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ABSTRACT
Congestion is a major problem in most metropolitan ar-
eas. Systems that can in a timely manner inform drivers
about relevant, current or predicted traffic congestion are
paramount for effective traffic management. Without loss of
generality, this paper proposes such a system that by adopt-
ing a grid-based discretization of space, can flexibly scale the
computation cost and the geographic level of detail of traffic
information that it provides. From the continuous stream
of grid-based position and speed reports from vehicles, the
system incrementally derives 1) statistics for detecting di-
rectional traffic congestions and 2) model parameters for a
time-inhomogeneous, Markov jump process that is used to
predict the likelihood that a given vehicle will encounter a
detected directional congestion within the notification hori-
zon. A simple but efficient SQL-based prototype implemen-
tation of the system that can naturally be ported to Big Data
processing frameworks is also explained in detail. Empirical
evaluations on millions of object trajectories show that 1)
the proposed movement model captures the topology of the
underlying road network space and the directional aspects
of movement on it, 2) the congestion notification accuracy
of the system is superior to a linear movement model based
system, and 3) the prototype implementation of the system
(i) scales linearly with its input load, notification horizon
and spatio-temporal resolution and (ii) can in real-time pro-
cess 1.14 million object trajectories.

Categories and Subject Descriptors
H.2.8 [Database Applications]:
Data mining, Spatial Databases and GIS

General Terms
Algorithms, Performance

Keywords
Trajectory Data Mining, Congestion Detection and Notifica-
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1. INTRODUCTION
Congestion is a major problem in most metropolitan ar-

eas. Systems that can in a timely manner inform drivers
about relevant, current or predicted traffic congestion are
paramount for effective traffic management tasks like conges-
tion-avoidance routing. Provided the current and grow-
ing availability- and the task-specific utility of Floating Car
Data (FCD), this paper proposes a data-driven approach
and a directional grid-based, time-inhomogeneous, Markov
jump process model for the detection congestion and the se-
lective dissemination of this congestion information to vehi-
cles. The paper also discusses in detail a scalable implemen-
tation of the method using off-the-shelf relational database
technology. Empirical evaluations on millions of real-world
object trajectories showed that (1) the selective dissemina-
tion accuracy of the proposed model is superior to a lin-
ear movement based model, (2) the proposed can effectively
capture the topology of the underlying road network and the
directional object movement on it, and (3) a simple, high-
level SQL-implementation of the proposed model is scalable
in terms of its input size and model parameters.

The unique features of the proposed model and method
as well as the contributions of the paper are as follows:

1. Grid-based model : The proposed grid-based model-
ing without loss of generality has several advantages.
First, it does not necessitate the need for complete and
accurate road network information and map match-
ing. Second, the model can easily be scaled to any
geographical (spatio-temporal) level of detail.

2. Markov jump process model : The proposed method
directly estimates the probability of a future location
of an object which is not prone to error propagation
as the common used conventional Markov chain model
is that estimates the probability of future locations
indirectly through intermediate locations.

3. Representation of direction: The proposed model ef-
fectively represents of the direction of movement and
flow within the grid-based framework.

4. Time-inhomogeneous model : The proposed method de-
fines and extracts parameters for normally observed
traffic conditions and object mobility for different days
of the week and different hours of the day.

5. Adoption of novel congestion definition: The proposed
method defines a grid cell to be congested if (i) there
is enough evidence for this, (ii) the evidence is reason-
ably unanimous, (iii) the evidence is statistically differ-
ent from the normally observed traffic conditions, and



(iv) the measured traffic conditions reflected in the ev-
idence are relatively annoying for the drivers compared
to the normally observed traffic conditions.

6. Simple, scalable and portable implementation: The pro-
posed prototype uses off-the-shelf RDBMS technology,
which can be implemented in a few lines of SQL code
and can be ported to Big Data processing frameworks.

7. Relevant performance evaluations: The prediction ac-
curacy and scalability of the system is evaluated for
predicting the locations of relevant subset of the ob-
jects for a relevant set of spatio-temporal events.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 defines the problem of
directional congestion detection and selective notification.
Section 4 presents the proposed method its simple proto-
type implementation. Section 5 presents the evaluations and
Section 6 concludes and points to future research directions.

2. RELATED WORK
Considerable research has been conducted to extract and

use the regularities in object movement to predict future
movement of objects.1 Two popular extraction and predic-
tion methods emerged: discrete-time Markov model based [4,
5,12,16,19] and sequential rule / trajectory pattern based [6,
10, 11, 15, 23, 25, 27, 28]. The methods can also be classified
based on what information is used to model the movement
of objects into methods with (1) a general model for all
objects [6, 10, 11, 15, 16, 19, 23, 25], (2) a type-based model
for similar (types of) objects [4, 28], or (3) a specific model
for each individual object or set of individual objects [5,
12, 19, 27]. Alternatively, they may be classified according
to their definition of Regions Of Interest (ROIs) for predic-
tion and consequently their spatial and temporal scale and
granularity into methods using (1) application-specific ROIs
(road segment, network cell, sensors etc.) [4,6,11,16,19,23],
(2) density-based ROIs [5, 10, 12, 15, 25, 27, 28], or (3) grid-
based ROIs [6, 10, 12, 23, 25]. Finally, they can be classi-
fied according to their prediction provision into methods
that provide (1) only sequential spatial predictions (loca-
tion of next ROI) [4, 5, 19, 28] or (2) spatio-temporal pre-
dictions [6, 10–12, 15, 16, 23, 25, 27] and into methods that
provide (i) time-continuous [6, 11, 15, 16, 19] or (ii) time-
punctuated [10, 12, 23, 25, 27] predictions. Other prominent
approaches are [18, 20], in which predictions rely on the as-
sumption that the observed, short-term, partial trajectory
of an object is part of a (approximately [20]) shortest path
to the future unknown destination of the object.

In comparison, the herein proposed method (1) models
movement as a discrete-time, time-inhomogeneous Markov
jump process that directly estimates the probability possi-
ble future locations within the prediction horizon, (2) has
general model for all objects, (3) uses a grid to define its
application-specific ROIs, and (4) provides spatio-temporal
movement predictions implicitly as all its predictions are
valid for the short-term prediction horizon. Additional no-
table features of the proposed method are that (1) it mod-
els directional movement and flows using a spatial grid-
based decomposition of space and (2) the grid-based model
makes the method network-data independent and geograph-
ically scalable; yet the directional grid-based Markov model
1The following is a summary of a recent classification [12] of
such methods with only some of the most relevant references.

adequately captures the topology of the underlying road-
network and the purposeful, directional movement on it.

3. DEFINITIONS
Let G denote a grid with grid cells g1, g2, . . . with side

length glen that uniformly partitions the 2D Euclidean space
R2. Let the time domain be denoted by T ≡ N0. Let
O = {o1, . . . , oM} be a set of moving objects, i.e., vehicles,
that periodically send timestamped status reports which ref-
erence grid cells in the grid G. Let a status report r be one of
three types (position update, speed update, or stopped) and
contain the following information: the object ID of the ob-
ject o that submits the report, the timestamp t of the report,
the grid cell g that the object o is inside at time t, the speed
s of object o at time t, the direction dir from which ob-
ject o enters grid cell g, and the type T of the report. Let
SSR denote the time-ordered stream of status reports, i.e.,
an unbounded ordered sequence 〈r1, r2, . . .〉 of status reports
such that for all i > 1, ri.t ≥ ri−1.t. Let SSRtc denote the
subsequence of SSR that contains all the reports up to time
instance tc. Then the directional congestion detection and
selective notification tasks are defined as follows:

Definition 1. Directional Congestion Detection: Given a
sequence of status reports SSRtc for a set of objects O up
to time tc and a temporal analysis window size ∆tawin ∈
N+, find all directional congestions (g, dir), i.e., grid cell–
direction combinations, such that the speeds of the objects
that have entered grid cell g from direction dir during the
temporal analysis window [tc−∆tawin , tc) is significantly and
substantially bellow “normal”.

Definition 2. Selective Directional Congestion Notification:
Given a stream status reports SSR for a set of objects O, a
set of directional congestions C = {c1 = (g1, dir1), . . . , cm =
(gm, dirm))} that are detected from SSRtc for a tempo-
ral analysis window size ∆tawin , and a prediction horizon
length ∆tpred ∈ N+, using only information in SSRtc , selec-
tively notify an object oi ∈ O about a directional congestion
cj = (gj , dir j) ∈ C if an only if, according to SSR, the ob-
ject oi enters the grid cell gj from the direction dir j during
the prediction horizon [tc, tc + ∆tpred).

The above congestions concepts and related tasks can be
relaxed by omitting the direction requirements from the defi-
nitions; these relaxed concepts and tasks are referred to with
the non-directional adjective. For brevity the adjectives “di-
rectional” and “selective”, if they can be inferred from the
context are dropped from names of the above concepts and
tasks. The above tasks can naturally also be extended for
the entire stream of status reports by performing the con-
gestion detection and notification tasks periodically.

4. CONGESTION NOTIFICATION
As it is foreshadowed in the definitions, the proposed

methodology adopts a grid-based discretization of space,
which by changing the resolution of the grid allows the sys-
tem to scale in terms of its computation cost (time and stor-
age) and the geographical level of detail of traffic informa-
tion that it manages. Given this grid-based framework, the
outline of the directional congestion detection and selective
directional congestion notification method is as follows.



1. Map the directional movement / flow of objects in
SSR to the grid-based framework.

2. Form tumbling windows over the mapped input stream
and treat them as temporal analysis windows.

3. Extract Current Directional Flow Statistics (CDFS)
and Current Directional Mobility Statistics (CDMS)
from the Recent Trajectories (RT) that are within the
current tumbling / temporal analysis window.

4. Incorporate the CDFS / CDMS into Historical Direc-
tional Flow / Mobility Statistics (HDFS / HDMS) for
different temporal domain projections.

5. Detect a grid cell g to be congested from a particu-
lar direction dir if the current mean speed of vehicles
that have entered the grid cell g from the direction
dir is significantly and substantially below the normal
according to the temporally relevant HDFS.

6. Notify an object o about a detected directional con-
gestion (g, dir) if, based on HDMS and the current
position and movement direction of o, the likelihood
that o will enter the grid cell g from the direction dir
during the prediction horizon is greater or equal than a
user / system defined minimum notification probability
threshold min prob.

The subsequent paragraphs present theoretical and imple-
mentation details of the above described processing stages.

4.1 Grid-based Directional Flow Statistics
While the grid-based discretization of space is inherently

non-directional, the movements and flows of objects on the
underlying road network is inherently directional. To cap-
ture the directional aspects of movement and flow, the pro-
posed model defines directional movement and flow in terms
of a grid cell and its eight immediate cell neighbors. Specif-
ically, the proposed model / method, without loss of gener-
ality, assumes that grid-based trajectories are spatially con-
tiguous and defines the direction dir for entering a grid cell
g from one of g’s eight immediate neighboring grid cells n
as the positive angle in degrees from n to g with respect
to North. Using this definition, the proposed method for
each observed grid cell–direction combination (g, dir) ex-
tracts three basic directional flow statistics from the grid-
based trajectories of objects: the number-, the average speed-
, and the standard deviation of the speeds of objects that
enter grid cell g from direction dir .

4.2 Grid-based Directional Mobility Statistics
Similarly, using the same directional grid-based movement

definition, the proposed method extracts two basic direc-
tional mobility statistics from the grid-based trajectories of
objects: 1) the number of objects n(gs,dirs)→(·,·) that enter
grid cell gs from direction dirs and subsequently proceed
to another not necessarily neighboring grid cell and 2) the
number of objects n(gs,dirs)→(gd,dird) that enter grid cell gs
from direction dirs and subsequently enter another not nec-
essarily neighboring grid cell gd from direction dird.

4.3 Stream Processing Model
The online processing of SSR, i.e., the directional con-

gestion detection and selective notification, is facilitated by
adopting a commonly used temporal sliding window model:

Definition 3. Temporal Sliding Window Model : Given a
stream of ordered time-stamped elements, S = 〈(e1, t1),

(e2, t2), . . .〉, and temporal sliding window parameters, win-
dow size, twsize ∈ N, and window stride, twstride ∈ N, the
Temporal Sliding Window Model (TSWM) at every window
slide time instance, tslide = a× twstride + twsize where a ∈ N0,
processes the elements of the stream that are within the time
interval of the window (tslide − twsize , tslide ]. Consequently, a
TSWM is defined by the pair SW = (twsize , twstride).

Given the above definition of the TSWM, the stream of
status reports SSR is processed in tumbling windows, ac-
cording to SW = (twsize , twstride = twsize), as follows. At ev-
ery window slide / tumble time the current tumbling window
is equated to the temporal analysis window, i.e., ∆tawin =
twsize, and is used to perform the directional congestion
detection- and selective notification tasks based on the cur-
rent and the long-term, historical directional flow and mobil-
ity statistics. Given the fact that the directional flow statis-
tics are derived from windows of size twsize = ∆tawin , i.e.,
the statistics are implicitly assumed to be valid for a ∆tawin -
long period in the future, i.e., the period of the succeeding
tumbling window is treated as the prediction horizon, con-
stituting an implicitly assumed short-term congestion pre-
diction model.

4.4 Incremental Historical Summary Statistics
To be able to efficiently extract long-term, historical di-

rectional flow statistics from the stream of status reports
SSR, the proposed method takes advantage of the fact the
CDFS that are extracted from tumbling windows are based
on non-overlapping subsets X and Y of SSR and hence can
be combined in an incremental fashion according to the fol-
lowing equations [26]:

µX∪Y =
nXµX + nY µY

nX + nY
(1)

σX∪Y =

√
nXσ2

X + nY σ2
Y

nX + nY
+

nXnY

(nX + nY )2
(µX − µY )2 (2)

where n, µ, and σ denote the size-, mean- and standard devi-
ation of a given sample. Using Equations 1 and 2, the CDFS
are incrementally combined and compressed into long-term
Historical Directional Flow Statistics (HDFS). The distribu-
tive count-measures of CDMS are incrementally combined
and compressed into long-term Historical Directional Mo-
bility Statistics (HDMS) using simple summation.

4.5 Temporal Domain Projections
Human mobility exhibits a large degree of regularity [24]

that movement models try to capture. There are at least
three different types of regularities in movement: temporal,
periodical, and sequential [12]. To capture these potential
regularities in object flows and movements, the proposed
method extracts HDFS and HDMS for different values of the
day-of-week and hour-of-day temporal domain projections.

4.6 Directional Congestion Detection
Let (ṅ, µ̇, σ̇) and (n̄, µ̄, σ̄) respectively denote the CDFS

and HDFS of a given grid cell g from a given direction dir .
Then, the proposed method defines and detects the grid cell
g as being congested from direction dir when all of the fol-
lowing four criteria are satisfied:



1. Sample size criterion: ṅ >= min veh

2. Sample dispersion criterion: σ̇/µ̇ < max cv

3. Statistical power criterion: (µ̇− µ̄)/(σ̄/
√
ṅ) < max z

4. Speed difference criterion: (µ̇− µ̄)/µ̄ < max relspddiff

In other words, the criteria require that the recent sta-
tus reports for grid cell g from direction dir are sufficiently
many (1), and the reported speeds in them are in close
agreement with one another (2), are (according to a z-test)
significantly- (3) and substantially relatively (4) lower than
the historical (“normal”) speeds. To account for the time-
inhomogeneity of directional flow statistics, in addition to
using the global (atemporal) HDFS, the above criteria are
also separately evaluated using the HDFS for the day-of-
week and the hour-of-day of the CDFS for (g, dir), and the
direction congestion (g, dir) is detected if the criteria hold
for any of the global-, the day-of-week projected-, or the
hour-of-day projected congestion models.

4.7 Directional Congestion Notification
To selectively notify objects about a detected congestion

a movement model is needed. The proposed method uses a
grid-based, directional movement model based on a Markov
jump process model for which the HDMS store the param-
eter estimates. The adjective “jump” is emphasized to dif-
ferentiate from a more conventional Markov chain process
model that given the current state si estimates the prob-
ability of a future state si+k for k > 2 indirectly through
states si+1, . . . , si+k−1, whereas the Markov jump process
model estimates the probability of si+k directly. It is conjec-
tured, that this direct estimation is more accurate as it is not
prone to error propagation. The subsequent sections define
a mobility statistics based- and a simpler, linear movement
model based congestion notification criterion (for baseline
comparison) as follows.

4.7.1 Mobility Statistic Criterion (MSC)
Notify an object o about a directional congestion (gd, dird)

if o has currently entered a grid cell ds from a direction dirs

and the conditional probability of an object entering the
grid cell gd from direction dird given that the object has
previously entered the grid cell ds from the direction dirs

is greater or equal than a user / system defined minimum
notification probability threshold min prob, i.e:

n(gs,dirs)→(gd,dird)

n(gs,dirs)→(·,·)
≥ min prob. (3)

A non-directional variant of the MSC, which is also evalu-
ated in Section 5.5, is defined by omitting the directional
constraints from Equation 3.

4.7.2 Linear Movement Criterion (LMC)
Notify an object o about a directional congestion (gd, dird)

if the cosine of the heading offset, i.e., the angle between
the general heading of o defined as the direction from o’s
least recent historical grid position gh to o’s current grid
position gs, and the direction of the congestion relative to
the current grid cell of o, i.e., the direction from gs to gd,
is greater or equal than a user / system defined minimum
heading offset cosine min cos and the distance between o
and the congested grid cell gd is smaller or equal than a
user / system defined maximum notification range max r.
A min cos value of 1 represents a situation when the gen-
eral heading of the object is directly pointing towards the

congested grid cell, while a value of 0 represents a situation
when the general heading is perpendicular to relative direc-
tion of the congested grid cell. To be able to compare LMC
with MSC, in the experiments max r is set to the maximum
number of grid cells an object can theoretically move during
a temporal analysis window / prediction horizon assuming
a maximum object speed of 50 m/sec.

4.8 SQL-based Implementation
A prototype system that performs the described conges-

tion detection task can be conveniently and effectively imple-
mented using the power of off-the-shelf Relational Database
Management Systems (RDBMS), e.g., PostgreSQL, and the
simplicity of declarative programming languages, e.g., SQL.
The paragraphs bellow explain the details of such a proto-
type implementation whose performance is empirically eval-
uated in Section 5. The aims of the detailed explanation are
to illustrate the simplicity of the proposed solution and to
highlight the portability of the proposed solution to Big Data
processing paradigms that in a scalable manner support the
basic relational algebra operators, e.g., MapReduce-based

data processing frameworks like Apache
TM

HadoopR© [2] and

main-memory, streaming variants like Apache Spark
TM

[3].

4.8.1 Relational Database Schema
The prototype implementation stores recent trajectories

and current and historical directional flow and mobility statis-
tics in the following five database tables:

• RT = <oid, seqnr, dgid, spd>

• CDFS = <dgid, nr, mu, sig, nr_suc>

• CDMS = <dst_dgid, src_dgid, nr_src2dst>

• HDFS = <dgid, nr, mu, sig, nr_suc>

• HDMS = <dst_dgid, src_dgid, nr_src2dst>

The information stored in the five tables are as follows. The
RT table records the status reports that have been received
from the clients during the most recent tumbling window.
More specifically, a row in RT stores the information that
at the time of the report the vehicle with object ID oid

entered the grid cell with grid cell coordinates (gx, gy) in
the direction dir —which is uniquely encoded as the integer
concatenation of the three values (gx, gy, dir) into a di-
rectional grid ID dgid = gx_gy_dir— with the speed spd.
In addition, the prototype implementation assumes2 that
consecutive status reports from a given vehicle that refer to
the same grid cell (i.e., an initial position update status re-
port is followed by one or more speed update status reports)
are aggregated into one status report that has the times-
tamp and speed information of the most recent speed update
status report. Furthermore, status reports that preceded
a stopped status report of a vehicles are excluded from the
most recent tumbling window and RT, i.e., records of stopped
objects do not contribute in congestion detection and mo-
bility prediction and these stopped vehicles are not subject
to notification of any congestion. To model the sequential

2A scalable implementation of the described window seman-
tics can be implemented using appropriate data stream pro-
cessing frameworks, e.g., Apache Flink [1], that provides
flexible windowing semantics where window boundaries and
content can also be defined based on any custom user de-
fined logic. The prototype implementation employs a cus-
tom driver program that emulates the windowing of the sta-
tus report stream.



nature of a trajectory, RT stores a sequence number seqnr

that denotes the relative position of the status report within
the grid-based trajectory of the vehicle oid that is inside the
most current tumbling window, i.e., the row / record that
contains the most current element of the grid-based trajec-
tory has seqnr = 1 and the row / record that stores the n-
th most current element has seqnr = n. In an operational
setting, all the information in RT can be calculated by the
clients of the system (i.e., a software on a position aware
computing device, e.g., navigation system or mobile phone,
in the vehicles) provided some conventions for grid-based
trajectory reporting.

The CDFS table stores for each directional grid ID dgid

= gx_gy_dir the number of vehicles nr and the mean mu

and standard deviation sig of the speeds of these vehicles
that, during the current tumbling window, have entered the
grid cell (gx, gy) in the direction dir. While it is logically
unrelated, but because it makes the computation of condi-
tional probabilities of the proposed movement model com-
putationally efficient, the table CDFS for each directional grid
ID dgid also stores in nr_suc the number of occurrences that
dgid is succeeded by some other directional grid ID in the
partial grid-based trajectories of objects during the current
tumbling window, i.e., in RT. The CDMS table stores 1) the
number of vehicles nr_src2dst that, during the current tum-
bling window, have moved from the source directional grid
ID src_dgid to the destination directional grid ID dst_dgid.
Finally, the HDFS and HDMS tables store long-term, histori-
cal aggregates of the statistical values of the CDFS and CDMS

tables, respectively.
With the exception of the columns spd, mu, and sig, which

are of type float, all other columns in the tables are of
type int or bigint. Unlike in conventional relational table
schema notation, in the above list the underlining denotes
that the given columns have a hash index, or in the case
of the column seqnr a B-tree index, to speed up the join,
selection, and aggregation operations during the processing
of the queries that implement the directional congestion de-
tection and notification tasks3. It is once more worth to
emphasize the design choice for the column dgid. As ex-
plained before, dgid contains the unique concatenation of
the planar / projected grid coordinates gx and gy and the
direction of movement dir that results in an integer. Ef-
fectively, given that all subsequently described queries that
implement the directional congestion detection task only in-
volve equijoins on dgid, the 1-dimensional hash index on
dgid efficiently indexes information about movement/flow
in the 2-dimensional space.

4.8.2 Calculation of CDFS and CDMS
As it can be seen in code listings SQL 1 and SQL 2, both

the CDFS and CDMS are computed based on simple aggre-
gations of a single source of information, namely, the recent
grid-based partial trajectories of the vehicles in table RT.
SQL 1 and SQL 2, as well as all SQL-code in the subsequent
sections, show the bodies of SQL functions that at definition
time the Query Planer and Optimizer (QPO) of the RDBMS
compiles into executable query plans. During the process-
ing of each tumbling window, the plan for SQL 1 is executed
and its results are stored in the table CDFS, as described in

3Indexes on the table RT are dropped and recreated before
and after the status reports of the new tumbling window are
inserted into RT.

SQL 1 FUNCTION calc CDFS()

1 SELECT dgid, count(*) AS nr, avg(spd) AS mu,
2 COALESCE(stddev(spd),0) AS sig
3 FROM RT
4 GROUP BY dgid;

SQL 2 FUNCTION calc CDMS()

1 SELECT dst.dst_dgid, src.src_dgid,
count(*) AS nr_srs2dst

2 FROM (SELECT oid, seqnr, dgid AS dst_dgid
3 FROM RT) AS dst,
4 (SELECT oid, seqnr, dgid AS src_dgid
5 FROM RT) AS src
6 WHERE dst.oid = src.oid
7 AND dst.seqnr < src.seqnr
8 GROUP BY dst.dst_dgid, src.src_dgid;

SQL 3 FUNCTION ud HDFS()

1 UPDATE HDFS AS gh
2 SET nr = (c.nr+gh.nr),
3 mu = (c.nr*c.mu+gh.nr*gh.mu)/(c.nr + gh.nr),
4 sig = sqrt((gh.nr * gh.sig^2 + c.nr * c.sig^2) /
5 (gh.nr + c.nr) +
6 (gh.nr * c.nr * (gh.sig - c.sig)^2) /
7 (gh.nr + c.nr)^2),
8 nr_suc = (c.nr_suc+gh.nr_suc)
9 FROM CDFS AS c
10 WHERE gh.dgid = c.dgid;

11 INSERT INTO HDFS (dgid, nr, mu, sig, nr_suc)
12 SELECT c.gid, c.dir, c.nr, c.mu, c.sig
13 FROM CDFS AS c
14 LEFT JOIN HDFS AS gh
15 ON (gh.dgid = c.dgid)
16 WHERE gh.dgid IS NULL;

Section 4.8.1. The logic implemented in SQL 1 is straight
forward: the query groups all recent status reports in the
current tumbling window by the directional grid ID dgid

and for each dgid selects the corresponding CDFS that con-
form the table schema of CDFS and its application semantics
that are described in Section 4.8.1.

SQL 2 computes the CDMS that conform the table schema
of CDMS and its application semantics that are described
in Section 4.8.1, i.e., for each directional source grid cell
src_dgid and for each directional destination grid cell
dst_dgid, it returns the number of vehicles nr_src2dst that
moved from src_dgid to dst_dgid. In particular, the query,
based on a self join (Lines 2-7) and a grouping operation
(Line 8), counts the number of occurrences nr_src2dst of
(dst_dgid, src_dgid)-combinations where the directional
destination grid cell dst_dgid succeeds the directional source
grid cell src_dgid (Line 6) in the recent partial grid-based
trajectories in RT.

4.8.3 Incremental Calculation of HDFS and HDMS
As described in Section 4.8.1, the table HDFS stores long-

term, historical aggregates of the statistics of the CDFS ta-
ble. These historical statistics are, according to the for-
mulas in Section 4.4, incrementally updated in two phases:
first statistics for previously observed directional flows are
incrementally updated, then statistics for previously not ob-



SQL 4 FUNCTION CongCell(min veh, max cv, max z,
max relspddiff)

1 SELECT c.dgid AS dgid
2 FROM HDFS AS gh, CDFS AS c
3 WHERE gh.dgid = c.dgid
4 AND c.nr >= min_veh
5 AND c.sig / c.mu < max_cv
6 AND (c.mu - gh.mu) / (gh.sig / sqrt(c.nr)) < max_z
7 AND (c.mu - gh.mu) / gh.mu < max_relspddiff;

SQL 5 FUNCTION CongNotif(min veh, max cv, max z,
max relspddiff, min notif prob)

1 WITH cond_prob AS
2 (SELECT m.src_dgid, m.dst_dgid,
3 m.nr_src2dst::float / f.nr_suc AS cond_p
4 FROM HDMS m, HDFS f
5 WHERE m.src_dgid = f.dgid)
6 SELECT t.oid, c.dgid AS con_dgid
7 FROM cond_prob AS gcp, RT AS t,
8 CongCell(min_veh, max_cv,
9 max_z,max_relspddiff) AS c
10 WHERE t.seqnr = 1
11 AND gcp.src_dgid = t.dgid
12 AND gcp.dst_dgid = c.dgid
13 AND gcp.cond_p >= min_prob;

SQL 6 Non-directional conditional probabilities
1 SELECT m.src_gid, m.dst_dgid,
2 m.nr_src2dst::float/f.nr_suc AS nr_src2any
3 FROM (SELECT src_dgid/10 AS src_gid, dst_dgid,
4 sum(nr_src2dst) AS nr_src2dst
5 FROM HDMS
6 GROUP BY src_dgid/10, dst_dgid) m,
7 (SELECT dgid/10 AS gid, sum(nr_suc) as nr_suc
8 FROM HDFS
9 GROUP BY dgid/10) f
WHERE m.src_gid = f.gid;

served directional flows are recorded. These two phases
are illustrated in SQL 3. In particular, the UPDATE-query
(Lines 1-10), according to Equations 1 and 2 updates the
statistics (Lines 2-8) for the previously observed directional
flows in HDFS for the directional flows that are also found
in CDFS (Line 10). Subsequently, the INSERT-query, based
on a left join between tables CDFS and HDFS selects the cur-
rently observed directional flows and statistics from CDFS

that are not present (Lines 15-16) among the previously ob-
served directional flows in HDFS and inserts them into HDFS.
The computation of incremental HDMS is implemented us-
ing analogous UPDATE-INSERT sequence of operations for the
previously observed vs. previously not observed mobility
mobility patterns and statistics.

4.8.4 Calculation of Directionally Congested Cells
The CongCell(min veh, max cv, max z, max relspddiff)

function in SQL 4, provided the current- and the long-term,
historical directional flow statistics (Line 2), as the proposed
methodology suggests in Section 4.6, identifies all directional
grid cells dgid (Line 1) where 1) the sample size criterion-
(Line 4), 2) the sample dispersion criterion- (Line 5), 3)
the statistical power criterion- (Line 6), and 4) the speed
difference criterion (Line 7) are satisfied.

4.8.5 Calculation of Directional Congestion Notifi-
cations

Finally, the function CongNotif(min veh, max cv, max z,
max relspddiff, min prob) in SQL 5, based on the condi-
tional probabilities of directional grid cells that are derived
from the long-term HDMS in HDMS and the information stored
in the nr_suc column of the table HDFS (Lines 1-5 and 7),
the recent trajectories (Line 7), and the identified direc-
tional congestions (Lines 8-9), as the proposed methodol-
ogy suggests in Section 4.6, the function CongNotif(min veh,
max cv, max z, max relspddiff, min prob) notifies every ve-
hicle oid that is currently located in a directional grid cell
src_dgid (Lines 10 and 11) from which the conditional prob-
abilities suggest that the vehicle will encounter a detected
congestion within the prediction horizon, i.e., the vehicle
will move from the directional source grid cell src_dgid

to the congested directional destination grid cell dst_dgid
(Lines 11 and 12) with a probability that is larger or equal
than the user / system defined parameter min_prob (Line 13).

4.8.6 Alternative movement models
As it is described in Section 4.7, in addition to the di-

rectional mobility statistics based criteria presented in Sec-
tion 4.8.5, directional congestion notifications can be sent
out according to a number of different criteria. The imple-
mentations of the proposed alternative criteria are as follows.
A simple derived implementation of the non-directional mo-
bility statistics criterion calculates the conditional probabil-
ities from non-directional source grid cells by appropriately
aggregating and relating the long-term HDFS and HDMS
based on non-directional source grid IDs that are derived
through integer division, i.e., gid = dgid/10, and replacing
Lines 1-5 in SQL 5 with SQL 6. A simple prototype imple-
mentation of the LMC accesses a grid cell’s coordinates from
its grid ID by integer division and implements the minimum
heading offset cosine- and maximum notification range cri-
teria as join conditions between the recent trajectories and
the detected directional congestions.

4.8.7 Temporal Domain Projections
To preserve clarity, the above description of the SQL im-

plementation of the prototype system does not contain the
temporal domain projection aspects of the proposed model.
However, these aspects have been implemented as follows.
First, clients calculate and submit with each status report
the day-of-week (dow) and hour-of-week (hod) projections of
the timestamp of the status report. These temporal domain
projected values are stored in- or are propagated throughout
the computations to each of the five tables of the relational
database schema, i.e., each table has dow and hod as int-
type columns that in the case of the HDFS and HDFS tables
are also indexed. All temporal domain projected, long-term,
HDFS and HDMS are stored in HDFS and HDMS, respectively.
The value of -1 for dow and hod are used to denote the
“any” value for the domain projections, in general, and is
used to distinguish between dow-projected-, hod-projected-
, and global statistics. While the current directional flow
and mobility statistics queries (SQL 1 and SQL 2 respec-
tively) are modified to additionally return the current values
of dow and hod from RT, the queries for maintaining histori-
cal summary statistics (SQL 3 and the analogous query for
HDMS) are extended to UPDATE and INSERT statistics for
the current values of dow and hod. The directional conges-



tion detection- (SQL 4) and notification queries (SQL 5)
are modified to contain additional conditions so that they
relate temporally domain projected historical information
that match the current values of dow and hod. Specifically,
the directional congestion detection and notification queries
combine the different temporally domain projected informa-
tion as a disjunction (logical OR) in their respective deci-
sion criteria. That is, a directional congestion is detected if
the statistical power criterion and the speed difference cri-
terion are satisfied either based on the dow-projected-, hod-
projected- or the global statistics. Similarly, a notification
is issued if, with a high likelihood, a vehicle is expected to
encounter a detected directional congestion either based on
the dow-projected-, hod-projected- or the global conditional
probabilities of directional grid cells.

4.9 Generality of the Model and the Method
The proposed grid-based model is without limitations. In

fact, the proposed methodology can be directly applied to a
geographical road network model [14] by replacing the grid
cell IDs with road network segment IDs and replacing the
direction for entering a given grid cell from a given neighbor
with the road network segment ID that precedes the given
road network segment in a given continuous road network
based trajectory [11].

The proposed gapless / spatially contiguous trajectory
representation is without limitation. However, the quality
of the detected congestions and the accuracy of the notifi-
cations of an adapted model are expected to decreases with
the size / duration of the gaps relative to the size / duration
of the trajectories because the adapted model needs to be
learned from significantly less amount of information.

The congestion model of the method is without limitation
and can be replaced with alternative, preferably grid-based,
perhaps more sophisticated and holistic, congestion models
without much effort.

Finally, the presented ITS application is only one of the
possible applications of the dissemination system. For ex-
ample, the proposed methodology can be used in Location
Based Advertising (LBA) platforms to selectively send rele-
vant offers to users not only based on their current location
but their predicted near-future locations.

5. EMPIRICAL EVALUATIONS

5.1 Test Environment
The empirical evaluations have been carried out on a per-

sonal laptop with IntelR© Core
TM

i7-5600U CPU with 16 GB
of main memory and a 512 GB solid state drive running a
64-bit Ubuntu 14.04 LTS installation with PostgreSQL 9.3.9.

5.2 Real-world Data Set
The proposed method is evaluated on a six day long (Mon,

Tue, Thu, Fri, Sat, Sun) sample of the near real-time stream
of raw GPS positions of around 11,000 taxis moving on the
streets of Wuhan, China [21]. In this sample, positions of
moving vehicles are read approximately every 20 to 60 sec-
onds, totaling about 85 million records. The time-stamped
readings include vehicle ID, location, speed and heading.
After removing obvious outliers, sampling gaps longer than
120 seconds are used to identify trips in individual trajec-
tories. To adapt the raw GPS data set to the proposed
framework, two consecutive Cartesian coordinate locations

within a trip are linearly interpolated by approximating the
interpolating line with a sequence of contiguous grid cells
and corresponding speeds that are calculated by a modified
Bresenham line algorithm [7]. After eliminating short trajec-
tories (less than 300 seconds or 10 grid cells), approximately
2.26 million trips have been identified that are within an
18km-by-18km rectangular boundary that is centered at the
mean coordinates of the measurements which approximates
the city center. The identified trips have an average length
of 1265 seconds and 82 grid cells and refer to 24783 100-
meter grid cells. The resulting data set contains approxi-
mately 185 million 100-meter grid based status reports. A
heat map of the trips is shown in Figure 2(a). The average
length of trips in grid cells or the number status reports in
the data set and the number of grid cells that are referenced
therein increase approximately linearly with the inverse of
glen, which is also termed as the geographical level of detail
or spatio-temporal resolution of the model4.

5.3 Experiment Setup
The empirical evaluations are divided in two large groups

of experiments: accuracy assessment (Section 5.5) and scal-
ability assessment (Section 5.6) experiments. To be able
to evaluate the accuracy and scalability of the proposed
method on a large, spatio-temporally dense data set, de-
pending on the given experiment, trip trajectories are tem-
porally aligned so that they occupy the same relevant spatio-
temporal region and yet are reasonably representative for
the given experiment scenario. In particular, for accuracy
assessment experiments the six days worth of trajectory data
is temporally aligned so that the trajectories take place on
the same“fictional”day at the time that is indicated by their
original timestamp. This data alignment is referred to as the
hod-alignment. For scalability assessment experiments tra-
jectories are temporally aligned to start at the same time
instance of the same “fictional” day. This data alignment
is referred to as the fixed-alignment. To ensure the statis-
tical significance of the results for both sets of experiments
n-fold cross-validations are performed by randomly parti-
tioning the trajectories into n equal subsets. In the case
of the accuracy experiments, n − 1 of the subsets are used
as training set and the remaining (hold-out) subset is used
as test set, the experiments are run for each of the n pos-
sible hold-out sets, and the results of the experiments are
averaged. In the case of the scalability experiments, the ex-
periments are run for each of the n subsets and the results of
the experiments are averaged. The experiments evaluate the
performance of four different notification systems: (1) a sys-
tem using hod-projected HDMS (DMSC hod), (2) a system
using global HDMS (DMSC global), (3) a system using non-
directional, hod-projected HDMS (NDMSC hod), and (4) a
system using the LMC for notifications (LMC ). Unless oth-
erwise stated in a given experiment, the default parameter
values of the models are as follows: temporal analysis win-
dow size / prediction horizon ∆tawin = ∆tpred = 60 seconds,
minimum number of current status reports min veh = 2,
maximum sample dispersion max cv = 0.5, maximum nega-
tive z-score max z = −1.65 (which for a left-sided z-test rep-
resents a significance level of α = 0.05), maximum negative
relative speed difference max relspddiff = −0.5, and mini-
mum notification probability threshold min prob = 0.06.

4See Section 5.6 for an explanation for this linear behavior.



5.4 Evaluation Framework
The following paragraphs describe and motivate the choices

of evaluation framework that is used in the assessment of the
proposed model and its prototype implementation.

The premise of the proposed methodology and the evalua-
tions is that the selective directional congestion notifications
need to be computed and evaluated for realistic / representa-
tive directional congestions. In lack of ground truth informa-
tion on congestions, based on the qualitative analysis in [13]
which has shown that the spatio-temporal distribution and
clustering of the detected congestions are reasonable given
the common notions about where congestions present them-
selves and how they evolve in space-time, the evaluations
in this work treat the detected congestions as ground truth
and are hence not subject of assessment.

Given the semantics of the congestions detections and no-
tifications within the proposed framework, the binary clas-
sification assessment framework [9] is adapted for the as-
sessment of the congestion notification quality as follows.
First, while theoretically any moving object can be noti-
fied of any detected congestion, because it is far less likely
that an arbitrary congestion will affect an arbitrary moving
object than it will not, the baseline for notifications only
considers possible notification cases when the moving object
at the prediction time is within the maximal notification
range max r of a congestion from which the congestion can
be theoretically reached assuming a linear movement model
and a given maximum speed, which is set to 50 m/sec in the
experiments. Consequently, while true positive (TN)-, false
positive (FP )-, and false negative (FN) cases of notifica-
tions are calculated based on the notifications that are sent
out (or complementary are not sent out) and the movement
observations, i.e., whether an object’s grid based trajectory
does or does not include the directional grid cell ID of a given
congestion within the prediction horizon, the true negative
(TN) congestion cases are calculated as the complement of
the other three cases w.r.t. the baseline for notifications (B),
i.e., TN = B − TP − FP − FN .

Second, a congestion (g, dir) that is detected based on the
reports of a temporal analysis window at time ti is different
from the congestion (g, dir) that is detected based on the
reports of another (possibly consecutive) temporal analysis
window at time tj . This choice of treatment is motivated by
the fact that while the two congestion notifications may refer
to the same traffic phenomena, they have a different tempo-
ral observation and prediction validity. In particular, while
the congestion (g, dir) that is detected and is sent out to an
object o at time ti can be a false positive notification, i.e., a
notification that is incorrectly issued because o’s trajectory
does not include the directional grid cell ID of the conges-
tion (g, dir) within the prediction horizon (ti, ti + twsize],
the same congestion (g, dir) that is detected and sent out to
o at time ti + twsize can be a true positive notification.

Given the above described adaption of the binary classi-
fication assessment framework, the accuracy of congestion
notifications of a system is evaluated as follows. First, to
find a suitable trade-off between the sensitivity (i.e., the
proportion of positive cases / notifications that are cor-
rectly identified / issued) and the specificity (i.e., the pro-
portion of negative cases / non-notifications that are cor-
rectly identified / not issued) of a notification system, the
Receiver Operator Characteristic (ROC) of the notification
systems are explored by plotting the True Positive Rate,
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Figure 1: ROC (Fig. 1(a)) and Cohen’s kappa coeffi-
cient (Fig. 1(b)) for varying min prob / min cos values
for four notification systems. TPR (Fig. 1(c)) and
FPR (Fig. 1(d)) for varying min prob values for five
DMSC global-systems with different prediction horizon
and temporal analysis window.

TPR = TP/(TP + FN) (i.e., sensitivity) against the False
Positive Rate, FPR = FP/(FP + TN) (i.e., 1 - speci-
ficity) of the systems for varying decision threshold values
(i.e., min prob and min cos) [9]. Second, as a statistically
more robust measure, for each system’s classifications under
a given decision threshold value the Cohen’s kappa coeffi-
cient [8] is calculated to account for any classification agree-
ment that one can expect to arise by chance because of the
highly unbalanced class priors. Finally, the AUC (Area Un-
der the [ROC] Curve) metric, which represents the probabil-
ity that a classifier assigns a higher positive-class probability
to a randomly chosen positive case than to a randomly cho-
sen negative case, is used as a single metric to evaluate over-
all performance of a classifier in the present case of highly
unbalanced classes [9].

The scalability of the proposed notification systems is
measured in terms of the time and the storage (i.e., number
of rows in tables) that the computation phases use.

5.5 Accuracy Assessments

5.5.1 Sensitivity to Notification Criteria Thresholds
The results of the accuracy assessment of the four no-

tification systems for varying notification criteria thresh-
olds using the hod-alignment data set are presented in Fig-
ures 1(a) and 1(b). Although the thresholds of each sys-
tem can be tuned to find an optimal value for TPR and
FPR, it is clear that all of the HDMS based models, re-
gardless of temporal domain projection or directional encod-
ing, significantly outperform LMC , which inherently cannot
capture the topology of the underlying road network. In
particular, while the AUC-value of the HDMS-based mod-
els range from 0.9799 to 0.9831 (a nearly perfect classifica-
tion), the AUC value of LMC is 0.6907 which is not sig-
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Figure 2: Spatial distribution of status reports and directional and temporal variability of HDMS.

nificantly better than a random classifier, i.e., κ ≈ 0 for
all values of min cos (Figure 1(b)). LMC is also unac-
ceptable from an operational perspective because while it
achieves a maximum TPR of 0.7334 and sends out 105 cor-
rect notifications during the processing an average temporal
analysis window when min cos = 0, in the given applica-
tion setting, the corresponding FPR of 0.4099 represents
approximately 41 thousand false notifications that are sent
out to approximately 55 thousand vehicles about approxi-
mately 20 congestions, which is highly undesirable for the
users of the system. In comparison the best HDFS based
system (DMSC hod) achieves a maximum TPR of 0.9731 and
sends out 137 correct notifications FPR when min prob =
0 at a corresponding FPR of 0.0230 representing approxi-
mately 2300 false notification. Although the classification
performance differences between the different HDMS-based
models are minimal the relative ranking, in part, is as ex-
pected: AUC(DMSC hod) = AUC(DMSC global) = 0.9831 >
AUC(NDMSC hod) = 0.9799. The reason for the equal pre-
diction performance of the first two system is further inves-
tigated in Section 5.5.4.

5.5.2 Sensitivity to Prediction Horizon Length
The results of the accuracy assessment of the most com-

petitive DMSC global -system for varying prediction horizon
using the hod-alignment data set are presented in Figures 1(c)
and 1(d). On can observe that TPRs and FPRs of a system
increase more rapidly and for smaller values of min prob as
∆tpred is increased. The figures also show the TPRs / FPRs
decrease / increase for all values of min prob as ∆tpred is
increased. The reason for this behavior is that while the
“shorter” mobility patterns for lower values of ∆tpred cover
most of the positive cases they are not specific enough and
incorrectly cover a lot of negative cases, while the “longer”
mobility patters are spatially more specific.

5.5.3 Sensitivity to Spatio-temporal Resolution
The results of the accuracy assessment for varying geo-

graphical levels of detail / spatio-temporal resolutions (i.e.,
inverse of glen) has shown a nearly identical behavior to
the behavior that is observed when one varies the predic-
tion horizon length. Hence, due to space limitations, these
results are not presented here in detail. This result is some-
what counterintuitive, but explainable by the fact that the
vehicles move on a linear road network and their trajectories
occupy only an approximately linearly increasing number of
grid cells as the resolution is increased, which is effectively
the same when the prediction horizon length is increased.
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Figure 3: Execution time and space usage of dif-
ferent phases of the congestion detection and noti-
fication tasks in the DMSC global system for varying
number of vehicles and values of prediction horizon
/ temporal analysis window size.

5.5.4 Variability of HDFS
As it is reported in Section 5.5.1, the prediction perfor-

mance of DMSC hod and DMSC global are identical; indeed,
the plots of DMSC global cover the plots of DMSC hod in Fig-
ures 1(a) and 1(b). To investigate the reason for this, the
variability (i.e., Coefficient of Variation CV = σ/µ) of the
directional hod-projected mobility statistics CV dir hod(g) and
the directionally-conditioned hod-projected mobility statis-
tics CV dircond hod(g) are examined and shown in Figures 2(b)
and 2(c), respectively. It can be seen that CV dir hod(g) is
relatively very high on the main arteries of the road net-
work, but CV dircond hod(g) is significantly lower and more
even in the study area. This means that directional aspect
of hod-projected HDMS captures most of the variability in
movement and consequently the DMSC global -system virtu-
ally provides the same predictions as the DMSC hod -system,
i.e., the short-term future position of an object is in large
determined by its current position and movement direction.

5.6 Scalability Assessments
The results of the scalability assessment of the most com-

petitive DMSC global -system for varying input loads and pre-
diction horizon lengths using the fixed-alignment data set
are presented in Figure 3. Figures 3(a) and 3(b) show that



the implementation of all stages of the proposed method
scale in execution time and storage usage (for processing
an average temporal analysis window) at most linearly with
the number of vehicles. Discounting the heavily dominating
load time which can be likely be reduced using main.memory
and stream based processing frameworks, provided the lin-
ear trends and the 60-minute real-time processing limit that
is dictated by the size of the temporal analysis window, the
proposed system can manage approximately 60/10.5×0.2 ≈
1.14 million vehicles. Figures 3(c) and 3(d) show that the
system also scales approximately linearly with the length
of the prediction horizon length. For the reasons provided
in Section 5.5.3, the same linear behavior is observed when
varying the spatio-temporal resolution.

6. CONCLUSIONS AND FUTURE WORK
This paper proposed a data-driven approach and a direc-

tional grid-based, time-inhomogeneous, Markov jump pro-
cess model for the detection of and selective dissemination
of traffic congestion information. Empirical evaluations on
millions of object trajectories showed that (1) the selective
dissemination accuracy of the proposed model is superior to
a linear movement based model, (2) the proposed can effec-
tively capture the topology of the underlying road network
and the directional object movement on it, and (3) a sim-
ple, high-level SQL-implementation of the proposed model
is scalable in terms of its input size and model parameters.

Future work plans include: (1) the performance evaluation
of a road network based adaption of the proposed method
and (2) the implementation of the model using main-memory
and stream based Big Data processing frameworks.
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