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1 Introduction

The widespread adoption of location-enabled devices and the increasing acceptance
of services that leverage (personal) data as payment enable the collection of mas-
sive streams of trajectories of moving objects. Trajectories provide explicit evidence
about the route choices of travelers, which is a critical aspect of transport models in
transport planning. Yet most transport models, to escape the daunting task of ana-
lyzing time-varying route choices for all origin-destination pairs, unrealistically and
despite the evidence make the shortest- or least cost path assumption between ori-
gins and destinations. To remedy this situation, the paper proposes a method and
system that adopts the general visual analytics paradigm of “extraction, depiction,
and visualization of computationally extracted patterns” (Andrienko et al., 2008,
2010). In particular, the proposed method and system 1) in an incremental fashion
aggregates the time-varying movement information as closed contiguous frequent
routes from a massive trajectory stream and 2) reconstructs from this information
the k most likely movements for a selected origin-destination pair and time period.
A simple 2D map interface is used to define the spatial (and temporal) predicates of
the user-query and to display and explore the reconstructed movements. The virtues
of the proposed system are that 1) it compresses the infinite stream of trajectories to
a finite storage space (thereby allowing the efficient processing of queries) and 2) in
comparison with a pure data warehouse solution (Krogh et al., 2013, 2014), it can
construct movements that might not have been observed in the sample but are likely
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in the population. The system is demonstrated using 2.26 million trip trajectories of
11 thousand taxis over a six day period in Wuhan, China.

2 Problem Definition

Let O = {o1, . . . ,oN} be a set of moving objects. Let the time domain be denoted by
T . Let S be a discretization of the 2D space into application specific spatial elements
s1,s2, . . ., e.g., road network segments, grid cells, regions, where the objects can be
located. Without loss of generality assume that S is a unit grid. Let the continuous
movement of an object o during its trip2 on S be modeled as a pair tr = (t0, p), where
t0 is the start time of the movement and p = 〈(s1,∆ t1), . . . ,(sn,∆ tn)〉 is a spatially
contiguous sequence of element traversals (si,∆ ti), where ∆ ti denotes the time it
took o to traverse si during its trip. Trips of objects are observed as a time-ordered
stream of trip elements of objects STE = 〈te1, te2, . . .〉, where a tei is a three-tuple
(tsi,(si,∆ ti),oi) and records the fact that at time tsi object oi traversed the spatial
element si in ∆ ti time units.

Let dow : T 7→ {1, . . . ,7} denote the day-of-week- and tod : T 7→ {0, . . . ,23}
denote the time-of-day temporal domain projection functions. Let PT be a temporal
predicate over T that is defined in terms of temporal domain projected values as
PT ⊆{1, . . . ,7}×{0, . . . ,23}. Let PS be a spatial predicate that is defined in terms of
an origin region ro ⊂ S and a destination region rd ⊂ S. Then, given the movements
of a sample of objects in a population in STE and the spatial and temporal predicates
PS and PT , the k-Most Likely Movements (k-MLM) problem is defined as estimating
the k most likely movements / paths of the population from the origin region PS.ro
to the destination region PS.rd during the periods defined by PT .

3 Method

Since the k-MLM problem is defined for the movements of a population of objects
based on the movements of a sample, which might not even contain movements that
satisfy the spatial and temporal predicates, the proposed approach first incrementally
aggregates general movement information of the sample objects for different tempo-
ral domain projections as Closed Contiguous Frequent Routes (CCFRs) (Bachmann
et al., 2013), then constructs a generative probabilistic movement model based on
topological relationships between CCFRs, and expresses the k-MLM problem as
extracting k least cost distinct paths problem in the directed transitions graph of
CCFRs. Figure 1 shows the stages of the method and the following subsections
detail the stages.

2 A trip is defined as a purposeful movement of an object from an origin to a destination where the
object is stationary for an extended period of time.
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Fig. 1 Schematic diagram of the k-MLDM method.

3.1 Incremental Extraction of CCFRs

The proposed method extracts and compresses information about the time-varying
movements of a collection of objects in the form of temporally domain projected
CCFRs as it is defined in (Bachmann et al., 2013). Informally, given a set of trips
TR the support of a spatially contiguous sequence of element traversals r, denoted as
sup(r), is the number of trips in TR that contain r. r is frequent if sup(r)≥min sup.
r is closed if there does not exists another sequence r∗ that contains r and has the
same support as r. r is a CCFR if it is frequent and closed. To extract time-varying
CCFRs from STE the proposed method forms 1-hour long tumbling windows over
STE, extracts CCFRs from the windows, and incrementally aggregates the CCFRs
for each dow and hod combination using the approach of (Bachmann et al., 2013).

3.2 CCFR Based Movement Model

The proposed model assumes that objects probabilistically move along CCFRs and
the movement is complete, i.e., starts from the first- and ends at the last spatial
element of the CCFR. At the end of a CCFR an object either probabilistically tran-
sitions to “connected” CCFRs or stops moving.

Initial probabilities of and transition probabilities between CCFRs are defined
based on their support values and topological relationship as follows. Let the suc-
cessors of a CCFR r be denoted as succ(r) and be the set of CCFRs for which r
is a prefix. Analogously, let the predecessors of a CCFR r be denoted as pred(r)
and be the set of CCFRs for which r is a suffix. Let the free supply of a CCFR
r be s(r) = sup(r)−maxri∈succ(r) sup(ri). Analogously, let the free demand of a
CCFR r be d(r) = sup(r)−maxri∈pred(r) sup(ri). Let f (r) and l(r) respectively de-
note first and last spatial element of a CCFR r. Let conv(s) and div(s) respectively
denote the set of CCFRs that converge to and diverge from the spatial element s,
i.e., conv(s) = {ri : l(ri) = s} and div(s) = {ri : f (ri) = s}. A CCFR ri connects to
a CCFR r j if and only if l(ri) = f (r j).
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Then, the initial probability of a CCFR r w.r.t. a set of trips TR is π(r) =
s(r)/|TR|, and when ri is connected to r j, the transition probability from CCFR
ri to r j is

τ(i, j) = (1−ρl(ri)) ∑
r∈div(l(ri))

d(r j)

d(r)
, (1)

where ρl(ri) denotes the fraction of objects in the free supply of ri that stop moving
at ri and is calculated as

ρl(ri) = max
(

0,1−
(

∑
r∈div(l(ri))

d(r)/ ∑
r∈conv(l(ri))

s(r)
))

. (2)

When ri is not connected to r j then τ(i, j) = 0. Note that the initial and transi-
tion probabilities effectively only distribute a free supply of a CCFR to connected
CCFRs proportional to (1) and respecting (2) the free demand of those CCFRs.

3.3 Finding the k-MLMs

Given the domain projected CCFRs and the above movement model, a k-MLM
problem with spatial and temporal predicates PS and PT is computed as follows.
First, the dow-hod projected CCFR aggregates specified in PT are retrieved and
combined using the weighted CCFR mining method in (Bachmann et al., 2013).
Second, a directed transition graph of CCFRs G(E,V ) is constructed as follows.
Each CCFR ri is added to G as a vertex vi and each connected CCFR pair (ri,r j)
is added to G as a directed edge ei j with cost − log(τ(i, j)). In addition, an ori-
gin pseudo vertex vo is created and a directed edge eoi with cost − log(π(i)) is
created from vo to a vertex vi if the CCFR that corresponds to the vertex v j in-
tersects with the origin region PS.ro. Similarly, a destination pseudo vertex vd is
created and a directed edge eid with cost 1 is created from a vertex vi to vd if
the CCFR that corresponds to the vertex vi intersects with the destination region
PS.rd . Since in the so-constructed graph G the cost of a path from the origin
pseudo vertex vo to any other vertex that represents a CCFR is the negative log
likelihood of the sequence of connected CCFRs 〈r1,r2, . . . ,rk〉 that is represented
by the path 〈vo,v1,v2, . . . ,vk〉, i.e., cost(vo,v1,v2, . . . ,vk) = −L (r1,r2, . . . ,rk) =
− log(π(r1)) +∑

k−1
i=1 − log(τ(i, i+1)), the solution to the k-MLM problem is the

set of k least cost paths from vo to vd in G. Since many sequences of CCFRs can
generate a MLM, the likelihood of a MLM according to the movement model is
the sum of the likelihoods of such sequences, which is calculated using a dynamic
programming approach.
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3.4 Finding Distinct k-MLMs

While the k-MLMs can theoretically be calculated with the method proposed by Yen
(1971), the results may not be informative as several of the k-least cost paths in G
may represent the same movement. Therefore, the following approach is proposed
for the extraction of the k-Most Likely Distinct Movements (k-MLDMs). First, find
the least cost path from vo to vd in G and return the corresponding sequence of
CCFRs as the 1st -MLDM. Second, find the set of CCFRs that are spatially con-
tained by the 1st -MLDM and increase the edge cost to vertices that represent these
contained CCFRs by a user-defined blocking factor fb ≥ 1, resulting the modified
graph G1′ . Subsequently, extract the 2nd-MLDM as the least cost path in G1′ and
similarly iteratively extract the remaining k− 2 MLDMs by ‘blocking’ the CCFRs
that are contained by previously extracted MLDMs.

4 Demonstation

To demonstrate the proposed method a web application prototype is created and
tested on a six day long (Mon, Tue, Thu, Fri, Sat, Sun) stream of raw GPS positions
of around 11,000 taxis moving on the streets of Wuhan, China (Li et al., 2011).
The data has been preprocessed into 2.26 million grid-based continuous trips as
described in (Gidófalvi, 2015).

Incremental mining experiments reveal that the proposed method effectively
compresses the infinite stream of trajectories to a finite storage space. In partic-
ular, at an absolute minimum support of 50 the processing of 2.26 million trips,
partitioned into 145 dow-hod windows, results in a total of approx 4 million dow-
hod projected CCFRs, which can be aggregated to 136 thousand global CCFRs,
i.e, 5 times the number of CCFRs in an average dow-hod window. From these re-
sults one can estimate that the unbounded stream of movements of the taxis can be
compressed into roughly 20 million CCFRs.

The two screenshots of the map interface in Figure 2 show the time-varying as-
pect of the k-MLDMs (morning vs afternoon) and the simple highlighting (blue)
function that allows the interactive exploration of the k-MLDMs.

5 Conclusions and Future Work

The paper proposed a method that in an effective manner extracts complex, time-
varying movement patterns (CCFRs) from a stream of moving object trajectories, re-
generates likely movements based on these patterns, and facilitates the visual query-
ing and explorations of these likely movements using a simple map interface.
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(a) Morning (b) Afternoon

Fig. 2 Time-varying k-MLDMs.

Future work will consider 1) alternative models that further incorporate the topo-
logical relationship between CCFRs into transition probabilities, 2) empirical model
validation, and 3) multi-modal movement model design.
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