
assumed to be moving on a road network and coordinates of individuglt) mea-
surements of a trajectory are matched to road segments of the underlythgaba
work. The process of matching trajectories to road segments is called magmgatch
and has been studied extensively in the recent past. Figure 4.2 showmgd¢hbme of
map matching, where noisy GPS readings are “snapped” to the most likelgega
ments the object was actually moving on. In general, two map matching appsoach
exist: on—line and off-line map matching. In on—line map matching, the noisy GPS
readings are positioned onto the road network taking into account thegaalshgs
and the topology of the road network. In off-line map matching, the positionfing
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Figure 4.3: lllustration of the Sample Trajectory DB.

GPS readings onto the road network is performed with some delay, hencedseth
can take into consideration “future” measurements, which generally sesethe
matching accuracy and reduces the necessary computation. In [#8haesy of dif-
ferent on—line and off-line map matching algorithms is provided and distatyas

of each approach is described. Once the coordinates of trajectaismgrmatched,

the individual(z, y, t) measurements of a trajectory are discretized and mapped to the
spatio—temporal identifiers composed of a combination of road segment iglentifi
and temporal intervals. If within a trajectory multiple, y, t) measurements map to
the same spatio—temporal identifier, they are substituted with a single instathee of
corresponding spatio—temporal identifier. The map matching task can foerped

in a distributed fashion by on—board navigation units of the moving objectsedBa

on the map matching results the road network based spatio—temporal substifution
a single database record can be achieved in constant time using simple arghmetic
from the temporal values, hence the processing time of this transformatmisste
optimal and linear in the number of database records.

4.3.2 Example Trajectory Database

Figure 4.3 visualizes a sample trajectory database. It shows the trajectonigs

of 5 moving objects, which were derived using the three transformatiors skep
scribed in Section 4.3.1. For clarity, the temporal dimension is projected dothe to
2D—plane. Spatio—temporal regions are defined by the square celldigadranute
interval centered around time instances written inside the square. Eachoted
line represents specific trips of a particular object. The number of times ifhatds
performed by the object is represented in the width of the line, and is alsorwritte
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in parenthesis next to the object name in the legend. For example, the tripargjec
associated with obje@ was performed! times by the object. The object was in
spatial regions HD, HC, HB, IB, and IC during time interval§5 + 2.5 minutes,
8:10 £+ 2.5 minutes 8:15 + 2.5 minutes ’:20 + 2.5 minutes, and:25 + 2.5 minutes,
respectively. In the following a spatio—temporal region will be referreoltds con-
catenated values of the cell identifiers along the x— and y—axis, and tlesponding
time instance denoting the center of the time interval of the spatio—temporal region
Hence, trips associated with objexwill be denoted by the a sequen¢eD8:05,
HC8:10, HB8:15, I1B8:20, IC8:2h Furthermore, the trajectory databdBes as-
sumed to be in a relational format with scheréd, tid, item), whereitem is a
single item, that is part of the transactid associated with objeetd. Hence, each
of the four trips of objec8 is represented by unique rows inf".

4.3.3 Problem Statement

After performing the three above transformation steps, the data set caprbsented

in a databas@" containing tuplesoid, tid, s), whereoid is an object identifiertid

is a trip identifier, and is a sequence of spatio—temporal region identifiers. Since
spatio—temporal region identifiers contain a temporal component, the seguzEam,
without loss of information, be represented asetof spatio—temporal region iden-
tifiers. Conforming to the naming convention used in the frequent itemset mining
framework, a spatio—temporal region identifier will be equivalently reftio as an
item and a sequence of spatio—temporal region identifiers will be equivalextly
ferred to as dransaction Let X be a set of items, called atemset A transaction:
satisfiesan itemsetX iff X C ¢. Let ST'x denote the set of transactions that satisfy
X. The following definitions are emphasized to point out the differencesdmstithe
frequent itemset mining framework and the one established here.

Definition 1 Then—support of an itemseX in T, denoted as\.supp(n), is defined
as the number of transactions Bi'x if the number of distinchids associated with
the transactions inST is greater than or equal ta, and 0 otherwise. Then—
support of an itemi in 7', denoted as.supp(n), is equal to then—support of the
itemset that contains only

Definition 2 Thelength of an itemsetX, denoted a$X|, is defined as the number
of items inX.

Definition 3 An itemsetX is n—frequentin 7" if X.supp(n) > MinSupp, and X
islong if | X| > MinLength, whereMinLength, MinSupp, andn are user—defined
values.
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Definition 4 An itemsetX is n—closedf there exists no itemséf such thatX c Y
and X.supp(n) = Y.supp(n).

The task of mining LSPs in trajectories can be defined as finding all leng,
closed,n—frequent itemsets. Itemsets that meet these requirements are alsalreferre
to as LSPs, or just patterns.

4.4 Nave Approach to LSP Mining

The here presentediva approach uses the convenience and efficiency of an RDBMS.
For ease of exposure, consider the problem of finding long sub-ttreigsin trajec-
tories. Meeting the unique support requirement of the original task datesut-
stantially change the complexity of method to be described, but eases thipti@sc
and analysis of it. Finding pairs of trajectories that have long sub—trajestoain be
efficiently solved using 2—way self—joins. General§t-way self—joins can be used

to find groups ofK trajectories that share parts of their trajectories. Consequently,
to discover all long sub—trajectories, self—joins could be used in an itenaty, first
discovering pairs, then triples, and so on, finally leading to grougds tfjectories

that have long, sharable sub—trajectories. A solution based on selfhpsrseveral
drawbacks. As the number of trajectories is increasing, the maximum sizeugdgy

of trajectories that have a long sub—trajectory is expected to increasellas\atu-

rally, as this maximum group size is increasing, the number of self—joins tledt ne
to be performed is increasing as well. Although the sizes of the intermediatié res
sets of the consecutive joins that compose Ahevay self—join are non-increasing
with every join operation, and hence the required time to compute these joine is als
non—increasing, the describ&@d-way self—join method is inefficient. In fact its worst
case running time is exponential i, which is illustrated in the following. Consider

a set of K trajectories that have a long sharable sub—trajectory in them. The iter-
ative K—way self—join method in the first iteration, discovers all pairs of thEse
trajectories. Then in the next step, it discovers all group3 of these trajectories,
alternatively leading to the discovery 2f subsets of thes&  trajectories. This is
clearly inefficient from a computational point of view not to mention the comiplex

it introduces in the discovered results. Since the ultimate goal of an intelligienat r
share application is the optimal coordination of possible rideshare oppa$unf a

set of commuters, the exponentially large number of discovered patteriesiit @
disadvantage from the user’s point of view.
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4.5 Projection—Based LSP Mining

Now let us turn to the description of the proposed method for mining LSPs in tra-
jectories. This description is based on a number of observations, eachiaf is
associated with a particular step in the method. These observations aréagdsb s
as lemmas, and their corresponding proofs show the correctnessrapteteness of

the method. To demonstrate the simplicity of the implementation in a RDBMS, for
each step a simple SQL-statement is given. The effect of each step is agatdd

on the previously introduced sample trajectory database assuvfiimbength = 4,
MinSupp = 2, andn = 2.

4.5.1 STEP 1: Filtering of Infrequent Items

Items, i.e., spatio—temporal regions that are not frequefit cannot be part of a
LSP. Hence as first step of the meth@dis filtered such that it contains items with
n—support larger than or equal idinSupp.

Lemma 1 An itemi with i.supp(n) < MinSupp cannot appear in a LSp.

Proof 1 The proof trivially follows from the minimum requirement of thesupport
of a patternp. If  appears in a patterp, then the set of transactions satisfymust
be a subset of the transactions satisfyingconsequentlyy.supp(n) < i.supp(n).
For p to be a pattermp.supp(n) > MinSupp. This is a clear contradiction, hende
cannot appear in a pattern.

The first step can be formulated in two SQL statements. The first statement find
items that meet the unique support criterion. The second statement ctmstfile
tered view ofT’, calledTFV, in which transactions only contain the items found by
the previous statement.

INSERT INTO F (item, i_cnt)

SELECT item, count(*) i_cnt FROM T

GROUP BY item

HAVING COUNT(DISTINCT oid)>=n AND COUNT(*)>=MinSupp

CREATE VIEW TFV AS
SELECT T.oid, T.tid, T.tem FROM T, F WHERE T.item=F.item

The effects of the first step are illustrated in Figure 4.4. Spatio—tempgiahs
which are part of trajectories that belong to less thalistinct objects, are removed
from trajectories. From the point of view of an intelligent rideshare apjiinahese
spatio—temporal regions are uninteresting, since these parts of the tiefectmnot
be shared by any objects, i.e., are not sharable.
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Figure 4.4: The Sample DB after STEP 1.

4.5.2 STEP 2: Filtering of Short Transactions

Transactions, i.e., trip trajectories, having less th&nLength frequent items cannot
satisfy a LSP. Hence, the second step of the method further filE&fsaand constructs
TF that only contain transactions that have at |6dst Length number of items.

Lemma 2 A transactiort with |t| < MinLength cannot satisfy a LSP.

Proof 2 The proof trivially follows from the definition of a LSP and the definition of
a transaction satisfying a patterrp is a LSP <— p.supp(n) > MinSupp and

|p| > MinLength. For t to satisfyp, by definition all the items ip has to be present
int. Sincelt| < MinLength and|p| > MinLength, there must exist at least one item
in p that is not int. Hence cannot satisfy.

The second step can be formulated in one SQL statement. The sub—sesed is u
to find trip identifiers that have at lea&finLength number of items. The outer part
of the statement selects all records belonging to these trip identifiers antd ithsan
into TF.

INSERT INTO TF (tid, oid, item)

SELECT tid, oid, item FROM TFV WHERE tid IN
(SELECT tid FROM TFV GROUP BY tid
HAVING COUNT(item)>=MinLength)

The effects of the second step are illustrated in Figure 4.5. In particular, th
remaining sharable parts of trips belonging to obj&ctsxd5 are deleted, because
the length of them is not greater than or equalMenLength, which is4 in the
example. Also, note that although in this case items HB8:15 and IB8:20 did not
become infrequent ifiF, they lostn—support.



4.5 Projection—Based LSP Mining 51

-- OBJ.1(2) —OBJ.2(3) ==+0BJ.3(4) OBJ. 4 (5) ==OBJ.5 (6)

8:35

N 7
———====oocoooooo 222 —==7%:30

2
4
4
4

8.05

Figure 4.5: The Sample DB after STEP 2.

Before stating further observations and continuing with the developmehteof
proposed method it is important to note the following. The set of discovet&is
from T is equivalent to the set of discoverable LSPs frofm This is ensured by
first two observations. Since further steps of the proposed method weithvais LSPs
from TF, these two observation ensure the correctness of the method so favéetow
it is also important to note that not all transactionsl'i necessarily satisfy a LSP.
This is due to the sequentiality of the first two steps. After the first step all the
remaining items in transactions are frequent items. Then, in the second®stap, s
of these transactions, which are not long, are deleted. Due to this deldtEuant
item in the remaining long transactions may become non—frequent, which in tyrn ma
cause some transactions to become short again. While there is no simple dolution
break this circle, note that the correctness of the first and secondséepst violated
since the deleted items and transactions could not have satisfied a LSP.

45.3 STEP 3: ltem—Conditional DB Projection

For the following discussion, adopted from [76], let an item—conditiontdluese of
transactions, equivalently referred to as an item—projected databadefjried as:

Definition 5 LetT be a database of transactions, anan item in7". Then, the item—
conditional database of transactions, is denoted“@and contains all the items from
the transactions containing

The construction of an item—conditional database of transactions camrbe-fo
lated in a single SQL statement as:

INSERT INTO T_i (oid, tid, item)
SELECT tl.oid, tl.tid, tl.tem FROM TF t1, TF t2
WHERE tl.tid = t2.tid and t2.item = i
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Givenn frequent items iril", the problem of finding CFls can be divided into
n subproblems of finding the CFls in each of thétem—projected databases [76].
Using the divide—and—conquer paradigm, each of thesigbproblems can be solved
by recursively mining the item—projected databases as necessary.

4.5.4 STEP 4: Discovery of the Single Most Frequent Closed Iteras

Sincei is in every transaction of the item—projected databfseand hence has
maximumn—support, the items ifl;, can be grouped in two: items that have the
samen—support ag, and items that have—support less than that éf The set of
items that have the same-support in thel}; as: is the Single Most Frequent Closed
ltemset (SMFCI) ifl};. The fourth step of the method discovers this SMFCI.

Lemma 3 Leti be anitem and/'F'; its corresponding item—projected database. Let
A be the set of items that have the samsupport inTF; asi. ThenA is the SMFCI

Proof 3 Complementary tol, let B be a set of items that have-support less than
iin TF;. For A to be closed there should not exist an itemsesuch thatA C X
and A.supp(n) = X.supp(n). This implies that there should not exist an extra item
i. that is present in all transactions in whichis present. These transactions are
exactly the set of transactions that makeDp|;. The only remaining items that are
notin A and are present if'F'; are items inB. Since items i3 haven—support
less than the items il they could not be added td to form an itemsefX such
that A.supp(n) = X.supp(n). HenceA is a closed itemset. That is the SMFCI
trivially follows from the fact that the number of transactionit'; is A.supp(n).

The fourth step can be formulated in two SQL statements. The first statement
derives then—support ofn—frequent of items inT'F';,while the second statement
selects those items from thesefrequent items that have maximusmsupport.

INSERT INTO FT_i (item, i_cnt)
SELECT item, COUNT(*) i_cnt FROM T_i
GROUP BY item HAVING COUNT(DISTINCT oid)>=n

SELECT item FROM FT_|
WHERE i_cnt = (SELECT MAX(i_cnt) FROM FT_i)

Figure 4.6 shows the effects of projectifig based on the item FC8:05. The
numbers in parentheses show tixesupport of the items if'F|rcg.o5 and TF re-
spectively. The SMFCI that is immediately discovered fr@ti|rcg.os is {FC8:05,
GB8:10, HB8:15, 1B8:20, JB8:25, KB8:30 LA8:35 is the only item that is in
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Figure 4.6: Item-Conditional Sample DBF |rcg.gsand Pattern Discovery.

TF|rcg:05 but is not in the discovered SMFCI. Since further projectifrcs:os
on LA8:35 yields a database of transactions where no item meets the minimum
support criterion, the discovered SMFCI is the only CFI presefftiiti-cg.os Since
the discovered SMFCI meets both the minimum length and an minimesapport
criteria it is a pattern.

Lemma 4 Given an item—projected databad&"; and a partitioning of items in it
into a set of most frequent iterds and a complementary set of itef@sthe recursive
application of item—projection based on itemsBnfollowed by the discovery of the
most frequent closed itemsets in the respective projected databaseaslfiGéss in
the item—projected databaser;.

Proof 4 Given any CFILX with X.supp(n) < A.supp(n) in TF);, X contains at
least1 itemb € B. If not, thenX contains only items iM, henceX.supp(n) >
A.supp(n), which is a clear contradiction. Then by LemmaX3,will be found as
the SMFCIInTF ;,, sinceTF |, contains all, and only those transaction frofi’;
that satisfyb.

455 STEP 5: Deletion of Unnecessary Items

The subproblems that are recursively solved by the method preserfaedase over-
lapping. That is to say, viewed from a top level, a CFl thatthh#asms is at least once
discovered in each of the corresponding item—projected databases. To eliminate
this redundancy, both in the mining process and the result set, obsetram titem;j

can be deleted froriF if it has the same—support in7TF; as inTF. The intuition
behind the observation is the following. jifhas the same—support inTF; as in

TF, it implies that all the transactions if that satisfy;j are also present iff’F;.
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Thus, the set of patterns containipgwhich can be discovered frofF, can also be
discovered fronl'F;.

Lemma 5 After the construction of 'F'|;, an item; can and must be deleted frohfr
if it has the same:—support inTF; as inTF.

Proof 5 If j has the same—support inTF as in TF;, then the set of transactions
that satisfyj in TF is exactly the same set of transactions that satjsfy TF|;.
Since Lemma 4 guarantees that all closed frequent itemsets will be foufiff|jn
including those thay participates in, it is needless and incorrect to construct and
mine TF; at a later point to find same CFls thatparticipates in again. Henceg;,
can and must be deleted froffF'.

The fifth step can be formulated in one SQL statement. The statement deletes all
items inTF that have the same-support inTF as inTF ;.

DELETE FROM TF WHERE TF.item IN
(SELECT F.item FROM F, FT_i
WHERE F.item = FT_i.item

AND F.i_cnt = FT_i.i_cnt)

Figure 4.7 shows the effects of deleting the unnecessary items after the mining
of TF|rce.05 Since items FC:8:05 and I1B8:20 have the samsupport inTF|rcg.0s
as inTF, shown in Figure 4.6, they are deleted frdi. Items remaining iMTF are
shown in Figure 4.7.

4.5.6 Item—Projection Ordered by Increasingn—Support

ALSPpinT, containing itemg; ..., can be discovered from any one of the item—
projected databases; , ..., 7}, . Steps 4 and 5 of the proposed method assure that
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Figure 4.8: Item-Conditional DB'F| ag:35 and Pattern Discovery.

p will be discovered from exactly one of these item—projected databaddbehme-
thod presented so far does not specify which one. While this point isvienelérom
the point of view of correctness, it is crucial from the point of view déetiveness.

To illustrate this, assume that.supp(n) < iz.supp(n) < ... < ig.supp(n).

If projections are performed in decreasing order of itensupport, then, firstj;, is
constructed, the®;, ;, , is constructed fromit, and so on, all the wayitg ;, ,|...ji,
from which finallyp is discovered. If on the other hand, projections are performed in
increasing order of item—support, thep is discovered from the first item—projected
database that is constructed, nanigly.

Assume thap and its qualifying(k — [ + 1) (at leasti—long) sub—patterns are
the only LSPs inl". Then during the whole mining process, the total number of
projections in the decreasing processing ordét;is = k, whereas in the increasing
processing order the total number of projectionsis ddly. = k£ — [ + 1. If k andl
are comparable and large, th&g.. > Pj,.. Similar statements can be made about
the total size of the projected databases in both cases. Hence, item—pnojbctitd
be performed in increasing order of itesrsupport.

4.5.7 Alternating Pattern Discovery and Deletion

Alternating steps 3, 4 and 5, all patterns can be discovered in a rexdasiwion.
The sequential application of these steps is referred toRettarn Discovery and
Deletion phas¢PDD). Mining terminates when all items have been deleted ffém
Figures 4.6 and 4.7 shows the effects of the first of these PDD phdgese$4.8
and 4.9 show the effect of the next pattern PDD phase. Since afterstieliD phase
LA8:35 has the lowest—support inTF, namely 8, it is chosen as the next item to
base the database projection on. Figure 4.8 siidiy ag.35 with the corresponding
n—support of the items i'F|rcg.05 and TF respectively. Since all the items have
the samer—support inTF|rcg.0sas LA8:35, namely 8, the closed itemg&B8:10,
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Figure 4.9: The Sample DB after the Second PDD Phase.

HB8:15, JB8:25, KB8:30, LA8:3pis discovered. Since this closed itemset both
meets the minimum length and-support requirements it is recorded as a pattern. In
the deletion part of this PDD phase, item LA8:35 is deleted fiidfras the only item
that have the same-support inTF| ag:35 as inTF. The results of this deletion are
shown on Figure 4.9.

The third and final PDD phase is implicitly shown in Figure 4.9. Since after the
second PDD phase all the itemsTR have the same—support, the next projection
is performed on any one of the items,and the resulting item—projected database,
TF;, is identical to the current state F, depicted on Figure 4.9. Since all the items
in TF; have the same—support as, the closed itemsgtGB8:10, HB8:15, JB8:25,
KB8:30} is discovered. Since this closed itemset meets both the minimum length and
n—support requirements, it is recorded as a pattern. Finally, items havisgtie:—
support inTF; as inTF, which in this case means all the items/it';, are deleted
from TF. After this deletion part of the final PDD phadé; becomes empty and the

wm—PAT. 1: 0(1,2), S(5), L(6) ™ MWPAT. 2: O(1,5), S(8), L(5) PAT. 3: 0(1,2,5), S(11), L(4)

8:10 | 8:15 8:20 8:25
(I im [ 4
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Figure 4.10: Three Patterns in the Sample DB.
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(1) procedure MineLSP(T, MinSupp, MinLength, n)
(2) TFY,, — MinSupportFilter(T, MinSupp, n)

(3) TF),,, — MinLengthFilter(TF?},., MinLength)
(4) for eachfreqitemi in TF?ong ordered by ase—supp
(5) TFY; — ConstructConditionalDETF?,,,,, i)

(6) FindLSP(TF?;, 1, MinSupp, MinLength, n)

lé1

(1) procedure FindLSP(T, L, MinSupp, MinLength, n)
(2) TF%,, — MinSupportFilter(T, MinSupp, n)
(3) TFy,,, < MinLengthFilter(TF7,,,, MinLength)

(4) (P, P.supp(n)) — FindSMFCI(TFE )

long

(5) TFy,,.. < DeleteUnnecessaryltent'F;. !, TF,.)

long long?
(6) if P.supp(n) > MinSupp and |P| > MinLength
@) StorePatterr(P, P.supp(n))
(8) for eachfreqitemi in TFﬁmg ordered by ase—supp
(9) if i is notinP
(10) TF{; « ConstructConditionalDETF7,,,, i)

long?

(11) FindLSP(TFE, L + 1, MinSupp, MinLength, n)

i

Figure 4.11: The LSP Algorithm.

mining terminates. Figure 4.10 shows the three patterns that are discoveiegl d
the mining. Supportingids, n—supports, and length for each discovered patterns are
shown in the legend.

4.5.8 LSP Mining Algorithm

Using the observations and the associated steps, the complete algorithmifay min
LSPs in trajectories is given in Figure 4.11. Since item—projected databasesmna
structed at every level of the recursion and are modified across letels deleting
unnecessary items, the level of recursiois passed as an argument in the recursive
procedure, and is used as a superscript to associate databasesveltinéy were
constructed in.

Lines 2 and 3 in the MineLSP procedure represent steps 1 and 2 of thedneth
and they construct the filtered database of transactions at the initial level Ole
Line 4 processes frequent items ¥ in ascending order ofi—support. Line 5
represent step 3 of the method, and for each such frequent jtéroonstructs the
item—conditional database of transactidﬁE?Z. at level0. Line 6 calls procedure

FindLSP to extract all LSPs froiF", recursively.

|4
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Lines 2 and 3 in the FindLSP procedure represent steps 1 and 2 of thedneth
and they construct the filtered database of transactions at the cusrehLleLine
4 represents step 4 of the method, and it finds the SMPQh TFﬁmg. Line 5

represents step 5 of the method, and it deletes all items from the filtered siatztba
transactions of the previous levelF'£ 1, that have the same-support inTFZ 1

long? long

asin TF]’%Teq, the current level. Lines 6 and 7 check if the single most frequent closed
itemsetP meets the minimum requirements and store it accordingly. Lines 8 and 9
processes frequent items iﬁFﬁmg, which are not inP, in ascending order af—

support. Line 10 represent step 3 of the method, and for each suglefreitemi it
constructs the item—conditional database of transacﬂdﬁ@ at the current leveL.

Finally, line 11 recursively calls procedure FindLSP to find LSP%‘F{]@ at the next
level.

The structure and functionality of procedures MineLSP and FindLSP aaig-
nificant overlap. While the two functions can be merged into one, the sepacd
the two is used to emphasize the facts that (1) DeleteUnnecessaryltenmmesdhe
existence of databases constructed at the previous level, and (2MH@i8orrectly
operates only on an item—projected database, and hence it can onlylied apjevel
1 and above.

Several implementation details are worth mentioning. First, DeleteUnneces-
saryltems deletes items frorfﬁFlI;;gl based on thei—support of items inTFfreq,

not TFlLong. This is important, as it was noted that MinLengthFilter decreases-the
support of items irﬂ’Ffreq, thereby possibly making an unnecessary item appear to
be necessary. Second, arguments to functions and operands in stateradogical,

i.e., the functions and statements can be more efficiently implemented using previ-
ously derived tables. For example, both FindSMFCI and DeleteUnreagéissns

are implemented using previously derivedsupport count tables not the actual tra-
jectory tables. Third, simple shortcuts can significantly improve the efficiency

the method. For example, during the derivation]?ﬁﬁ,eq, if the number of unique
frequent items irﬂ”Fﬁm is less thanMinLength, no further processing is required

at that level, since none of the CFls that can be derived fﬂdﬂﬁeq are long. To
preserve clarity, these simple shortcuts are omitted from Figure 4.11.

4.6 Alternative Modelling of Trajectories and Mining of LSPs

The region—based and the road network based spatio—temporal |getiera ap-
proaches, presented in Section 4.3, model trajectories at a local (mieet) Gon-
sequently, the method presented in Section 4.5 analyzes the trajectoried@t the
cal level and derives local (micro) patterns. Alternatively, trajectocass also be
modelled at the global (macro) level, whereby trips in trajectories aresepied as
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origin—destination pairs. Global (macro) modelling and analysis of trajestia
domain of considerable interest in transportation and urban analysisHdiléxam-
ple, recently a Cab—Sharing Service was proposed as an effectaretd—door, on—
demand transportation service [33]. One component of the propodeeSGaring
System is a Cab—Routing / Scheduling Engine. The task of this engine iséadé
cabs and assign cabs to requests or groups of requests, so callsdarals, such that
the demand for cabs is optimally served both in terms of the transportationfcost o
idle cabs and the service time of requests. To enable this optimization, asviutle
the use of spatio—temporal patterns in cab requests for cab requestdipradiction
is proposed. Since cab requests are naturally represented as cgigjination pairs,
the usefulness of macro analysis is apparent.

Hence, in the following two alternative options for modelling trajectories and
mining of LSPs are described. Section 4.6.1 describes a simple method with an
SQL implementation for mining LSPs in trajectories modelled at the global (macro)
level. Section 4.6.2, using some intuitive assumptions, combines the macro aad micr
modelling options and LSP mining methods to derive a hybrid version.

4.6.1 Macro Modelling of Trajectories and Mining of LSPs

As briefly described above, when modelling trajectories at the global thberel,
trips in trajectories are represented as origin—destination pairs. Theopesping
of raw trajectories can be achieved using the same three transformatierastdp-
scribed in Section 4.3. This includes the possibility of using either the regéseedb
or the road network based spatio—temporal generalization approaciseseguired
from the application at hand. In the so obtained transaction databas¢eaoina
belonging to a particular object has exactly two items.

Mining global (macro) LSPs in the so obtained trajectory database cahisved
using a single SQL statement as follows.

SELECT o_item, d_item, SUM(supp) AS nsupp FROM
(SELECT oid, o_item, d_item, COUNT(*) AS supp FROM T
WHERE dist(o_item, d_item) >= MinDist
GROUP BY oid, o_item, d_item) a

GROUP BY o_item, d_item

HAVING COUNT(*) >= n AND SUM(supp) >= MinSupp

The statement, without loss of generality, assumes that the trajectory defabas

the schemaoid, tid, o_item, d_item), where in addition to the previously used nota-
tion, o.item and ditem are generalized spatio—temporal regions, or identifiers of the
origin and destination of the trajectory, respectively. Since all the trajestor the
databasd’ have exactly two items, it does not make sense to talk about the length
of a trajectory in terms of number of items it contains. Instead, a distancédonc
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Figure 4.12: Loss of Local (Micro) LSP.

dist() between two locations or items can be defined, and patterns can be evaluated
against aMinDist criterion. The inner select statement calculates the supports for
object—specific origin—destination item combinations that satisfiyMheDist crite-

rion. The outer select statement aggregates the results of the innerssalentent,

and identifies origin—destination item combinations that meetHseipport criterion,

i.e., global (macro) LSPs, and calculates their correspondhsgipports.

4.6.2 Hybrid Modelling of Trajectories and Mining of LSPs

The proposed global (macro) modelling approach of trajectories, thalglmiacro)
LSP mining method and the SQL implementation given for it are likely to be very ef-
ficient due to the indexing and aggregation support provided by RDBM8wever,

the discovered global (macro) LSPs, will have very little relation to eachr.offa
example, a set of individual global (macro) LSPs, considering therlyiolg road
network, might give rise to local (micro) LSPs that do not exist in the macrdeaino
but have a support that is equal to the sum ofitksipports of the individual patterns.
As an illustrative example consider the road network represented by lidebkck
lines in Figure 4.12. Assume that for a particular setting of the parameteigothed
(macro) LSP mining method finds two global (macro) LSH#8:00, LA8:30; and
{FC8:00, LC8:3@, with n—supports 10 for each. Assuming that the spatial regions
FA, LA, FC, and LC cover the only four cities in the area, and hence t@jes
only start and finish in these regions, the global (macro) LSP mining methodatill
discover the local (micro) LSRPGB8:05, HB8:10, I1B8:15, JB8:20, KB8:25with
n—support 20.

To overcome this deficiency of the global (macro) LSP mining method, thelgloba
(macro) and the local (micro) modelling approaches and LSP mining methodeca
combined into a hybrid modelling and LSP mining method as follows. First, perform
global (macro) LSP mining on the spatio—temporally generalized input trajestor



4.6 Alternative Modelling of Trajectories and Mining of LSPs 61

(1) procedure HybridMineLSP(Traj ;, MinDist, MinSupp, MinLength, n)
(2) Traj. «— STGeneraliz€ Traj ;)

(3) LSPuacro < MacroMineLSH Traj ;, MinDist, MinSupp, n)

(4)  Traj 4 — ApproximateTrafLSP yacro)

(5) Trajs, < STGeneralizéTraj 4)

(6) LSPuicro «— MineLSP(Traj . 4, MinLength, MinSupp = 1, n = 1)

Figure 4.13: The Hybrid LSP Mining Method.

Then, using the global (macro) LSPs and the underlying road netapgtpoximate
trajectories for the global (macro) LSPs, i.e., find shortest paths betomgin—
destination pairs. Then, spatio—temporally generalize the approximateddregsc
and mine local (micro) LSPs in them, taking into account the global (maero)
supports of the approximated trajectories. Taking into accawstpports of the
approximated trajectories can either be achieved by slightly modifying the(loéal
cro) LSP mining method in Section 4.5, or simply the original version of it can be
called with parameters = 1 and MinSupp = 1. The latter is necessary and suffi-
cient to ensure that (1) the approximated trajectories belonging to the ¢tohato)
LSPs are found as local (micro) LSPs as well, and (2) the local (micr8sl{8und
meet the originah—support criterion. Note that the spatio—temporal generalization
of the input and approximated trajectories can either be regions—baseddonet-
work based. Figure 4.13 gives the pseudo code of the hybrid LSP minitigpthes
described above.

While the hybrid LSP mining method is likely to reduce the number of input tra-
jectories to the local (micro) LSP mining method called internally, thereby aclgevin
a significant speed—up in running time, it does not fafidthe local (micro) LSPs.
As an example consider the trajectories in Figure 4.12J#Supp = 20, then the
hybrid LSP mining method will not find any patterns in the global (macro) LSP min-
ing phase, and consequently will not find any local (micro) LSPs, eveugtin the
local (micro) LSP{GB8:05, HB8:10, IB8:15, JB8:20, KB8:2%as am—support of
20. Similarly, it can be argued that the hybrid LSP mining method will not find any
LSPs in the example trajectory database in Section 4.3.2, for the parametgiis us
the running example in Section 4.5. However, as the spatio—temporal tiestéva
granularity used in the mining is decreased the chances not identifyingd ¢iadero)
LSPs that give rise to local (micro) LSPs is decreased. In summary, trelhySP
mining method is likely an effective alternative that provides lossy and appeate
results when compared to the local (micro) LSP mining method.
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4.7 Experimental Evaluation

The proposed LSP mining methods were implemented using MS—SQL Sen&r 200
running on Windows XP on a 3.6GHz Pentium 4 processor with 2GB main memory.
Three groups of experiments were performed to test: (1) the paramps#ingty of

the local (micro) LSP mining method, (2) the scale—up properties of the logal (
cro) LSP mining method, and (3) the effectiveness of the global (macrdgkivg

and LSP mining method with respect to its parameters. The three groupseasi-exp
ments were performed on the following three data sets respectively: (puthiely
available INFATI data set [58], which comes from intelligent speed adiaptexper-
iments conducted at Aalborg University, (2) the synthetic ST-ACTS trajeciata

set, and (3) the ST-ACTS origin—destination data set, both of which werede
from ST-ACTS, a probabilistic, parameterizable, realistic Spatio—Tempa@aiv-

ity Simulator [31]. Sections 4.7.1, 4.7.2 and 4.7.3 describe these data setsilin deta
while Sections 4.7.4, 4.7.5 and 4.7.6 present the results of the respectiyes gf
experiments. Finally, Section 4.7.7 visualizes some of the mining results.

4.7.1 The INFATI Data Set

The INFATI data set records cars moving around in the road netwodatiforg,
Denmark over a period of several months. 20 distinct test cars and faglitis-
ipated in the INFATI experiment; Team-1 consisting of 11 cars operatedebatw
December 2000 and January 2001 and Team-2 consisting of 9 caasaupleetween
February and March 2001. Each car was equipped with a GPS rededve which
GPS positions were sampled every second whenever the car was dpAcdéional
information about the experiment can be found in [58].

The method presented in Section 4.3.1 identifies trips from continuous GPS mea-
surements, which is not the case in the INFATI data. Hence in this case,\waisip
defined as sequence of GPS readings where the time difference béivoesonsec-
utive readings is less than 5 minutes. Using the definition, the INFATI datizicsn
3,699 trips. After projecting the temporal dimension to the time—of—-day domain
and substituting the noisy GPS readings with 100 meter by 100 meter by 5 minutes
spatio—temporal regions, the resulting trajectory database has the follohangc-
teristics. There are 200,929 unique items in the 3,699 transactions. Thagaver
number of items in a transaction is approximately 102. The averagepport of 1—,

2—, and 3—frequent items is 1.88, 4.2 and 6.4 respectively. Notice thavehagas
only include then—supports of 1—, 2—, and 3—frequent items.
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4.7.2 The ST-ACTS Trajectory Data Set

The ST-ACTS trajectory data set is based on the output of ST-ACT Sbalpitis-
tic, parameterizable, realistic Spatio—Temporal ACTivity Simulator [31]. Base
a number of real world data sources and a set of principles that try tolriasle
social and some of thghysicalaspects of mobility, ST-ACTS simulates realistic
spatio—temporal activity sequences of approximately 600,000 individu#he icity
of Copenhagen, Denmark. Since the aim of ST-ACTS is to simulate realistio-spa
temporal activities of individuals that contain patterns, rather than to simwdtadet
movements of individuals, the output of the ST-ACTS for each simulatedidhuil/
is a sequence of timestamped locations and activities. Two consecutive haciatio
such a sequence can be seen as the origin and the destination of a fj@g®iya
To obtain a realistic approximation for the missing part of the trajectories, tistng
underlying road network, segment—based shortest path calculatioagperormed
between the origin—destination pairs of the trips. The so obtained trip tragctoe
analogous in form and semantics to the trajectories that can be obtainedhesing
road network based spatio—temporal generalization approach as exjlaiBection
4.3.1.

For the period of three working days, spatio—temporal activities of 5,0fl@idh
uals were simulated, resulting in a total of 64,144 trips. Using segment—lzagedr
between origin—destination pairs, an average trip is 1,850 meters long withdasda
deviation of 1,937 meters, and is made up of 28 road segments with a staed&rd d
tion of 27 road segments. An average road segment is 66 meters long witldarsta
deviation of 64 meters. After projecting the temporal dimension to the time—of-day
domain and using the road segments as spatial-, and a 15—-minute interval as tem-
poral, generalization units, the resulting trajectory database has the fajl@ivar-
acteristics. There are 330,940 unique items in the 64,144 transactionsvarage
number of items in a transactions is approximately 28. To test the scale—wgrprop
ties of the proposed method, varying sized subsets of the ST-ACTS trgjectia
set were constructed. Figure 4.14 summarizes the characteristics obthssds in
terms of the number (Figure 4.14(a)) amdsupport (Figure 4.14(b)) of—frequent
items. While not shown in Figure 4.14, the number of trajectories linearly seitles
the number of objects in the data sets between 6,601 trajectories for 506ahjec
64,144 trajectories for 5,000 objects. Similar linear relationships exist betthee
number of objects and the averagesupport ofn—frequent items, Figure 4.14(b).
The logarithmic like relationships between the number of objects and the nuinber o
n—frequent items is due to the fact that the increasing number of traject@iesse,
and maken—frequent, an increasing fraction of road segments of the total road net-
work, see Figure 4.14(a). In other words, the numbet-dfequent items naturally
saturates as the density of the trajectories increases.
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Figure 4.14: Data Characteristics of Varying Sized Subsets of the STSATCdjec-
tory Data Set.

4.7.3 The ST-ACTS Origin—Destination Data Set

The ST-ACTS origin—destination data set, similarly to the ST-ACTS trajectday da
set, is also based on the output of ST-ACTS. However, itincludes thie-siganporal
activities of 50,000 individuals for a period of three working days, Itesuin a total

of 835,806 trips. The average Euclidean distance between the origindestida-
tions of the trips is 1,199 meters with a standard deviation of 1.555 meters. After
projecting the temporal dimension to the time—of—day domain and substituting the
origins and destinations of trips with 100 meter by 100 meter by 15—minute spatio—
temporal regions, the resulting trajectory database has the followingothiastcs.
There are 139,480 unique items in the 1,671,612 transactions. The nuniteensf

in every transactions is exactly 2, which correspond to an origin and tanaiésn
spatio—temporal region. The averagesupport (and count) of 1-, 2—, 3—, and 4—
frequent items is 1.12 (1,497,871), 2.14 (152,255), 3.24 (17,267), £%d(3854)
respectively. Notice that the averages only includerthgupports of 1-, 2—, 3—, and
4—frequent items.

4.7.4 Sensitivity Experiments for MinSupp and MinLength Parameters

The first group of experiments was performed to test the sensitivity of (odaro)

LSP mining method with respect to thiéinSupp and MinLength parameters, and
was using the INFATI data set as input. Two sets of experiments wererpe,
each varying one of the two parameters of the algorithfinSupp and MinLength.

The performance of the algorithm was measured in terms of processing tone an
working space required, where the working space required by thathlmowvas ap-
proximated by the sum of the rows in the projected tables that were constiucte
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Figure 4.15: Performance Evaluation for Varidusn Length Settings.

the algorithm. Both measures were evaluated in an absolute and a relatipat-pe
tern, sense. Figures 4.15(a), 4.15(b), and 4.15(c) show the rebthis first set of
experiments, wherd/inSupp = 2, n = 2 and MinLength is varied between 120

and 530. Lower settings fallinLength were also tested, but due to the very low
MinSupp value these measurement were terminated after exceeding the 2 hour pro-
cessing time limit. Noting the logarithmic scale in Figure 4.15(a) it is evident that
both the running time and the working space required by the algorithm exfalhe
increase as théfinLength parameter is decreased. Examining the same quantities
in a relative, per pattern sense, Figure 4.15(c) reveals that the avenaiging time

and average working space required per pattern is approximauedyly decreasing

as theMinLength parameter is decreased. The presence of the two irregular bumps
in Figure 4.15(c) can be explained in relation to the number of patterns feund

the number of ineffective projections that yield no patterns, shown in Eigurs(b).

The sharp increases in relative processing time and working spaceete the fact

that the algorithm is unable to take some of the shortcuts and it performs eglativ
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Figure 4.16: Performance Evaluation for VariaWsn.Supp Settings.

more ineffective projections yielding no pattern discovery. The shacpedses can
be explained by the presence of an increasing number of patterns dnatlsé total
pattern discovery cost.

Similar observations can be made about the second set of experimemis,isho
Figures 4.16(a), 4.16(b), and 4.16(c), whé&feLength = 50, n = 2 and MinSupp
is varied between 7 and 33. For example, the sharp decrease in relatbesging
time in Figure 4.16(c) when going frodinSupp = 33 to MinSupp = 32 is simply
due to the sudden appearance of patterns in the data for the given pamarid¢hile
there is only 1 pattern fokinSupp = 33, and an order of magnitude more number
of patterns forMinSupp = 32, the projections performed and hence the absolute
processing time to discover these patterns is approximately the same in bath case
Hence, the relative processing time fofinSupp = 33 is an order of magnitude
larger than that fod/inSupp = 32.
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Figure 4.17: Performance Evaluation for Various Sized Data Sets, i.e., &uohb
Objects.

4.7.5 Scale—up Experiments for Various Input Data Sizes

The second group of experiments was performed to test the scale-pgris of
the local (micro) LSP mining method for varying size input data, and waspeed
using the ST-ACTS trajectory data set. For this group of experiments thétlafgis
parameters were kept constantat= 4, MinSupp = 8 and MinLength = 25. In
other words, the patterns sought for were sub—trajectories with a minimgtinleh
25 road segments that were supported by at least 4 objects on avetagst &wvo
times per object. The evaluation measures used in the experiments were the same
as in the sensitivity experiments described in Section 4.7.4. Figure 4.17 shews
results of this group of experiments. The results can be summarized assfolswy
the number of objects increases linearly, i.e. the density of the trajectorieages
linearly, the number of patterns increases sub—exponentially, see Biguke). This
naturally leads to a sub—exponential increase in absolute running timedRBigut(a)
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left) and working space (Figure 4.17(a) right). However, the examinafitire same
guantities in a relative, per pattern sense, see Figure 4.17(c), revaiasdtaverage
running time required per pattern gradually decreases to a close to doradtanof

a few seconds as the density of the trajectories increases. This is duddotttiet

as the density of the trajectories is increasing, the number of ineffectojegtions
relative to the number of patterns, i.e., the gap between the two, is decressing
Figure 4.17(c). Similar observations can be made about the averagmgvsgace
required per pattern. In summary, the scale—up experiments show thahbatim-
ning time of, and working space required by the local (macro) LSP mining rdetho
scale sub—exponentially with the input data size and linearly with the outpwidata
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Figure 4.18: Number of Global (Macro) LSPs for Varying Spatio—TerapGranu-
larities and Parameter Settings.
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Figure 4.19: LSP Discovery Results in the INFATI Data Set.

4.7.6 Global (Macro) Modelling and LSP Mining Experiments

The third group of experiments was performed to test the effectiverfi¢se global
(macro) modelling and LSP mining method, as presented in Section 4.6.1. The ex-
periments were performed for varying spatio—temporal generalizationlgdties

for varying n, MinSupp and MinDist parameters, and were using the ST-ACTS
origin—destination data set. Figure 4.18 shows the results of this groupefiex
ments. The trends in the results are as expected. As the values for theepersa

n, MinSupp and MinDist increases the number of global (macro) LSPs decreases,
shown in Figures 4.18(a), 4.18(b), and 4.18(c), respectively. Similaltlgxperi-
ments show that as the spatio—temporal regions become coarser the nfipdier o
terns found increases. Perhaps more notable is the fact that for tee lexthe data

set, with appropriate indexing the running time of the global (macro) LSP mining
method is independent of the parameters and is under 2 seconds.

4.7.7 Visualization of Patterns

To see the benefits of mining LSPs, the mining results of two mining tasks ard-visua
ized in the following. Figure 4.19 presents the mining results of finding locak@hic
patterns in the region—based spatio—temporally generalized INFATI deig the
LSP algorithm from Section 4.5. Figure 4.19(a) shows a 50—fold dovmpieal ver-
sion of the trajectories of the 20 moving objects in the INFATI data set. While some
regularities are apparent in it to the human eye, to find LSPs in it seems liken& da
ing task. Figure 4.19(b) shows 28 LSPs in it that are at least 200 loat!sle for at
least 2 distinct objects, and have a support of at least 2.

Figure 4.20 presents the mining results of finding local (micro) patterns in the
road network based spatio—temporally generalized ST-ACTS origin—dtstiata
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Figure 4.20: LSP Discovery Results for the ST-ACTS Origin—Destinatida Bat.

using the hybrid LSP mining algorithm from Section 4.6.2. The global (macro) min
ing of LSPs was performed for parameters= 4, MinSupp = 8, and MinDist =
5,000 meters, and resulted in 109 global (macro) LSPs. After determining the value
for the MinLength parameter at 80, based on the minimum number of road segments
in the approximated trajectories of the global (macro) LSPs, the local (midrofng
of LSPs resulted in 298 local (micro) LSPs. Figure 4.20(a) shows tiralbsapports
(frequencies) of the road segments in the data. Figure 4.20(b) showsathimum
n—supports of the road segments induced by the collection of the 298 locabjmic
LSPs. While, as described in Section 4.6.2, the hybrid LSP algorithm is nbt tike
find all local (micro) LSPs, it does find a relatively large number of additionallloca
(micro) LSPs in a rather large data set under 144 seconds.

Itis important to note that the LSPs contain additional information, which is only
partially, or not presented in Figures 4.20(b) and 4.19(b), respébctiveparticular,
the n—supports, distances, and lengths are availablenfbividual patterns, and the
patterns naturally have a temporal aspect to them. With regards to the latteefea
of the patterns, since the items in a pattern have a temporal component, asuiadiv
pattern refers to a particular time—of—day. Furthermore, since the spatipetally
generalized items in a given pattern form a sequence in time, the patterns have
direction While a simple temporal, frequency analysis of road segments can reveal
aggregatednformation about the number of objects on the road segments at a given
time—of—day, such analysis will not reveal movement patterns (includiegtins)
of similarly moving objects. This additional information of the LSPs is likely to
be of immense value in transportation and urban planning, and is necésistrg
application at hand, be that intelligent ride—sharing or cab—sharing.
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4.7.8 Summary of Experimental Results

In conclusion, the experimental evaluations can be summarized as followfs tie
sensitivity experiments show that the LSP mining method, presented in Sectia 4.5
effective and is robust to changes in the user—defined parameter segtiind.ength

and MinSupp, and is a useful analysis tool for finding LSPs in moving object tra-
jectories. Second, the scale—up experiments show that while the absaintegu
time and space required to find LSPs scales exponentially with the input data siz
this is mainly due to the fact that the number of LSPs that are present in thie inpu
data, i.e., the output data size, also scales exponentially with the input dat@itséze
scale—up experiments also demonstrate that the relative, per patteanmzerte of

the LSP mining method gradually decreases to a constant value as the itgpsizda

is increased. This later property of the LSP method is due to the fact that &s th
put size is increased, i.e., the density of the trajectories is increased febts eff

the MinLength and MinSupp pruning criteria become more dominant and relatively
less and less ineffective projections are performed. Third, the expaismadating to
global (macro) modelling and LSP mining, show that this modelling option and LSP
mining method is extremely effective on large data sets, and is rather insersitiv
the user—defined parameter settingsMinDist and MinSupp. Finally, brief exper-
iments show that the hybrid modelling and LSP mining method, while missing some
local (micro) LSPs due to the partial global (macro) modelling, is able to final loc
(micro) LSPs in large data sets effectively.

4.8 Conclusions and Future Work

The herein presented work, for the first time, considers the problem ahgnitSPs
in trajectories and transforms it to a framework similar to that used in freqiesmnt
set mining. The transformation allows both region—based and road nebasdd
spatio—temporal generalizations of trajectories. Two methods and their siQple S
implementations are presented for mining either local (micro) or global (ma&f3
in such spatio—temporally generalized trajectories. In an attempt to speesllopah
(micro) LSP mining method, the two methods are combined to a hybrid LSP mining
method, which is able to rapidly find most of the local (micro) LSPs. The &fec
ness of the different LSP methods is demonstrated through extensiegragpts on
both a real world data set, and a number of large—scale, synthetic data sets

Future work is planed along several directions. First, as discussdutihid LSP
method, while is able to achieve significant speed—up compared to the locab)mic
LSP mining method, it does not find all the local (micro) LSPs in the trajectories.
Hence future work will consider to quantify (1) the speed—up of the idyb&P
method, and (2) the fraction of the local (micro) LSPs found by the hyb8& L
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method. Second, the large number of patterns discovered are difficulalyra. To
reduce this number, future work will consider the mining of a compressiterps.in
trajectories [101]. Finally, future work will consider the partitioning of tra{gies
using index structures designed for trajectories, like in [55], to allow theildliged /
parallel mining of LSPs.



Chapter 5

Cab-Sharing: An Effective,
Door—To—-Door, On—-Demand
Transportation Service

City transportation is an increasing problem. Public transportation is cadtede

but do not provide doortodoor transportation; This makes the far mqensive
cabs attractive and scarce. This paper proposes a location—bdsefifaang Ser-
vice (CSS), which reduces cab fare costs and effectively utilizes blaitabs. The
CSS accepts cab requests from mobile devices in the form of origin—desiipairs.

Then it automatically groups closeby requests to minimize the cost, utilize cad, spac
and service cab requests in a timely manner. Simulation—based experimemts sho
that the CSS can group cab requests in a way that effectively utilizegroesoand
achieves significant savings, making cab—sharing a new, promising niddms-
portation.

5.1 Introduction

Transportation in larger cities, including parking, is an ever increasiolgl@m that
affects the environment, the economy, and last but not least our livedficTlams
and the hustle of parking take up a significant portion of our daily livescmcse
major headaches. Solving the problem by extending the road network istlgt co
and non-scalable solution. A more feasible solution to the problem is to rélgeice
number of cars on the existing road network. To achieve this, collectivdlig
transportation tries to satisfy the general transportation needs of lai@grgyin a

73
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cost—effective manner. While being cost—effective, the serviceseolffy public
transportation often (1) do not meet the exact, door-to—door trantportzeeds
of individuals, (2) require multiple transfers and detours that significdetigthen
travel times, and (3) are limited in off—-peak hours. For these reasonfartheore
expensive service offered by cabs / taxis, which meet the exacptretation needs of
individuals and also eliminates the problem of parking, are in great dermariktter
satisfy this demand, this paper presents an LBS that makes use of simpla ogots
and tools to offer a new cost— and resource—effective, door—to-tdasportation
means, namelgab—sharing

Collective transportation is not a new concept. It is encouraged arsidizad
by transportation authorities all over the world. The optimization of collectaest
portation has also been considered. For an extensive list of regespehs in this
area, the reader is referred to [92]. Two papers, however, arthwahlighting.
First, in [32], where the idea of the present research originates froan off—line
fashion, long, shareable patterns are sought in historical trajectdrieevang ob-
jects to aid an intelligent ride—sharing application. Second, in [17] an alnpest “
sonalized” transportation system is proposed that alters the fixed—-linesénsce to
include variable itineraries and timetables. In comparison, the herein oSS
treats the optimization of collective transportation as a truly online procedsli@ns
the inherently routeless transportation service offered by cabs.

5.2 Problem Statement

Let R? denote the 2-dimensional Euclidean space, anfl ketN* denote the totally
ordered time domain. LeR = {ri,...,r,} be a set ofcab requestssuch that

ri = (tr, 1o, g, te), Wheret, € T is therequest timeof the cab request, € R? and

l4 € R? are theorigin anddestination locationsf the cab request, artd > ¢, € T

is theexpiration timeof the cab request, i.e., the latest time by which the cab request
must be serviced. A cab request=< t,,1,,l4,t. > isvalid attimet if ¢, <t < t..

Let At = t. — t, be called thevait timeof the cab request. Let@b-shares C R

be a subset of the cab requests. A cab-share is valid atttifmal cab requests

in s are valid at time. Let |s| denote the number of cab request in the cab—share.
Letd(ly, ) be a distance measure between two locatipsdl,. Letm(s, d(.,.))

be a method that constructs a valid and optimal pick—up and drop—off rises|oé
requests for a cab—shaseand assigns a unique distance to this sequence based on
d(.,.). Letthesavings for a cab request; € s bep(r;, s) = 1—%. Then,

the cab—sharing problens to find a disjoint partitioningg = {s; W s ...} of R,

such thatys; € S, s; isvalid, |s;| < K, and the expressiop,, o>, ., P(ri; 5;)

is maximized.
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5.3 Cab-Sharing Service

The Cab-Sharing Service (CSS) is depicted in Figure 5.1. Before usngsis, a
user signs up with the CSS and creates a prepaid user account to plag $ervice.

A registered user sends a cab request in the form of an origin—destimatioand

an optional validity period of the request. In case no validity period is spdcifihe
cab request is assumed to be valid from the time it is received until someltdefau
time limit has been reached. The requests are submitted via a mobile device by
sending two address lines to a premium SMS service, called Premium CaimgSha
Service. A more user—friendly specification of requests could includs-G&sed
localization of origins and/or the ability of users selecting origins and/or de&iims
from alist of frequent addresses, or even a voice—recognitiotHesshaautomatic call
center. In either case, once received, the Premium Cab-SharinigeSsends the
two address lines to a Geocoding Service, which validates them and ritaresact
coordinates for them. Then these origin and destination coordinates, \alting
user identifier are sent to a Cab—Sharing Engine. The Cab—SharingeEhgn, in an
online fashion, automatically groups “closeby” requests into a cab—&har@imize

the total transportation cost, thereby providing significant savings to #rs o§the
service. Once a cab—share is constructed, the cost of the shareiatefiom the
account of every participant of the cab—share. Then, after riageilie information
about the cab—share, the CSS forwards the information to the Cab-tHolgedCab—
Routing Engine, which assigns cabs to cab—shares so that cab spétieed and
cab requests are serviced in a timely manner. Finally, the CSS sends an $iMS to
user about the cab fare, such as cost and schedule of the fareb-Al&mo of the
CSS is available atttp://www.cs.aau.dk/"gyg/CSS/
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5.4 Grouping of Cab Requests

Cab requests can be viewed as data points in spatio—temporal space. ritagtitio
data points intd: groups based on pairwise similarity of the data points according to
a distance measure is referred to as the clustering problem, an extenssgdyched
problem of computer science. Clustering is known to be NP—hard [49{veMer,
there are a number of efficient bottom—up and top—down methods thaixappte
the optimal solution within a constant factor in terms of a clustering criterion,twhic
is expressed in terms of the distance measure.

Hence itis only natural to approach the cab—sharing problem as a otggtenb-
lem and adopt efficient approximations to the task at hand. For thesexapption
algorithms to converge to a local optima, an appropriate distance nagtri¢ be-
tween two cab requests and/or cab—shares needs to be devised.,Foto be a
metric for any three cab requests or cab—shargs: is has to satisfy the following
four conditions:d(.,.) > 0 (non—negativity)d(i, i) = 0 (identity), d(i, j) = d(j,1)
(symmetry), andi(s, j) + d(j, k) > d(i, k) (triangular inequality).

While a clustering approach may find a near—optimal cab—sharing solutias it
several drawbacks. Since a cab request is only valid during a sp@Tigignterval,
the set of valid cab request that can be considered for clustering ngicigaover
time. While a hard time—constraint can be incorporated into a distance measure,
the measure will not satisfy the triangular inequality requirement. An altemativ
approach could at every time stegetrieve the set of valid cab requests, and perform a
partitioning—based clustering on the set according to some distance metnieveto
since at any time instangethe number of valid cab requesigs and the number of
possible K -sized valid cab—shares are comparable, an iterative partitioning—based
clustering approach would entail(n?) distance calculations per iteration at every
time instance, making it infeasible in practice.

Since a cab request has a request timg. and an expiration time, it is natu-
ral to view it as a part of a data stream. When finding cab—shares in ssicbaan,
two opposite approaches are obvious. In the first approach, edfesras thdazy
approach, the grouping of requests is delayed as long as possible tafirghares
with higher savings. In the second approach, referred to asaberapproach, re-
guest are grouped into cab—shares as early as possible to deliver a sandhe.
Next, the lazy version of a greedy, bottom—up grouping of cab requestsdsibed.
For ease of presentation, the described grouping method instead of magisaxin
ings, solves the equivalent problem of minimizing total travel cost; it is shiown
Figure 5.2.

At any timet, valid cab requests can be divided into two séis; the set of valid
requests that expire at time stgpand R, the rest of the valid requests that expire
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(1) procedure cabSharg R, K, min _saving )
(2) S0

() fort=1...T

4) {R., Ry} — getValidRequest&r, t)
(5) E — calculateER,, {R, U R,})

(6) while (|R;| > 0)

(7 Emin < Min; ming< g w

(8) {i,k} « argmin, argming . W
9) s {rkr2,...rk}

(10) if p(r;,s) < min_saving then break
(12) S —{Sus}

(12) E — removeSfromEE, s)

(13) S « {SUaddRestAsSingld®,) }

Figure 5.2: Lazy Version of a Greedy, Bottom—Up Grouping of Cab Retgue

some time aftet (line 3). Given two cab requestgandr;, let

m({ri,rj},d(.,.)) —m({ri},d(.,.))
m({ri}, d('? ))

be thefractional extra cosbf includingr; in r;'s cab fare. Using the pairwise frac-
tional extra costs, the fractional extra cost of a cab skhawa.t. r; is estimated as
é(s) = X, e €(ri,m5), and the average savings for a cab request s is estimated
asp(rj,s) =1 — ”‘Tﬂ(s) Furthermore, let” be the cab request that has th¢h
lowest fractional extra cost w.r.t;. In line 4, these fractional extra costs are calcu-
lated between cab requestsitn and{ R, U R,} and for allr; € R, these fractional
extra costs are stored in a 2—-dimensional aftaguch thatt[i, k] = e(r;, r¥), i.e.,

E is sorted increasingly in row major order. Then, using only the loviesintries
for each cab request iff, in an iterative fashion the currently best (lowest amortized
cost / highest savings) cab—sharis found (lines 7-9) and request in it are removed
from consideration (line 12) by setting[r;,.] and E[., ;] to some large value for
all r; € s. This process continues until the currently best savings. is less than
min _saving , at which point all the remaining cab requestRy are assigned to

their own “cab—share” resulting in no savings for them (line 13).

e(ri,rj) =

5.5 A Simple SQL Implementation

The grouping method for parametensix k andmin _saving can be easily imple-
mented in a few SQL statements as described bellow. First, after geocodlity, v
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requests are stored in a taliteq = (rid,tr,te,xo,yo,xd,yd ), whererid

is a unique identifier for the request, andte are request and expiration times,
and (xo,yo ) and(xd,yd ) are origin and destination coordinates. Then, using a
temporal predicate, expiring requests are selected Raprand stored in a tablB_x

with the same schema. Finally, a distance functigxil,y1,x2,y2) is defined
between two 2D coordinates. Then, the fractional extra cost funetfonthe origin

and destination coordinates of the requéstandrj can be defined in SQL—99 [87]
as follows.

CREATE FUNCTION e(rixo FLOAT, riyo FLOAT,
rixd FLOAT, riyd FLOAT,
rfxo FLOAT, rjyo FLOAT,
rixd FLOAT, rjyd FLOAT)

RETURNS FLOAT

BEGIN

DECLARE ri_dist, ed FLOAT
SET ri_dist = d(rixo, riyo, rixd, riyd)
SET ed = d(rjxo, rjyo, rixo, riyo)
+ d(rjxd, rjyd, rixd, riyd)
RETURN (ed / ri_dist)
END

5.5.1 STEP 1: Calculating Fractional Extra Costs

After creating a tabl& = (ri,rj,e ) to store the fractional extra costs, the frac-
tional extra costs between the requastan Rx andrj in R.g can be calculated in
SQL-99 as follows.

INSERT INTO E (ri, rj, €)
SELECT x.rid ri, qg.rid rj,
e(x.xo0,x.yo,x.xd,x.yd,q.x0,9.y0,q.xd,q.yd)
FROM R_x x, R_gq q
WHERE x.rid <> q.rid
AND e(x.x0,x.yo,x.xd,x.yd,q.x0,9.yo0,q.xd,q.yd) <= 1

The first condition in th&VHERI[Elause excludes the fractional extra costiof
with itself, which is O by definition. The reason for doing so is to avoid falsely
identifying ri  on its own as the currently best (lowest amortized cost = 0 / highest
savings = 1) “cab—share” in the processing steps to follow. The semmmdition in
theWHEREIause is a pruning heuristic that excludgs ,rj ) request combinations
from E where the fractional extra cost exceeds 1, in which case neitheor any
cab—share containimg can benefit from including .
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5.5.2 STEP 2: Calculating Amortized Costs

Relational Database Management Systems (RDBMSs}etreriented and the in-
herently declarative SQL language does not provide adequate stupimplement
operations orsequences.g., cumulative sum. Procedural language constructs that
allow iteration over the elements of a sequence do exist in SQL, but are imgkunen
less efficiently. Hence, programmers normally revert to other prockldunguages

to perform such operations. Nevertheless, the calculation of cumulatiwecan be
implemented in SQL in a declarative fashion using a self—join. Hence, a#tat-cr

ing a tableAE = (ri,rj,ae,k ), the summations on line 7 and 8 of the grouping
method in Figure 5.2, i.e. the amortized costs can be calculated in a single SQL—-99
statement as follows.

INSERT INTO AE (ri, rj, ae, k)

SELECT auri, a.rj, (SUM(b.e)+1)/(COUNT(*)+1) ae, COUNT(* )+1 k
FROM E a, E b

WHERE a.ri = b.ri AND a.e >= b.e

GROUP BY a.ri, a.rj

HAVING COUNT(*)+1 <= max_k

TheWHERElause for everyri ,rj ) combination from the table assigns set
of (ri ,rj ) combinations from the table, such thati ’s match in the two tables and
the fractional extra costs values)(in tableb are less than or equal to the values in
tablea. The latter condition in a sense imposesatter on theset The aggregation
for each suctfri ,rj ) combination (set) is achieved through tBROUP B¥lause.
The corresponding aggregates andk are calculated by the two expressions in the
SELECTstatement, wherae is the amortized cost of the best cab—share of kize
that contains requests andrj . Finally, theHAVINGclause excludes cab—shares
larger than sizenax k from further consideration. Note that, while the calculations
of sequence-oriented cumulative aggregates, for example amortizethepsre
simple to express in SQL, the computation performed is not optimal. While the
computational complexity of sequence—oriented cumulative aggregat&s js for
a sequence of length, the complexity of the above method based on self—joins is
O(n?). Nevertheless, the self-join based simple SQL implementation can process in
real-time up to 100,000 requests per day.

5.5.3 STEP 3: Selecting the Best Cab—Share

After creating a tableCS = (sid,rid ) to store the cab—shares, one can select
the savingsp_savings , the size,b k, and, conditioned on thmin _savings
parameter, store the requests of the currently best cab—share (withs)Dn=two
SQL-99 statements as follows.



80 Cab-Sharing: An Effective, On—Demand Transportation Servie

SELECT ri, (1-ae), k INTO b_rid, b_savings, b_k
FROM AE ORDER BY ae LIMIT 1

INSERT INTO CS (sid, rid)

SELECT s sid, b _rid rid FROM AE

UNION

SELECT s sid, rj rid FROM AE WHERE k <= b_k AND ri = b_rid

5.5.4 STEP 4: Pruning the Search Space

Since a cab request can only be part of a single cab—share, if trentbast cab—
share meets the minimum saving requirement, and is addég, tthe requests in it
have to be discarded from further considerations for finding caleslimthe future.
This can be achieved by deleting tuples from Ehable that refer to the requests in
question. The SQL-99 statement for this is as follows.

DELETE FROM E
WHERE ri IN (SELECT rid FROM CS WHERE sid = s)
OR r1j IN (SELECT rid FROM CS WHERE sid = s)

5.5.5 Periodic, Iterative Scheduling of Cab Requests

All cab requests irRx are grouped in an iterative fashion by executing steps 2
through 4 until (1) there are no more cab—shares that meet the minimum sasing
quirement, or (2) all requests R.x has been assigned to some cab—share. The loop
iterating through these steps is placed in a stored procedure. Using theasiattask
scheduling facilities of the operating systezrpn in Linux or Task Scheduler

in Windows, this stored procedure is executed periodically. Keeping ttiedoaf the
executions of the stored procedure short (frequency of executighy has several
advantages. First, the shorter the period, the longer requests calaypeddentil they
have to begrouped into cab—shares, giving the requests more opportunities t@end u
in a good cab—share. In effect, the set of expiring requests is coshpbsequests
that will expire before the next scheduled execution of the stored guoeeSecond,
smaller sets of expiring requests means smalandAE tables, which are cheaper

to maintain during the iterations of a single execution of the stored procedure.

5.6 Experiments

To test the proposed methods, cab request data was simulated using TH-#AC
spatio—temporal activity simulator [31]. Based on a number of real wothlstaurces,
ST-ACTS simulates realistic trips of approximately 600,000 individuals in the £ity o
Copenhagen, Denmark. For the course of a workday, out of the@xippately 1.55
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Figure 5.3: Performance Evaluations for Varying Number of Cab Résgjues

million generated trips, approximately 251,000 trips of at least 3—kilometer length
were selected and considered as potential cab requests. Experimentsewermed

for various maximum cab—share sizZ€s< [2, 8], wait timesAt € [1, 20], and cab re-
guest densities, i.e., various—sized, random subsets of the set digateh requests.
Figures [5.3(a), 5.3(b)], in which the units on the x scale is 10,000 calests, show
some of the results for parameter settids= 4, min _saving = 0.3, andAt =15
minutes (common for all cab requests).

Figure 5.3(a) shows (1) the fraction of unshared cab requests2atite(average
savings forall fares, and for theshared fares onlyAs the density of cab requests in-
creases, and hence the likelihood of two individuals wanting to travehdrthie same
time from approximately the same origin location to approximately the same desti-
nation location increases, the number of cab—shares, meeting the raguiigtim
savings also increases. Consequently, the fraction of unsharegsteglecreases to
a point where only about 2% of the cab requests cannot be combinedintsttares
that meet the required minimum savings. Similarly, as the density of the calsteque
increases, the average savings for fares also increases up to wieiatthe average
savings per fares i8.66 &+ 0.11 considering all the fares, and (568 + 0.06 con-
sidering shared fares only. In other words, the CSS is able to groupegabsts in
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a way such that the cost of 97.5% of the cab fares can be reduced ligitd® on
average. Figure 5.3(b) shows how well cab space is utilized. As thétylehsab
requests increases, the average number of passengers per dalralzses up to a
point where the average number of passengers per Ga&dig 0.49 considering all
the fares, and i8.94 + 0.27 considering shared fares only.

Due to space limitations, the detailed results of the experiments showing the ef-
fects of parameterat and K are omitted, but they can be summarized as follows.
The At experiments confirm that due to the linear relationship betweeand the
resulting spatio—temporal density\adlid cab requests, there exists a correspondence
between the above results and the omitted results, i.e., since the spatio—tedeperal
sity of valid cab requests for 15,000 requests with = 15 minutes are about the
same as for 30,000 requests witti = 7.5 minutes, the average savings and cab
utilization are approximately the same in both cases. Khexperiments confirm
that under a fixed cab request density, both the savings and cab utilizatiturate.

In the case of 30,000 requests fir € [2, 8], the average savings for shares grad-
ually increases frond.47 to 0.79 and the average number of passengers for shares
gradually increases fromto 6.1.

The savings come at the expense of some delay in the CSS when meeting the
end—to—end transportation needs of its users. There are threestartias delay.
First, thegrouping time i.e., the time that a user has to wait until his/her requests
is grouped into a cab—share, which is upper bounded bw#ietime parameter of
the requests. Second, thiekup timei.e., the extra time a user has to wait because
some of the other members of the cab—share need to be picked up beforerhim/h
Finally, theadditional travel timei.e., the extra time the cab—fare takes due to the
increased length of the shared part of the cab—fare. Becauselisticesamulation
of the transportation phase of the CSS was performed, the delay inalueetb
the latter two sources has been evaluated in terms of extra distances rieldtiee
length of the original requests. Due to the close to constant results fousarab
request densities, the measurements on the delay due to the above tihces san
be (independently from the cab request density) summarized as folllv@saverage
grouping time isl 1.7 minutes with a standard deviation 80 minutes. The aver-
age pickup time is equivalent .7 + 13.5% of the length of the original request.
Given the average length of requestsddf5 kilometers, and assuming an average
transportation speed of 40 km/h in the city, the average pickup time is approkimate
0.8 + 1.1 minutes. The average additional travel time is equivaleritQot 10.1%
of the length of the original request, or is approximatéky + 0.9 minutes. Hence
in total, the approximate additional service delay an average CSS useicexes
compared to using a conventional cab service is approximaely+ 7.9 minutes,
arguably a small price to pay for the savings.
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5.7 Conclusions and Future Work

Motivated by the need for a novel transportation alternative that is odgne yet
affordable, this paper proposes a new LBS, namely a Cab—Sharing&S€ersSsS).
To achieve the desired reduction in transportation cost, the paper pgoaageedy
grouping algorithm, along with a simple but effective SQL implementation, that op-
timally groups “close by” requests into cab—shares. Experiments on simulated
realistic cab request data show that in exchange of a short (5—-15 mimaite)me,
the CSS can group together requests in a way that effectively utilizesroesoand
provides significant savings to the user.

Future work is planned along several directions. First, since it is natuxdéw
the incoming requests as a data stream, the CSS is being implemented using an in—
memory Data Stream Management System (DSMS) [106]. Second, thehealng
problem is a hard optimization problem, hence investigating new heuristics for it
is planned. Third, while the proposed greedy method is computationally effieie
number of improvements to it are possible, for example to use spatial indicesi® p
the search space of possible cab—share candidates. Finally, whitensadered here,
the optimization of the Cab—Scheduling / Routing Engine through spatio—tempora
cab request demand prediction is planned.






Chapter 6

Highly Scalable Trip Grouping for
Large—Scale Collective
Transportation Systems

Transportation—related problems, like road congestion, parking, dhdipo are in-
creasing in most cities. In order to reduce traffic, recent work hgsosexl methods
for vehicle sharing, for example for sharing cabs by grouping “clpseab requests
and thus minimizing transportation cost and utilizing cab space. However, tihe me
ods proposed so far do not scale to large data volumes, which is neces&zcili-
tate large—scale collective transportation systems, e.g., ride—sharingisystdarge
cities.

This paper presents highly scalalfg grouping algorithms which generalize
previous techniques and support input rates that can be orders oftatsglarger.
The following three contributions make the grouping algorithms scalable. fiest,
basic grouping algorithm is expressed as a continuous stream quergia stceam
management system to allow for a very large flow of requests. Secdfalyifig
the divide—and—conquer paradigm, four space—partitioning policiedif@ling the
input data stream into sub—streams are developed and implemented using-contin
ous stream queries. Third, using the partitioning policies, parallel implemamgatio
of the grouping algorithm in a parallel computing environment are describadn-
sive experimental results show that the parallel implementation using simpliévadap
partitioning methods can achieve speed-ups of several orders of ntegnitithnout
significantly effecting the quality of the grouping.

85
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6.1 Introduction

Transportation—related problems, like congestion, parking, and pollutoinereas-

ing in most cities. Waiting in traffic jams not only degrades the quality of social life
but according to estimates, the economic loss caused by traffic jams in maost cou
tries is measured in billions of US dollars yearly. Parking is also a seriolngono
According to estimates, in the inner cities of some larger cities as high as 25% of th
drivers on the road are only looking for empty parking places; whicinaggauses un-
necessary congestion. Finally, the increasing number of vehicles idlittgeaivads
results in an unprecedented carbon emission, which has unquestioeghljva ef-
fects on the environment.

By reducing the number of vehicles on the roads, Collective Transparttio)
clearly provides a solution to these problems. Public transportation, the orost ¢
mon form of CT, tries to meet the general transportation demands of thégtiopu
at large. By generalizing the transportation needs, the individual is oftemve-
nienced by long wait times at off-peak hours or between connectiodsa dim-
ited number of access points (bus / metro / train stops) from which the individ
is forced to use other methods of transportation (walking / bicycling / usipg-a
vate car). Ride—sharing, or car pooling, another form of CT is becomidgspread
in metropolitan areas. In almost all cases, ride—sharing is encouradedabyrans-
portation authorities by facilitating car pool lanes that are only accessibleltiplad
occupancy vehicles and by eliminating tolls on bridges and highways foe trees
hicles. Despite the encouragement there is a tremendous amount of drarsed
portation capacity in the form of unoccupied seats in private vehicles.fattis€an
mainly be attributed to the lack of effective systems that facilitate large—scale rid
sharing operations. The systems that do exist [10, 52, 94] are eitlodieidd from
a limited number access points due to the system infrastructure constraingse2)
inadequate methods for the positioning of trip requests and / or vehicl83% have
either inefficient or ineffective methods for matching or grouping trip esgs and
trip offers.

In a recent paper [33], yet another form of CT, namely cab—sharagyproposed
to use unoccupied cab space to reduce the cost of transportation, ultinegtalyng
in direct savings to the individual. The described Cab—Sharing Syst&8)(Gver-
comes most of the above limitations of existing ride—sharing systems. In patticula
at the heart of the system is a trip grouping algorithm that is able to find subke
closeby trip requests, which can be grouped into collective cab fares tminénthe
transportation cost, or equivalently maximize the savings to the user. Using a s
ple implementation in standard SQL, assuming a reasonable number (high spatio—
temporal density) of trip requests, the trip grouping algorithm was demoestra
be able to group trip requests effectively. The trip grouping algorithmbeagen-
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eralized to facilitate other CT systems, e.g., a ride—sharing system. Howasvitr,
is demonstrated in the present paper, due to its algorithmic complexity, theimgoup
algorithm scales poorly as the volume of trip requests increases. This limitplis ap
cability to facilitate large—scale CT systems, such as a metropolitan or nation—wide
ride—sharing system.
To make the trip grouping algorithm scale to input rates several orders gf ma
nitude larger than in a typical cab—sharing application, this paper makeslls-f
ing three contributions. First, using a Data Stream Management System§pPSM
SCSQ [106], the trip grouping algorithm is expressed as a continuowasrstyaery
to allow for continuous processing of large trip request streams. Sgetolialv-
ing the divide—and—conquer paradigsiatic and adaptiveversions of two space—
partitioning policies oint quadand KD partitioning) for dividing the input data
stream into sub—streams are developed and implemented using continuaus stre
queries. Finally, using the partitioning policies, the grouping algorithm is imple-
mented using a data stream management system in a parallel computing engironme
The parallelization of the implementation is facilitated by using an extension of the
query language in which processes are query language objectssizgtexperimen-
tal results show that the parallel implementation using simple partitioning methods
can achieve speed-ups of several orders of magnitude without sigriifi@affect-
ing the quality of the grouping. In particular, an adaptive partitioning metlatlda
adaptive KD partitioningachieves the best overall performance and grouping quality.
The remainder of this paper is organized as follows. Section 6.2 revidstede
work. Section 6.3 defines the vehicle—sharing problem, reviews thetugreraas-
pects of a recently proposed Cab—-Sharing System (CSS), desanithesalyzes a
trip grouping algorithm that solves the vehicle—sharing problem and is eegblkay
facilitate the CSS. Furthermore, a new Ride—Sharing System (RSS) isspch@End
the trip grouping algorithm is adapted to meet the application requirements of the
proposed RSS. Section 6.4, describes the main contributions of the papekin
ing the trip grouping algorithm highly scalable, hence applicable in largée-§CR
system, such as an RSS. Section 6.6 describes and analyzes the rethdtexof
periments that were conducted to measure the performance of the mdpghty
scalable trip grouping algorithm. Finally, Section 6.7 concludes and pointsuefu
research directions.

6.2 Related Work

The optimization of CT has been studied in the scientific community for years [17,
92]. However, with the exception of the work presented in [33], on wiiielpresent
paper is based, it is believed that no previous research has cousitierenline
grouping of trip requests. The problem of groupingbjects into a number of groups
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is in general referred to as the clustering problem, which is an extensesdarched
problem in computer science. However, the unique requirements of th&epraf
vehicle—sharing mean that general clustering techniques have limited ddjiica

Vehicle—sharing as a form of CT has been considered in industrial@ancher-
cial settings. For example, most taxi companies in larger cities have besmgff
the possibility of shared transportation between a limited number of frequgimiso
and destinations. Scientifically very little is known about the computationattspe
of these vehicle—share operations. However, the computer systenwtigguch
operations are likely to be semi—automatic, to perform batch—grouping oésés)
and to suffer from scalability problems. In comparison, the trip groupingrahgnm
proposed in this paper is automatic, performs online—grouping or requestss
highly scalable.

More automatic systems that perform online optimization of vehicle—sharing also
exist [10, 52, 94]. These systems however perform a computationalgretask.
They either match pairs of trip requests only [52] or are offered froratwben a
limited set of locations [10, 52, 94]. Additionally, the high volume scalability of
these systems has not been demonstrated. Nonetheless, the analydisund [8&
existence of these systems are evidence that the problem consideredgap#r is
real and has industrial applications.

Parallel processing of high volume data streams has been considered-by s
eral papers [11, 54, 64, 68,102, 105,106]. To parallelize contimgtream queries,
[54, 105, 106] decompose the computation of a single continuous streamigto a
partition, a compute, and a combine phase. In [54], the distributed exectitiia-
gies are expressed data flow distribution templatesand queries implementing the
three phases are specified in separate scripts. In contrast, in [1@&jgththe use
of stream operators, the implementations of the three phases becomegamgie
parallel, continuous stream query, which is elegantly expressed in thelgnguage.
The present work utilizes the stream processing engine and quenazagu[106]
to express and evaluate different (parallel) stream processing stsafegan RSS.

In [54], two different stream partitioning strategies are considenaddow dis-
tribute (WD) andwindow split(WS). In WD, entire logical windows are distributed
among compute nodes. In WS, an operator dependent stream split fusptits
logical windows into smaller ones and assigns them to particular compute foodes
processing. WS has several advantages over WD. First, in applicativere the
execution time of the stream query scales superlinearly with the size of thallogic
window, WS provides superior parallel execution performance over $é2ond, in
real-time response systems, where the query scales superlinearly, VuDaigph-
cable as it can introduce severe delays in the result stream. Third, imsygtieere
the quality of the results that are computed in parallel are highly dependehto
tuples inside the logical windows of the compute nodes, WD provides infesior
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sults in quality over WS, because individual tuples are not considered ipetttition
phase. As all of the above three conditions hold in the case of vehiclergh@/D

is clearly not of interest. WS is similar to the spatial stream partitioning methods
presented in this paper in the sense that both presented partitioning metheitkec
individual tuples in the partitioning process. However, in the static casesmmws

are formed over the stream, but rather tuples are assigned to compuschaged on

a general partitioning table. In contrast, in the adaptive cases windensraned
over the stream, the partitioning table is periodically updated based on theituples
window, and then tuples are assigned to compute nodes the same way agatiche s
case.

Database indices support the efficient management and retrieval ahdatge

databases. In particular, spatial indices support efficient retriéwspatial objects,
i.e., objects that have physical properties such as location and extetial 8ghces
can be divided into two typesdata partitioningand space partitioningspatial in-
dices [82]. The partitioning mechanisms used in spatial indices have a elatem
to the partitioning performed in the present paper.

Data partitioning indices usually decompose the space based on Minimum-Bound
ing Rectangles (MBRs). A primary example is the R—tree that splits space with hie
archically nested, and possibly overlapping Minimum Bounding RectangIBR§)

[45]. However, for the application at hand, data partitioning schemeaarevell
suited for several reasons. They often use a non-disjoint decomposit&pace.
Consequently, a fiae partitioning based on MBRs could either assign requests to
several partitions, and hence later to several shares, or could asgigrsts from a
region where several MBRs overlap to several partitions, therebytaltg elimi-
nating good matches. While a disjoint partitioning of space could be derasedb

on the MBRs, the computation to derive such a partitioning would be complex and
potentially expensive, and the derived partitions will, most likely not be loakn

On the other hand, space partitioning indices decompose the entire space into
disjoint cells. These disjoint cells can be based on a regular grid, or adaptive
grid. Regular grids can result in empty partitions because of skewed atidu
tions. Hence, a regular grid is not well-suited for the application at haitddass
not support load—balancing.

Quad-trees partition the space into four quadrants in a recursive riai8h
Quad-trees divide each region into four equally sized regions, wbilg quad trees
allow the size of the regions to be dynamic. Quad-trees have been extertigller
dimensions also. One of the space partitioning methods used in this paper is quite
similar to a 1-level deep, four dimensional so—called “Point Quad-treq"vi@&h
the exception that in the herein considered space partitioning method a $plitspo
not necessarily a data point. Thed—tree is a space partitioning spatial index that
hierarchically divides each dimension into two along each oktbanensions [6, 7].
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The other partitioning method used in this paper corresponds to a 1-leyg!fder
dimensionak—d—tree.

6.3 Vehicle—Sharing

Large—scale, personalized, on—demand CT systems need efficiezftecttve com-
puter support. Systems providing this support have two aspects. Figieaational
aspect as to how information is communicated between the user and the peovice
vided by the system, and how trip requests are processed. Secomnapatabonal or
algorithmic aspect as to how the optimization of CT is performed. The followihg su
sections study an existing CT system and propose a new one. Sectiorofialifes
the vehicle—sharing problem, adopted from [33]. Section 6.3.2 desdlibexpera-
tional aspects of a Cab—Sharing System (CSS)—an instance of a Cinsystdich
the shared vehicles are cabs. Section 6.3.3 describes the computatalgalithmic
aspects of the trip grouping algorithm employed in the CSS. Section 6.3.4lusscr
the problems that arise when the trip grouping algorithm is applied in largér sca
CT systems. Section 6.3.5 proposes a Ride—Sharing Service (RSS) sumibee
its operational requirements. Finally, Section 6.3.6 describes how the tupigmp
algorithm in Section 6.3.3 can be modified to meet these requirements.

6.3.1 The Vehicle—Sharing Problem

Let R? denote the 2-dimensional Euclidean space, an@'let Nt denote the to-
tally ordered time domain. LeR = {ry,...,r,} be a set ofrip requestsr; =
{tr,lo,1a, te), wheret, € T is therequest timgl, € R? andl; € R? are theorigin
anddestination locationsandt. > ¢, € T is theexpiration timei.e., the latest time
by which the trip request must be accommodated. A trip requesk t,.,1,, l4, te >
isvalid at timet if ¢, <t < t.. At = t. — t, is called thewait timeof the trip re-
guest. Avehicle—shares C R is a subset of the trip requests. A vehicle—share is
valid at timet if all trip requests ins are valid at timef. Let |s| denote the number
of trip request in the vehicle—share. L#&t;, l2) be a distance measure between two
locationsl; andls. Letm(s,d(.,.)) be a method that constructs a valid and optimal
pick—up and drop—off sequence of requests for a vehicle—staare assigns a unique
distance to this sequence basedion.). Let thesavings for a trip request; € s be

p(ri,s) =1— % Then thevehicle—sharing problens defined as follows.

Definition 6 For a givenmaximum vehicle—share siz&, and minimum savings
min_savingse |0, 1], the vehicle—sharing problem is to find a disjoint partitioning
S = {s1 Wsy ...} of R, such thatvs; € §, s; isvalid, |s;| < K, and the
expressiony . g3, ., P(ri; s;) is maximized under the condition thidt; € s;
p(ri,s5) > min_savings or {r;} = s;.
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Figure 6.1: Cab—Sharing Service Components and Process.

6.3.2 Overview of the Cab—Sharing System

The Cab—Sharing System (CSS) proposed in [33] is a Location—BaseitS(LBS)
in the transportation domain. In its most simple form, it is accessible to the user via

a mobile phone thr
CSS is depicted in

ough an SMS interface. The components and operatiba of
Figure 6.1 and can be described as follows. The usé&s inp

addresses with an optional maximum time that s/he is willing to wait. The service in

turn then:

geocodes the
calculates an

a s N R

addresses,
upper bound on the cost of the fare,

validates the user’s account for sufficient funds,
submits the geocoded request to a pool of pending requests,
within the maximum wait time period finds a nearly optimal set of “closeby”

requests using a number of heuristics (described in Section 6.3.3),

6. delivers the information about the set (request end points, andstegigpickup
order) to the back—end cab dispatch system,

7. delivers information about the fare (estimated time or arrival, cost, gavin
etc...) to the involved users.

6.3.3 A Trip Grouping Algorithm

Finding the optimal

solution to the vehicle—sharing problem is computationally diffi-

cult. Givenn requests, the number of possible disjoint partitionings, where the size
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of the vehicle—shares is exacily is:

() (") () < () = o

In the case ofv = 100 andK = 4, this expression evaluates to a humber that has
155 digits. The number of possible disjoint partitions, where the size of thielge
shares is at mogk = 4 is even larger. Clearly, evaluating all possible options and
selecting the most optimal one is not a feasible approach. Instead, therdtipiGg
(TG) algorithm at the heart of the CSS tries to derive a nearly optimal solbtion
employing a number of heuristics and approximations. The steps of the T(&lafgo
along with the applied heuristics and approximations are described next.

1. Distinguish between the set of expiring trip requedts)(and all valid re-
quests ;). Wait with mandatory grouping of trip requests until expiration
time. Since a request can also be grouped into a vehicle—share before its e
piration time with another expiring request, thégy heuristic, does not make
the algorithm miss out on an early, cost—effective grouping for the sget
rather gives the requests more opportunities to be part of one.

2. Based on the distance meastf(e .), define a pair—wisé&actional extra cost
(FEC) between two requests and calculate it for every pair of expiridgalid
requests. In the TG algorithm the fractional extra cost between two sexjye
andr; (w.r.t. ;) is defined as"EC (r;, 1) = d(”'l””;;(f;)l:‘ffz;‘)ld’Tj'ld). In the
case when the distance measd(e .) is the Euclidean distance, the calcula-
tions of fractional extra costs between three requests,, andrsg (w.r.t. r1)
are shown in Figure 6.2. Note that the defined fractional extra cost ipjaar u
bound on the true fractional extra cost, as there may be a shorter ronttha
serve the requests in the order assumed by the fractional extra cadatalt,
Le.,rjlo — rily — ridg — 1j.l4q.

3. Consider the bedt—sized vehicle—share for an expiring request R, to
be composed of the firdk’ requests with lowest FEC for;. This heuristic
assumes that pair—wise fractional extra costs are additive.

4. Estimate the Amortized Cost (AC) of a vehicle—shafev.r.t. ;) as the nor-

. . 1+Zr-€s FEC(Tizrj) .
malized cumulative sum of FECs agC(r;, s) = ] . This

heuristic assumes that there exists an optimal pick—up and drop—offreexue
for requests irs, such the cost of this sequenees, d(.,.)) < AC(r;,s)
d(n‘.lo, Ti.ld).

5. Greedily group the “best”, maximuiii-sized vehicle—share that has the min-
imum amortized cost over all expiring trip requests. This heuristic is greedy
because it possibly assigns a not-yet—expiring reqyesta vehicle share of
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Figure 6.2: lllustration of Fractional Extra Cost (FEC) and Amortized GA&L)
Calculations w.r.t. Request rl.

an expiring request, without considering what the current or evemefittest
vehicle—share would be fo;.

6. Remove requests that are part of the “best” vehicle—share frahefuronsid-
eration.

7. Repeat steps 2 through 7 as long as the “best” vehicle—share meets the min
mum savings requirement.

8. Assign remaining trip requests to their own (single person) “vehicleesha

Even though the TG algorithm is based on heuristics, estimations and assump-
tions, in [33], it has been found to effectively optimize the vehicle—shagioblem.
Furthermore, while some assumptions about extra costs for vehiclesst@mmot
hold in all cases, the combination of the approximations and assumptionsmesult
estimated cost for the vehicle—shares that is higher than the true minimum test if
optimal pick—up and drop—off sequence is considered.

6.3.4 Problems with Large—Scale CT Systems

Unfortunately, the TG algorithm cannot be naively applied to facilitate a ‘acpe

CT system, such as a ride—sharing system. Since the TG algorithm neeltsitatea

the pairwise fractional extra costs between expiring requests and a#stsgin the
queue, the algorithmic complexity of the TG algorithntign?). In [33] an simple

but effective implementation of the TG algorithm was able to handle loads of up to
50,000 requests per day, during which at peak traffic hours the nuoflbequests
within 10 minutes was at most 2,500. However as input sizes increase ttgiere
times of any serial implementation of the TG algorithm will reach a point where con
tinuous grouping is not possible, i.e., the algorithm is not able to find neatilpal
groups for all the expiring request before they actually expire. Thigmsanhstrated
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Figure 6.3: Scalability Problems of the General Trip Grouping Algorithm.

in Figure 6.3, where, using a highly efficient implementation of the TG algorithm, a
load of 250,000 requests with common wait times of 10 minutes are grouped minute—
by—minute. This efficient implementation of the TG algorithm is able to keep up with
the request flow most of the time, but when the number of pending requestsds
about 5,200 (during rush hour), it is not able to find groups for thériegprequests
within the allowed execution time of 60 seconds. In the examplgtbeping cycle
timeof the TG algorithm is 60 seconds, i.e. the algorithm is responsible for grgup
the request that will expire within the next 60 seconds. Altering this graupycle

time does not eliminate the lagging of the algorithm in case of large input sizes. In
fact, independent of the grouping cycle time, throughout the validity perficdre-
guest, the request is considered as an expiring request exactlyadomdgch point is
compared to all other requests. Figure 6.3 also reveals that the computationa
plexity of the implementation of the TG algorithm@(n?). This is due to the fact
that, as described by the third heuristic in Section 6.3.3, the esized vehicle—
share is composed of the fir&t requests with lowest FEC for an expiring request.
This necessitates a linear—time top—K selection for each expiring requeahgnlad
algorithmic complexity of the TG algorithrf2(n3). Consequently, the above de-
scribed scalability problems severely limit the applicability of the TG algorithm in a
large—scale CT system.
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6.3.5 Ride—Sharing Application Requirements

Ride—sharing is a type of vehicle—sharing, where private vehiclessae as trans-
portation. This fact represents additional requirements on solution to theraje
trip—sharing problem. In the context of ride—sharing thereide=-requestandride—
offers Ride—requests are synonymous to trip requests both in form and semantics
with the exception that ride—requests do not necessarily have to balseRige—
offers in addition to the attributes of a trip request have at least three moogtamp
attributes. The first attribute specifies whether or not the offering pesswilling to
leave his / her vehicle behind. A person offering a ride with willingnessadfitey his

/ her vehicle behind is either willing to take alternate modes of transportati@ties r
on the efficient operation of the ride—sharing system for future trips hatiishe re-
turns to his / her vehicle. A person not willing to leave his her vehicle behahag

or needs his / her independence throughout the day. The secondtatsjiecifies

a maximum relative extra costhe offering person is prepared to incur. Finally, the
third attribute specifies themaximum number of additional passeng#rs offering
person’s vehicle can accommodate.

6.3.6 Application of the TG Algorithm in an RSS

It is clear that the TG algorithm cannot be applied in its current form fade—r
sharing application. However, a few simple modifications can make it applicable
First, in the context of ride—sharing the ride offering person would like 4vdeas
soon as the “best” vehicle—share that can be constructed meets the maxdlative r
extra cost requirements of the ride—offer. Hence, it makes sense titipeighe
order of greedy grouping based on the time the ride—offers have lweser in the
system. Second, because maximum relative extra cost requirementdiaeel dy
ride—offers individually, in every grouping cycle (execution of the TiGoathm) the
“best” vehicle—share faall ride—offers needs to be considered. Third, every vehicle—
share needs to fulfill the following two conditions: 1) it can contain only ade—
offer where the offering person is not willing to leave his / her vehiclarisland 2)
it has to contain at least one ride—offer of any type. To fulfill the ab@relitions it
is enough to distinguish between two different sets: 1) the set of ridersadf either
type{ RSURC}, and 2) the joint set of ride—request and ride—offers where themgfe
person is willing to leave his / her vehicle behif, U RS}. Associating these sets
to sets used by the TG algorithm & = {R% U R%} andR, = {R, U R%}, the
vehicle shares constructed by the TG algorithm fulfill the above two condition
Obviously, the modifications to the TG algorithm that are necessary to facilitate
the proposed RSS are straight—forward. However, to preserve dianigpresen-
tation, the remainder of the paper considers only the implementation of a highly
scalable TG algorithm.
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6.4 Highly Scalable Trip Grouping

Although the TG algorithm can be modified to meet the unique requirements of the
proposed RSS, as it was demonstrated in Section 6.3.4, the algorithm in #gstpres
form does not scale with the input size and hence cannot be appliedésieae CT
systems, such as the proposed RSS. This section describes a paralleiémlion

of the TG algorithm in the SCSQ Data Stream Management System.

Queries and procedures in SCSQ [105] (pronourgisdqueugare specified in
the query language SCSQL [106] (pronounsedke). SCSQL is similar to SQL, but
is extended with streams as first—class objects. SCSQ also features a mairymemor
database. This database is used to keep the trip requests that are waitggidto
statistics about the data distributions, which are used by the partitionersvaitireg
requests are processed by the TG algorithm.

Details of the implementations are organized as follows: Section 6.4.1 describes
how the trip grouping algorithm is implemented as a stored procedure in SCSQL.
Section 6.4.2 outlines how SCSQ allows parallelization of the continuous stream
guery implementation of the TG algorithm. Section 6.4.3 describes four spatiial pa
tioning methods that are used to partition the stream of trip requests into |#mstr
for parallelization purposes.

6.4.1 Processing of a Request Stream

The TG algorithm is expressed as a procedure in SCSQLtJ hprocedure takes
aninput _window of the most recently arrived trip requests, and the three algo-
rithm parameter&, min _savings , andwait _time The output oftg is a vector

of best vehicle—sharel¢ss . tg executes as follows. First, on line 6, all requests in
input _window are added to the main memory table of waiting requgsichen, on
line 7, based on thevait _time parameter and the current tiroe (indicated by the
end of theinput _window ), expiring requestsx, are selected fromy. Thefor

each loop on line 10 iterates over each requesh ex as follows. On line 12, the
request is removed from the. Then, in a compound query on lines 13-18, the best,
maximumK-—sized vehicle—share foris found. The first part of the compound query,
on line 16, calculates the fractional extra costéc _FEC(r)=<r,ri,fec> be-
tweenr and all other requests in, and selects the tuples for therequests with
the lowest fractional extra costs. The remaining parts of the compoundg, qure
lines 17-18, calculates the amortized castfc _AC(fec)=<r,ri,ac> based

on the top—K fractional extra costs, and selects the lowest of these ddstshest
vehicle—share that corresponds to this lowest amortized cost is assighie line

13. Finally, if thesavings of s is greater than equal tmin _savings , then the
members of s are added to the best vehicle—shabess (line 21), and are removed
from q (line 22). Otherwiser, could not share its trip, and will be the only one in its
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vehicle—share (line 25). The implementations of the derived funciiset _q,

get _end, select _ex_g, remove _q, subvector , calc _FEC savings , and
members are omitted to preserve brevity. For efficiency reasons, core fundtiahs
need to iterate over a set, suchtepk andcalc _ACare implemented as foreign
functions in LISP. Foreign functions allow subroutines defined in C/C+sp,Lor
Java to be called from SCSQL queries. The implementation of these functi®ns a
also omitted. The following is the listing of ttig procedure in SCSQL:

(1) create function tg(vector input_window,

(2) integer K, real min_savings,
3) integer wait_time)->vector
(4) as begin

(5) declare vector ex, vector bcss, timeval ct;
(6) insert_q(in(input_window));

7 set ct = get _end(input_window);

(8) set ex = select_ex_qg(curr_time, wait_time);
9) set bcss = {};

(10) for each vector r where r = in(ex)

(11) begin

(12) remove_q(r);

(13) set s = select subvector(ac,0,i)

(14) from vector fec, vector ac,
(15) integer i, integer k
(16) where fec = topk(calc_FEC(r),2,K)
a7) and ac = calc_AC(fec,2)
(18) and i = min(ac,2);

(29) if savings(s) >= min_savings

(20) begin

(21) set bcss = concat(bcss,members(s));
(22) remove_q(members(s));

(23) end;

(24) else

(25) set bcss = concat(bcss,r);

(26) end;

(27) result bcss;

(28)end;

6.4.2 Parallel Stream Processing in SCSQ

Apart from streams and tables, SCSQL also includes Stream Proc8Bs}sé first—
class objects in queries. SPs allows dynamic parallelization of continuouiegjue
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Figure 6.4: Communication Pattern of TGs Working in Parallel.

which is used in this paper to divide the incoming trip requests. The useriasso
subqueries with SPs. Massively parallel computations are defined in tésatsf
parallel subqueries, executing on sets of SPs.

The output of an SP is sent to one or more other SPs, which are salvsdribers
of that SP. The user can control which tuples are sent to which substrding a
postfilter. The postfilter is expressed in SCSQL, and can be any function thatteper
on the output stream of its SP. For each output tuple from the SP, the postfiladied
once per subscriber. Hence, the postfilter can transform and filteuthatef an SP
to determine whether a tuple should be sent to a subscriber. Postfiltersisesr @
the experiments to partition the input stream between the SPs that are canying
TG.

The divide—and—conquer experiments are expressed as querieSQLSGII
these queries have the same communication pattern between SPs, as shigwn in F
ure 6.4. A Partition SP reads a stream of incoming trip requests (S1). {féatsis
partitioned into partial streams, which are sent to the Compute SPs. Each ompu
SP executes thig procedure on its partial stream. Also, each Compute SP evaluates
the savings achieved, by comparing the total cost of all trips with the totabttse
shared trips. The results of all Compute SPs are merged together by a @dafbin
The resulting stream of cab requests (S2) is sent to the user.

6.4.3 Spatial Partitioning Methods

Section 6.3.4 showed that the TG algorithm does not scale well enoughrderla
scale CT systems. The key idea to overcome the scaling issue is a divide—and
conquer approach. All requests = (t,,1,,14,t.) are characterized by its origin
and destination locationg, € R? andl; € R%. Hence, a request can be geographi-
cally characterized by a point iy x [4. In other words, a request is geographically
characterized by a point iR*. The divide—and—conquer approach is to partition
this space and assign each partition to one TG. Intuitively, this approacbaillin
execution time since each TG has less workload, but will lose some of thdeehic
sharing opportunities since none of the partitions are able to probe all catibis
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that a serial implementation can do. The goal is to find a partitioner that egecute
efficiently and achieves maximum savings. The following partitioning strategees
implemented in SCSQL and investigated experimentally.

6.4.3.1 Baseline Queries

Two baseline queries are executed; the unpartitioned query and treerahin query.
These queries form a performance baseline of the best and wossblposavings
and execution speeds. All other methods should be compared to the nmeestae
of these two queries.

Theunpartitionedquery applies a single TG on the entire request stream without
any partitioning. Since all requests are going to a single TG, all possibtengha
opportunities will be investigated. The unpartitioned approach will give #st b
savings, but it will also take the longest time to execute because all buritldrew
placed on a single node. The unpartitioned query is expressed in SGSQllowvs:

select tg(v, 4, 0.8, 600, 60)

from vector v, charstring file

where v = twinagg(streamfile(file), 60.0, 60.0)
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

The streamfile(file) function reads tuples that are storedfiie , and
streams them out. Therinagg(inputstream, size, stride) functionis
taking a stream as the first argument and emits a time window over tlsédastsec-
onds, evengtride  seconds. Hence, flize =stride ,twinagg emits tumbling
(consecutive and non—overlapping) windows of the input stream. timsagg()
makes sure thatg() always will get one minute worth of requests each time.
Hence,tg() will get called once per minute. If no requests have arrived dur-
ing a certain minutefwinagg()  will emit an empty window for that minute.
tg(input  _window, K, min _savings, wait  _time) performs the trip
grouping algorithm. The query is executing once per file in the collection of file
names given on the last line of the query.

The Round-Robirpartitioner will send the first request to one working SP. The
next request will be sent to another working SP, and so on. Each Sfeis gx-
actly 1/n of the total load, so the load balance is perfect. Since the Round—Robin
partitioning scheme is perfectly load balanced, it will achieve the maximum pessib
execution speed. On the other hand, an SP that is operating on a Ralma-cRta
partition can be expected to give inferior savings since nearby requestecessar-
ily go to the same SP. Thus, the Round—Robin partitioner is expected to atigeve
least savings. It is expressed in SCSQL as:
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select merge(b)
from bag of sp b, sp c, integer n, charstring file
where b = spv(select streamof(tg(twinagg(stract(c),
60.0, 60.0), 4, 0.8, 600)))
from integer i where i=iota(1,n))
and c = sp(winagg(streamfile(file),n,n),n,’rr’)
and n in {16,8,4,2}
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

In this query, the output oftreamfile is passed intovinagg(input
stream, size, stride) , Which is forming tumbling windows of siza, n
being the number of subscribers to the PartitiorcSEach window is an ordered set
of tuples, soitis represented as a vector. The round robin funetiois applied once
per subscriber. For subscribenr picks up thei-th element in the vector emitted
from winagg. TheSP(stream, nsubscribers, postfilter) is assign-
ing stream and postfilter to a new SP, which should expettsubscribers.
Thus, a combination of @inagg on a stream and a vector dereference in the post-
filter function results in a round robin partitioner.

iota(m,n)  generates all integers from m to n. Hence, the query in the call to

spv(bag of stream) , Creates duplicates of the query:
streamof(tg(twinagg(stract(c),60.0, 60.0), 4, 0.8, 600) ),
wherestract(sp) is extracting the stream from stream procggs Each one of

these queries will be assigned to a stream process. Finally, the outpiubefstream
processes in b will be merged. Refer to Figure 6.4 for a graphicalseptation of
the communication pattern: The partition is done atcSBompute is performed by
the SPs ib, and the combination is done in theerge at top level.

6.4.3.2 Static, Point Quad Partitioning

Static point quad partitioning (SPQ) calculates from historical data the medfans
each dimension of the trip requests. Each dimension of the four—dimensignal
request data space split once along the median of each dimension. Fi§(ag 6
shows the SPQ partitions for some data points in two dimensions. By splitting each
dimension once, SPQ partitions the four—dimensional trip request data ispad 6
regions. One or more regions can be assigned to one SP, executinga Tratf
region. This SCSQL query executes SPQ:
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(@ SPQ (b) SKD

Figure 6.5: lllustrations of the Static Partitioning Methods.

select merge(b)
from bag of sp b, sp c, integer n, charstring file
where b = spv(select streamof(tg(twinagg(stract(c),
60.0, 60.0), 4, 0.8, 600)))
from integer i where i=iota(1,n))
and c = sp(streamfile(file),n,’pq’)
and n in {16,8,4,2}
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

The difference between this query and the Round Robin query abovdyi$no
the call to the partitioning SE. Instead of applying postfilter functiom on a
window, the SR is streaming the tuples directly to tpg postfilter. For each tuple,
pg decides to which subscriber it should go.

6.4.3.3 Static, KD Partitioning

Static KD partitioning (SKD) splits trip request data in a hierarchical fashipn b
processing dimensions one after the other as follows. For a given dimeitdiost
calculates thdéocal median for that dimension, and then splits the local trip request
data for the dimension based on the median into approximately equal sizedssubs
Figure 6.5(b) shows the SKD patrtitions for some data points in two dimensitwes. T
data is first split around the median of the horizontal dimension, then the degalin

of the so obtained partitions is further split around the local (horizontal)aneaf
each of the partitions. By splitting once per dimension, the KD also partitions the
four—dimensional trip request data space into 16 regions. The SCS@ly that
executes SKD differs from that of SPQ in that it applies another postfiltestion



102 Highly Scalable Trip Grouping for Large—Scale CT Systems

at the partitioning SP, namekld instead ofpg. Since the difference is so small, the
SCSQL query is omitted.

6.4.3.4 Adaptive, Point Quad Partitioning

In many applications, the distribution of the data changes over time, as it isgbe ca
for trip requests. These changes can be minor or major changes.dropkex during
the morning rush hours people want to move from their homes (residentiatilis

to their work (business and industrial districts). During the evening rosinshthe
opposite is true. The trip requests that correspond to the morning rushrowe-
ments are likely to fall in different partitions than the trip requests that qooresto

the evening rush hour movements. Consequently, the “morning rush paritions

will be densely populated in the morning hours, and the “evening rush’ pauwii-
tions will be densely populated in the evening hours. Clearly, a static partigonin
method does not consider these changes in data distribution and is likelylkicimes
temporally unbalanced partitions.

The adaptive point quad partitioning (APQ) adjusts the boundaries ofdtte p
tions periodically, based on statistics obtained from a recent historyrmiftie trip
request stream, and distributes the newly arriving trip requests acgdrgmewly
adjusted partitions. Figure 6.6(a) shows two consecutive partitioningat@aton-
structed by the APQ partitioning for some data points in two dimensions. Hollow
dots represent data points that were present when the previous paugjtiees con-
structed, but are not present or are not relevant for the constmuatithe current
partitioning. In contrast, solid rectangular markers represent data pbattsvere
not present when the previous partitioning was constructed, but laxeune for the
construction of the current partitioning. Solid and dashed lines refreseent and
previous partition boundaries. The following SCSQL query executes:APQ

select merge(b)
from bag of sp b, sp c, integer n, charstring file
where b = spv(select streamof(tg(twinagg(stract(c),
60.0, 60.0), 4, 0.8, 600)))
from integer i where i=iota(1,n))
and c = sp(pgstat(streamfile(file),
600.0, 60.0, 10),n,'pq")
and n in {16,8,4,2}
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

This query differs from the SPQ query in the call to the partitioningcSH he
streamfile function is wrapped by pgstat(inputstream, size,
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(@) APQ (b) AKD

Figure 6.6: lllustrations of the Dynamic Partitioning Methods.

stride, samplefreq) . This function emits the same stream as its input stream,
and maintains statistics in a main memory table of SCSQ. Esgétige  x
samplefreq secondspgstat computes medians in each dimension ok [
across the tuples seen in the lagie seconds. These median values are then used
in the pq postfilter. This way, the partitioning decisions are always done on recent
data.

6.4.3.5 Adaptive, KD Partitioning

The adaptive KD partitioning (AKD) adjusts the boundaries of the partitias p
odically, based on statistics obtained from a recent history buffer of ifhestjuest
stream. and distributes the newly arriving trip requests according the ae\ugted
partitions. Figure 6.6(b) shows two consecutive partitionings that argtreated by

the AKD partitioning for some data points in two dimensions. The semantics of the
symbols used in the figure are the same as in the case of the APQ partitionimg. Ho
ever, Figure 6.6(b) depicts a situation that can happen in either one ofl ipéivee
spatial partitioning methods. Consider the data point inside the triangle. Sinas it
present when the previous partition was constructed it has been abksigrmmpute
node 2 for processing. According to the newly constructed partitionseheny it
should be assigned to compute node 4. To avoid communication between compute
nodes, the following design choice is made: once a data point is assignqzhte a
tition (compute node), it is never reassigned to another partition, even ifethiy n
adjusted partitions would suggest this.

The SCSQL query that executes SKD differs from SPQ in that it applies an
other statistics wrapper function and another postfilter function at the paimiti&P,
namelykdstat instead ofpgstat andkd instead ofpg. kdstat works analo-
gously topgstat  with the difference that it maintains dynamical versions of local
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dimension splits of the kind that SKD has. Since the difference between téig qu
and the APQ query is so small, the SCSQL AKD query is omitted here.

6.5 Density—Based Spatial Stream Partitioning

The main objective of the four proposed partitioning methods is to load bathace
parallel versions of the computationally intensive TG algorithm. The planesuin
dividing the space of requests is determined by the medians of requestlthaise
splitting planes potentially eliminate the discovery of good shares, when menfbers
the good shares are distributed to different partitions. This naturally teasisme
degradation in the overall grouping. The degradation is larger whenldnegpare
cutting through denser regions of the request space with many shapogopities,
than when the planes are cutting through sparser regions of the regaest Since
neither of the proposed partitioning methods consider other characteoistiesdis-
tribution of the requests, the degradation of grouping quality due to boyeffacts
is expected to be approximately the same for all four partitioning methods. \¢owe
as Section 6.6 demonstrates, this degradation is rather small.

No matter how small the degradation is, simple spatial partitioning methods that
take into account the density of the data could reduce the degradatiombjdwe
tive of such a density—based partitioning is to determine the positions of the gplittin
planes so that they pass through regions where data is sparse. Tedblsga simple
but effective clustering method [29] can be used to find local minima in the multi-
modal data distributions along each dimension, and place splitting planes at thos
locations. Figure 6.7 shows the distributions for each dimension of thesedat
during morning peak hours and off-peak hours. In the figure lettéesid “t” stand
for “from” and “to”, respectively. Hence, fx and fy are requesigor dimensions,
while tx and ty are request destination dimensions. During the morning pesk,ho
there does not seem to be any regions where the request data isaesg. $ppowever,
during off—peak hours, when people who are not working are mody li@ée in one
of the larger shopping malls, the distributions of the destination dimensions Ytx, ty
are clearly multimodal. In this later situation, ensuring that splitting planes are cho
sen correctly at local minima would minimize the boundary effects. Howewvere s
most of the requests are during peak hours, the overall averaggimgachieved by
the parallel TG algorithm would not be substantially improved.

Since the local minima are likely not to be at the median values of the dimensions,
there exists a trade—off between equal—sized partitions and partitions with rhinima
boundary effects. A dual—objective partitioning that takes this tradentuffcon-
sideration could weigh the expected degradation against the imbalancesbetvee
created partitions. Although the implementation of the density—based and the dua
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Figure 6.7: Request Data Distributions Along Each Dimension.

objective spatial stream partitioning methods is straight—forward, it is lefutare
research.

The proposed spatial stream partitioning methods are devised to scale #ie TG
gorithm to very large flows of requests. However, they can be corzider a general
approach to make computationally intensive spatial analysis tasks scalahlghhr
parallelization. For example, the density—based and the dual-objectiia spaam
partitioning methods can be applied to speed up spatial clustering of strematis-s
temporal rule mining [30], or the processing of high—resolution image streams

6.6 Experiments

The parallel implementations of the TG algorithm were tested on a cluster dPIntel
Pentiun® 4 CPU 2.80GHz PCs. Each SP was executing on a separate PC to allow for
maximum parallelism. TCP/IP over Fast Ethernet was used to carry streaneehe
the nodes.

Trip request data was simulated using ST-ACTS, a spatio—temporal acitiity s
ulator [31]. Based on a number of real world data sources, ST-AQT8lates
realistic trips of approximately 600,000 individuals in the city of CopenhaBen:
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| load | execution time (sec) savings|

0.06125 28.8| 0.325
0.125 120.1| 0.388
0.25 702.9| 0.445
0.5 16343.5| 0.491

1 69771.6| 0.530

Table 6.1: Performance of the Serial TG Algorithm.

mark. For the course of a workday, out of the approximately 1.55 million rgé¢ee
trips, approximately 251,000 trips of at least 3—kilometer length were selaotbd
considered as trip requests. To test the scalability of each of the parallehirap-
tations using the four spatial stream partitioning methods, decreasing siasets
of the total load of 251,000 trip requests were constructed by only cairgidevery
second, fourth, eighth and sixteenth trip request in the input stream e Baésets
are referred to as 1/2, 1/4, 1/8, 1/16 load, respectively.

To evaluate the effectiveness of the four spatial stream partitioning neetford
the purposes of parallelization of the TG algorithm, two measures were {osexi:
all) execution time and average savings achieved by the grouping (aésoeckto
as the quality of the grouping or quality for short). The reported savioggdch
vehicle—share are based on amortized costs, which has been shoverdstiovate
the true cost of a vehicle—share that considers the optimal pick—up aipd-aff
sequence of requests. Hence, the reported savings underestimatgetbavings.
Nonetheless, the reported savings can be used as an unbiased rfaraberquality
of the grouping.

For each of the partitioning methods an extensive set of experiments were p
formed for fixed algorithm parameter&' (= 4, min _saving = 0.2, andAt = 10
minutes) under varying loads using degrees of parallelization. The aegyzrti-
tioning methods updated the partitions every 10 minutes based on the triptreques
that arrived in the last 10 minutes.

6.6.1 Baseline Performance

To establish a point of reference for the performance measures thknkeagueries
specified in Section 6.4.3.1 were executed. Table 6.1 shows the resulte fon-th
partitioned query. Savings obtained by the unpartitioned query (sedaliggn) are
consideredo be optimal, while running times acensideredo be worst case perfor-
mance. Note that these measures are “optimal” and “worst case” withctdéeptbe

TG algorithm. Moreover, as it is demonstrated in Section 6.3.3, due to the computa
tional complexity of thevehicle—sharing problenthe calculation of a truly optimal
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grouping, even in the case of a few requests, is infeasible. Due to treeddfer-
ence in scale between serial and parallel execution times, serial exetiotemmare
not shown in subsequent figures. Savings achieved by the unpaditipreey (serial
execution) are also not shown in subsequent figures, but are usepax relative
performance of the parallel executions in terms of savings / quality.

In comparison, the round robin query was executed to obtain optimal #xecu
times due to perfect load balancing and worst case savings due to tlydrplegyen-
dent distribution of data between query processors. The results efélpsriments
are shown in Figures 6.8 and 6.9 as RR, however it is emphasized thatrieBoise
of the proposed spatial stream partitioning methods, bonligused as a reference.

6.6.2 Absolute Performance of the Parallel TG Algorithms

Figures 6.8 and 6.9 show the absolute performance of the parallel TGtlatgdor
varying load and degrees of parallelization using different spatialmatpzatitioning
methods. From Figure 6.8(a) it can be seen that the execution times of a# of th
methods decrease as the parallelism is increased. Figure 6.8(a) aksis that the
adaptive versions of the spatial partitioning methods adjust well to the titasga-
tial distribution of the requests, resulting in more balanced partitions and ultimately
faster execution times when compared to their static version. The improvement in
execution time due to adaptive partitioning is most evident for the SPQ patrtitioning
Figure 6.8(b) shows that while the execution time of the TG algorithms can lezlsca
the underlying algorithmic complexity of the TG algorithm executed on the compute
nodes does not change. The effect of the underlying algorithmic coitypigxnore
observable for spatial partitioning methods that construct less balaactibpings,
in particular SPQ.

Figure 6.9(a) shows that in general the quality of the grouping de@easthe
degree of parallelization is increased. However in the case of nonHggatitioning
(RR) this degradation is significant, while in the case of either one of thesfmatial
partitioning methods it is negligible. Figure 6.9(b) shows that as the load isisete
the grouping quality increases. This is due to the simple fact that the spatiagreEmp
density of the trip requests increases. As a consequence, the likelirai@réquest
becomes part of a “good” vehicle share increases. The almost negliliffeleences
between the qualities achieved by the four partitioning methods, as explaiSed-in
tion 6.5, is due to the fact that since neither of the partitioning methods conlsaler
data densities, but only the medians of the dimensions, the total degradagiaa du
boundary effects is approximately the same for the four partitioning methods.
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Figure 6.8: Execution Times for the Parallel TG Algorithm for Differentt®aning
Methods for Varying Parallelization and Load.
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Figure 6.10: Relative Performance for the Parallel TG Algorithm (ConthbardRR
Partitioning) for Different Partitioning Methods for Varying Parallelization.

6.6.3 Relative Performance of the Parallel TG Algorithms

Figure 6.10 shows relative execution times of the parallel TG algorithms wiran ¢
pared to the optimal execution time that is achieved by RR partitioning due ta@perfe
load balancing. With the exception of the SPQ partitioning all other partitioning
methods result in parallel execution times that are within the same order of magni-
tude as the optimal. There are potentially two sources for this slowdown: gh@fco
partitioning and the extended execution times due to improper load balancing. Sin
adaptive partitioning methods have to maintain a limited history of the stream and
periodically recompute partition boundaries based on this history, theyditical

work compared to their static counterparts. Yet, in Figure 6.10 execution tenes r
sulting from adaptive partitioning are significantly lower than the execution times
achieved by static partitioning. Hence, it is clear that the additional time ndeded
perform the spatially partitioned parallel queries can mainly be attributed tal-unb
anced partitions.

Finally, comparing the savings in Figure 6.9(b) to the savings in Table 6.4&lseve
that the grouping quality achieved by either one of the partitioning methods ismwith
the 95% of the optimal quality for the full load. Even if the load is decreasedl® 1
of the total load, all the spatial partitioning methods still achieve approximatéty 90
of the maximum possible savings.
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The experiments can be summarized as follows. First, RR partitioning has per-
fect load balance and is a very simple partitioning method, hence it has teetfas
execution time. However, RR partitions the space badly and achieves aduuing
quality. Second, using a spatial partitioning method improves grouping quality.
spatial partitioning methods achieve at least 95% of the maximum possible saving
case of the full load. Third, the adaptive partitioning methods alwaysusdaster
than their static equivalents. That is because the adaptive methods tiyrestizpt
the partitioning according to the last tuples observed, which will lead to betdr lo
balance. At the same time, the savings are approximately the same for botHithe sta
and dynamic partitionings. Adaptive partitioning is also preferred fromparaiion
point of view, since it does not need any prior knowledge about thedisti#bution.
Finally, since all partitioning methods (except RR) achieve about the sarimgsa
the preferred method is the one with the fastest execution time of SPQ, SKD, AP
and AKD. Thus, AKD is the best partitioning method.

6.7 Conclusions and Future Work

The paper proposed highly scalable algorithms for trip grouping to facilitegeta
scale collective transportation systems. The algorithms are implemented using a p
allel data stream management system, SCSQ. First, the basic trip groupirithaigo
is expressed as a continuous stream query in a data stream managestemttsy
allow for a very large flow of requests. Second, following the divideaonquer
paradigm, four spatial stream partitioning methods are developed and impézinen
to divide the input request stream into sub—streams. Third, using thatmitéure
of SCSQ and the partitioning methods, parallel implementations of the grouping al-
gorithm are executed in a parallel computing environment. Extensive imgrer
tal results show that the parallel implementation using simple, adaptive partitioning
methods can achieve speed—ups of several orders of magnitude vgigpaificantly
affecting the quality of the grouping. As discussed in Section 6.5, spatigi@ang
is not only appropriate for the given application, but it is applicable tolledize
computationally expensive spatial analysis tasks. As it was demonstr&gq) an
easily accommodate the parallel implementations of such tasks.

Future work will be along four paths. First, for the adaptive partitioning ath
the effects of keeping a longer history versus sampling more frequentlyogvith-
vestigated. Second, the density—based and dual-objective spatial pag#ioning
methods will be implemented and their effectiveness evaluated. Third, theged
partitioning methods, independent of the rate of flow, always constriicee num-
ber of partitions. While not substantially, but as the number of partitionsasese
the grouping quality decreases. Hence, an adaptive partitioning abpiroavhich
the number of partitions is increased / decreased depending on the flaie oiill
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be devised and tested. Finally, to preserve clarity the paper presengehiric TG
algorithm in its simplest form. In particular, in the presented version all vehaile
assumed to have the same passenger capacity and all requests have a commo
imum savings parameter. Furthermore, in—route grouping, i.e., assigrjogsts

to already active but not fully—occupied vehicle—shares, is not hdryi¢he simple
version of the TG algorithm. Future work will consider the implementation of a more
complex version of the TG algorithm that addresses the above issues.



Chapter 7

Estimating the Capacity of the
Location—Based Advertising
Channel

Delivering ‘relevant advertisements to consumers carrying mobile devices is re-
garded by many as one of the most promising mobile business opportunities. Th
relevance of a mobile ad depends on at least two factors: (1prthemity of the
mobile consumer to the product or service being advertised, and (2) thé bextc
tween the product or service and timerestof the mobile consumer. The interest

of the mobile consumer can be eitrexplicit (expressed by the mobile consumer)

or implicit (inferred from user characteristics). This paper tries to empirically esti-
mate the capacity of the mobile advertising channel, i.e., the number of relelsnt a
that can be delivered to mobile consumers. The estimations are based on-a simu
lated mobile consumer population and simulated mobile ads. Both of the simulated
data sets are realistic and derived based on real world data souoctggpapulation
geo—demographics, businesses offering products or serviceselateld consumer
surveys. The estimations take into consideration both the proximity and interest
quirements of mobile ads, i.e., ads are only delivered to mobile consumergehat a
close—by and are interested, where interest is either explicit or implicit.[iRstww

that the capacity of the Location—Based Advertising channel is rather, kaftjch is
evidence for a strong business case, but it also indicates the neexkfecantrol of

the received mobile ads.

113
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7.1 Introduction

Mobile or Location—Based Advertising (MA or LBA), i.e., sending electraatver-
tisements to consumers carrying mobile devices, is considered by many afstbae
most promising business opportunities amongst Location—Based SehB®62].
A recent mobile marketing survey suggests that about 7% of the mobileroensu
would be willing to receive promotional text messages “if they were releJaif.
According to other surveys, an even larger percentage of the mob#ecns are in-
terested if they are rewarded in some way [66]. In this paper, mobile adsgarded
as a means of presenting relevant information to a recipient, be it a comnadferal
on an item on sale, traffic information, or a piece of public information. To many
people, the world seems to be more and more difficult to guide oneself thritwrgh
the art of targeting information and services will prove to be of immense v&loky,
efficient business cases have so far been very few, in spite of theetisagkpecta-
tions.

A broad range of aspects, or variables, determine the relevance ataxtcof a
mobile ad: distance to the mobile user, explicit or implicit interest of the mobile user,
uniqueness (do not send ad twice within some interval), time and place oégeliv
etc. To this extent, this paper describes an LBA framework and an LBAds¢ahat
can be used for the management of mobile advertisements.

In lack of comprehensive, real data on the movements and behavior pdpie
lation, estimation or simulation is extremely useful, bringing the models to life with
real and well-documented consumption patterns. Using a simulated but reatistic
bile consumer population and a set of mobile ads, the LBA database is us&d to e
mate the capacity of the mobile advertising channel, i.e., the number of relasant a
that can be delivered to mobile consumers. Apart from this use, the LB#base
and the estimates derived from it can also be used in mobile catchment ahgsisan
to estimate business exposure. Results show that the capacity of the LBAetha
is rather large (approx. 100 mobile ads per user within a single day),ggstiong
support for a business case. The same results can also be viewedhd@agland
indicate the need to incorporate user—control of the received mobile dds irBA
framework, as suggested by the Mobile Marketing Association [73].

The remainder of this paper is organized as follows. Section 7.2 revidstede
work. Section 7.3 defines the estimation problem both in case of explicit and implic
interest. Section 7.4 describes the simulated data sets and their derivations fr
real-world data sources. Section 7.5 describes the method and tecboimdhfions
for delivering mobile ads while taking into account both the advertisersnamioile
users’ interests. Section 7.6 proposes a revenue model for LBA. 8&cTialescribes
the experiments and discusses the estimates resulting from them. Finally, Segtion
concludes and points to future research directions.
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7.2 Related Work

The estimations in this work are based on simulated movements of mobile users.
Movements of users are influenced by physical, social and geo—dapiical as-
pects of mobility. To aid the development in mobile data management, a number of
moving object simulators have been proposed in the literature that model jyimar
the physical aspects of mobility to various extents. Since most objects useake

to get from one location to the other, a state—of-the—art framework faonie-based
moving object simulation is presented in [8]. The behavior of a moving objehtsn
framework is influenced by (1) the attributes of the object having a parntiobjact
class, (2) the combined effects of the locations of other objects and thenkater
pacity, and (3) the location of external objects that are independent afatwork.

For a review of other moving object simulators the reader is referred {o [31

Moving object simulators generally neglect the social and geo—demagahpk-
pects of mobility. These social and geo—demographical aspects of mobildgire
patterns in the movement of users and give rise to a unique spatio—tempojal (
distribution of users. ST-ACTS is a Spatio—Temporal ACTivity Simulator teatgu
real-world data sources models some of these neglected aspects of mobjlitid3
make the estimations in this work as realistic as possible, movements of mobile users
are obtained from ST-ACTS, which is further described in Section 7.4.4.

Database indices allow the effective management and retrieval of dataye lar
databases. Spatial and geographical databases manage informatibapetial ob-
jects, i.e., objects that have physical properties such as location ant &dR-tree
is a widely used index structure that allows the effective management arelae
of spatial objects [45]. An R—tree splits space with hierarchically nestel pas-
sibly overlapping Minimum Bounding Rectangles (MBRs). Search algorithias th
test spatial relationships (for example; intersection, containment, nebstg@en
spatial objects can effectively use the MBRs to decide whether or nattshijetwo
MBRs satisfy a specific spatial search criterion.

The location of a moving object changes over time. Thus, the path of a mov-
ing object is commonly described as a sequence of coordinate and timestasnp pa
and is referred to as the trajectory of the moving object. Moving objects akstab
are databases that represent and manage changes related to the mofevben
jects. Spatio—temporal indices such as the Spatio—Temporal R—tree (8&Rattd
Trajectory—Bundle tree (TB—-tree) allow the effective management aneéwval of
information about moving objects [55]. An STR—tree organizes line segnoéiats
trajectory according to both their spatial properties and the trajectoriebéhayg to,
while a TB—tree only preserves trajectories. While these spatio—tempoiee $rare
designed to effectively manage trajectories, they are not available in caiather
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available Relational Database Management Systems (RDBMSs). Henderéie
presented method uses the widely available R—trees.

Time geography [46] is a conceptual basis / paradigm for human sjraecbe-
havior which considers (1) the indivisibility or corporeality of the humandition;

(2) that humans typically operate over finite intervals of space and time;d 3)ettu-

ral laws and social conventions that partially constrain space—time behant(4)

that humans are purposive. The movements of mobile users used in the essmatio
are derived from ST-ACTS [31], which models some aspects of thisljgama

Research has shown that LBSes have not yet been as widely usgbated [60].

In opposition to earlier forecasts and market expectations, technolegydideen
ready until now. Furthermore, and no less important, is that the user angéhne
needs have not been fully understood. Recent research shows trder to suc-
ceed with location—based ads, content is imperative [61], as well as tdlargpn-
sumers’ permission, acceptance and responsiveness into accoumtié [5, 50].
Being aware of this, the concept proposed in the present paper thkesoa point
where any user will benefit directly from the use of the system, thus leadiag
increased opt—in readiness.

Ensuring full user responsiveness is by no means trivial; reseadatas that
behavioral intention to use mobile commerce can be greater for mobile commerce—
nonusers than for users. Those most used to mobile commerce are renasyake
action on it. However, although this documents that the triggers of mobile coramerc
acceptance is not yet fully understood [65], mobile users are founé ®aber to
make use of their phones in new ways, and methodologies are proposediéd mo
user willingness [24, 66, 78]. In the present paper, by targeting obtaehe right
recipients, the setup is realistic and should be attractive for the typicaéfugar.

Market research document a significant increase in sales to custoimerseve
exposed to mobile advertising compared to those who were not exposedIfi72
other words, it works, if only the above mentioned issues are treatediskridt is
the intention with the present paper to contribute in furthering the spreaB$és.

7.3 Problem Statement

Let A = {ai,...a,} be the set of ads. Each adhas a locatiorudloc(a) and is for

a certain producprod(a). LetU = {uy,...u,} be the set of (moving) users. Each
useru has a locationloc(u, t) depending on the timg an explicit interest profile
expint(u) containing a set of products, and an implicit interest profiteint (u),
containing a set of demographic variable values. Also assume a scorintjofu
score(u, a) that given a usen and an ad: returns a value between 0 (no match) and
1 (perfect match) that predicts how interested userin productprod(a) based on
the values inmpint(u).
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referred entity| conzoon® variable categories
person count 1
age 9

person education type 9

employment status type| 12
employment branch type 12
unit count

house type

house ownership type
house area
household count
family type

fortune

personal income

housing unit

household

o 0ROk orRr

Table 7.1: Variables in conzodfh

Given a maximum distanaaaxdistbetween user locations and ad locations, and
a timespanl’ = [tsiart © tend], the explicit location—based ad delivery estimation
problemis to estimate how many times a usetas a locatioruloc(u, t) within
maxdistfrom adloc(a) for an ade in A and atime in T'whereprod(a) € expint(u).

Given amaxdistbetween user locations and ad locationsjascore and a times-
panT = [tsiart : tena), theimplicit location—based ad delivery estimation problem
is to estimate how many times a usehas a locatiorloc(u, t) within maxdistfrom
adloc(a) for an ada in A and a timet in 7" wherescore(u, a) > minscore.

7.4 Data

The estimations stated in Section 7.3 are based on a nhumber of real-world data
sources. The use of real-world data sources is important to derilisticeasti-
mates. While the data sources refer to the Danish market and population, siadar
sources are available for other major markets [18, 19]. The followingestilons
describe in detail the data sources used to derive the estimates.

7.4.1 conzoorf® Demographic Data

conzoon® is a commercial database product that contains fine—grained, geo—demo-
graphic information about Denmark’s population [28]. The variablesdtbstribe the
statistical characteristics of the population can be divided into three grpepson,
housing unit, and household variables. These variables and the nuhda¢egories

for each are shown in Table 7.1.
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In Table 7.1, variables that have “type” in their names are categoricables;
variables that have “count” in their name are counts of the correspormtitities
within a 100—meter grid cell; and finally, the rest of the variables are coniguo
variables that have been categorized into categories that are meariorgfudrket
segmentation. Since, for example in the countryside, the number of persuse-
holds or units could be very low in a 100—meter grid cell, grid cells are gupe
together into meaningful, large enough clusters to comply with social and lethica
norms and preserve the privacy of individuals. The basis for clugtésitwofold:
geography and the publicly available one—to—one housing informationinftiton
behind the basis is also twofold. First, people living in a given geogralptagan
(be that a state, a county, or a postal district) are similar in some sensgafopke,
they might be more likely to have a certain political orientation than people living
in another geographical region. Second, people living in similar housdikaly to
be similar in other demographic variables; for example an established family with
a stable source of income is more likely to be able to buy a larger, more expensi
house than a person who just started his/her career.

As mentioned earlier, to preserve the privacy of individuals, the cluaterson-
strained to contain at least some fixed number of households. Statistice fearth
ables, depending on the sensitivity of the information contained in them, taimed
from Statistics Denmark [85] for clusters constructed at an appropriagbdéclus-
ter size constraint, for example 20, 50, 100, and 150 households pterclin case of
a continuous variable, for example age, counts of the correspondiitig®(in this
case persons in the cluster) are obtained for the categories of thevgivable. Due
to this constrained geo—clustering method, the con®ahusters obtained comply
with the social and ethical norms and preserve the privacy of the indivigtat the
statistics obtained are accurate enough for effective market segmenthlisrseg-
mentation results in a grouping of the Danish population into 29 conZbtypes,
one of which is defined for each 100—meter grid cell. Cosmopolitan (typed)ds
example of the 29 conzod®types. Comparing the demographics of type 3 to the
demographics of the rest of Denmark’s population gives the demogrppifite of
the type. This profile is partially shown in Figure 7.1. It roughly describdidu-
als that are more likely: to be middle aged (30-59 years old), to live in laities ¢
in larger, multi—-family houses that are either owned by them or are privatalseto
be mostly couples with children, to have a medium to long higher education, to hold
higher level or top management positions in the financial or public sectbtpdrave
a better household economy (in terms of wealth and income) than the aveaage D

7.4.2 GallupPC® Consumer Survey Data

GallupPC® is a commercial database product and as the name suggests, it contains
detailed survey responses of consumers about their demographicsststeuch as



7.4 Data 119

Type 3 — Cosmopolitan vs Denmark

Type3 15.9 % DK 15.1 % pp_age_0_11

Type3 05.6 % DK 06.1 % pp_age_12_16
Type3 05.7 % DK 06.4 % pp_age_17_22
Type3 07.5 % DK 08.6 % pp_age_23 29
Type3 16.5% DK 14.7 % pp_age_30_39
Type315.4 % DK 14.2 % pp_age_40_49
Type315.4% DK 13.8% pp_age_50_59
Type3 06.7 % DK 06.9 % pp_age_60_65

Type311.3% DK 14.1 %
Type3 09.7 % DK 24.2 %
Type3 05.0 % DK 04.1 %
Type3 01.4 % DK 01.6 %
Type3 24.5% DK 36.5 %
Type3 05.6 % DK 05.0 %
Type319.8 % DK 14.2 %
Type3 02.6 % DK 01.6 %
Type3 26.0 % DK 07.2 %
Type3 05.5% DK 05.4 %
Type3 04.0 % DK 03.7 %
Type3 02.3% DK 01.2 %
Type3 14.7 % DK 05.9 %
Type3 10.8 % DK 08.0 %
Type3 23.2% DK 31.4%
Type3 00.5% DK 01.0 %
Type3 02.1% DK 04.1%
Type3 02.2 % DK 03.3 %
Type3 02.9 % DK 02.6 %
Type3 09.8 % DK 12.0 %
Type3 07.5% DK 07.4 %
Type3 20.0 % DK 19.5 %
Type3 00.2 % DK 01.7 %
Type3 04.4 % DK 07.8 %
Type3 00.3 % DK 00.3 %
Type3 01.8 % DK 03.1%
Type3 07.8 % DK 09.1 %
Type3 03.4% DK 03.2 %
Type3 12.4 % DK 06.9 %
Type3 24.3 % DK 18.0 %
Type3 00.4 % DK 00.3 %
Type3 20.0 % DK 19.5 %
Type311.0 % DK 11.0 %
Type3 14.1 % DK 19.4 %

pp_age_66plus
hp_edu_basicSchool
hp_edu_generalUpperSchool
hp_edu_vocationalUpperSchool
hp_edu_vocationalTraining
hp_edu_shortHigh
hp_edu_mediumHigh
hp_edu_bachelor
hp_edu_longHighResearch
hp_edu_unknown
pp_empl_self
pp_empl_topManagement
pp_empl_upperLevel
pp_empl_mediumLevel
pp_empl_basicLevel
pp_empl_cashBenefit
pp_empl_earlyRetirement
pp_empl_jobReleasePension
pp_empl_student
pp_empl_oap

pp_empl_rest
pp_empl_restChildren
pp_empl_agriculture
pp_empl_manufacturing
pp_empl_supply
pp_empl_construction
pp_empl_trade
pp_empl_transport
pp_empl_financial
pp_empl_public
pp_empl_unknown
pp_empl_notOccupiedChildren
pp_empl_notOccupiedAdult
pp_empl_notOccupiedOldAge

Il
0 50 100 150 200
Index weighted by households

-100 -50

Figure 7.1: Partial Profile of conzodType 3.

culture, hobbies, and sports household consumptions, purchasiitgj br@mnsporta-
tion habits; views on various subjects; attitudes and exposure to varivaegtiad-
ment media [26]. The questions in the surveys are yes/no questions. Somadae
maghnitude of the consumer’s interest in a specific area, the original yggéstion
is re—phrased as categorical questions. For example the original ye&siton “Are
you interested in fashion?” is re—phrased to 5 yes/no questions usinglltheirfig

answer possibilities: very, rather, somewhat, not very, or not inteteste

7.4.3 bizmark" Products and Services

bizmark" is a commercial database product that contains detailed information about
Danish businesses both in the public and the private sector [28]. Some ohé+
to—one information that is available about businesses is their location, theenumb
of employees working in them, the physical size of the business facility, aad th
international branch codes the businesses fall under. Using thedhigraf inter-
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national branch codes 40 product and service categories were igeritifi which
related consumer surveys were also available. The product andeseatégories are
as follows: classical concert; pop/rock concert; diseqgtke; art exhibition; museum;
cinema; theater; pharmacy; bicycle / moped; car, stereo/HI-FI; CDsfD)\¥¢bm-
puter/internet; new technologies/telecommunication; do—it—yourself; fashims:
metics/skincare; glasses/contacts; hairdresser; jeweler/watchesyidesign; travel;
pets, fast—food; and 14 brand specific supermarkets. Based on theatigeal
branch codes a one—to—many relationship has been established betswdeserof
the businesses in bizmarkand the 40 product / service categories.

7.4.4 Simulating Mobile Users with ST-ACTS

ST-ACTS is a probabilistic, parameterizable, realistic Spatio—Temporal g Ti
Simulator [31]. ST-ACTS is realistic in the sense that it is based on a number of
real-world data sources (among others, the data sources descrive) abd a set
of principals that try to model theocial and some of thehysicalaspects of mo-
bility. The modelled principles that govern the social aspects of mobility are: (1
People move from a given location to another location witlobjectiveof perform-
ing some activity at the latter location; (2) Not all are equally likely to perform a
given activity. The likelihood of performing an activity depends onititerestof a
given person, which in turn depends on a number of demographic lesjgB) The
activities performed by a given person are higbbntext dependenSome important
parts of context are: the current person location, the set of locatibeseva given
activity can be performed, the current time, and the recent history eftagdiof the
person; (4) The locations of facilities where a given activity can beopexéd, are
not randomly distributed, but aiafluencedby thelocationsof other facilities and
thelocationsof the users of those facilities.

The output of ST-ACTS is a population of simulated persons, each dedcrib
by a set of demographic variables and associated with a trajectory. Teetdrées
are sequences of time—stamped activities performed at particular phypsiaabns,
i.e., coordinates. In addition to the four principles above, the simulated acivitie
also obey the following constraints. First, ttemporal activity constraintwhich
states that certain activities are more likely to be performed during some pénenal
others. Second, thactivity duration constraintwhich states that not all activities
take the same amount of time. Third, tii@ximum distance constrajmwhich states
that for most activities there is a maximum distance a person is willing to travel.
Finally, the trajectories assume linear movement between two consecutiesti
i.e. locations, but obey somghysical mobility constraintsnamely, that it takes
time to move from one location to another. The time it takes to move from one
location to another is calculated based on the distance between the two loeatibns



7.5 Method 121

conzoom @
type prodid
simulated interested product /
person In service

1

|
belongs interest
to score

trajectory .
business
segment
eometry @ timestamp e%metry

Figure 7.2: Simplified, Extended ER Diagram of the LBA Database.

a realistic speed model that assigns lower speeds to shorter, and lighds gwith
larger variance) to longer distances.

7.5 Method

The method presented here uses the Oracle RDBMS, and one of its emte@iacle
Spatial, which provides advanced spatial features to support higlz¥hdnd LBS
solutions [75].

7.5.1 LBA Relational Database

The objects or entities in the database are: simulated persons (or egtiyvafrred
to as mobile users), trajectory segments, businesses, products d@ondseisimpli-
fied extended Entity—Relation (ER) diagram of the database is shown ineFigauwr
In the extended ER diagram, square boxes represent entities, oredenpproper-
ties of entities, and diamonds represent relationships between entitiesrlibkdie
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properties represent primary constraints. The arrows between entitiedescon-
nectivity of relationships, i.e., and arrow represents “one” and navarepresents
“many”. For example, the “belong to” relationship is a many—to—one relatiprw:
tween trajectory segments and simulated persons, i.e. one trajectory séghegs
to exactly one simulated person, but many trajectory segments can belorgdiomn
ulated person. Mobile ads are indirectly modelled by in the relational datahase
many—to—many “offers” relationship between businesses and produseraices.
Through this relationship, a mobile ad can be thought of as an entity havinigaeu
identifier composed of a unique combinationkfl andprodid , and having a
locationspecified by thgoint geometryf the business offering the advertisement.

As it was introduced earlier, in the implicit case, the interest of a mobile user
uw and a mobile ad: about a product or servigerod(a) is not a Boolean function
or binary relation. Rather, it is a continuous function that given the deapidr
characteristigmpint (u) of u, assigns a real valued interest scerere(u, a), usually
from O (not interested) to 1 (very interested), fowd(a). In direct marketing this
function is termed a scoring function, which encodes a particular scorirdeimo
This real valued scoring function is untraditionally represented as apgopf the
“interested in” relationship in the ER diagram.

7.5.2 Proximity Requirements on Mobile Ads

A mobile ada is likely to be considered relevant to a mobile useonly if at the
time of deliveryt, u is (or at some foreseeable future time point will be) within a
maximum distancemaxdist to the origin of the mobile addloc(a), i.e. the location

of the business. Using the spatial features of Oracle Spatial, this proxiritéyian
between mobile ads and mobile users is tested as follows. The geometrieswdithe b
nesses, equivalently mobile ads, are buffered to a maximum distance sted far
any spatial interaction with the geometries of the trajectory segments, bymperp

a spatial join operation in the database. To make the join operation as fassisi@,
geometries are indexed using R—trees.

7.5.3 Interests Based on Demography

The relevance of a mobile ad for a particular product or service is figtinBluenced
by the interest of the user for the given product or service. As idestabove, a sub-
set of the GallupP® consumer survey questions are related to products or services
that can be directly linked to businesses in bizméaskand measure the interests of
the consumer in the products or services.

Using the geo—demographic parts of the surveys, each survey sigtasstgned
to one of the 29 conzod® types. To derive a single indicator, an interest score, for
how interested a given conzo8htype is in a given product or service, the answers
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Figure 7.3: Some Interest Scores for Products or Services for Biffeonzoor®
Types.

to the questions processed as follows. First, the five possible answeeshoe asso-
ciated with the following interest scores: very interested (1), rather stea€0.75),
somewhat interested (0.5), not very interested (0.25), and not inté(@3teSecond,

for a given conzoof® type and product or service the interest scores assigned to in-
dividual answers are averaged. Finally, the mean interest scoragfeen product

or service are scaled to the [0, 1]-interval amongst the 29 corZotypes. Fig-

ure 7.3 shows a sample of these interest scores for a subset of tleaéhtypes.

In Figure 7.3 it can be seen, that college students are most interested fodds
and cosmetics / skincare products, and among the corf2aypes listed, suburban
families are least likely to be interested in the same.

7.5.4 LBA — Implicit Interest Case

The interest score of a mobile userin a particular product or service, which is
advertised by mobile ad, is implicitly encoded in the demographic characteristic,
impint(u, a), or historical behavior (reaction to previously received mobile ads) of
u. The latter encoding is commonly referred to as relevance feedback indhag
task in direct marketing, and while not considered in the current mobilertéging
database, it can be naturally incorporated. In direct marketing, the rfardéls in-
terest score is usually derived for one or many product(s) or sé€syioka particular
company through the process of data mining or machine learning. This nmaotbec
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represented as @mpany-specific interest score functiarthe mobile advertising
database that for given user—demographics and historical usexibelsee Section
7.5.8, assigns an interest score to the user. In the estimations howeseririgeest
score functions are not company— but rather only product— and sespecific. Fur-
thermore, due to their simplicity, they are implemented as table with the following
schemainterest _score = (conzoom _type, prodid, score ).

7.5.5 LBA — Explicit Interest Case

Mobile users can also explicitly state their interest in certain products avitegr

In this case the “interested in” relationship is a binary relationship in the mobile
advertising database. To provide a realistic estimates, the explicit interastersf
are probabilistically simulated by randomly drawing a fixed number of prodacts
every mobile user according to the distribution of interest scores giverotimon®

type of the user.

7.5.6 Uniqueness and User-Defined Quantitative Constraisbn Mobile
Ads

Receiving the same ad multiple times naturally decreases the relevance ofabe ad
the therein presented information is not new. Primary key constrains in RBBBM
are an effective mechanism for guaranteeing that only unique combirzdtioabile
users and mobile ads are considered for delivery. In the mobile markediag d
base the delivered ads are stored imaebile _ad _delivery  table with the fol-
lowing schemai(pid, bid, prodid, delivery _time ). Placing a primary
key constrain on the first three columns guarantees that a mobile ad isrelélate
most once to a mobile user. Recording thaivery timeallows the control of the
re—delivery of mobile ads after a certain period of time has passed. Fiy,dhe
mobile _ad_delivery table is omitted from the ER diagram in Figure 7.2.

As the number of mobile ads increases, or the other constraints on therglelive
of mobile ads weaken, the number of mobile ads delivered to a mobile user will
naturally increase. After a certain number of ads have been delivetkd tser, any
additionally delivered ad, while maybe relevant, will likely be perceiveda®ging.
Hence, the mobile user’s ability to limit the number of delivered ads is important.
This user—control can be effectively facilitated by the top—k query nr@shrawhich
is provided in most RDBMSs.

7.5.7 User-Defined ST Constraints on Mobile Ads

Time and location are important aspects of the context of mobile ads. Mast use
would consider receiving a mobile ad as intrusive or disturbing wheriviageit
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during work hours or after a certain time in the evening in their homes. Hence,
the mobile user’s ability to prevent the delivery of mobile ads in certain regibns
space and time are important. While the user—control of spatio—temporataiots

on mobile ads is not present in the mobile advertising database, the datalbase c
be easily extended to accommodate for this feature as follows. Users egifysp
mobile ad profiledy restricting certain spatial and / or temporal regions for mobile
ad delivery. Then, spatio—temporal joins between the mobile ad profilesiahie

ads can be performed to further control the delivery of mobile ads.

7.5.8 Inferring Personal Interests and Relevance Based on stborical
User—Behavior

Geo—demographic variables can be used to predict the general intfrastsndi-

vidual user, as explained in Section 7.5.3. However, since an indivichgalcannot
be perfectly characterized by a few geo—demographic variables, it Ig ttkat the

predicted general interests differ slightly from the trpersonal interestsf the indi-

vidual user. In the following, two methods are proposed to infer the patsaterests
of individual users.

The first method uses the locations that an individual user visits to infesgrésu
personal interests. A subset of the locations a user visits are commerngtlire,
i.e., are businesses that offer products or services. During the lifetimeisér, the
frequencies of how often the user visits particular businesses or tyesioesses
that offer particular products or services, can be recorded. Fuortre, periodical
patterns can also be easily detected in the sequence of visits. An examplehof s
a simple periodical pattern would be that a user visits a hairdresser appteky
every second month. Basing the delivery of mobile ads on the pers@tplein-
cies of visited locations and periodic patterns ensures a closer match hdtveee
mobile ad and the true personal interest of the mobile user. The storagdeimain
nance, and derivation of the frequencies of visited locations and pepatterns in
those visits can either be done on the server or the client side. For ther sate
management, information about the frequencies of visits to particular typmssof
nesses, offering specific products or services, are stored in a tablthe/following
schemavisit  _frequency = (pid, prodid, num _visits ). Simple peri-
odic patterns are stored in a table with the following schepsttern _period
= (pid, prodid, last _visit _time, period ). To preserve clarity, these
two tables are omitted from the ER diagram in Figure 7.2. The same information
about personal interests can also be managed on the client side by aapliina-
tion. Such a client side application, based on the current location of the nusigite
would have to be able to infer the type of business (product or serviaejha user
is currently visiting. This inference can either be aided by the servemartgrans-
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mitters located at the businesses could communicate the required information to the
client application.

The second method uses the information about how an individual userdwied
to mobile ads received in the past. More specifically, assume that a mobile rteser
ceived mobile ad at timet. If at any timet’ within a time periodit after timet the
mobile userm visits the business that offered mobilead.e., uloc(u, t') = adloc(a)
andt’ — ¢ < dt, it is considered as a strong indication of interest of the user towards
the mobile ad. Similarly, if the user does not visit the offering business within the
ot period, it is considered as a weak indication of the user’s indifferengarts
the mobile ad. The two events mentioned above can thus be consideredtiae pos
and negative feedback in an active control loop, respectively. dhiiye and neg-
ative feedback values can be guantified and summed over the lifetime ofaghe us
for specific businesses or types of businesses, i.e., products wesenAfter the
control loop sum for a particular business or a product or service belw a cer-
tain (user—defined) threshold, the business or product or serviddasklisted”
for the user, i.e., no more ads are delivered from the business or fqrdioleict
and service to the user. The information needed to manage the controlisoalps
ready stored in the LBA database. In particular, the locations of uséirsat are
stored in therajectory segment table, and the received ads are stored in the
mobile _ad_delivery table. Positive feedback conditions in the control loops
can be checked by joining the recently changed location of mobile user todie lo
tions of the locations of mobile ads that have been delivered within thétlastiod.
Negative feedback conditions in the control loops are indicated by thiegagede-
livered mobile ads, i.e. a tupl@id, bid, prodid, delivery _time ) inthe
mobile _ad _delivery  table indicates a negative feedback condition for mobile
user with IDpid , for a particular business with I1Bid , or product or service with
ID prodid if delivery _time + ¢t is less than or equal to the current time. The
same information can also be stored and managed in a similar fashion on the client
side.

For both methods, both the server side and the client side approaciessdvam-
tages and disadvantages. The server side approach requiresrtiusigb&ehavioral
data is stored on the server. This raises questions about scalability isadypr
related issues. In comparison, the client side approach requires aapigitation
that manages the personal behavioral data on the client device. Thesulierap-
proach seems to be more scalable and privacy—protecting, but in thefdase or
theft of the device, issues regarding the misuse of the sensitive pkrsimmaation
can arise.
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7.5.9 An Operational LBA Database

The so far presented LBA database was developed for simulation and testimar-
poses. As it is presented it can be commercially used as a tool to foreBAst L
exposure and penetration. However, the LBA database can easily e atiesup-

port the online management of location—based advertising. In an onliagtamal
setting it is assumed that the mobile units of the mobile users periodically, but not
necessarily at regular time intervals, communicate their position to the server. |
such an operational setting the only necessary alteration to the LBA datistthat
instead of storing the historical trajectories of mobile users, the curreatidos of
mobile users are stored. These locations can be represented as poietiges in the

LBA database. Spatial queries to determine proximity between locations of mobile
user and mobile ads can be implemented much in the same way using spatial joins.
To manage mobile ads, periodically, relevant mobile ads are selected avetektli

to mobile users who recently changed their location.

7.6 Proposal for a Revenue Model for LBA

A viable revenue model is a necessary prerequisite for successtumercial LBA.
There are essentially three parties involved in LBA: 1) the advertisereZ)ahsumer
(mobile user), and 3) the LBA service provider or operator.

As in most other advertising media, and in LBA too, the advertiser pays for the
majority of cost of advertising. These costs are for paying the other tweepdor
the participation in (consumer) and the facilitation of (operator) LBA. Theritige
in doing so is clear: to increase the revenue of the business doing theisidge

Most people do not like advertising. Some advertisements, such as aglvertis
ments on billboards, they cannot escape. Some they are willing to enduterimoé
other services, for example newspapers and commercial TV. Finally,, suole as
direct mail or commercial fliers, they may choose to opt—out from. Sinceydicg
to EU law, conducting LBA requires the informed consent of the constifié], the
need for a clear consumer incentive is eminent. One way to motivate thengensu
is to provide her/him with value—added services. One example of sucheagdied
service could be a recently proposed Location—Aware Mobile Messengefacil-
itates user—friendly communication and coordination between users [Ijthér
possible value—added service can be the free delivery of non—coiafriaforma-
tion, such as for example information about traffic or weather. The coesgan
also be financially motivated through electronic coupons or reward gmugyr

!Directive on privacy and electronic communications (2002/58/EC, artig(@)) involves asking
the users’ permission to send unsolicited advertising messages via albelecommunications for
marketing purposes. Most countries outside of the EU also enforce sleglalative regulations.
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Figure 7.4. Number of Delivered Ads (Implicit Interest) to a Population ddQLO
Mobile Users for Variousninscoreandmaxdist

The operator charges the advertiser for the services provided.oBhéoc these
services can be determined based on 1) a flat rate per LBA campaige, i)riber
of delivered mobile ads, 3) the weighted number of delivered mobile adsytakin
account the interests scores, or 4) the weighted number of deliverateradb taking
into account the reactions of the mobile users to the received mobile adgraeg s
interest or indifference. An accounting module for either one of theicemost
schemes can easily be facilitated by the so far presented LBA database.

7.7 Experiments and Results

Two sets of experiments (implicit and explicit interest case) were perfotmegta-
sure the capacity of the mobile advertising channel under var@aglistand min-
scoresettings. The estimation are based on (1) 4,314 businesses in Copenhagen
Denmark offering one or many of the 40 hand-selected products acsgr(2) the
simulated movements of 1000 randomly selected simulated mobile users during the
course of seven days (on average 3,800 trajectory segments peSdaygs for im-
plicit interests were modelled as described above. To simulate explicit intetests
product or service of interest was assigned to every simulated mobileassde-
scribed above.

Figure 7.4(a) shows the number of delivered ads during the course fifghday
in the implicit case. As expected, the number of delivered mobile ads insraase
theminscoreis decreased or thmaxdistis increased. The rather surprising, close to
linear relationship between the number of deliverable ads and the maximummceista
criteria is due to the following facts. Simulated mobile users move from one location
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Figure 7.5: Statistics About the Delivered Ads (Explicit Interest) for asimaxdist

to another with the objective to perform an activity. These activities are tiadtdp-
set of the businesses that advertise. Hence, the businesses thiasade products
or services often lie on the actual streets that the trajectories follow. ihdsses
are assumed to be uniformly distributed on those streets, then the relationship is
deed expected to be linear, as the number of businesses “reachalnig”aasreet
grows linearly withmaxdist Another, rather interesting result is the sheer number
of mobile ads that can be delivered to a small set of 1000 users within secotia
day. Even formaxdist = 500 meters (arguably a worthwhile detour for the mobile
user) andninscore= 0.9 (quite high match in direct marketing) the average number
of delivered ads to a user is about 100. This represents a huge mgnietential.

The same numbers are likely to be viewed as alarming by many mobile users. As
it is shown in Figure 7.4(b), even for rather high minimum interest sconeseiy
low maxdistranges the average number of ads delivered to a mobile user during the
course of the first day is in the range of 6 to 40. This is a rather large nuohlaels
to be received on a small, by many considered as extremely personal, mmbde.d
Hence, to avoid bad reputation, businesses interested in employing or fiagjlita
mobile advertising should make great efforts to provide simple yet effeatee—
controls on the number of received mobile ads, as suggested in Sectichafidb
7.5.7.

Figure 7.5 shows some statistics about the number of delivered mobile ads in
the explicit interest case. Similar observations can be made about the r&hgtion
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between thanaxdistand minscoreparameters and the number of delivered mobile
ads as in the implicit case. However, it is surprising that even though evebyle
user is only interested in exactly 1 of the 40 products or services, due pogbence

of a large number of businesses offering those products and semfieasumber of
deliverable ads is rather high even for small valuesakdist It is also important to
note, that forazdist < 100, over half of the mobile users do not receive any mobile
ads (middle graph). Hence the mobile users who are interested in gettinglgalsd
on products or services of their interest, have to set thaidistvalues appropriately
high.

Since most mobile users need to perform mandatory activities at specific loca
tions, such as going to work or coming home daily, and since they tend torperfo
their other activities either around, or along the way in—between, thes#ispeca-
tions, they tend to move around in approximately the same space from day.to day
Hence, because of the uniqueness constraints on mobile ads, for adixefdstatic
mobile ads, the number of deliverable mobile ads per day is expected tadecre
over time. This decrease is shown in Figure 7.6(a) for the implicit case fintenmest
score of 0.75 for variousindist for a period of seven days. As it can be seen in
Figure 7.6(a), the rate of decrease is also decreasing with time. This is thesféat
that the number of infrequent and less regular (hon—daily) destinatf@rsindivid-
ual mobile user are limited, and over time are eventually visited by the mobile user,
at which time all the relevant mobile ads are delivered. Since the humbeclof su
irregular destination are limited, and the number of unvisited ones are dewgees
time progresses, the chance of a mobile user visiting an unvisited irregskimade
tion is also decreasing with time. Consequently, the number of deliverable radsile
per day also decreases with time. At the same time, because of the slight wariatio
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in day—-to—day movements of mobile users, the penetration rates of LBA gecrea
More specifically, in the explicit interest case, Figure 7.6(b) shows tleahtimber
of reached users increases over time.

User—defined ST constraints on mobile ads are used to disallow the dalivery
mobile ads at specific locations and/or times. To test the reduction in deleerab
mobile ads, in a set of experiments the delivery of mobile ads was not permitted
when mobile users were either at home or at wor8omewhat counter intuitively,
no reduction in deliverable mobile ads was observed. This result catplareed by
the following two facts. First, in the LBA database movements of mobile users are
represented as continuous trajectories. Second, the set of mobilecalds tise esti-
mation were constant during the estimation period, i.e., all mobile ads weréeaffec
during the course of the whole simulation. Hence, after mobile users leftibeie
for thefirst time, and travelled a short distance away from home, they received all the
relevant mobile ads, and similarly they received all the relevant mobile ateps
for the first time approached their work place. The effects of usenetk:fsT con-
straints on mobile ads would be more observable in LBA environments wheriégemob
ads are dynamic and have short lifetimes. For example a cinema, after ig#hatn
over 90% of the seats are empty 30 minutes prior to the movie, might want to run a
“50% off” LBA campaign for 30 minutes only. Such dynamic mobile ads with shor
lifetimes will be filtered out by user—defined ST constraints, if applicabléeristons
to the LBA database to handle such dynamic LBA conditions are trivial aateér
for future work.

In summary, the experiments show that the capacity of the location—based ad-
vertising channel is very high indeed, even for relatively small settingsifioimum
distance, and relatively specific interest settings. This is good newBiradver-
tisers, as they can expect to reach a large set of potential customers.

7.8 Conclusions and Future Work

The aim of this paper was to investigate the capacity of the Location—Basest-Ad
tising (LBA) channel. The paper proposed two types of LBA models (impligit v
explicit interest) and described a relational database for the effectimageanent of

both types of LBA. Using a number of real-world data sources and simulated
realistic movement data of mobile users, the paper gave estimates on the nfimber o
deliverable mobile ads in both the implicit and the explicit interest cases. Exper
mental results show that the capacity of the LBA channel is rather large ingpdyin
huge marketing potential. At the same time, the potentially large number of mobile
ads could be alarming to mobile users, hence the paper warns busin¢ssestéd

2Home and work places for mobile users have been identified by slightlyratére output of
ST-ACTS.
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in LBA to provide the mobile users with adequate means to control the number of
delivered ads and the time and place of delivery.

Future work is planned along two paths. First, while the presented LBA frame
work considers LBA both from the mobile users’ and advertisers’ patsge, the
provided estimates are valid only if mobile users are willing to accept unlimited mo-
bile ads at all times and places. Incorporating user—defined constraimsbile
ads, as described in Sections 7.5.6 and 7.5.7, will provide better estimatestameth
audience size of LBA. Second, in the implicit interest case, the relevdrecmobile
ad is estimated using a simple scoring model which is based on a consumer segmen
tation that divides users into 29 different consumer groups. Howasétjs pointed
out in Section 7.5.8, in real life, no two users’ interestsexactlythe same, hence
a given mobile ad does not have the same relevance to them. Hence, altering th
scoring model to include the personal interests of the individual mobile whérh
are derived from historical behavior of the mobile user — such as thebtyginesses
the user has previously visited or the user’s reactions to previousliveelcaobile
ads — will allow targeting the individual mobile user with even moekevantand
personalizednobile ads. Since, in the current simulation of mobile user movements,
the possible influence of mobile ads on the future movements of mobile usets is no
accounted for, the evaluation of the effects of personal interesingcare left for
future research.



Chapter 8

Privacy—Preserving Data Mining
on Moving Object Trajectories

The popularity of embedded positioning technologies in mobile devices anathe d
velopment of mobile communication technology have paved the way for powerf
Location—Based Services (LBS). To make LBSes useful and usmrdly, heavy
use is made of context information, including patterns in user location dat& atec
extracted by data mining methods. However, there is a potential conflict ofstte
the data mining methods want as precise data as possible, while the usets want
protect their privacy by not disclosing their exact movements. This paipes to
resolve this conflict by proposing a general framework that allowslasation data

to be anonymized, thus preserving privacy, while still allowing interestiritepes

to be discovered. The framework allows users to specify individuatetbsevels

of privacy that the data collection and mining system will then meet. A privacy—
preserving method is proposed for a core data mining taskaing dense spatio—
temporal regionsAn extensive set of experiments evaluate the method, comparing it
to its non—privacy—preserving equivalent. The experiments show thdtaimework

still allows most patterns to be found, even when privacy is preserved.

8.1 Introduction

The efficient management of moving object databases has gained mudstititer
recent years due to the development of mobile communication and positionimg tec
nologies. A typical way of representing moving objects is to use the trajestorie
Much work has focused on the topics of indexing, query processidglara mining
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of moving object trajectories, but little attention has been paid to the preservatio
of privacy in this setting. In many applications such as intelligent transgetéms
(ITS) and fleet management, floating car data (FCD), i.e., tracked vehaz&dos,

are collected, and used for mining traffic patterns. For instance, minirgledta-
jectories in urban transportation networks over time can easily identify deess
(roads, junctions, etc.), and use this for predicting traffic congestigndaBa min-

ing the periodic movement patterns (objects follow similar routes at similar times)
for individual drivers, personalized, context—aware servicesbeatelivered. How-
ever, exposing location/trajectory data of moving objects to application rsecea
cause threats to thiecation privacyof individual users. For example, a service
provider with access to trajectory data can study a user’s personiéd.hithis not
enough to keep the user ID secret, since common locations such as the mdme a
office address can be found by correlating historical trajectorieswetidoy cross—
referencing these locations with, e.g., Yellow Pages, to reveal user ideétriitgcy—
preserving data mining of moving object trajectories has not been addresthe
literature. The challenge of obtaining detailed, accurate patterns fronyinimed
location and trajectory data is the motivation for this paper.

This paper makes a number of novel contributions that together constitugés a
fective method for trajectory data collection and mining that preservedacsdion
privacy. First, the paper proposes a nogrbnymization moddbr preservation of
location privacy on moving object trajectories. Here, the users sped@fyréquire-
ments of location privacy, based on the notiongabnymization rectangleendlo-
cation probabilitiesintuitively saying how precisely they want to be located in which
areas. Second, the paper showemon problemwith existing methods based on
the notion ok—anonymity This problem allows an adversary to infer a commonly oc-
curring location of a user, e.g., the home address, by correlating ketsseavations.
Third, the paper presents an effectiygd—based frameworfor data collection and
mining over the anonymized trajectory data. The framework is based on tioas0
of anonymization gridendanonymization partitioningg/hich allow effective man-
agement of both the user—specified location privacy requirements aaddhgmized
trajectory data. Along with the framework, thneeliciesfor constructinganonymiza-
tion rectanglescalledcommon regular partitioningndividual regular partitioning
andindividual irregular partitioningare presented. These policies avoid the prob-
lems in existing methods. Fourth, the paper preseoteat—server architecturéor
an efficient implementation of the system. A distinguishing feature of the arehitec
ture is that anonymization is performed solely on the client, thus removing tlike nee
for trusted middleware. Fifth, the paper presents techniques for solMiagia tra-
jectory data mining operation, nameinding dense spatio—temporal areak an
extended technical report [36], the same framework and techniqaessar evalu-
ated on a more complex data mining operation, narfietling frequent routesThe
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techniques are based on probabilistic counting. Finaliensive experimenigth a
prototype implementation show the effectiveness of the approach, by ciogptlae
presented solutions to their non—privacy—preserving equivalents. eXperiments
show that the framework still allows most patterns to be found, even wihwacpris
preserved. In summary, this paper it believed to be the first to considévpitoeof
data mining on anonymized trajectory data.

Privacy protection in databases has been a core area in the datatemere
community and many related topics have appeared in the literature, sucheas acc
control, inference control and statistical databases. To protect tecprof LBSes
users, three existing solutions [43, 44, 74] propose to use a trusted wicldléan
anonymizer) that maintains location updates and queries between the LB&nde
LBS server. Each time a query request is sent from a LBS user, thgy/@izer, in
the spirit ofk—anonymity89], encloses the query location in a “cloaking” rectangle
that includes both the query location and the locatioris-efl other users, and sends
the query to the LBS server with the cloaking rectangle. The LBS sert@meea
superset of the results and the final results are filtered by the anonyamdesent
back to each LBS user.

This method for anonymizing locations and trajectories has several prablems
First, it requires trusted middleware. Second, while [74] provides attife so-
lution for finding locations of the othét — 1 users in the presence of such trusted
middleware, a solution to the same task in an environment that contains only un-
trusted components is unknown and likely to be computationally prohibitived;Thir
the notion of location privacy that is guaranteeddsyanonymitymay not be satisfac-
tory in the case where a large number of moving objects stay in a small area whe
users do not want to be observed (such as a red light district). Thiégpnocan be
eliminated by requiring cloaking rectangles to have a minimum area [74]. Fourth
the cloaking rectangles calculated for the same user for the same locatitiarand
times depends on locations of the otlter 1 users, and hence may vary in extent
and location. This, in a sens®n—deterministior probabilistic nature of cloaking
rectangles sacrifices location privacy, as demonstrated later. Finatlidreal min-
ing methods cannot be easily and effectively adapted to the anonymizédidtoca
trajectory.

As a result, the present paper does not condidanonymityand doesot as-
sume the existence of trusted middleware for providingktrenonymityrectangles.
Instead, it focuses on novel ways to conceal the actual moving obggettiories
while still allow the data mining algorithms on the LBS server to extract detailed,
accurate traffic patterns and rules from the anonymized trajectory date.ti\at the
proposed solution doe®t even ainmo providek—anonymity. The reason is that for
some applications, e.q., traffic services in remote areas, even a ratherkswikll
cause the reported rectangles to become extremely large, and thus vedih e
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purpose of mining. Instead, the proposed solution perforspatial anonymization
that meets the user’s requirements for location privacy.

Spatio—temporal data mining is an on—going topic in the database community.
Approaches have appeared for finding dense areas of moving olgjécs9, 90] and
extracting spatio—temporal rules and patterns [30, 95]. The prespet gafocused
on discovering areas with potential traffic jams and roads that are fdguesed
by drivers. Two very related papers [47,59] study the queryingpatis—temporal
regions with a high concentration of moving objects. The first paper [#ifleb
the data space into a uniform grid so that the density query is simplified agingpo
cells that satisfy the density conditions. This solution provides fast asstvetr can
lead toanswer losgas termed in the second paper [59]), such as regions that cover
boundaries of several cells with a high density of objects (but eachidhdilcell
does not contain enough number of objects to be dense). The secoed[pa]
provides a new definition of density query that eliminates answer loss apoges
a two—phase filter—and—-refinement algorithm for computing the densityeguek
method to provide approximate answersdistinct spatio—temporal aggregation is
proposed in [90], where aggregation is grid—based, and the distitarian is time—
and space—effectively solved by combining a spatio—temporal index-{a&8 and
sketches.

A lot of recent research work has focused on techniques forgriyaeserving
data mining [4]. This topic has appeared due to the advances in data colleetion
dissemination technologies which force existing data mining algorithms to be re-
considered from the point of view of privacy preservation. Varioapgrs have re-
cently addressed privacy—preserving data mining. Important techmiqciede per-
turbation, condensation, and data hiding with conceptual reconstru&aper [96]
presents a good review of these techniques. The techniques prapotbesl pa-
per follow the spirit of a common strategy used for privacy—preservatg thining,
namelygeneralization

The rest of this paper is organized as follows. Section 8.2 discussegmiza-
tion models of trajectory data. Section 8.3 presents the grid—based frakpevirile
Section 8.4 presents an empirical evaluation. Finally, Section 8.5 concludes a
points out future directions for research.

8.2 Spatio—Temporal Anonymization

For the simplicity of the discussion, assume that the time dorfai totally or-
dered and use the non—negative numbers as the time domain. Let the tyagéctor
a moving object in 2—dimensional (2D) space be described by a seqobnhgaes

S = ((locy, t1), ..., (locy, t,)) whereloc; € R? (i = 1,...,n) describe locations,
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andt; < ts < ... < t, € T are irregularly spaced but temporally ordered time
instances, i.e., gaps are allowed.

The trajectory is anonymized by reducing the spatio—temporal resolutiore of th
2D space. One basic method is to enclose the trajectory into one or more-space
time rectangles, denoted as amonymization rectanglesA formal definition is as
follows:

Definition 7 Given an area sizewreasize € R and a probability threshold
mazLocProb € [0;1], an anonymization rectangle satisfying @reasize,
mazLocProb) for a moving objecb is a three—tupl€R, ¢, t.), wheret, < t. € T
are two time instances, arfglis a 2D rectangle such that the maximum probability
that can beénferred abouto being in any subregiord of size areasize in R during
the period[ts, t.] is at mostmaxLocProb .

Definition 8 Given an area sizereasize € R, this maximum probability that
can beinferred about the whereabouts of objecinside R is called as thdocation
probability of R and is denoted aB.LocProb.

Privacy preservation in spatio—temporal data sets is challenging besjzaise-
temporal data sets are so rich in correlations, allowing many “privacy attaeke-
gies that are difficult to counteract and sometimes even to anticipate. Thesgch
method is believed to protect against a few obvious threats, namely, 1Yidetec
of frequent private/personal/individual locations due to self—cdiogla in historical
spatio—temporal (trajectory) data sets, 2) detection of the current poditeoto phys-
ical mobility constraints on objects (maximum speed, road network, spatio—tampo
restrictions in general).

In the definitionanferredis emphasized, because the straight—forward, uniform
spatio—temporal probability distribution for the location of an objedbes not hold
for any rectanglg? € R*. By relating external spatial and/or temporal data sources,
which put limitations on the possible locations®fmore specific distributions can
be derived that sacrifice the privacy of This is illustrated in Figure 8.1, where
anonymization rectangl® of o is composed of 4 unit—area cellg (cs, ¢4, c5). Not
combining any external data sourcésLocProb = 1/4. Knowing that cells:; and
¢y are covered by wate. LocProb = 1/2. Finally, knowing about the location
and opening hours of the Nature Resort Park in eglind the current time (8am),
R.LocProb = 1. Clearly, relating more and more spatio—temporal, external data
sources taR raises the location probability of it, and guarantees less privacy.for
One natural way to guarantee a location probability of at nmaaxLocProb , is
to spatially, or temporally, exten® to R iended, SUCh thatRe,iendeq- LocProb <
maxLocProb . Section 8.3.2 describes how to do this in practice.
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Figure 8.1: Location Privacy.

If the currently known spatio—temporal probability distribution for the locatibn
an objecto is denoted a®’D,, then any kind of “extra” external spatio—temporal in-
formation can be modelled as a functiéiPD,) that returns a new spatio—temporal
probability distributionPD’. If the location probability ofo at certain locations is
then over the thresholahaxLocProb with the new distribution, there is a problem
that needs to be handled somehow, most often by enlarging the area partition

Intuitively, the whole trajectory of a moving object can be enclosed into a sin-
gle rectangle so that the anonymity of the trajectory is preserved. Howaevéne
trajectories are often very long, the rectangles can be very big so thatdanies
impossible for the data mining algorithms to return any useful results. Thegedp
method provides aanonymized formatof the trajectory by cutting a long trajectory
into pieces and enclosing each piece in an anonymization rectangle. Tt foain
give opportunities for doing data mining without sacrificing location privacy

8.2.1 Practical “Cut—Enclose” Implementation

The “cut—enclose” procedure splits the whole trajectory of a moving objetb a
set of polylines which correspond to a set of time perifdds t2], [t2, t3], [ts, ta], . . .,
[tk—1,tx]}, such that at any time instantec {to,ts,...,tx_1} o'S trajectory crosses
an edge between two neighboring anonymization rectanBjeand R;, ;. Since
around this instancg, o is more likely to be close to the edge betweggrandR; 1,
R;1.LocProb will temporarily be higher, which might sacrifice the location privacy
of 0. More specifically, from the times spent in the previous anonymization rectan
gles, their sizes, and relative locations to each other, a malicious serveasdy
maintain a linear movement model @f Using this movement model, whersends
the anonymization rectanglg; ;, the malicious server casheducea possible loca-
tion rangeR* of o, such thatR*. LocProb > maxLocProb . To avoid this situation
and preserve the location privacy @fatime delay factor dj; ;1) for delaying the
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Figure 8.2: Time Delay Factor.

sending of the anonymous rectandle, ; after leavingR; is introduced. The factor
dj5,i4+1] can be calculated as follows. Objectan maintain the same linear move-
ment model about its own movement as the malicious server can. Henceg; at an
time instance™* > t;, having entered?; 1, o can calculatek* and R*. LocProb.

As time progresses, the size Bf is monotonically increasing anB*. LocProb is
monotonically decreasing. Hence, at some time ptiint ¢;, when the associated
R*.LocProb < maxLocProb it is safefor o to sendR;,; to the server. The time
delay factor is thewy; ;1] = t* — ¢;.

Most moving objects are confined to road networks. In the presenceadf r
networks, more sophisticated movement models are possible. Actual vaiubée f
time delay factor have been investigated for a number of network—baseshmeat
models on real-world data sets in [14], but this work had a different aimehato
aid tracking.

8.2.2 Problems with Existing Methods

To construct an anonymization rectangle for a given piece of trajeaboly,naive
method is to randomly choose a location in the vicinity of the trajectory and use this
location as the center to build the anonymization rectangle based on a pneddefi
size. Another method, motivated from the discussiolochtion k—anonymityn the
literature [43, 44, 74], is to build the anonymization rectangle that encloseitis
with trajectory pieces of — 1 other moving objects.

However, these two methods can lead to an undes$oresiof location privacy
Sensitive locations that need to be kept private, or trajectory piecelg#ubto these,
are often re—visited by the objects many times, at a similar time of day. For example,
objects (users), in the evening hours return to themeusing the same path (trajec-
tory piece). If on different occasions the anonymization rectanglehi®trajectory
piece are constructed inrn—deterministievay, the location of the trajectory piece
can be narrowed down to the intersection of these anonymization rectargliss
leads to an undesirable loss of privacy. In the example on Figure 8.3t olygturns
to its homeb using the same trajectory pie@e b] on three different occasion at the
same time of the day. On the three occasions, three anonymization rectangles
Rp, and R are constructed, such that they contain both the trajectory pieée



140 Privacy—Preserving Data Mining on Moving Object Trajectories

Ra: [tas tazl

al | Re: [ts1, ts2]

Re: [teu teo]

Figure 8.3: Overlapping Area.

and the locatio. Based on the multiple visits, the location[af b] can be narrowed
down to the small overlapping area of the anonymization rectangles.

The next section presents a grid—based solution and several methoztnfo
structing anonymization rectangles ideterministiovay on this grid, thereby avoid-
ing the privacy loss described above. The grid—based frameworlabdses for an
efficient implementation of the “cut—enclose” procedure described in $eiibl.

8.3 A Grid—Based Solution

A basic method to anonymize location is to reduce the spatial resolution. Thus, in
stead of randomly constructing the anonymization rectangles or buildingdtemre
gles based on trajectories of other moving objects, the anonymization riestdog

all moving objects is built based on a single, pre—defined 2D grid. The fwitpw
subsections discuss the solution in detail.

8.3.1 Grid—-Based Anonymization

Denote the whole 2D Euclidean spacéRdsand proceed to define an anonymization
grid and anonymization partitioning as follows.

Definition 8.3.1 An anonymization grid (briefly, a grid)Gis a uniform grid ofR?
with a pre—defined € R? as the starting point and a side lengtif\n anonymiza-
tion partitioning (briefly, a partitioning) is a set of pairwise disjoint sets of grid cells
covering all ofG

As illustrated in Figure 8.4(a), given a starting poidte R?, the anonymiza-
tion grid (briefly, the grid)G uniformly divides the whole space into square—shaped
grid cells, each of which has side length Each grid cell has an ID value, such as
c1,co,- -+ inFigure 8.4(a). Apartition of a partitioning that is defined on the grid is
a set of grid cells.
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Figure 8.4: Grid—Based Anonymization of Trajectories.

Next, several methods for constructingonymization partitionings based on
the anonymization grid are developed. All of the partitionings are constrdetier-
ministically, thereby avoiding the privacy loss due to overlapping partitions.

Common Regular Partitioning (CRP): The simplest method is to define a single,
regular partitioning that is used by all the objects. A partitioning is cakedlar if

all the partitions are rectangles with side lengihs< [ andi, x [, wherei, andz,
are integers.

Such a regular partitioning can be seen as a coarser grid on the 2D gpmce
illustrated in Figure 8.4(a), given the grid (the grid of thin lines), the partitignin
(the grid of thick lines) is defined by an origin andi, = 3,7, = 3. In the ex-
ample the grid cells, c2, c3 belong to the partitiorp;. With the grid and parti-
tioning, a moving object trajectory can be transformed to a set of nonlappéng
anonymization rectangles to preserve anonymity. For instance, giverafaetory
((a,t1), (b,t2), -+, (h,t7)) in Figure 8.4(b), a grid on the 2D space is built and the
partitioning on the grid is made. The partitions are denoteg as - , pg in the fig-
ure and they are non—overlapping rectangles. As described in Se@igénd@ven the
time delay factop, the whole trajectory is cut into several pieces with-t3 = § and
te — ts = 6. Then, the whole trajectory is transformed into a list of anonymization
rectangles (pa, t1,t3), (ps, ta, ts), (P2, t6, t7))-

The above described partitioning guarantees the same minimal level afypidora
all users in any region of the space. This method of partitioning is termed Common
Regular Partitioning (CRP).

Fundamental spatio—temporal data mining tasks, like finding dense spatio—tempo
ral regions, are based on simple counts or identities of the users thataenpin a
given spatio—temporal region. Since in the CRP model all users repaihe set of
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grid cells for the same location, the spatio—temporal granularity of any pétiend

is lower bounded by the size of a partition. In the example in Figure 8.4(bizke

of the common partition is 9 grid cells, hence the smallest dense ST-regiorathat ¢
be found will be 9 grid cells.

Individual Regular Partitioning (IRP): Not all objects require the same level of lo-
cation privacy. This requirement of individual objects can easily beractodated in
the anonymization grid—based framework. Objects requiring higher lef/plivacy
construct and use a regular partitioning with larger partitions, while objeqtsning
lower levels of privacy define and use a regular partitioning with smallditipars.
This method of partitioning is termed Individual Regular Partitioning (IRP).

Besides being more flexible in terms of the objects’ privacy requirements}Ehe
method allows the discovery of patterns of spatio—temporal granularity tegti
to the size of a single grid cell (if enough data is present).

Individual Irregular Partitioning (IIP):  Objects may have different location pri-
vacy requirements in different regions of space. For example, mosttslfjgsers)
desire a higher level of location privacy when beindiameor thework placethan
when being in transition or when being in other general areas of the cifg ré&h
quirement of individual objects can again be easily accommodated in thegadp
anonymization—grid—based framework. Objects can be allowed to indiycie:
fine privacy levels for regions in space that reflect their needs. &fieition of these
regions can be either manual, or can be aided by discovering frequestumably
sensitive) locations of individual objects. Since the selection or disgaethese
sensitive locations can be accomplished on the client side, it can be kegiepiT his
method of partitioning is termed as Individual Irregular Partitioning (11P).

The 1IP method also allows the discovery of patterns of spatio—temponali-gra
larity that is equal to the size of a single grid cell. The additional ability to define
spatially varying privacy levels not only adds more privacy control,ifistalso ex-
pected to allow the discovery of more patterns with finer spatio—temporaligrég.
This is due to the fact that most objects are expected to require higher dévets-
tion privacy in relatively small subregions. The more detailed patternsxpected
to be more useful for ITS applications.

With the proposed grid—based framework, the knowledge one can lndet the
whereabouts of a user does not depend on the number of samples dollétie
certainty of the inference only depends on the amount of external sfatiperal
information available for the anonymous rectangle.

8.3.2 System Architecture

The grid—based solution is implemented based on a client/server architeétsire.
illustrated in Figure 8.5, the server side has three componentantireymity com-
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Figure 8.5: System Architecture.

ponentwhich defines one or more grids and communicates them to the client, the
storage componenthich collects the anonymization rectangles sent from the clients
and stores the data on disk, and tfe#ga mining componenwhich discovers certain
patterns and rules either directly from the incoming data stream or from tioeitad

data retrieved from the storage component.

The clients are responsible for accepting an anonymization grid and gewglo
a partitioning based on the grid. In practice, the partitioning will be made in bne o
two ways: a) the user selects among a small number of pre—computed pargisionin
to find one that meets their privacy requirements, or b) the partitioning is dehpu
by a dedicated program on the

client, based on user input about privacy requirements. Both a) aa#idonvail-
able background knowledge into account. The framework can alsdehtredpres-
ence of road networks. If road networks are dense compared to ttigopasize,
the framework can be used without modification. If not, the partitions haveto b
enlarged so that each partition contains enough road to get a locaticabpitylihat
is comparable to those of the other partitions.

These client— and grid—specific partitionings are stored on the clients dynd on
anonymization rectangles (in the form of sets of grid cells), which are ctedpt
the clients are transmitted to the server. It is assumed that the client has a fair amount
of storage and CPU power, but not more than what can be found in moshdy
available smartphones or PDAs.

Saving a partitioning at the client side does not take much space. Forlarregu
partitioning, where partitions form a regular grid, it is enough to store thérgia
point and the side length of the partitioning. Finding the partition that correspo
to a location is a matter of simple arithmetic. For a non—regular partitioning, where
partitions do not form a regular grid, i.e., are of different size and/apshpartitions
can be kept in an R—tree. Finding the partition that corresponds to a locatiobe
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done by issuing a stabbing query on the R—tree for the location. The coratianic
cost between the clients and the server is very low since the grids carstebee
with the starting point and side lengtlof the grid, and the anonymization rectangles
only involves a few data fields (i.e., coordinates of the client’s currenitioarand
the time instances).

The clients always send their current anonymization rectangle, i.e., partition
the server. When the anonymized data is transmitted to the server, it is stored it
two places. To be able to perform data mining on historical data, the datatis firs
stored in a time—interval R—tree (TIR—tree in Figure 8.5) on disk. The Tée-ir a
1-dimensional R—tree that indexes the data on the time intervals. To be able to pe
form online data mining on the current data, the data is also storeddnle with a
FIFO replacement policy as follows. According to the size of the cachepwmew
anonymization rectangle of a moving object arrives, either the previousyamza-
tion rectangle of this moving object (if in the cache) or the oldest data in thedac
deleted.

The system architecture in Figure 8.5 supports data mining on both historical
trajectories and recent data. Each anonymization grid in the anonymity cemipon
corresponds to an in—-memory instance of the same grid in the data mining compo-
nent. For instance, the anonymization g@dn Figure 8.5 corresponds to the data
mining gridG’ (it is assumed that the data mining component has enough memory
to storeG’). Based on this architecture, in the following, algorithms for discovering
dense ST-aream the anonymized trajectory data is presented.

8.3.3 Finding Dense Spatio—Temporal Areas

Discovering dense areas is one of the most common topics for spatial atio-sp
temporal data mining. Existing research work has explored density clugs{20h,
spatio—temporal dense area discovery [95], and density queriesH60tlense area
discovery on the anonymized trajectory data, the most basic operation id todise

grid cells that contain a large amount of moving objects during specified time inter
vals. In the anonymized format, objects are present in a grid cell with goote
ability only. Hence, d&ime interval probabilistically dense spatio—temporal area
query, or dense ST-area quefgr short is proposed, which can be seen as a basic,
atomic operation for advanced dense area mining algorithms over the anatipmiz
grid. Such advanced and complex data mining algorithms can be made by kisgemb
this operations with other basic query types.

Specifically, suppose a moving objectorresponds to a partitioR on a given
anonymization gridG a partition cellp € P containso’s trajectory during time
interval [ts, t.], andp includes grid cells:, ca, ..., cx. pis used as the anonymiza-
tion rectangle foro's trajectory and each grid cetfi € p has the location proba-
bility ¢¢.LocProb = 1/k for o at any time instance durings, t.|]. Let O% be the



8.3 A Grid—Based Solution 145

set of moving objects whose anonymization rectangles include the grid; delat
least one time instance during the time interialt.]. Thenc;.count = |O%| and
ci.prob = 3 coe; ¢f.LocProb/|O%]. Intuitively, ¢;.count is the maximumnum-
ber of objects thatan be insidec; during [ts, t.], while ¢;.prob is the averagelo-
cation probability of the objects that can be insideluring [¢5,t.]. Consequently,
¢i.prob X ¢;.count is theexpectechumber of objects inside during|[ts, t.]. Further-
more, thepattern certaintye;.cert = [ [ coe: ¢f.LocProb is defined as the probabil-
ity of actuallyhavinge;.count number of moving objects inside ef during [¢, t.].

A grid cell ¢; is said to beprobabilistically dense during [ts, t.] if ¢;.count >
min _count andc;.prob > min _prob , for some given threshold valugsn _count
andmin _prob . Thus, thedense ST-area querys formulated as follows:

Definition 8.3.2 A dense ST-area queny = ([ts, te], min _count , min _prob )
retrieves all the grid cells whose correspondingnt andprob values duringts, t.|
are greater than or equaltain _count andmin _prob , respectively.

To process a dense ST-area query, the first step is to computativeandprob
values for each grid cet}; for the specified time intervad,, ¢.]. Based on the system
architecture in Figure 8.5, a range query over the TIR—-tree needs teusalito find
all the anonymization rectangles whose time periods have intersectiong with.
Results of the range query are used to fill in thent andprob values for each cell
¢; of the data mining grids’ . Then the set of dense ST—grid cells is:

D = {¢; : ¢;.count > min _count A ¢;.prob > min _prob }

During the query time intervdk,, t.] a moving object can leave and later reenter a
given grid celle;. To avoid counting such an object multiple times égra hash array

of object IDs is maintained and values farcount and ¢;.prob are only updated
when an object ID is encountered fgrfor the first time. If only approximate counts
are considered, these can be more effectively obtained using the méthd90].

As it will be seen in Section 8.4, the cut—off criteria for dense areas piede
above is in some cases not strict enough, thus generating too many dessgalse
positives). To remedy this, the alternatsteepest slopeut—off criteria is introduced,
which is calculated by first sorting the expected counts for dense aasasgp the
first criteria in descending order, finding the deltas between any twaecatige val-
ues, and making the cut—off where the (negative) delta is the smallest, i.ee thbe
“slope” is steepest.

The above method is simple to implement but can not discover all the dense area
that have the size of a single grid cell. As illustrated in Figure 8.6(a), grid cells
c1, ¢2, c3, ¢4 have several moving objects (big dots in the figure) and the threshold
min _count = 4. None of the four cells are reported as dense sincedbtvalue
of each is less than 4.
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To overcome such loss of results, the server provide several anaatjonigrids
with different starting points (and perhaps side length values) and digtrthase
grids to the moving objects so that there are in equal amount of moving objatts th
build their partitioning based on each of the anonymization grids. Nhiki—Grid
approach can capture the answer loss that occurs with a single gridofa & Fig-
ure 8.6(b), the dense junction area of the four cells can be capturea lolatk cell
belonging to another grid. Thiglulti-Grid extension of the anonymization frame-
work is left for future work.

The time interval dense ST-area query can be seen as an atomic opevation o
the anonymized trajectory data. Advanced and complex data mining funcaons c
be made by assembling this operations with other basic query types.

8.4 Evaluation

To evaluate dense ST—area query algorithms, Brinkhoff’'s netwodeebgenerator

of moving objects [8] is used to generate trajectories on the Oldenburg mke0o

to 3000 trajectories are generated for the time period fi@to 100 and sampled at
every time unit. To capture the real world time span between two consecutive time
instances, for all the trajectories, the average distance between ewesylaequent
reported locations is calculated. The average distan284i96m, which is about

14 seconds travel time for @km /hour moving object. Thus, the actual time span
between two consecutive time instances is aldldwgeconds. The default time span
for all the queries arg0 time instances.

To implement the grid—based solution, the anonymization grid is generatedi base
on the minimum bounding rectangle (MBR) of the Oldenburg network. A rarkge
chosen anonymization partitioning based on the grid is assigned to eadlatgene
trajectory .
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The default grid is @0 x 40 partitioning on the MBR of the Oldenburg network.
Based on the Oldenburg network data, the size of each grid ¢&lbis x 672.9m.

In the experiments, the grid partitioning is also tuned fr2inx 20 to 50 x 50 to
observe the performance. The three policies are applied on the trajectattiethe
anonymization grid. To implement the CRP policy, two fixed partitionings are made,
where each user h&sx 2 or 4 x 4 grid cells. In the IRP policy, every user partition
contains at most x 4 grid cells. In the IIP policy, each moving object is set to use the
anonymization partition (each partition contains at miost4 grid cells) that covers

the start location of the moving object. After the object is out of this partitiorsésu
the lowest level of privacy so that each partition equals to a grid cell.

The experiments focus on evaluating the accuracy of the algorithms, i.e., the
amount of false positives and false negatives. A false negative, igthedcd not
finding a pattern that does exist in the data. A false positive, is the erfordifig a
“pattern” that does not exist in the data. To compare the algorithms, thethiger
are also applied on an ideal case, where the partitioning of every usalseihe
anonymization grid, and use the results of this case as the evaluation tangetss
the actual amount of dense grid celldlis the number of false positive and false
negativesV are collected for every algorithm and the ratio between these values and
D are reported, called tHalse positive ratdFPR) andalse negative ratéNR), re-
spectively. The choice of these measures over the precision andmeealres used
in information retrieval is because of conceptual simplicity. In the preses# differ-
ent kinds of errors are related to the same reference set (D), vehiergdormation
retrieval the same set of correctly retrieved patterns are related to tbéaktrue
patterns (recall) and to the set of retrieved patterns (precision). Hewre accurate
results are characterized by lower error rates rather than by higtedl aad preci-
sion. However, it holds that Recall=1-FNR and Precision=(1-FNFJNR+FPR).

In the experiments, theountandprob values are tuned to observe the amount of
false positives and false negatives. Experiments have also beerctedtiutest the
effect of grid size, time span and amount of trajectories on the accukacseen in
Figure 8.7(a) to Figure 8.7(e), there are very few false negativesh@namount of
false positives grows in certain cases. In particular, based on Figi(a) 8with the
growth ofcountvalues, more false positives appear. With the experiment oprttie
value (Figure 8.7(b)), it is possible to reach an optimal situation by tuningptbls
value for each policy. For instance, the IRP policy has fewer false pesitvhen
prob= 0.1 and so has IIP wheprob= 0.3. An observation from Figure 8.7(c) is that
the amount of false positives grows with the grid size. The explanation iistlas
follows. As the grid becomes denser, there are fewer really denseaiisd lout the
amount of dense cells found through the three policies does not deargsmuch,
so the reported ratio value becomes larger. Figure 8.7(d) and Figue3 8hiow that
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Figure 8.7: Experiments on Dense ST-area Query.
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the increase of the time span and the amount of trajectories reduces thetafoun
false positives for all the policies.

To test how the steepest slope cut—off criteria influences the algorithmexuhée
andprobvalues are tuned to observe the amount of false positives and falde/agga
on the different policies. As illustrated in Figure 8.7(f) and Figure 8. % cut—off
criteria decreases the amount of false positives but, compared to the edimgssn
Figure 8.7(a) and Figure 8.7(b), brings more false negatives. Tbusjdering all
the parameters for the three policies, the following are¢semmendationsettings
for the dense ST-area query:

The IIP is the most effective policy for doing dense ST—area query witagyriv
protection. The second and third best choice is the CRP policy2with partitioning
and the IRP policy. For all the policies, certain optimal situation on the amount
of false positives and false negatives can be reached by tuning the prad VEdu
increase the time span and amount of trajectories will improve the perfocenaf
all approaches.

Based on theecommendation an experiment is conducted to compare the dif-
ferent policies with their optimal settings. In this experiment, the amount of trajec
tories is increased t®000 and optimalprob values are used for each policy. Fig-
ure 8.7(h) presents the results. The CRP policy with each partition cont&nirng
cells and the IIP policy shows the most promising performance. These toiego
guarantee a precision level that makes them useful for most applications.

8.5 Conclusions and Future Work

Motivated by the possible loss of location privacy for LBS users, thieppmposed
a general grid—based framework that allowed user location data to Ingrarzed.
Thus, privacy is preserved, but interesting patterns could still be \cksed. The
framework allowed users to specify individual desired levels of pyiaed devel-
oped three policies for implementing that. Privacy—preserving methods prere
posed for a core data mining task, namfilgling dense spatio—temporal regiosn
extensive set of experiments evaluated the methods and showed thatntiesvrk
still allowed most patterns to be found, even when privacy was preserve

Future work will be along three paths. First, tiealti—-Grid approach will be fur-
ther investigated as it offers a direction for getting more detailed data mininjses
without violating the privacy. Second, in addition to the CRP, IRP and IlIRigs,
it is possible to develop more policies for creating anonymization rectangtablsu
for different real world situations. Third, since the grid—based solutgnbe seen as
a simple and general framework for privacy preserving data mining omngabject
trajectories, hance the framework is planned to be extended to supperknds of
spatio—temporal data mining algorithms.






Chapter 9

Privacy—Preserving Trajectory
Collection

Context awareness is one of the most important features of useryriemchtion—
Based Services (LBS). To support context awareness in LBS#dpoation data of
mobile users has to be collected so that spatio—temporal patterns can logeeXina
data mining methods. This brings a new conflict of interest: the data mining meth-
ods want precise location data, while the mobile users want to protect theicyr

by not disclosing their exact movements (trajectories). To resolve theatottile
paper first formally defines novel location privacy requirements. Thepresents

a system for privacy—preserving trajectory collection that meet thegereenents.
The system is composed of an untrusted server and clients communicatin@h a P
network. Location data is anonymized in the system using data cloaking &ad da
swapping techniques. The proposed system is empirically evaluatediisticesm-
ulated movement data and is found to be effective under reasonabligi@osidnd
privacy/anonymity settings.

9.1 Introduction

The convergence among mobile services and positioning technologiesthavwgay
for a range of new, innovative services, which are commonly reféorad Location—
Based Services (LBSes). Emergence of LBSes creates a demamddébdata man-
agement technologies to efficiently support new data types, operatiothayak-
loads. Context awareness, as one of the most important features e[ BSnte-
grated in mobile devices so that these devices have information about thecirc
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stances under which they operate and can react accordingly. Torsugmtext
awareness in LBSes, real location data of mobile users has to be collectiedt s
spatio—temporal patterns can be extracted by data mining methods. This &rings
new conflict of interest: the data mining methods want precise location daile, wh
the mobile users want to protect their privacy by not disclosing their axave-
ments. The following example describes the problem scenario.

A large shopping center wants to do data mining on the activities of customers in
business hours. One type of customer activity is where and when custoreer in
the shopping center. To collect the activity information, it is assumed thatiigo
ing system such as GPS, radiolocationing, or RFID detects the locations ofish
tomers’ mobile phones. Customers locations are recorded in the phoneerartd
a central server. The central server then collects and analyzesstioengurs’ spatio—
temporal location data. However, it is a violation of privacy &myone including
the server, to know exactly when and where an individual customerTias, a so-
lution that can collect the activity information from mobile phones without exjgps
the privacy of users is desirable.

Movements of mobile users are often modelled as trajectories in 2D space. Data
mining on the trajectory data has many applications, not only in LBSes, buiralso
telematics and Intelligent Transportation System (ITS). Methods havedreposed
to extract patterns, such as dense regions [47,59] and frequéasi@2] from the
trajectory data. An existing solution for protecting the location and trajectaty d
in LBSes is to anonymize the users’ location data by decreasing the spatioremp
resolution of the locations. After this “anonymization” step, the exact locataia
becomes a set of spatio—temporal rectangles. Although such ambiguitgtpribte
mobile users’ privacy, it also reduces the accuracy of the data mininfjges

Motivated by these observations, this paper defines new privacireeuents for
location/trajectory data and presents a system for collecting mobile uséestonry
data in a privacy—preserving manner. Compared to existing solutionsraheged
system does not require trusted components, yet it protects the pofuanpile users
and preserves the accuracy of data mining by keeping the spatio—terdptaah-
tact. The proposed solution assumes that clients on mobile phones can coataunic
through a wireless P2P network. The process of trajectory collectionidediin five
stages as follows. First, in thient registrationstage, a group of clients obtains
permission and parameters from the server for executingdfextory sampling and
anonymization;-thetrajectory exchange-and thedata reportingstages in a multi-
threaded fashion. In thieajectory sampling and anonymizatistage, clients record
their private trajectories and generate a set tfloaking” trajectories to anonymize
their actual trajectory. In th&ajectory exchangatage, clients exchange setskof
partial trajectory pieces with other clients in the P2P network. Finally, irdtta
reportingstage, clients send anonymous partial trajectory pieces to the serveg. In th
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meanwhile, in thedata summarizatiostage, the server continuously listens to data
reports from clients, assembles the trajectory pieces and filters out tlakéclotra-
jectories. An extensive experimental evaluation, based on realistic simtiajec
tory data, shows that the proposed approach is effective undemedale conditions
and privacy/anonymity settings.

The contributions of this paper are believed to be as follows. First, ther pape
adapts and combines previous general privacy definitions to derivacprdefini-
tions of various strengths for location data. More specifically, the paghmetk—
anonymity a—diversity requiring spatial diversity, ank-a—anonymityfor location
data. Second, the paper proposes a complete system, including algorithimgpéa:
mentation details, for thimsslesscollection ofexacttrajectories of moving objects.
The proposed system does not require trusted components, yetantges at least
k—anonymityin all parts of the collection process. The proposed systesnatable
as the process of anonymization is performed in a distributed fashion bysdlmer-
acting via a P2P network. The security of the proposed system is evahradeitie
system is found to be robust against a wide variety of attacks by malicioussctie
a malicious server (if itis hacked). In particular, the system is shown tagtee the
anonymity of the client data on both the client and the server side and any tiig du
transmission in the air. Finally, the paper demonstrates through an extengde-
cal evaluation that the proposed system is effective under reasarataéions and
privacy/anonymity settings.

The rest of this paper is organized as follows. Section 9.2 exploresdelai.
Section 9.3 discusses the basic concepts relating to location privacy. ré@etide-
scribes the proposed solution in detail, while Section 9.5 analyzes theypgvatan-
tee of the solution. Section 9.6 presents the empirical evaluation. Finally, $8cfio
concludes and points out future directions for research.

9.2 Related Work

The topic of privacy preserving data mining [4] has appeared due tootiheen of
protecting privacy in the data collection and dissemination steps of data mirang pr
cess. The database and data mining research communities have beetiveriy the
discussion of privacy—preserving data mining. Important techniquésdagertur-
bation, condensation, and data hiding with conceptual reconstructiepdper [96]
presents a good review of these techniques. The techniques behirmdplosed so-
lution follow the spirit of two common strategies used for privacy—presgrdiata
mining, namely dataloakingand datsswapping

Several papers [12, 43, 44, 74] have addressed the topic otprpeeserving
location—based services. These papers assume an architectura wieeeof trusted
middleware, often termed aanonymizer exists between mobile users and LBS
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servers. Based on the query requests from mobile users, the anongomizgructs
anonymity rectangles that include the locations:afsers and sends a query to the
LBS server with this rectangle as the location. The LBS server returnpersat
of the results and final results are filtered by the anonymizer and sektdaach
LBS user. Compared to these papers, the architecture proposed ingbigipas not
require a piece of trusted middleware. In fact, the anonymization procdssésat
the client side through the P2P network.

The proposed solution is focused on the data modification of the collected use
data. In the existing papers, the data modification techniques used in thavdanen
are based on the ideas of aggregation and perturbation. In particaersy43, 44]
extend thek—anonymity model [89] in relational databases to aggregate the locations
of &£ mobile users so that the location of an individual user is not distinguish@hée.
adaptive location anonymizer discussed in [74] uses a grid—baseahigystructure
to put the exact location of mobile users into cloaking rectangles made ofeléd c
Paper [12] suggests a data model to augment uncertainty to location dhpeppnse
imprecise queries that hide the location of the query issuer and yield pliebab
results. Compared to these existing techniques, the architecture in thislipagarot
use an anonymizer but distributes the anonymization step to client—side computatio
and communication. In previous work [35], a grid—based frameworlpfivacy—
preserving data collection is proposed. This framework protects thecgrof mobile
users but also blurs the exact collected spatio—temporal locations whichrioéls
the accuracy of data mining results. To keep the quality of the collected datautvith
violating the privacy, this paper proposes a novel data modification apipitmased on
the idea ofswapping[96]. Similar to the architecture described in [13], the present
solution assumes the existence of a P2P network. As it will be shown later, the
technique behind the present solution, compared to the aggregationréuntbaigon
techniques, does not introduce any ambiguity into the location data, which uliymate
guarantees the precision and quality of the data mining results.

9.3 Preliminaries

For the simplicity of the discussion, assume that the time doffidgértotally ordered
and use the non—negative numbers as the time domain. Denote each movingebje
adata item A data item is modelled as a two tuple= (id, S) whereid is the iden-
tity attribute value of the data item attis the trajectory ofli. It is modelled as a se-
quence of tuple$ = ((loc1,t1),. .., (locy, t,)) whereloc; € R? (i = 1,...,n) are
locations, and; < t2 < ... < t, € T are (possibly irregularly spaced) temporally
ordered time instances. Nexttrajectory piecds defined as a subset of a trajectory
ordered on the time domain. For instanSe= ((loci,t1), (loca, t2), . .., (lock, tr))
and Sy = ((locky1, tk+1), (lockra, tiya), ..., (locy, t,)) are two trajectory pieces
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of S = ((loci,t1),. .., (locy, t,)). For a given data iterdi = (id, S), bothdi; =
(id, S1) anddiy = (id, Sz) (with di;.id = dis.id = di.id) can represent part of the
trajectory ofdi. di; anddis are calledpartial data itemsor itemsfor short.

A simple way of protecting trajectories of mobile users is to hide the identity of
users in the data items. Specifically, given a data it&mS), by hiding the identity
(e.g., encoding thé&d value), it is impossible to deduce the mobile user fromithe
value. However, an adversary can still study if a given data item qwnrals to a
specific user by cross—referencing from other public information hewser (e.g.,
work address, home address, etc.). If a trajecovers many relevant addresses
of a user, it is possible that the data it¢id, S) describes the trajectory of this user.

As described in related works, a dominant technique for protecting thelspa
and spatio—temporal locations of users is to keep each user’s locationgnaous
among a set of other users. This so—cakednonymitytechnique is also applicable
to protect the trajectories (and, trajectory pieces) of mobile users. Tiogviiog
defines th&k—anonymity of data items

Definition 9 (k—anonymity of data itefhg=or a set of moving objectM O =
{o1,...,0m} and a set of data iten8Z = {(idy, S1), ..., (idn, Sn)}, m < nwhere
idy, ..., id, are encoded identity values a8y, ..., S, are trajectory pieces, the
moving objects and the data items are said to presera@onymityif both of the
following conditions are true:

1. For any objecb, there are at leagt data items(id}, S7), ..., (id}, S},) that
correspond to this object with equal probability.

2. For any data iterfid, S), there are at leagtobjectso!, . . ., o} that correspond
to the data item with equal probability.

Thek—anonymity of data itenpgeserves the anonymity when an adversary matches
trajectories to specific moving objects. However, in an extreme case, wadrath
jectories of moving objects are almost identical (e.g., cars moving on the sad ro
in the road network), the spatial and spatio—temporal privacy of thgeetshs still
exposed as the possible locations of each object can be narrowedatwencom-
mon parts of the trajectories. To improve the protection of the trajectories ahmov
objects, as in the general privacy protection framework [69], it is s&ay to re-
quire that these trajectories possess a certain spatial diversity. Headaxfinition
of a—diversityis introduced in the following.

Definition 10 (a—diversity of data item)d~or a set of data itemBZ = {(id;, S1),. ..,
(idy, Sp)} whereidy # idy # ... # id,, a given threshold, these data items pre-
servea—diversityif AREA(MBR({S1,...,Sn})) > «, whereMBRis the minimum
bounding rectangle of4, ..., S, andAREAreturns the area size of an MBR.
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Next, combining the definitions dé—anonymityand a—diversity a more strict
setting to protect the privacy the data items is presented, nametydh@nonymity

Definition 11 (k—-a—anonymity of data itemig-or a set of moving object3&1O =
{o1,...,0m} and a set of data iten®Z = {(id;, S1), ..., (idp, Sn)},k < m <n
that preservék—anonymity and a threshold valua, the moving objects and data
items satisfyk—-a—anonymityif the following condition is true. For ang data items
(idy, S1),- .., (idy, S;.) € DI, these data items preservediversity

The k—-a—anonymityis a more restrictive requirement to preserve the privacy of
moving object trajectories. In particular, given arvalue, it is not guaranteed that
the k—a—anonymitycan be achieved by the setskefanonymoumoving objects and
data items. For example, consider a groug dfivers living in the same suburb area
and working in the city center. The set bfdrivers and their corresponding set of
trajectories isk—anonymousHowever, since it is very likely that the trajectories of
these drivers are quite alike, the MBR of these trajectories is likely to haeeean
that is smaller than any reasonable valuedorHence, the set of drivers and their
corresponding set of trajectories do not satikbp—anonymityfor any reasonable
value ofa. The diversity of spatial and spatio—temporal locations is decided by the
mobile users.

The aim of the herein proposed data collection solution is to preserve aitgny
of data items (or partial data items) in any set of data being stored, transmitted or
collected in the system. As described later, the solution pres&rasonymityin
all sections of the system and achievedliversityor k-a—anonymityin the parts
that are more vulnerable to privacy threats. In the following details of tbpgsed
solution are described.

9.4 Solution

The proposed solution is for a scenario in which users have mobile plegoggped

with a positioning device and these mobile phones can communicate with each other
through a P2P network. Such a scenario is very reasonable in read-applications

that are fuelled by technical advances such as the development ofdmags with
embedded GPS devices and the widespread availability of WiFi and Bluetoath,

the scalability and robustness of the P2P application design paradigm. Agstiinaiin

the solution aims to preserke-anonymity a—diversityand k—a—anonymity(with k&

anda as concrete values) in all aspects of trajectory data collection, the following
subsections describe the architecture of the proposed system andiledidatgacy
preserving procedures.
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9.4.1 System Architecture

The proposed system involves a server side application installed at alcssrirer
and a client side application that is installed at each mobile phone. Each @at h
profile that keeps its settings on the client side application. The client sidieatam
can connect to the central server through a mobile connection protortobs SMS,
MMS or GPRS. Each client side application is also able to communicate with other
client applications through a wireless P2P network such as WiFi or Bluet&aith
client side application is called@ient and the server side application is called the
server Theserverincludes two processeserverregandserversum which are kept
running during the whole lifetime of theerver Theclient, once activated, starts a
single process, namelfient proc. The top—level algorithm oflient proc is listed
below.

(1) procedure client proc (server, phone_no, k, o, \, L)

(2) (Ts, 7, Tmax) < register(server, phone_no, k)

(3) idy,ids,...,id; —genhashlDphone_no, k)

(4) while now() € [Ts,Ts + 1)

(5) DB —sampleanonymizé{idy, ..., idg}, k, a, A)
(6) exchangék, DB, TRUFE)

(7) toid < past_time(DB)

(8) if (size_of(DB) > L) U (now() — told > Tmaz)
(9) report(server, DB)

(10) if size_of(DB) < k x num_of_peers(k)

(11) exchangé:, DB, FALSE)

(12) else: report(server, DB)

(13) return Qg

Among the parameters afient proc, server andphone_no specify the server ad-
dress and the client’'s phone number, &nd, A, L are kept in the client’s profile. The
valuesk, o specify the user’s requirement &a—anonymity A and L are described
in the following. In the pseudo code ofient proc, the variableDB is a database of
all trajectory pieces in the current instancectiént proc.

With the three processeserverreg, serversumandclient proc, the whole sys-
tem can be summarized into five stages, namelclight registration 2) trajectory
sampling and anonymizatioB) trajectory exchange4) data reporting and 5)data
summarization As depicted in Figure 9.1, at stage 1, a client A sends a registration
request to the server (line 2 ofient proc). The server procességrverreg) accepts
the request and assigns the time and period that the client should stadrdimie
other steps otlientproc. Upon receiving the approval from the server, client A
starts stage 2. At this stage, client A generates a detldferent ID values (line 3 of
clientproc). One of these ID values is selected as the ID of the actual trajectory and
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Figure 9.1: System Architecture.

the others are used as the ID values of synthetic trajectories (explained TEbe
synthetic trajectories with these ID values are calleddioaking trajectory data
Client A begins to record its trajectory data and generate the cloaking tngjelztta

(line 5 of client proc). The parametek of client proc specifies the time interval for
cutting the collected trajectory and the cloaking data into trajectory piecespa-he
rameterC' is used in therajectory sampling and anonymizatistage to specify how

the synthetic trajectories should be generated. Then, at stage 3, thheugBP net-
work, client A communicates with clients B and C to exchange the anonymized data
(line 6 of clientproc). Thetrajectory sampling and anonymizati@nd trajectory
exchangesteps are kept running until the period specified by the server is re¢ache
(the while—loop ofclient proc). At stage 4, when alient has reached its storage
limit (specified by the parametdr of the client proc) or if it has a very “old” piece

of trajectory data, this client reports its data to the server (lined@iefit proc). The
stage ofdata reportingalso happens when clients are at the end of the activation pe-
riod (lines 10-12 otlient proc). In Figure 9.1, clients A, B choose to transmit their
collected data to other peers in the P2P network (line 1dient proc) and client C
sends its the data to the server (line 1ZIént proc). Finally, at stage 5, the server
processerversumsummarizes the data from the clients, filters out the synthetic tra-
jectory data and computes the real trajectory data. The next subsectiscribes
details of these stages.
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Figure 9.2: Client Registration.

9.4.2 Client Registration

Each client must start with thedient registrationstep. At this step, the functiargis-
ter(server, phone_no, k) sends a registration request message tséneer together
with its phone number and thievalue.

At the server side, when the proceserverreg receives a request message, it
saves the request in a FIFO buffer. This process also maintains the maxualale
of all these requests, denotedkas,... When the FIFO buffer has,,., elements, the
serverreg process sends out messages to each of the:first registration requests,
removes all elements from the buffer, and dgts, = 0. As illustrated in Figure 9.2,
each of the clientsly, ..., A, sends a message withone_no, k. When the amount
of tuples in the buffer is equal to,4., i.€., m = max(ky, ke, ..., kny), the server
sends approval messages to theseobile phones. An example approval message
can beTs, 7, qe WhereT, denotes the time that the client should continue with
other steps oflient proc, — describes how long each client should keep running these
steps, and,,.. specifies a time period that will be used in tient procto start the
data reportingstage. In reality, the value af reflects the average time period that a
client is active, e.g., the average time span that customers spend at aghumgyier.
Without loss of generality is a static threshold value stored at the server. However, it
is possible to implement as a dynamic value. For instance, each client can send the
registration request message with an anticipated active time period. Thegri¢ke s
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can organizé: clients into a group if they have similar active time periods and use
the maximal of these time periodsasor clients of this group.

9.4.3 Trajectory Sampling and Anonymization

At this stage, a set df different ID values are generated at the client. To ensure that
the k£ values are unique among the other ID values generated at differemdasta
of the clients, in the functiogenhashliD (line 3 of client proc), the Secure Hash
Algorithm (SHA) [88] is used to generate the ID values. The input to the SHA
function is a combination of the phone numbépne_no and the current timestamp.
If the input values are unique, based on the properties of the SHA fusctibe
generated hash values are also unique among all instances of the clidtitsugh
recent research [99] has found an attack in which two separate nesssagid be
found that deliver the same SHA-1 hash us¥igj operations, stronger versions of
SHA, such as SHA-256 and SHA-512, can be used to further improsetuity
of the hash function.

Take client A in Figure 9.1 as an example. Suppose tkdBevalues generated
at client A areid, ido, . . ., id;. Client A randomly decides one of thebealues as
the ID value of the collected trajectory. In teampleanonymizdunction started at
thetrajectory sampling and anonymizatistage (line 5 otlient.proc), without loss
of generality;id; is used for the collected trajectory, denoteddyy and the other ID
values are used for the synthetic trajecto$gs. . ., S,. This function collects the
trajectory of the client and adds synthetic trajectories for anonymizing thextex
data. The pseudo code is listed in the following.

(1) procedure sampleanonymizé{idy, . .., idy}, k, a, A\, C)
(2) S; «sampletrajectory()

(3) Sa,...,Sk < gentrajectory(k, o, C)

(4) atevery\interval:

(5) foreachS;,i=1,...,k

(6) S! «—getpiecq.S;, now() — A, now())

(7) ny—2z;n9,...,np «—22+1:2€Z"

(8) add(idy, S}),.. ., (idy, S;) to DB

(9) return DB

In this algorithm, while the trajectory daf is being sampled by treampletrajectory
function (line 2), client A also generates- 1 synthetic trajectorieSs, . . . , Si (func-
tion gentrajectoryin line 3). Thesampletrajectory function collects the actual lo-
cations at every unit time instance. Then, at every time intexyalient A applies
the get piecefunction on the trajectorieS;, ..., S; and gets the trajectories pieces
for time [now() — A, now()). The interval\ is one or more time units and function
now() gives the current unit time instance.
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now()

Figure 9.3: ThegetpieceFunction.

As illustrated in Figure 9.3, thgetpiecefunction cuts the pieces during time
interval[now()—A\, now()) on each of the three trajectorifs, Sa, Ss. The trajectory
pieces betwee(p1, q1), (p2, ¢2), (p3, ¢3) are denoted by}, S5, S5. Tuples(id;, S1),

(idg, S), (ids, Sy) are added t®B (line 8). The tuplgid;, S}), whereid, is the ID
value of the actual trajectory; andS; is obtained fromSy, is called thereal data
item The other data item@do, S5), .. ., (idy, S}.), are callectloaking data items

To distinguish the real data item among all the data items, the client generates
an even number of copies of the real data item and an odd numbers of obpie
cloaking items. The idea of having copy amounts of the data items with different
parity is to hide the real data items in exchanges between clients, but to be able to
identify them at the server. Specifically, given an instanck déta items, one with
an even and — 1 with an odd number of copies, it is impossible for a client holding
some, but not necessarily all, copies of a data item to decide whether thitedata
is real or cloaked. Accordingly, on line 7, one even)andk — 1 odd (na, . .., ng)
copy amounts are calculated; each valydetermines the number of copies of a data
item (id;, S;). Finally, copies of the data itentsd,, S7), . . ., (idy, S},) are added to
the trajectory databageB (line 8).

In the gentrajectory function, synthetic trajectorie$,, . . ., S, are generated in
two steps, i.e., generating locations at the current time instance and geméoatin
cations at the next time instance. Suppose the collected locatiSn &t the first
time instance iz, y;) in the 2D space. As illustrated in Figure 9.4(a), two line—
sweeping processes are running at both the X and Y axes. Eaclspmacelomly
chooses an X or Y value outside the inter{a] — /o, z1 + /a] on the X axis
or [y1 —va,y1 + /o] on the Y axis. The intersection of the two sweeping lines,
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Figure 9.4: Generating the First Locations.

(x2,y2) Is the location of the first synthetic trajectofy at the first time instance.
First, locations of the other synthetic trajectories are generated in the samésva
illustrated in Figure 9.4(b)z3, y3) is the first location ofS; wherezs is outside the
interval [z1 — /o, x1 + /a] U [z2 — Va, z2 + y/a] on X axis andys is outside the
interval[y; —v/a, y1 ++/a]U[y2 — v/, y2 ++/a] on 'y axis. Based on the description,
the following Lemma 1 holds for the first set of generated locations.

Lemma 1 If (x1,y;) is the actual location angs, y2), . . ., (zx, yx) are generated in
the described way then:V(x;,v:),(zj,y;), t,j = 1,....ki # j

The next locations obs, . .., Si are generated in the following way. When the
next location(z’, y;) of the actual trajectory; is sampled, two line sweeping pro-
cesses on the X and Y axes are started to generate the next locati®ns .of Sj.

As illustrated in Figure 9.5, to generate the next locatioygfthe sweeping lines
start fromzy andys on the X and Y axes and find value$, v, on the two axes
that are outside the intervals| — /o, 2} + /o] and [y} — Vo, y; + V/a]. The
selectedr), andy), values are kept as closetg andys as possible, i.e|x), — za| <

& X |2h — 21, |yh — y2| < & X |y; — 1. The valueg,, &, are tuned incrementally

to decide ther, andy/, values. The rationale of this incremental process is to keep
the speed vector of the generated trajectory as similar to the actual sppessas
ble. The next locationges, v3), - . ., (2}, ;) of S3, ..., Si, are generated in the same
way. Similar to the first locations of the trajectories, the synthetic next locatiolds

for the following Lemma 2.
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Figure 9.5: Generating the Next Locations of Synthetic Trajectories.

Lemma 2 Assume the second locatioris’, v;), ..., (z},y;) of each trajectory
S1,..., Sk where(z!, ;) is the actual location antls, y5), . . ., (z,y;) are gen-
erated in the described way, ther(z}, v;), (z},y),4,j = 1,..., k,i # j such that:
AREA(MBR((x},y}), (), 4;))) > c.

Following the same way, subsequent locations of the synthetic trajectogigear
erated. Based on Lemma 2, the area size of the MBR on every two locations of
trajectoriesSs, . .., Sy at the same time instance is greater thanVith Lemmas 1

and 2, the area size of the MBR on all the trajectofigs. . ., .S;, is greater tharv.

When the functiorget pieceexecutes on the trajectoriés, .. ., Sk, the collected
trajectories pieceS’, ..., S satisfy the following lemma.

Lemma 3 Assume the data itemgd;, S1), . . ., (idk, S},) are generated by function
get_piece, then the area sizes for all of the MBRs of the trajectory pieties. . , S;,

is greater thamv and for any two trajectory pieces, S},z‘,j =1,...,k,i # j, the
area size AREAMBR(S!,S")) > a.

17

Based on Lemma 3, when the data items are added to the trajectory ddd@hdise
MBR of all the trajectory pieces has an area size bigger tha®ince there are at
leastk data items in th@®B and these data items hakdaifferent ID values, all the
data items aDB preservek—anonymityas well aso—diversitywhen a new group of
data items are added BB.
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Figure 9.6: Trajectory Databa&B with Collected / Generated ltems.

An example trajectory databa&B is illustrated in Figure 9.6. Each tuple in
DB records the ID value, the partial data item (trajectory piece), and the arabun
copies of this item. Figure 9.6 shows the stat®8ffor a client that since thelient
registrationstep has, in sixrajectory sampling and anonymizatisteps, added six
sets ofk data items (with 2 and 3 copies) to IB. The most recently added data
items arg(idy, S9), (ids, SS), . . ., (idx, S?). Figure 9.6 shows only a logical view of
DB, in reality, the items irDB are stored in two priority queues to support efficient
trajectory exchange, (described in detail in Section 9.4.4).

9.4.4 Trajectory Exchange

When the trajectory sampling and anonymization step has been started arat the tr
jectory databas®B has more thart: data items, thelient proc process begins the
trajectory exchangstep to exchange its trajectory datediB with other peers in the
P2P network. The&xchangdunction is activated in two cases. The first is when a
client is in the stage of exchanging data with other peers (line @ieft proc). In
this case, the exchange is mutual, i.e., both ends send and receive datsecohd

is when a client has reached the end of the periggecified by the server (line 2 of
clientproc). As seen in lines 10-11 afient proc, when at leask peers are avail-
able for accepting trajectory data (found through the funatiom.of_peergk)), the
client pushes all the trajectory data to these peers and does not acgeajata sent
from other peers. During the execution @fchangethe current client finds other
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clients running the same function and exchanges the trajectory data froatdtsade
DB. The parametestate of function exchangespecifies whether the current client
wants mutual data exchang&dte = TRUEF) or to only push data to other peers
(state = FALSE). The pseudo code @&xchangas listed bellow.

(1) procedure exchangék, DB, state)
(2 p1,...,pm <findpeergk)

(3) foreachp;,i=1,...,m

(4) DBin, DBout < 0

(5) t —getstatdp;)

(6) if t=TRUE

(7) DByt «pickitemgk, DB)

(8) DB—DB\ DB,y

(9) Senc{pi, DBout)

(20) if state = TRUE

(11) get(pi, DBiy) Il DBy : {di}, ..., di}, }

(12) else:get(p;, DB;y,)
(13) DB— DBU DB,
(14) return

The algorithm first searches for peers from the P2P network (line [2¢n;Tthe
client starts a while—loop to communicate with each of the peers (lines 3-14nWh
a peerp; is connected, the algorithm first reagss state (line 5), i.e., whether;
wants mutual exchange or only wants to push its data to other peefs.wHints
mutual exchange, the current client seléctems fromDB, puts the items into a set
DB, and uses functiogend to send the data to pegy (lines 7-9). If the current
client wants mutual exchange, the functigat is called to accept data from (sent
by the send function atp;) to a local setDB;,, (lines 10-12). Ifp; only wants to
push its data to the current client, the functigr is also called to accept the data to
DB, (line 13). Finally, the data items ibB,,,; are removed fronDB (line 8) and
the fresh items fromp; are read int®B (line 14).

The functionfind_peergk) finds nearby mobile clients in the P2P network that
have at leask clients in their respective vicinities. To protect a client from sending
too much data to a single and perhaps malicious peer, the function uses al&i@all F
buffer that keeps a list of the recently—contacted peers and avoidsgeno much
data to these peers.

The functionpick_items is used for pickingk partial data items from the tra-
jectory database. It works as follows. First, it picks two collected/ge¢aenizems.
Then, it picksk — 2 items that were received in previous exchanges. To ensure that
there are always at least two collected/generated items to pick from, wheuarttizer
of such items is very small, extra copies of them are generated without alteeng
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Figure 9.7: State dDB After Several Exchanges.

parities, i.e., always an even number of extra copies are generateerdfdte not
enough previously exchanged items to pick from, the function picks the reérmgain
items from the collected/generated items. All of the items are picked in ordeeof ag
and number of copies, i.e. the oldest item with the most number of copies fisst; tie
are broken at random. All of the picked items have different ID valuefiefan
item is picked, the corresponding copy amount of the item is reduced in fee-tra
tory databas®B. For each item irDB, if the copy amount is reduced to 0, the item
is erased fronDB.

A concrete example of the item selection is shown in Figure 9.7. Since the six
initial trajectory sampling and anonymizatisteps, the client has performed several
exchange steps in which it receiveddata items with IDSdy 1/, . . ., idk. ., @and
sent all copies of some of its collected/generated items, f(é, Sll), shown in
shaded cells. According to “the oldest with the most copies” selection critbga
pick_items function picks two collected/generated itetig;, S3), (idx, S;) and two
previously exchanged itentédy.+ 1/, S 1/), (idr+2:, S 5/) for exchange. The copy
amounts of the selected items are only updated after the items have beesfligces
exchanged.

The above selection can be easily accommodated by storing the collectedigene
ed and previously exchanged items in two priority queti€s,, and P(Q) ., respec-
tively. ltems are prioritized according to their age and copy amount (oldésmost
copies first) in their respective queues. The queues support the ifajdaur oper-
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ations: insert, delete increasédecreasehe priority of an element, angeekat the

top k& elements. Using a Fibonacci heap implementation, most of the operation can
be supported in amortized constant time (deletions are still O(log n)) [1&iglilse
queue operations, theck_items function can be implemented as followBeekat

the top 2 elements aP@ ., and the topk — 2 elements of’Q).,; consider the items

in these elements for exchange. After a successful exchange of the depesnding

on the copy amount of the exchanged items prior to the exchange, déétreasehe
priority of an element based on the updated copy amounleletethe item from the
queue if the last copy has been exchanged.

A number of aspects of the selection process performed byittheitems func-
tion is important to emphasize. First, the items picked byuthé _items function
havek different ID values and the MBR of at least two items has an area size large
thana. Hence, the items picked for exchange satlsfg—anonymity. Second, the
selected collected/generated items are the oldest amongst all such itemsrand co
spond to trajectory pieces from the past. Hence, the trajectory piecesbeesby
these items are spatially disconnected from the location where the exchaaigjads
place, which prevents a malicious client from making inferences basastbrason-
nection. Third, the selection process ensures that the oldest items heanggd first
and that the distribution of the number of remaining items for different IDs ¢$ose
to uniform as possible. These latter aspects are important for reachirigthming
anonymity state, which is defined next.

When theexchangeprocess has been started for a while, and the client has re-
ceived data items farn > k ID values from other clients, identification of the actual
trajectory of the client becomes less trivial. Nonetheless, if the eDiBavas re-
ported to the server, the server, based on the number of data itemslidDeaould
with high probability associate a set bfiDs with the client. Later, during thdata
summarizatiorstage, the server could identify the actual trajectory of the client by fil-
tering out synthetic trajectories. To study when a pa@Bfis k—-anonymoutowards
the server, thanonymity statef a subset of data items is defined as follows.

Definition 12 (Anonymity stafeA given subsetS of the data at a client is in
anonymity statef there are at least — 1 IDs from other clients and the distribu-
tion of the number of partial data items for the different IDs is statistically etual
the uniform distribution according to the Kolmogorov—Smirnov One—Sampléaest
a given critical valuey gg?.

1The Kolmogorov—Smirnov One-Sample (KS—1) test is a goodnedfit-test between an empirical
distributione and a known distribution [71]. According to the KS-1 test the null hypothesisot
being significantly different fromu, can be rejected at a confidence lewek 0.05 if the maximum
absolute difference between the cumulative distributiomafidw is larger than a critical value ks =
1.36/+/n for a sample size af > 35.
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The subsef in practice contains collected/generated items ranging from the oldest
until the most recent collected/generated item that can be included while stil main
taining anonymity state. The exchanged items in the subspan a time period that
includes the time period that is spanned by the collected/generated items inthe sub
set. The largest possible subset of the data in anonymity state is callethitimal
anonymity setln Figure 9.7, items in cells with think borders comprise the maximal
anonymity set .

Given the way items are picked for exchange, the way FIFO bufferemre
ployed at each client to avoid sending data too many times to the same client, and
the likelihood of re—encountering the same client, the likelihood of receiaagral
data items for the same ID is very low. Hence, for practical purposes,ntire e
trajectory databasBB of client ¢ is in anonymity state if it contains at least— 1
items from other clients, and it contains on average at most one data iteractor e
of ¢'s IDs. To achieve anonymity state, a client has to exchange most of its col-
lected/generated data items. Theremare {22,2z + 1} : 2 € Z* copies ofk data
items collected/generated per sampling period. Since in one exchange process,
with the exception of the initial conditions, two of these items are selected for ex-
change,[k x n;/2] exchanges are necessary to send all of the client’s own data to
peers. Assume that the client’s entid® was in anonymity state at ting, and no
data exchange occurred up to timg,, = t,+n= . Then, the client needs to partici-
pate in at leasftn x k xn; /2] exchanges during the peri@d +nx A, t,+(n+1) x A)
for its entireDB to be in anonymity state again. Assuming the number of possible
exchanges a client can perform is uniform over time, a client is saiddimtain
anonymity state if it participates, on average, in at léask n;/2] exchanges per
sampling period. In a concrete example, if the client collects/generates3®camies
of k = 5 items per sampling period, the client maintains anonymity state if it partici-
pates, on average, in at ledstx 3/2] = 8 exchanges per sampling period.

Based on the above discussion, anonymity state may not be achieved if tite clie
does not have a good amount of data exchange with peers. The emglitidglin
Section 9.6 investigates under what conditions and privacy settings thentaafou
data exchanges performed by clients is sufficient for clients to reacmaimain
anonymity state.

9.4.5 Data Reporting

Thedata reportingstep is activated in two cases. First, whenc¢hent proc process
is in the periodr, and the size of the trajectory datab&3 is close to the storage
limit or the DB has partial data items that are too old (line &bént proc). Second,
when a client has reached the end of the peripid which case the client can either
send out its data via exchange processes to other peers in the P2Rrosteatinue
with thedata reportingstep.
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The report function is started at thdata reportingstep. If thereport function
is invoked in the first case, it sends all of the data items obtained from otlees p
to the server and keeps the other data items. Ifé¢ipert function is invoked in the
second case, it sends the maximal anonymity set to the server and esisastihe
(collected/generated) data items at the client.

By erasing some of the most recently collected/generated data items, the recen
pieces of a trajectory are lost. To reduce the extent of this loss befoteuts the
client can dynamically, depending on the current time and the end of thelpeliio
thetrajectory exchangstep increase the number of collected/generated data items in
the set ofk items that are selected for exchange. The empirical evaluations in Sec-
tion 9.6 show that, even without clients performing the above outlined losstiedu
strategy, the loss is negligible. Ultimately, the loss can also be entirely eliminated,
if the client at the end of the periodsaves the remaining collected/generated items
and restarts thelient_proc at theclients registrationstage. Since the saved items
are the oldest items amongst the newly collected/generated data items, they will be
selected first by thgick _items function in future exchanges. Hence, the probability
that the client re—reports items for one or more of its previous IDs in thedsdat
reporting stage, thereby sacrificing its privacy towards the servevery low. To
completely eliminate the above probability the client can optionally flag the saved
items and ensure that no flagged items are reported to the server. Thisdltemh-
nique effectively trades a slim probability for the loss of privacy againstgligible
loss in the trajectory.

In the very unlikely event when a cliertis not able to perform a single ex-
change within ther period, and hence has an empty maximal anonymity set, the
entire trajectory of a client is erased and not reported to the serven.iivkis case
the k—anonymityof the otherk — 1 clients started at the same timeawill not be
changed. Specifically, if there is only one client that reports data andtieefo— 1
clients erase their collected/generated data, the server still does notvkmowhis
trajectory refers to among thieclients.

9.4.6 Data Summarization

Thedata summarizatiostep starts theerversumprocess. This process keeps run-
ning to collect data from clients and summarizes the data into trajectories. -Specif
ically, when the server receives data from clients,sberersumprocess maintains
atemporary tablehat arranges the received partial data items into groups based on
the ID values of the items. As illustrated in Figure 9.8, thporary tableputs all
partial data items with the same ID values under the same row .

The serversumprocess also records the timestamps when the first data item of
each column is receivedy( t2, t3, ... in Figure 9.8. These timestamps are used to
determine when the items under each ID value have been fully receivedifiSally,
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Figure 9.8: Data Summarization.

suppose the first data item of a column in the summarization table is received at time
t1. Then theserversumprocesses waits for 2r,,,., time period to wait for the rest

of the data items of the same ID value to be sent from the clients. Since data items
older thanr,,., at every client are required to be sent to the server, all the data items
of the column should have been received aftérg,.. time period since;. After

this period, theserversumprocess checks the amounts of copies of the data items in
each group. If the parities of the amounts in a group are odd, the groemaved as

it represents cloaking data items. If the parities in the group are even, jbetdrs
pieces in this group are merged into a whole trajectory based on the timestamps of
the trajectory pieces. Finally, as illustrated in Figure 9.8, the actual trajextame
recorded in aummary tablend saved at the server database.

It is possible that not all copies of a data item are reported to the sereer. F
example the missing copies could be part of the loss described in Section™h4.5.
copies could also be missing because a malicious client deliberately deletntent a
the copies. In these cases, checking the parity of the amount of copietfle data
item alone would be misleading. Hence, instead of performing parity chéckeg
amounts of individual data items, a check for the majority parity of copy amounts
within a group is performed.



9.5 Discussion 171

9.4.7 Neighborhood Detection in P2P Networks

The functionfind_peergk), on line 2 of theexchangdunction, finds nearby mobile
clients in the P2P network that have at leasfients in their respective vicinities. It

is executed in order to ensure that exchanges satisfy the second aoditiee k—
anonymitydefinition (Definition 9). In a trusted P2P environment, where clients can
be trusted, théind_peergk)—query can be answered in a straight forward fashion, i.e.,
the client asks its neighbors about their neighbors and decides badiesl amswers.

In an untrusted P2P environment, where potentially malicious clients might try to lie
about their neighbors, answers from individual peers can still bidedcdibased on
the totality of the answers as follows. First, the acquiring cligratsks its neighbors
Cn = {a,...,cn} for their neighbors’ IDsI,, = {I;,...,I,,}. Then, cliente;
summarizes the ID setg,,, and retains the IDs[Y, that are present in more than
min_verif _cnt number of ID sets. Assuming that there are at mest_verif _cnt —

1 malicious andcooperatingclients among the client§,, the verifiable IDs of an

ID setl; € I,, arel; N I”. Consequently, a cliert; € C,, is part of the answer set

to theverified findpeergk)—query if|I; N I”| > k. Naturally, if there is very little
overlap between thieue ID sets, i.e., the size df’ is very small, then this verification
method will reject answers from non—malicious clients and thereby limit the numbe
of possible exchanges. However, the fraction ofttine answers that are rejected by
the proposed verification method turns out to be very small in practice, hsums

by the experiments in Section 9.6.

9.5 Discussion

The proposed solution aims to collect trajectory data while keeping each mobile
user’s trajectory anonymous among other trajectories. The anonymity sedtiag
kept in the privacy profile of each client. Due to the big variety of prividwgats, the
possible privacy risks are generalized into three categories: pnisicgt the server
side, the client side, and in the air. In the following each of these risks iastied.

9.5.1 Privacy at the Server

In the server side application, in accordance with each sét,@f mobile users
(kmaz is the maximalk value sent by all these users) that start data collection at
the same time, there will be the same or less amount of trajectories returned by the
data summarizatiostep. Since the ID values are generated at the client side, it is
impossible to link a moving object with a specific trajectory. Thus, the requiremen
of k—anonymityof the clients is preserved at the server side.
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9.5.2 Privacy at Clients

Each client, after starting thteajectory sampling and anonymizatiamd thetrajec-
tory exchangesteps, has at least(k is defined by its own privacy profile) groups of
data items with different ID values. After a client has achiesadnymity statethe
data items at this client satisk-anonymity Based on Lemma 3, the area size of the
MBR of all the data items ifDB can always be kept over. Thus, the data items at
the client also satisfy—diversity

9.5.3 Privacy in the Air

Data is transmitted in the air in two cases. The first is when the data is exchanged
between peers in the P2P network. As described intrdjectory exchangetep,

each client sendk data items with different ID values and the area size is kept over
«. Thus, the data transmitted between peers pres&reesanonymity The second

case happens when a client reports the data to the server. Based esdtiptibn of
Section 9.4.5, this client sends either only the exchanged data from otrergrehe
maximal anonymity set to the server. Thus, the data in the air satisfaagnymity
anda—diversityin this case.

The proposed solution for trajectory collection preservesktieonymityin all as-
pects of the data collection process. The solution does not change théteajec-
tory data, but usesloaking data item$o preserve the anonymity, the accuracy of the
original data is guaranteed. Since the server can have more safetipregesuch as
firewalls and many other softwares to safeguard the data, the clients athak#hiee-
ing transmitted are more fragile under various forms of privacy threaespidposed
solution have further anonymity protection, suchhasliversityandk—a—anonymity

at the clients and the data in the air. To summarize, the proposed solutionvpeese
the accuracy of the collected data and achieves anonymity requiremenksrgyttee
advantage of the P2P network to swap and anonymize the data at the clients.

9.6 Empirical Evaluation

The effectiveness of the proposed privacy preserving trajectoligation method

was empirically evaluated for a simulated shopping mall environment. A griddbas
shopping movement simulator was developed to generate realistic movements of
clients in a 177,200flarge shopping mall with 16 shops. In the simulation, clients
move from a 5 5-meter grid cell to a neighboring grid cell at a speed of 1 m/sec. A
simulation step is 5 seconds long, i.e., a client can only move at most one griid cell
one simulation step. The movements of clients are random, but obey the following
rules:
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Figure 9.9: Layout of the Shopping Mall with a Sample Shopping Trajectory.

1. Aclient never crosses a wall.

2. A client at each step picks a random direction obeying rule 1) anernpirej
a direction that was the same as its previous direction of movement. This
preference is defined bylaeading_factor parameter which for higher values
makes clients move more in a straight line. This parameter is different for the
corridor environment and the shop environment, in order to simulate transition
like movement between shops and browsing like movement within shops.

3. Aclient never visits a shop twice.

4. A client becomes idle with probabilityrowsing_prob inside shops, this essen-
tially slows down the average speed of the client inside a shop.

5. A client, obeying rule 3), is drawn with a certain strength into a shop as it
passes the door of the shop, the strength of this drawing force is codtbyile
a parameteentrance_factor.

The layout of the shopping mall used in the simulations and a two hour long
sample trajectory of a simulated client is shown in Figure 9.9. In the examplenshow
and in all of the simulations th&eading; actor was twice as large in the corridor
environment than in the shop environment, andithevsing, rob parameter was set
to 0.25, resulting in an average speed during browsing thaf4sof the normal
walking speed.

The effectiveness of the proposed method was evaluated using fosurasal)
the fraction of clients that reached anonymity state at some point during thi&asimu
tion period, 2) the fraction of collected/generated data items that are heliehtsc
responsible for collection/generating them, 3) the number of exchangiesmed
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by clients per sampling\) period, and 4) the ages of the oldest collected/generated
data items that are held by clients responsible for collection/generating theee Th
groups of 20—minute long simulations were performed varying the numbéeots

m, the anonymity parameteéf, and the communication rangen the P2P network.
The sampling period in all of the experiments was fixed at 60 seconds, during
which each client collected/generatede {2,3} copies ofk data items. During

an exchange a client, if possible, senof its oldest collected/generated data items
andk — 2 of its previously received data items. In all the experiments, each client’s
FIFO buffer for recording recently—contacted peers was 10 elemeamgs [Bhe re-
sults of the three groups of experiments are shown in Figures 9.10, 9dB. 22,
respectively.

Figures 9.10(a)—9.10(c) show the four effectiveness measuresdorymity pa-
rameterk = 5 and communication range = 10 meters, for varying number of
clients. As the number of clients increases, i.e., the spatial density of clients in-
creases, the average number of exchanges an average clientritampiuring a
sampling &) period also increases, see Figure 9.10(b). Given the particular setting
for k andn, the average number of exchanges a client needs to perform per sgmplin
period to reach (maintain) anonymity state is about 7.5 (5), which is achigved b
most clients in the case of 2,000 clients. Under these conditions, most of thesclie
successfully have managed to exchange most of their old collected/tpEhdeda
items and only hold own data items that have been collected/generated in tlesast f
sampling periods, see Figure 9.10(c). The same results, viewed at m $getd, are
shown in Figure 9.10(a), where it can be seen that as the number of clientthe
spatial density of the clients increases, the fraction of clients that readhyith a
sufficiently high likelihood, maintain anonymity state during the simulation period
also increases. Similarly, due to the increasing number of exchangesraasimg
fraction of the total amount of colected/generated data items have beed magse
other clients and consequently a decreasing fraction of the data itemsastdrethe
system in a less anonymized state, held by the producing client.

Figures 9.11(a)—9.11(c) show the four effectiveness measuresdorymity pa-
rameterk = 5 andm = 1,000 clients for varying communication range The
results are similar to the previous results. That is, as the communication range is
increased, the number of exchanges increases (Figure 9.11(lAydb®f the oldest
data items held by the producing clients decreases (Figure 9.11(c))attierfrof the
clients that reach (maintain) anonymity state increases, and the fraction totdhe
dataitems thatis in a less anonymized state decreases (Figure 9.11(ay)ptrignt
to note that the effects of the communication range parameter are more pcedou
due to the quadratic relationship between the communication range and thernumbe
of exchanges (Figure 9.11(b)).
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Figures 9.12(a)-9.12(c) show the four effectiveness measuresrfanunication
ranger = 5 meters andn = 2,000 clients for varying anonymity parameter values
r. Increasing values for anonymity parameter vatugsults in decreasing number
of possibilities for exchange and increasing amount of colected/gedeafata items
to be exchanged. Hence the total effect of these changes affectfelativeness
measures in an inverse manner to the effects of the parametensir.
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In all of the so far presented experimental resultsfthé_peers(k)—queries were
executed assuming that there are no malicious clients. As proposed in $edtibn
with a rather simple method the answers to thel_peers(k)—queries can easily
be verified by the clients even in case of multiple and potentially cooperating ma-
licious clients. To determine the effectiveness of the proposed verificat@&ihod,

500 uniform random points were generated in the unit square, repirggécations

of clients, and the true versus verifiable answer sefgitd_peers(k)—queries have
been compared for all the points for varyih@and min_verif _cnt parameters and a
fixed communication range of = 0.1. To eliminate the effects of randomness, the
measurements are based on 100 independent test runs. The resuliseoéxper-
iments are shown in Figure 9.13. The trends in the results are as expecteas i.e
the values of thé& and min_verif _cnt parameters increase the fraction of answers
that are verifiable using the proposed method decreases. Howevéntdéresting to
see that for rather high values bBindmin_verif _cnt the fraction is relatively high.

In particular, assuming there is at most one malicious client near the cliemgssu
the find _peers(k)—query, the client can verify over 90% of the answers even in the
case of large: parameter values. Consequently, using the proposed verification me-
thod, even in an untrusted environment clients can perform most of theeges
and hence reach and maintain anonymity state.

In summary, the experimental results show that the proposed privasgrpiteg
trajectory collection method is effective, i.e., under reasonable conditions)@nd
for anonymity parameter valuek)( clients are able to perform exchanges frequently
enough, so that within a short period of time (1 - 5 minutes) most clients are in
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anonymity state and only a small fraction of the data items is in a less anonymized
state, held by the producing client.

9.7 Conclusions and Future Work

The paper considered the problem of collecting trajectories of moving tshjea
privacy—preserving manner. As a premiss for studying the problem,atper dirst
adapted and combined previously proposed general data privanitides to derive
definitions for location privacy. The derived location privacy definisiagm increas-

ing strength arek—anonymity a—diversity (requiring spatial diversity), ank-o—
anonymityof location data. To solve the problem, the paper proposed a complete
system for thdosslessprivacy—preserving collection @xacttrajectories of moving
objects. The proposed system is based on a client—server architeutireeacollec-

tion process can be summarized into five stages, nametyieh} registration 2) tra-
jectory sampling and anonymizatioB) trajectory exchange4) data reporting and

5) data summarizationThe proposed system does not require trusted components,
yet it guarantees at leakt-anonymityin all stages of the collection process. The
proposed system iscalableas the process of anonymization is performed in a dis-
tributed fashion by clients interacting via an assumed wireless P2P netvioaklyF
through an extensive empirical evaluation, the paper demonstrated thmbpgused
system is effective under reasonable conditions and privacy/anongetiiggs.

Future work will be along four paths. First, different kinds of systechéec-
tures will be considered. For example, as is common in wireless P2P netevork r
search [100], the addition of hotspots to the P2P network will be consid@iteese
hotspots will further reduce the chance of isolated clients and could pdiga
used to distribute thelient registrationanddata summarizatiostages. Second, fu-
ture work will consider the implementation of a full system and the large—seale r
world deployment of the system. Third, satisfying tkeanonymityof exchanges
even in the presence of malicious clients is essential to the proposed sysigah. |
experiments indicate that the proposed method to véinify_peers(k)—query results
in a P2P network is effective. Nonetheless, it is only one possible solutian-to
swer the query in a P2P network with malicious clients. Future work will conside
other methods that guarantee even higher accuracy or security. Fintilpretical
line of work will consider 1) proving the robustness of the system, anch@)riy a
theoretical model of the system performance in relation to privacy protectio






Chapter 10

Summary

Several hardware trends in mobile technology, in particular the increasailgbility
and accuracy of mobile position technologies, pave the road for LB&esvative
LBSes integrate knowledge about the mobile user into the service. MueVldahge
can be gained about users by analyzing the location data of users. Texthig,
this thesis 1) devised effective spatio—temporal data mining methods for siredle
analysis, 2) demonstrated the usefulness of the spatio—temporal data mirtirogisne
in promising LBS examples, and 3) devised privacy—preserving systamiajectory
collection and analysis.

10.1 Summary of Conclusions

The conclusions from Chapters 2 to 9 are the following. Chapter 2 peojgugoting

as a general methodology to extend a popular data mining method, namely rule min-
ing. By considering a number of different types of data sources, thptehderived

a taxonomy of spatio—temporal data and investigated the types of knowledgath

be extracted using the extended spatio—temporal rule mining method.

Chapter 4 used pivoting to extend a frequent itemset mining method to find long
sharable routes in trajectories. Considering different modelling optiansdjec-
tories led to the development of two variants of the method that can analyze larg
amounts of trajectories. High—level SQL-based implementations are desaiink
extensive experiments on both real-life- and large—scale synthetic aavatsh ef-
fectiveness of the method and its variants. The knowledge that the mettdtsan
variants can discover are believed to be useful for traffic planningogtichization
and LBSes in the transportation domain.

Since real-world data sets about large populations of moving objects ticaltif
to obtain, to aid the development in spatio—temporal data management andsanalys
Chapter 3 developed ST-ACTS, a Spatio—Temporal ACTivity Simulator. d8ygua
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number of real-world data sources and intuitive principles, ST-ACTS Incdene
of the so far neglected social and geo—demographical aspects of moBiperi-
mental results showed that ST-ACTS is able to effectively generate reafistio—
temporal activities of a large population.

Some LBSes only make sense or are most effective if spatio—temporallypglose
service requests are served in a group. Chapter 5 presented omglexd such an
LBS, namely a cab—sharing service. To provide an effective servecetthpter pro-
posed an algorithm for grouping closeby cab requests into a cab-tshaiaimize
the total transportation cost, or equivalently maximize the savings. The algorith
was expressed as a sequence of simple SQL statements. Experimentsrbsised
ulated request data demonstrated that the proposed algorithm carveljegtoup
together requests and thereby achieve significant savings.

In Chapter 6, the grouping algorithm was suggested as a generic buildicig b
to optimize large—scale collective transportation systems. To scale the algtwithm
large request stream, it was expressed as a continuous query in atieata $Man-
agement System (DSMS), the problem was sub—divided through statadapdive
spatial stream partitioning methods, and the computation was parallelized using th
partitioning methods and the facilities of the DSMS. Experimental results showed
that using the adaptive partitioning methods, the parallel implementations execute
several orders of magnitude faster, yet achieve almost the same qualityupfing
as their serial equivalent.

Location—Based Advertising (LBA), i.e., deliverirrglevantcommercial infor-
mation to mobile consumers, is regarded by many as one of the most lucragive bu
ness opportunities in LBSes. In order to give an indicator for the magnatithés
opportunity, in Chapter 7 an LBA framework and database was devekmpdsed
to estimate the capacity of the LBA channel. The proposed framework meadiels
vanceas a function of th@roximity of the consumer to the service/product and the
interestof the consumer. Two interest cases were considezrplicit andimplicit.

The chapter outlined several data mining techniques to infer the latter implici inter
est. Experimental results showed that the channel capacity is indeechelsttarge,
which not only supports a business case, but also indicates the necésgigquate
user controls.

Whenever data about users is collected and analyzed, privacy lhabh#reomes
a concern. To eliminate this concern, Chapter 8 proposed a grid—traseelfork to
anonymize, collect, and analyze location data. Since the proposed anatipmizs
through spatio—temporal generalization, i.e., the locations of users caartosvad
down to sub-regions with a certain probability only, the analysis resultslsme a
probabilistic. To demonstrate the analysis component of the frameworkotee c
data mining task dfinding dense spatio—temporal regiomas implemented. Experi-
mental evaluations compared the results of the privacy—preserving minthgadane
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its non—privacy—preserving equivalent, and found that the priya@serving mining
method can find most of the patterns.

To entirely eliminate the uncertainty in the mining results, Chapter 9 presented
a system for the privacy—preserving collectionexfacttrajectories. The system is
composed of an untrusted server and clients communication via a P2P netwerk
cation data is anonymized by the clients through data cloaking and data sgappin
techniques. Experimental results based on simulated movements of mobile users
demonstrated that the proposed system is effective under reasonabigons and
anonymity/privacy settings.

In summary, Chapters 2 through 9 demonstrated that common data mining meth-
ods can be effectively extended to the spatio—temporal domain. Thdnesfwf the
knowledge that the extended data mining methods can extract was demahistrate
two promising LBSes: cab/ride—sharing service and location—-basediathg Fi-
nally, to eliminate privacy concerns, systems were proposed for thecgrpreserving
collection and analysis of location data. Thus, the thesis has shown that commo
data mining methods can be effectively extended to the spatio—temporal domain to
discover useful knowledge for LBSes in a privacy—preserving reann

10.2 Summary of Research Directions

Several directions for future work remain. As Chapter 2 demonstratentjmy is a
general methodology that can extend rule mining methods to discover apatid—
temporal rules. Spatio—temporally restricted rule mining was proposed td sipee

the mining process by processing meaningful spatio—temporal subregiswa-

tion. Devising an automatic or semi—automatic system to determine these subregions
is believed to be an interesting research direction.

As Chapter 4 demonstrated, spatio—temporal generalization is an effewive
thod to discretize the spatio—temporal domain. Frequent itemset mining metmods ca
effectively discover patterns in sets of generalized spatio—temporal itSush a
methodology however does have some shortcomings. First, closeby lonatan
surements may fall in neighboring, bdifferent spatio—temporal regions. This re-
duces the support of some patterns and potentially eliminate their discovery. A
suggested in Chapter 4, road network based spatio—temporal gerteratiza one
approach to overcome this problem. In situations where the movements afsabjec
not confined to a road network, future work could consider the multi—gmutaach,
outlined in Chapter 8, as a way of reducing or eliminating the pattern suppssit lo
Second, frequent itemset mining methods treat two spatio—temporally geedraliz
items irrespective of their spatio—temporal proximity. As a consequence, giein
sults will likely contain several spatio—temporally very similar patterns, whiehdco
be represented by a single pattern. While post—analysis can aggregsitaithepat-
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terns, it is not an optimal approach as considering spatio—temporal iterirjitso
during the mining can speed up the mining process and eliminate some of the pat-
tern support loss. Hence, devising effective frequent itemset miningotetthat
consider spatio—temporal item—proximity is believed to be an interesting future re
search direction. Mining based on dimensional hierarchies could beuhtdpieter-

mine spatio—temporal item—proximity. The hybrid method to discover long, dlearab
routes in trajectories was demonstrated to be an effective trajectory sntaps
However, as it was demonstrated on simple examples, due to the hybrid modelling
of trajectories the method might not discover all patterns, or due to thexapated
trajectories might discover false patterns. Evaluating the accuracy of/ti hme-

thod is considered to be a valuable extension to the results of Chapter 4.

The simulator in Chapter 3 models only some of the physical aspects of mobil-
ity. Integrating the output of ST-ACTS as an input to a sophisticated netlvaded
moving object simulator is believed to yield synthetic data sets that could aid the de-
velopment in telematics, intelligent transportation systems, and location—bersed s
vices. Furthermore, the modelling capabilities of ST-ACTS can be extendpzhto
erate even more realistic activities of users. Some possible extensiorssfallews.

First, given the available real-world data sets, ST-ACTS models activitiesris tef
daily activity probabilities and spatio—temporal activity constraints. While this-mod
elling approach allows ST-ACTS to generate data with spatio—temporal aclisity
tributions that correspond to the probabilities and obey the constraintsetieeaged
activity sequences only exhibit limited temporal regularities. Extending STSAC
to model such temporalequentiaregularities, for example through hidden Markov
models or sequential patterns, is believed to be a useful extension to $5-8ec-
ond, since daily activity probabilities are derived for conz&mypes, i.e., groups
of simulated persons, personal preferences are not modelled. Sitacenthing can
be applied to personalize LBSes, modelling personal preferences igduetbe a
useful extension to ST-ACTS.

Chapters 5 and 6 considered the vehicle—sharing problem and pdogpgseeric
trip grouping algorithm and implementations that can be applied to optimize col-
lective, door—to—door transportation systems. The proposed trip iggpajfgorithm
uses a number of heuristic and approximation to derive near—optimal salution
the vehicle—sharing problem. Devising new heuristic—based algorithmspbyiragp
common optimization methods (clustering, genetic algorithms) to derive evem close
to optimal solutions is believed to be an interesting direction for research.lyMain
preserve clarity, the proposed trip grouping algorithm was presentedsmrifdest
form, however the following improvements could be considered in a more cample
version. First, the current equal-share cost model could be altereketinta ac-
count the costs of the shared trip parts versus the costs of “detouegbn8, the
basic algorithm could be altered to accommodate for individually definecpgss
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capacities of vehicles and minimum savings of requests. Third, the basiitlaigo
could be altered to handle in—route grouping, i.e., assigning requestsadyalretive
but not fully—occupied vehicle—shares. Finally, the grouping algorithmarmapplied
to facilitate a real—-world application should perform the optimizations basedash r
network distances.

In Chapter 6, parallelization through spatial partitioning of the requesiratveas
an effective method to scale the computationally intensive trip grouping algorith
In general, parallelization through spatial partitioning of streams, espettiatlygh
density—based spatial partitioning, is believed to be an effective methodlto gz
computationally demanding spatial analysis tasks. Hence, implementing density—
based spatial partitioning methods and testing their effectiveness is belebeda
interesting future research direction.

The LBA framework and database, proposed in Chapter 7, models implicit re
evance through a simple scoring model which is based on a consumer satjiomen
that divides users into 29 different consumer groups. However ahlife, no two
users’ interests arexactlythe same. Hence, altering the scoring model to include
the personal interestsf the individual mobile user, which are derived from his/her
historical behavior, would allow targeting the individual user with even melsvant
andpersonalizednobile ads. As outlined in the chapter, such personal interests can
easily be captured by analyzing for example the type of businesses theasgmevi-
ously visited or the user’s reactions to previously received mobile adsvaloate the
effects of personal interest scoring, the simulations of mobile user movsmere to
model personal interests and the possible influence of mobile ads on treeriuiuve-
ments of mobile users. Hence, a full, bi—directional integration of ST-AGTRlze
LBA framework is believed to be a fruitful research direction. Such argnatéon
would allow to evaluate the accuracy of several different scoring models

Chapter 8 proposed a grid—based framework to anonymize, collectpahga
location data. The framework can be extended in a number of ways. Fidit, a
tional grid—based anonymization policies can be devised. Second, thenutera
component of the framework can be extended to include other, more contguigx
mining tasks. Finally, the multi—grid approach outlined in the chapter would have th
following advantages. First, it would reduce or eliminate the boundargtsfthie to
spatio—temporal generalization. Second, it would increase the spatio+mgs
olution of patterns while guaranteeing the same privacy to the users asrteatcu
single—grid based anonymization framework. Extending the frameworkyiofahe
above ways are believed to be interesting future research directions.

While Chapter 9 proposed a complete system for the privacy—presamwileg-
tion of exacttrajectories, several future directions remain. First, different kinds of
system architectures could be considered, for example a P2P netwonrkotsiots.
Second, the implementation and the large—scale real-world deploymentliofysfu
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tem could be considered. Third, devising effective methods for neigobd de-
tection in untrusted P2P network could be considered. Finally, the propyséem
could be theoretically evaluated from the point of view of robustness gsigra
performance in relation to privacy protection.

Based on the findings of and the topics investigated by the thesis, the following
are high—level ideas for future research directions. Spatio—tempenairglization
is an effective way to discretize the spatio—temporal domain, which in turrbean
analyzed by common data mining techniques. A major drawback of the approac
is the pattern support loss due to boundary effects. Addressing thie@ming of
the approach, through for example a multi—grid approach, or multi-level mafing
dimensional hierarchies, are believed to be two promising future resdaedtions.

The thesis mainly considered the extension of frequent itemset mining and rule
mining methods to the spatio—temporal domain. Future research could comsider
tending clustering, another core data mining method, to the spatio—tempordhdoma
The clustering of trajectories, or, in relation to LBA, the clustering of actigiy
guences, could be considered. While spatio—temporal generalizatioheoapplied
prior to clustering, the so generalized trajectories / activity sequengeshkeast one
unigue characteristic: they are not of equal length. Two possible appes to nor-
malize such sequences are via Hidden Markov Models (HMM) and fradieenset
mining. In the HMM approach, an HMM could be constructed for everyeaqge,
and using a meaningful distance metric between two HMMs, the HMMs could be
clustered. In the frequent itemset mining approach, patterns could be arimeuy
sequences. Then, using the patterns as positive / negative indisstguences could
be mapped to a high—dimensional feature space for clustering. Using eftbeaf
the normalization approaches prior to clustering are believed to be interastimng
directions.

While spatio—temporal activity sequences of mobile users contain mobility pat-
terns that can be analyzed by some of the methods proposed in this thegselsthe
containconsumeiandsocial patterns. Methods to extract these latter patterns could
consider the following. First, while a particular activity performed by a molsleru
in Copenhagen, such as “bar—hopping” can be tied to a specific locatpade, per-
forming such an activity describes a consumer / social behavior thatpémdlent of
where the activity is performed, i.e., a person doing the same in Aalborg is similar
the person in Copenhagen. Hence, the analysewiantidocations, i.e., places, are
believed to be an interesting direction for future research. Second, thiildings
we do certainly define to some degree who we afgomwe do those things with
are equally influential. Analyzing the interactions between mobile users in relatio
to the activities or places could not only have several interesting applisdticso-
cial LBSes, but could provide valuable knowledge to social scienoeshance it is
believed to be an extremely interesting future research direction.
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Summary in Danish

Danish Title: Spatio—Temporal Vidensopdagelse i Lokationsbaseredie&e

De sakaldte Lokationsbaserede Services (LBS) vinder frem overalt, hjafpe
massive landvindinger inden for kommunikations— og informationsteknolagama
den voksende udbredelse af og preecision i GPS—enheder og udeikkfignindre
og mindre enheder til &dlgs kommunikation. Innovative LBS’er integrerer viden
om brugerne i de udbudte services. Eman viden kan udledes ved at analysere
oplysninger om hvor brugerne befinder sig. De data som anvende$; lkdimen-
sioner,stedogtid, som begge er genstand for analyse.

Malseetningen for denne afhandling er tredelt: For det farste at ogerfibredte
vidensopdagelse—metoder til det spatio—temporale domaene. For dehbdeleton-
strere anvendeligheden og nytteveerdien af disse metoder og den fliedtd &i-
den for to lovende LBS—eksempler. For det tredje at eliminere frygteatfafsigre
personfglsomme oplysninger via spatio—temporal vidensopdagelse ardehégs
igennem systemer som netop sikrer og beskytter privatsfeeren omkrugerbe i
dataindsamling og vidensopdagelse—delen.

Kapitel 2 introducerer en general metode, pivottering, som overésréredt an-
erkendt og anvendt vidensopdagelse—metode, regelopdagelsespiatle—temporale
domaene. Med afseet i en karakteristik af en vifte af reelle, konkrete ittkink
udleder kapitel 2 desuden en taksonomi for spatio—temporale data, em@ks
pa nytteveerdien og anvendeligheden af disse regler gives. | kapitelehdes den
spatio—temporale variant med henbli& at finde mgnstre af lange, feelles rejseruter
for objekter i beveegelse. Evalueringer af empiriske data viser at memdaple-
menteret via hgjniveau SQL udggr effektive vaerktgijer til en analysengéldeelles
rejsemgnstre.

Virklige rejsedatasaet for en stgrre population af objekter som rejsean flodet
afgreenset geografisk odmte, er vanskeligt tilgeengelige. Til at kompensere herfor
redeggr kapitel 3 for udviklingen af en Spatio—Temporal ACTivity Simulé8i¥—
ACTS). ST-ACTS inddrager en maengde reelle geostatistiske datakildetuitgy@n
principper for rumlige sammenhaenge for effektivt at generere reaéstphtio—
temporale aktivitetsmgnstre for mobile brugere.
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198 Summary in Danish

Kapitel 5 foreshr en konkret LBS til transportsektoren, nemlig taxideling. En
effektiv Iasning bygger @ en unik spatio—temporal grupperingsalgoritme som imple-
menteres som en sekvens af SQL—saetninger. Kapitel 6 identificerealemisgs-
flaskehals for denne algoritme. For at eliminere denne flaskehals omfgropgser-
ingsalgoritmen &dan at den udtrykkes som en kontinuert strgm af forespargsler til et
system som specifikiémdterer datastramme. Enkle og dog effektive spatio—temporal
partitioneringsmetoder angives, som parallelliserer de ngdvendige strahbereg-
ninger. Eksperimentelle resultater viser at parallellisering igennem adagutiiv
tionering farer til massive tidsbesparelser uden veesendligriming af kvaliteten
af grupperingen (af de rejsende objekter). Spatio—temporal datagtastitienering
forventes at udggre en effektiv platform til skalering af beregnirigagive spatiale
forespgrgsler og analysea platastrgamme.

Lokationsbaseret Reklamering (Location—Based Advertising, LBAibligion
af relevant kommerciel information til mobile forbrugere, betragtes somf e a
mest lovende forretningsmuligheder blandt LBS’erahsnseende beskriver kapitel
7 en udviklingsramme for en LBA platform og en LBA—database som kawgydsyg
til at stgtte og drifte Andteringen af mobile (lokationsbaseret) reklamer. Igennem
en simuleret, men realistisk population af mobile forbrugere og et univer®hiie
reklamer bruges LBA—databasen til at estimere kapaciteten af og derredipiet
i den mobile reklame som distributionskanal. Estimaterne er lovende for fatimule
gen af en steerk forretningsplan, men afdeekker samtidig ngdvendighkatekunne
handtere brugerspecifikke profiler, gnsker og hensyn.

Sa snart data om brugere indsamles og analyseres, bliver beskytt@leesai-
falsomme oplysninger en ngdvendighed. En tilgang til atimgdekomme dettenpraese
teres i kapitel 8 — en cellebaseret aggregering sikrer, at stedfeastdlfeugerne
anonymiseres via spatio—temporal generalisering; dernaest formutesgstem til
indsamling af og vidensopdagels& anonyme, stedbestemte data. Eksperimentelle
resultater viser, at beskyttelsen af brugernes privatsfeere ikkenfioen, at nyttige
mgnstre kan identificeres der — selv om de hvilarsandsynlighedsmodeller — vil
veere tilstraekkelig preecise til mange LBS’er.

Med henblik [ at eliminere enhver usikkerhed om de igennem vidensopdagelse
udledte resultater opstilles i kapitel 9 en tilgang til indsamling af eksakte rejsgragn
for objekter i bevaegelse der bevarer brugernes privatsfeereonyaitet. Den fore-
slaede tilgang inddrager ingen betroede komponenter, og anonymisergigges
af klienterne i et P2P—netveerk via datageneralisering og dataombytraadjstitke
simuleringer viser, at inden for rimelige rammer og med en beskyttelse atgriva
feeren og anonymitet viser systemet sig at veere effektivt.



