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ABSTRACT
Creating complex spatio–temporal simulation models is a
hot issue in the area of spatio–temporal databases [7]. While
existing Moving Object Simulators (MOSs) address differ-
ent physical aspects of mobility, they neglect the impor-
tant social and geo–demographical aspects of it. This paper
presents ST–ACTS, a Spatio–Temporal ACTivity Simulator
that, using various geo–statistical data sources and intuitive
principles, models the so far neglected aspects. ST–ACTS
considers that (1) objects (representing mobile users) move
from one spatio–temporal location to another with the ob-
jective of performing a certain activity at the latter location;
(2) not all users are equally likely to perform a given activ-
ity; (3) certain activities are performed at certain locations
and times; and (4) activities exhibit regularities that can be
specific to a single user or to groups of users. Experimental
results show that ST-ACTS is able to effectively generate
realistic spatio–temporal distributions of activities, which
make it essential for the development of adequate spatio–
temporal data management and data mining techniques.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications; I.6.3
[Simulation and Modelling]: Applications; I.6.8 [Simula-
tion and Modelling]: Types of Simulation—Discrete event

General Terms
Algorithms

Keywords
spatio–temporal data, data generation, moving object simu-
lation, activity simulator, data mining
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1. INTRODUCTION
Simulation is widely accepted in database research as a

low–cost method to provide synthetic data for designing
and testing novel data types and access methods. Mov-
ing objects databases are a particular case of databases that
represent and manage changes related to the movement of
objects. To aid the development in moving object database
research, a number of Moving Object Simulators (MOSs)
have been developed [1, 5, 6, 8, 9, 11].

The so far developed MOSs have been using parameteriz-
able random functions and road networks to model different
physical aspects of the moving objects–such as their extent,
environment and mobility–but they all neglect some impor-
tant facts. When moving objects represent mobile users,
most of the time the reason for movement is due to a clear
objective. Namely, users move from one spatio–temporal
location to another to accomplish some task, from hereon
termed as perform an activity, at the latter location. For
example, people do not just spend most of their nights at a
particular location, they come home to be with their loved
ones, to relax, eat and sleep. Similarly, people do not just
spend most of their working days at any particular location,
they go to a real–world facility, their work place, with the in-
tention of working. Finally, based on their habits and likes,
in their spare time, people (more or less regularly) go to
other real–world facilities, which they like and are nearby.

To model the above mentioned social aspects of mobil-
ity is important for two reasons. First, the locations and
times where activities can be performed and the patterns in
these performed activities define a unique spatio–temporal
distribution of moving objects that is essential for spatio–
temporal database management. Second, the social aspects
of mobility are essential when one wishes to extract spatio–
temporal knowledge about the regularities in the behavior
of mobile users. The field of spatio–temporal data mining
is concerned with finding these regularities or patterns. To
develop efficient and effective spatio–temporal data man-
agement and data mining techniques, large sets of spatio–
temporal data is needed; and while location–enabled mobile
terminals are increasingly available on the market, such data
sets are not readily available.

Hence, to aid the development in spatio–temporal data
management and data mining techniques, this paper presents
ST–ACTS, a probabilistic, parameterizable, spatio–temporal
activity simulator, which is based on a number of real–world
data sources consisting of:

• fine–grained geo–demographic population,
• information about businesses and facilities, and
• related consumer surveys.



The importance of the use of real–world data sources in
ST–ACTS lies in the fact, that they form a realistic base
for simulation. Concretely, variables within any given data
source are dependent, and perhaps most importantly geo–
dependent. For example, there is a strong dependence be-
tween the education and the personal income of people. The
variables are also geo–dependent, due to the fact that similar
people or similar businesses tend to form clusters in the geo-
graphical space. Furthermore, variables are geo–dependent
across the different data sources. For example, people work-
ing in bio–technology tend to try to find homes close to work
places in that business branch. Using real–world data from
various commercial geo–statistical databases and common
sense principles, ST–ACTS captures some of the to date not
modelled, yet important, characteristics of spatio–temporal
activity data.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 defines the objectives
of the simulation model. Section 4 describes in detail the
source data that forms the basis for the simulation model.
Section 5 describes each component of the simulator and
how the source data is used in each component. Section 6
evaluates the simulation model in terms of its efficiency and
its simulation objectives by examining the characteristics of
some simulated data. Finally Section 7 concludes and points
to future research directions.

2. RELATED WORK
Due to the short history of spatio–temporal data man-

agement, scientific work on spatio–temporal simulation can
be restricted to a handful of publications. The first, signifi-
cant spatio–temporal simulator is GSTD (Generate Spatio–
Temporal Data) [11]. Starting with a distribution of points
or rectangular objects, at every time step GSTD recalculates
positional and shape changes of objects based on parame-
terized random functions. Through the introduction of a
new parameter for controlling the change of direction and
the use of rectangular objects to model obstacles, GSTD
is extended to simulate more realistic movements, such as
preferred movement, group movements and obstructed move-

ment [6]. Since most objects use a network to get from one
location to the other, Brinkhoff presents a framework for
network–based moving object simulation [1]. The behavior
of a moving object in this framework is influenced by (1) the
attributes of the object having a particular object class, (2)
the combined effects of the locations of other objects and
the network capacity, and (3) the location of external ob-
jects that are independent of the network. These simulators
and frameworks primarily model the physical aspects of mo-
bility. While they can all be extended to model the social
aspects, i.e., the objective for movement and the regularities
in these objectives, they do not pursue to do so.

Nonetheless, the importance of modelling these social as-
pects of mobility is pointed out in [1]. In comparison, ST–
ACTS focuses on these social aspects of mobility while plac-
ing only limited constrains on the physical aspects of mo-
bility. In effect, the problem solved by the above MOSs is
orthogonal to the problem solved by ST–ACTS.

In Oproto [8]–a realistic scenario generator for moving ob-
jects motivated by a fishing application–the moving behavior
of objects is influenced by other, either stationary or moving,
objects of various object types. The influence between ob-
jects of different types can either be attraction or repulsion.

While the repulsive and attractive influence of other objects
is an objective for movement, unlike ST–ACTS, Oporto does
not allow the modelling of regularities in these objectives.

The GAMMA [5] (Generating Artificial Modeless Move-
ment by genetic–Algorithm) framework represents moving
object behavior as a trajectory in the location–temporal
space and proposes two generic metrics to evaluate trajec-
tory data sets. The generation of trajectories is treated as
an optimization problem and is solved by a genetic algo-
rithm. With appropriately modified genetic operators and
fitness criteria the framework is used to generate cellular
network trajectories that as frequently as possible cross cell
boarders, and symbolic location trajectories that (1) exhibit
mobility patterns similar to those present in a set of real–life
sample trajectories given as input, (2) conform to real–life
constraints and heuristics. Based on sample activity trajec-
tories, the GAMMA framework can be configured to gener-
ate activity trajectories that contain real–life activity pat-
terns. While the generated trajectories will be similar to the
input trajectories, since they are symbolic, they will, as the
input trajectories implicitly assume a location–dependent
context, (see third and fourth principle in Section 3). To
simulate spatio–temporal activities of an entire population,
a representative sample of context–dependent trajectories is
needed, but is hard to obtain. In comparison, ST–ACTS,
based on intuitive principles and a number of real–life geo–
statistical data sources, is able to generate realistic, spatio–
temporal activity data that takes this location–dependent
context of activities into account.

Time geography [4] is a conceptual basis/paradigm for hu-
man space–time behavior which considers (1) the indivisibil-
ity or corporeality of the human condition; (2) that humans
typically operate over finite intervals of space and time; (3)
the natural laws and social conventions that partially con-
strain space-time behavior; and (4) that humans are purpo-
sive. ST–ACTS models some aspects of this paradigm in a
concrete, implemented data generator.

3. PROBLEM STATEMENT
Existing MOSs capture only physical aspects of mobility,

i.e., the movement of the objects, adequately. However, to
aid the development of spatio–temporal data management
and data mining methods, social aspects of mobility that
arise from human behavioral patterns should be captured
by a model. The most important principles that govern
these social aspects of mobility are:

First Principle: People move from a given location to an-
other location with an objective of performing some

activity at the latter location.

Second Principle: Not all people are equally likely to per-
form a given activity. The likelihood of performing

an activity depends on the interest of a given person,
which in turn depends on a number of demographic
variables.

Third Principle: The activities performed by a given per-

son are highly context dependent. Some of the more
important parts of this context are: the current loca-
tion of the person, the set of possible locations where
a given activity can be performed, the current time,
and the recent history of activities that the person has
performed.



Fourth Principle: The locations of facilities, where a given
activity can be performed, are not randomly distributed,
but are influenced by the locations of other facilities
and the locations of the users those facilities serve.

The first principle can be thought of as an axiom that
is in relation to Newton’s first law of motion. Movement
that is motivated by the sole purpose of movement and does
not obey this principle–for example movement arising from
outdoor exercise activities–are not modelled.

The second principle can be rectified by many examples
from real life. Two of these examples are that elderly people
are more likely to go to a pharmacy than younger people and
younger people are more likely to go to a pop or rock concert
than elderly people.

The third, perhaps most important principle, is due to
several factors. First, movement is a necessary (not al-
ways pleasurable) requirement to perform some activity, and
hence in most cases the amount of movement required to do
so is minimized by the actor, i.e., people tend to go to a
café that is near by. Second, activities are not performed
with equal likelihood at different times. For example, most
people tend to go to work in the morning hours as opposed
to other parts of the day; consequently the likelihood of per-
forming that activity during in the morning is higher than
during other periods of the day. Furthermore, due to their
nature, different activities have different durations. The du-
ration of a given activity puts a natural constraint on the
possibility of performing another activity while the previous
activity lasts. For example, people tend to start to work
from the morning hours for a duration of approximately 8
hours; consequently the likelihood of grocery shopping dur-
ing the same period is lower than otherwise. Finally, while a
person may perform an activity with a very high likelihood,
the activities performed by the person are not temporally
independent. For example, it is very unlikely that even a
person who likes pop and rock concerts a lot, goes to several
performances during the same Saturday evening.

The fourth principle is mainly a result of the supply–and–
demand laws of economics. Locations of facilities are mainly
influenced by competition, market cost, and market poten-
tial. For example, eventhough the cost of establishing a
solarium salon on the outskirts of town might be low, the
market potential might not even compensate this low cost.
Hence it is very unlikely that one will finds several solar-
ium salons on one city block. The spatial process that gives
rise to locations of facilities is a complex, dynamic process
with feed–back, which is governed by the laws of competitive
markets. Hence, using a snapshot of the spatial distribu-
tion of real–world facilities as contextual information forms
a reasonable basis for constructing a realistically model of
spatio–temporal activities that can be performed at those
facilities.

The primary qualitative objective of the simulation model
is to capture the above described governing principles of
human behavioral patterns and is referred to as the validity

of the simulation model. In addition, the simulation model
has to achieve a number of quantitative objectives. First,
the simulation model has to be effective, i.e., it has to be
able to generate large amounts of synthetic data within a
reasonable time. Second, the simulation model has to be
parameterizable, i.e., based on user–defined parameters it
has to be able to generate synthetic data sets with different
sizes and characteristics. Finally, the simulation model has

referred entity conzoom r© variable categories

person

person count 1
age 9
education type 9
employment status type 12
employment branch type 12

housing unit

unit count 1
house type 6
house ownership type 4
house area 5

household

household count 1
family type 5
fortune 6
personal income 5

Table 1: Variables in conzoom r© .

to be correct, i.e., the synthetic data produced by model
has to have the same statistical properties with respect to
patterns as it is defined by the model parameters and inputs.

4. SOURCE DATA
The source data used in the simulation model are commer-

cial products of Geomatic, a Danish company specializing
in geo–demographic data and analysis for market segmen-
tation, business intelligence, and direct marketing [3]. Due
to the commercial nature of these data sets, the methods
of their exact derivations are not to be described herein.
Nonetheless, concepts and principles used in the derivation
process and the resulting relevant contents of the databases
are explained below.

conzoom r© Demographic Data: conzoom r© is a com-
mercial database product that contains fine–grained, geo–
demographic information about Denmark’s population [3].
The variables that describe the statistical characteristics of
the population can be divided into three groups: person,
housing unit, and household variables. These variables and
the number of categories for each is shown in Table 1.

In Table 1, variables that have “type” in their names are
categorical variables; variables that have “count” in their
name are counts of the corresponding entities within a 100–
meter grid cell; and finally, the rest of the variables are con-
tinuous variables that have been categorized into categories
that are meaningful for market segmentation.

Since, for example in the countryside, the number of per-
sons, households or units could be very low in a 100–meter
grid cell, grid cells are grouped together into meaningful,
large enough clusters to comply with social and ethical norms
and preserve the privacy of individuals. The basis for clus-
tering is twofold: geography and the publicly available one–
to–one housing information. The intuition behind the basis
is also twofold. First, people living in a given geographi-
cal region (be that a state, a county, a postal district) are
similar in some sense; for example, they might have a more
similar political orientation from people living in another
geographical region. Second, people living in similar houses
are likely to be similar in other demographic variables; for
example an established family with a stable source of in-
come is more likely to be able to buy a larger, more expen-
sive house than a person who just started his/her career.
As mentioned earlier, to preserve the privacy of individuals,
the clusters are constrained to contain at least some fixed
number of households. Statistics for the variables, depend-
ing on the sensitivity of the information contained in them,
are obtained from Statistics Denmark [10] for clusters con-
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Type 3 − Cosmopolitan vs Denmark

Index weighted by households
−100 −50 0 50 100 150 200

Type3 15.9 %   DK 15.1 %
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Type3 15.4 %   DK 13.8 %
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Type3 05.0 %   DK 04.1 %
Type3 01.4 %   DK 01.6 %
Type3 24.5 %   DK 36.5 %
Type3 05.6 %   DK 05.0 %
Type3 19.8 %   DK 14.2 %
Type3 02.6 %   DK 01.6 %
Type3 26.0 %   DK 07.2 %
Type3 05.5 %   DK 05.4 %
Type3 04.0 %   DK 03.7 %
Type3 02.3 %   DK 01.2 %
Type3 14.7 %   DK 05.9 %
Type3 10.8 %   DK 08.0 %
Type3 23.2 %   DK 31.4 %
Type3 00.5 %   DK 01.0 %
Type3 02.1 %   DK 04.1 %
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Type3 00.3 %   DK 00.3 %
Type3 01.8 %   DK 03.1 %
Type3 07.8 %   DK 09.1 %
Type3 03.4 %   DK 03.2 %
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Type3 24.3 %   DK 18.0 %
Type3 00.4 %   DK 00.3 %
Type3 20.0 %   DK 19.5 %
Type3 11.0 %   DK 11.0 %
Type3 14.1 %   DK 19.4 %

Figure 1: Partial profile of conzoom r© type 3

structed at an appropriate level of cluster size constraint,
for example 20, 50, 100, and 150 households per cluster. In
case of a continuous variable, for example age, counts of the
corresponding entities (in this case persons in the cluster)
are obtained for the categories of the given variable.

Due to this constrained geo–clustering method, the
conzoom r© clusters obtained comply with the social and eth-
ical norms and preserve the privacy of the individual, yet the
statistics obtained are accurate enough for effective market
segmentation. This segmentation results in grouping the
Danish population into 29 conzoom r© types, which are de-
fined for each 100–meter grid cell. Cosmopolitan (type 3)
is one example of the 29 conzoom r© types. Comparing the
demographics of type 3 to the demographics of the rest of
Denmark’s population gives the demographic profile of the
type. This profile is partially shown in Figure 1. It roughly
describes individuals that are more likely: to be middle aged
(30–59 years old), to live in larger cities in larger, multi–
family houses that are either owned by them or are pri-
vate rentals, to be mostly couples with children, to have a
medium to long higher education, to hold higher level or
top management positions in the financial or public sector,
and to have a better household economy (both in terms of
wealth and income) than the average Dane.

mobidk
TM

Daily Movement Data: mobidk
TM

is an
upcoming, commercial database product that contains de-
tailed information about the daily movement of the Dan-
ish population between home and work [3]. Again, to pre-
serve the privacy of users, the movement data is aggre-
gated to non–overlapping and connected geographical re-
gions. It is represented in a relational database format as:
〈from region, to region, count〉, meaning that from the ge-
ographical region from region, count number of people move
on a daily basis for work to the geographical region to region.
In ST–ACTS, these geographical regions are parishes, which
on average contain 1176 households, and 195 100–meter grid
cells 1.

1The commercial version of mobidk
TM

contains the same in-
formation for smaller, neighborhood clusters that on average
contain 230 households and 38 100–meter grid cells.

bizmark
TM

Business Data: bizmark
TM

is a commercial
database product that contains detailed information about
Danish businesses both in the public and the private sec-
tor [3]. Some of the one–to–one information that is avail-
able about businesses is their location, the number of em-
ployees working in them, the physical size of the business
facility, and the international branch codes the businesses
fall under. Detailed but aggregated information about the
employees within businesses is also available for appropri-

ate bizmark
TM

clusters, which are constructed taking into
account geography, business branch, business size in term
of number of employees and physical size of the business
facility, and various other descriptive business variables.

GallupPC r© Consumer Survey Data: GallupPC r© is a
commercial database product and as the name suggests, it
contains detailed survey responses of consumers about their
demographics; interests such as culture, hobbies, and sports;
household consumptions, purchasing habits; transportation
habits; views on various subjects; attitudes and exposure to
various advertisement media [2]. The questions in the sur-
veys are yes/no questions. To measure the magnitude of the
response of an individual survey subject to a specific ques-
tion, the original yes/no question is re–phrased with a refer-
ence to a time–frequency interval. For example the original
yes/no question “Do you go to the library?” is re–phrased
to 7 yes/no questions using the following time–frequency in-
tervals: daily / almost daily; 3-4 times a week; 1-2 times a
week; 1-3 times a month; 1-5 times every 6 month; seldom,
and never.

5. ST–ACTS: SPATIO-TEMPORAL ACTIV-
ITY SIMULATOR

In this section, main components of ST–ACTS and their
use of the source data is described. In the description a
simulated person, who performs activities in time and space,
will be abbreviated as a simperson. A MATLAB toolbox for
ST–ACTS can be downloaded for research purposes from
http://www.geomatic.dk/research/ST–ACTS/.

Drawing Demographic Variables for Simpersons: The
conzoom r© source data contains accurate, detailed demo-
graphic information about the population aggregated to a
cluster level. As described in Section 4, continuous variables
are discretized into categories. Clusters contain counts for
all categories for all variables. Having the exact number of
persons, housing units, and households at a grid cell level,
and assuming the same distribution of variables in the indi-
vidual grid cells as in the cluster they belong to, counts for
all categories for all variables are calculated at a grid cell
level. A simperson is assigned a category for a given vari-
able proportional to the counts of the categories for the given
variable in the grid cell the simperson lives in. In short, a
category for the variable is assigned to the simperson ac-
cording to the distribution of the variable. To draw assign
categories for variables without replacement, corresponding
counts in the given grid cell are decremented. Since counts
of some of the variables in the grid cell refer to entities other
than persons, but are variables that are part of the demo-
graphic variables that describe a person, these counts are
adjusted to sum to the number of persons in the cell.

Skewing Distributions based on Correlations: The
above described method for assigning categories for demo-



hp_persIncome_0_20

hp_persIncome_20_40

hp_persIncome_40_60

hp_persIncome_60_80

hp_persIncome_80_100
 

 
hp_edu_basicSchool

hp_edu_generalUpperSchool

hp_edu_vocationalUpperSchool

hp_edu_vocationalTraining

hp_edu_shortHigh

hp_edu_mediumHigh

hp_edu_bachelor

hp_edu_longHighResearch

hp_edu_unknown −0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 2: Correlation between education and in-
come

graphic variables has one major flaw: demographic variables
are not independent. For example the education type vari-
able has a strong correlation with the personal income vari-
able. This correlation is illustrated in Figure 2. Correlations
are calculated between the percentages of the categorized
variables, and samples are weighted by the number of per-
sons in the cells. From the colorbar on the side one can see
that darker shades mean stronger negative correlations and
lighter shades mean stronger positive correlations. The cor-
relations support the common knowledge that people hav-
ing higher education levels tend to have better paying jobs.
Similar correlations exist between other variables.

To remedy the above described flaw, which could result
in unrealistic assignment of categories for variables to sim-
persons, the assignment is modified by drawing categories
from skewed variable distributions that try to embed the
correlations between the variables as follows. For a given
simperson, the category for the first variable, age, is drawn
without replacement from unskewed distribution of the age
variable. An example of this distribution and the result of
the draw is shown in the top most left subgraph of Figure 3,
where for the age variable the category 5 was drawn, which
represents that the simperson is in the age group 30–39. The
distribution of the second variable, education, is shown in
the second–from–top left subgraph of Figure 3. Given this
distribution, categories 4, 6 and 8 are most likely to be as-
signed to the simperson for the education variable. However,
the correlations (shown in the third left subfigure of Figure
3) between the age category 5 and education variable reveal
positive correlations for categories 1 and 4, and a negative
correlation for category 8 for the education variable. Af-
ter normalizing (shifting to mean 1) the correlations, the
original distribution of the education variable is skewed by
pair–wise multiplying the raw counts of categories of the
education variable and the normalized correlations for the
education variable given that the age category of the sim-
person is 5. This skewed distribution is shown in the bottom
left subgraph of Figure 3 and is used for sampling the edu-
cation variable, resulting in the education category 4, voca-
tional training. Values for further variables are drawn from
skewed distributions that take into account the categories
for the previously drawn variables, by skewing the distribu-
tion of the current variable by the average of the normalized
correlations for the so far drawn categories. This process is
shown from top to bottom on the right subfigures of Fig-
ure 3, where given that the age category a the simperson
is 5 and the education category is 4 for the third variable,
employment state, the category 11 is drawn.
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Figure 3: Drawing samples without replacement
from correlated, multivariate distributions

Assigning Simpersons to Work Places / Schools: Ac-
tivities can be divided into two groups: free time activities

and mandatory activities. While the notion of “mandatory”
activity may differ from person to person, for the purposes
of simulation, ST–ACTS considers going to school and work

as mandatory activities. The rest of the activities in ST–
ACTS are considered free time activities.

With respect to mandatory activities, simpersons can be
divided into three groups: retired, worker, and student. For
the retired simpersons, it can be assumed that they enjoy
the fruits of a hard–working life and have no mandatory ac-
tivities. Consequently, they spend the majority of the time
either at home or performing free time activities. The fol-
lowing paragraphs describe the methods in ST–ACTS (and
their usage of the base data) for assigning simpersons in the
worker and student groups to their work places and schools
respectively.

Assigning Worker Simpersons to Work Places: Sim-
persons in the worker group are assigned to work places in
two steps. In the first step, given the home parish and
employment branch of the simperson, the parish–to–parish
commuting probabilities, and the spatial distribution of busi-
nesses in branches, a work parish is assigned to the simper-
son. In the second step, given the employment branch that
the simperson works in, businesses in the same branch that
are located in the work parish of the simperson are retrieved

from bizmark
TM

. Finally, proportional to the number of em-
ployees that work in the selected businesses, the simperson
is probabilistically assigned to one of the businesses / work
places.

Assigning Student Simpersons to Schools: Simper-
sons in the student group are assigned to schools in two
steps. In the first step, depending on the age group of the
simperson, he or she is assigned to either one of the four
educational institution types, or is assigned to be “not in
school” and hence is considered to a member of the worker
group. In the second step, educational institutions of the
simpersons’s educational institution type are retrieved from

bizmark
TM

, and the simperson is assigned to the institu-
tion that is closest to the simperson’s home2. The following
paragraph explains the first of these steps in more detail.

Simpersons in the student group can be divided into four
subgroups based on which one, if any, of the four educa-
tional institution types they attend: kindergarten, primary

2The Danish public school system is controlled by the mu-
nicipalities, which assign students to educational institu-
tions that are nearby. Locations of these institutions are
carefully planned to meet the needs of the population.



school, secondary school, or college / university. As de-
scribed above, each simperson below age 30 is assigned to
one of the four age groups: [0, 11], [12, 16], [17, 22], and
[23, 29]. Assuming all simpersons up to age 5 or 6 go to
kindergarten (or daycare centers), simpersons in the [0, 11]
age group are assigned with equal likelihood to either a
kindergarten, or a primary school. For each of the remain-
ing three age groups, based on information obtained from
Statistics Denmark [10], the probabilities of attending one
of the four education institution types are derived, which
are shown in the table:

[12-16] [17-22] [23-29]

primary school 0.9198 0.0235 0.0002
secondary school 0.0654 0.4639 0.0552
college / university 0.0000 0.1194 0.2365
not in school 0.0148 0.3933 0.7081

Then, given the age group of the simperson and the corre-
sponding probabilities, the simperson is assigned to either
one of the three educational institution types, or to be “not
in school” and is considered to be a member of the worker
group.

Daily Activity Probabilities: A subset of the GallupPC r©

consumer survey questions, described in Section 4 represent
activities that require the movement of the consumer. Some
of these activities are shown on the y–axis of Figure 4. To
preserve space and clarity, the following, additional activi-
ties are included in the model, but are excluded from the fig-
ure: art exhibition, church, pop/rock concert, museum, post
office, theatre, solarium, hairdresser, and shopping. The
shopping activity is further subdivided into 22 subtypes of
shopping that are tied to a particular brand or type of store.

Using the geo-demographic parts of the surveys, each sur-
vey subject is assigned to one of the 29 conzoom r© types.
To derive a single indicator for how likely a given conzoom r©

type is to perform a given activity, the answers to the re–
phrased time–frequency questions are normalized and aver-
aged as follows. First, every time–frequency interval for an
activity is normalized to represent the probability of per-
forming the given activity on an average day. For example,
a subject’s positive reply to the question ”Do you perform
activity a n times during a period ∆t?” equivalently means
that the probability of that subject to perform activity a on
any given day is P (a) = n/day(∆t), where day is a function
that returns the number of days in period ∆t. P (a) is equiv-
alently referred to as the Daily Activity Probability (DAP)
of activity a. Second, these daily activity probabilities of
individual subjects of a given conzoom r© type are averaged.
Figure 4 shows a sample of these daily activity probabilities
for a subset of the conzoom r© types. From the figure it can
be seen, for example, that a college student is most likely to
go to a library, a cinema, a discotheque, or a fitness center;
while a retired farmer is the least likely to perform these
activities. Since the figure has the same probability scale, it
also reveals that, depending on type, going to a fitness center
is about a 7 to 22 times more frequent or popular activity as
going to classical concerts. As mentioned before, ST–ACTS
includes the daily activity probabilities of 35 activities for
29 conzoom r© types.

Activity Simulation with Spatio–temporal Con-
straints: A simple, random, discrete event activity sim-
ulator can be constructed as follows. At every time step,
a random subset of the simpersons is chosen to perform an

Figure 4: Sample daily activity probabilities

activity. Then, for each selected simperson, given his/her
conzoom r© type and the associated daily activity probabili-
ties, an activity is assigned. Then, each selected simperson
is moved to the closest facility, where his/her assigned activ-
ity can be performed. This simple simulator does not model
several spatio–temporal constraints on the activities. In the
following, these constraints are discussed, and for each, the
proposed modelling solution that ST–ACTS implements is
presented.

Temporal Activity Constraint: Certain activities are
more likely to be performed during specific periods than
others. For example, people in the work force tend to leave
their homes for work at the beginning of a workday. Con-
sequently, the same people are less likely to go to a dis-
cotheque, which is presumably closed, during the same pe-
riod. To model the Temporal Activity Constraint (TAC),
ST–ACTS allows the user to define for each of the three
population groups the probabilities for each of the activities
for every hour of every day of the week. These probabilities
are used to limit the ability of the simperson to perform cer-
tain activities during certain time periods. They are not to
be confused with the conzoom r© type dependent daily activ-

ity probabilities, which encode the activity preference of each
type. Through the TACs ST–ACTS allows the modelling of
opening hours, and to some degree sequential patterns. The
TACs of an activity are defined by a 7 by 24 matrix, where
columns represent hours of the day, and rows represent days
of the week.

Activity Duration Constraint: Not all activities take
the same amount of time. For example people usually work
6-10 hours, spend about 2 hours in a cinema, and 30 min-
utes in a grocery store. To model this, from the starting
timestamp of an activity a that is assigned to a simperson
s, s becomes occupied for δoccupied(a) time steps. During this
period s is not assigned any other activities. In ST–ACTS,
Activity Duration Constraint (ADC) for each activity are
probabilistically drawn from the user–defined activity dura-
tion distributions, which is normally distributed with mean
µδoccupied (a) and variance σδoccupied

(a).

Minimum Elapsed Time Between Activity Repeti-
tion Constraint: While people prefer some activities over
others, it is very unlikely that they would repeat the same,
even if preferred, activity many times, one–after–the–other
within a short period. For example, it is very unlikely, that
even a very active simperson, right after finishing his work-
out at the fitness center, decides to go to a fitness center



(0) //geo–demographic data (conzoom r©): D

(0) //population movement data (mobidk
TM

): M

(0) //business data (bizmark
TM

): B

(1) ST–ACTS (T ,∆T ,DAP ,TAC ,ADC ,METC ,MDC )

(2) s.dem ← drawDemographicVariables(D)

(3) s.work ← simpsToWork(s,B,M)

(4) s.acts ← initSimpsActs(s,t=1)

(5) for t = 1..T

(6) free ← unoccupiedSimps(s.acts,t)

(7) a← validActsToFreeSimps(s,DAP ,TAC ,METC ,t)

(8) [f, d]← facilitiesForActs(a,s,MDC ,B)

(9) δoccupied ← durationsOfActs(a,ADC )

(10) δtrans ← transitionTimes(d,speed(d))

(11) s.acts ← updateSimps(a,f .loc,δoccupied,δtrans,,t)

(12) end for

Figure 5: Discrete event simulation in ST-ACTS

again. This constraint is modelled in ST–ACTS through
the user–defined δelapsed(a), activity–dependent Minimum

Elapsed Time Constraint (METC). The constraint is en-
forced by maintaining a recent history of activities for each
simperson and validating newly drawn activities against it.

Maximum Distance Constraint: For most activities
there is a maximum distance a person is willing to travel.
This maximum distance represents a spatial constraint on
the activities that a simperson s will perform, given the
current location of s and the locations of facilities, where
a selected activity a can be performed. Hence, during the
simulation if there is no suitable facility for a within max-
imum distance of the current location of s, the activity is
considered invalid for s, and s becomes idle. The Maximum

Distance Constraint (MDC) is controlled by a user–defined,
activity–dependent parameter in ST–ACTS.

Physical Mobility Constraint: To move from one loca-
tion to another takes time. While detailed simulation of this
movement is not an objective of ST–ACTS, basic physical
mobility constraints are modelled. After a facility f for an
activity a is selected for a simperson s, s is moved after δtrans

time steps to the new location. δtrans is calculated based on
the Euclidian distance d in km between the current loca-
tion of s and the location of facility f , assuming a constant
speed. This constant speed, in km/h, is probabilistically
drawn from the distribution speed(d) = max(5, N(3d, d2)).
speed(d) assigns lower speeds to shorter, and higher speeds
(with larger variance) to longer distances. It, to some ex-
tent, captures common modes of transportation, i.e., people
tend to walk on shorter trips, use public transportation or
bicycle on slightly longer trips, and use a car or commuting
train on even longer trips.

Discrete Event Simulation: Using the conceptual build-
ing blocks presented so far, the discrete event simulation
performed in ST–ACTS can be summarized as shown in Fig-
ure 5. The first three comments indicate that named data
sets are used in the simulation, but are not user–defined
parameters of it. Arguments to ST-ACTS, shown on line 1,
are the user–defined parameters that have been described in
the previous paragraphs. On line 2 demographic variables
are assigned to simpersons based on skewed variable distri-
butions. On line 3 simpersons are assigned to work places
and schools. On line 4, at time step t = 1 (Monday, 00:00)
all simpersons are initialized to be at “home” doing activ-

ity “home to stay” until the early morning hours. Following
these preprocessing steps, at every time step t, on line 6, cur-
rently unoccupied (free) simpersons are found. Then, on line
7 for each free simperson a valid action is found according
to the daily activity probabilities (DAP) of actions for the
conzoom r© type of the simperson. Actions are valid, if they
both meet the temporal activity constraint (TAC) and the
minimum elapsed time constraint (METC). On line 8 valid
facilities are found for these valid activities. Facilities are
valid if they meet the maximum distance constraint (MDC).
On line 9, activity durations are drawn that meet the activ-
ity duration constraint (ADC). On line 10, according to the
distances to the assigned activities, transition times are cal-
culated. Finally, on line 11, information about the newly
assigned activities are stored and the activity histories are
updated for the affected simpersons.

6. EVALUATION OF THE SIMULATION
ST–ACTS was implemented and tested in MATLAB run-

ning on Windows XP on a 3.6GHz Pentium 4 processor
with 1.5 GB main memory. The geographical extent of ST-
ACTS was restricted to the municipalities of Copenhagen
and Frederiksberg in Denmark. In this extent, the num-
ber of simpersons is 590,050 (178,826 retired, 268,615 work-
ers, and 142,609 students), the number of working places is
1,264,129 in 193,299 businesses, and the number of facilities
is 10,544. Simulation experiments were performed for a time
step length of ∆T = 5 minutes. To test the performance of
ST–ACTS, in all experiments “strict” TACs were set on the
two most likely activities, go “home to visit” and go “home
to stay”. TACs of other activities were set to model open-
ing hours of corresponding facilities. As a result a simperson
performs on average 9.6 ± 3.2 activities per day.

To evaluate the effectiveness of ST-ACTS, simulations
were performed for varying sizes of randomly selected sub-
sets of simpersons during the course of a single day (24
hours). Figure 6 shows both the CPU times (right y–axis)
and the I/O time for logging the events (left y–axis). Both of
these quantities scale approximately linearly with the num-
ber of simpersons. In short, the simulation is fast and scales
well.

In a larger experiment activities of the total population
for the course of a full week have been simulated. The table
below shows the output of ST-ACTS for a cosmopolitan type
simperson during the course of a day.

a.begin a.loc(x) a.loc(y) a.end a.name

8:35 722941 6172634 15:50 work / school
17:05 720408 6173933 17:45 Fakta
18:55 721350 6177550 20:20 home to visit
20:45 723555 6175390 21:10 solarium
21:50 723483 6175299 23:30 cinema
23:40 721350 6177550 8:25 home to stay

The simulation, without logging the individual events and
only keeping statistics about activities, took 98 minutes. To
evaluate the validity of ST-ACTS, the gathered statistics
have been analyzed. Due to space limitation, only some
results of this analysis are discussed in detail, while others
are only summarized.

To evaluate ST-ACTS’s ability to generate the correct
distribution of activities, the input DAPs have been com-
pared to the simulated DAPs, shown in Figure 7. While,
due to the previously mentioned “strict” TACs, the simu-
lated DAPs are about 4 times higher than the input DAPs,
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Figure 7: Input and simulated DAPs

the relative simulated DAPs among activities is similar to
the input DAPs. By using less “strict” TACs, i.e.: allowing
simpersons to go home earlier after work, the scale of sim-
ulated DAPs match that of the input DAPs. Differences in
the relative DAPs can be explained by the effects of spatio-
temporal constraints on activities.

To evaluate ST–ACTS’s ability to control temporal con-
straints on activities, counts for each assigned activity for
every hour–of–day and day–of–week were maintained. Fig-
ure 8 shows the average number of assigned activities for
each hour–of–day averaged over the days–of–week. Due to
the large variation in frequency counts for different activ-
ities in different periods of the day, the base 2 logarithm
of frequency counts are shown. From the figure it can be
seen that certain groups perform certain activities at cer-
tain times of the day more frequently than other groups.
For example, it can be seen that the retired group is more
likely to perform activities during working hours, simply be-
cause they are free to do so. Opening and closing times of
facilities is also controlled by the parameters. For example,
no-one goes to discotheques during the day, and no-one goes
to shopping centers in the middle of the night.

To evaluate ST–ACTS’s ability to control spatial con-
straints on activities, the daily distance travelled to work
by an average simperson (2.7 ± 2.3 km) was compared to
the total daily distance travelled by an average simperson
(8.3±3.6 km). While for the same numbers no ground truth
was available to evaluate against, considering the average 9.6
activities per day the numbers seem reasonable. The sim-
ulated data has also been verified that no trips violate the
activity–dependent maximum distance criteria.

7. CONCLUSIONS
Realistic models that simulate the spatio–temporal ac-

tivities of users, and hence the distribution of moving ob-
jects, are essential to facilitate the development of adequate
spatio–temporal data management and data mining tech-
niques. In this paper, ST-ACTS, the first of such simulators
is presented. Experimental results show that, using a num-
ber of real–world geo–statistical data sources and intuitive
principles, ST–ACTS is able to effectively generate realis-
tic spatio–temporal activity data. It is also demonstrated
that the generated data has the same characteristics as it
is defined by the user–controllable model parameters. ST-
ACTS has been implemented in MATLAB and is available
for research purposes.

Log−frequency counts for group retired averaged for a week
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Figure 8: Validity of ST–ACTS in terms of TACs

While the correspondence between the characteristics of
the generated data and the model parameters is demon-
strated, the accuracy of the simulation has to be necessarily
affected by the limited modelling of physical aspects of mo-
bility. Hence in future work, integrating the output of ST-
ACTS as an input to sophisticated network–based moving
object simulation as in [1] is planned. Such a more com-
plex simulator will provide synthetic data sets that can aid
the development in telemathics, intelligent transportation
systems, and location–based services.
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