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Abstract. The efficient analysis of spatio—temporal data, generated by moving
objects, is an essential requirement for intelligent location—based egr@patio-
temporal rules can be found by constructing spatio—temporal bagketsyhich
traditional association rule mining methods can discover spatio—tempubesal r
When the items in the baskets are spatio—temporal identifiers and aredifeoimn
trajectories of moving objects, the discovered rules represent indyueavelled
routes. For some applications, e.g., an intelligent ridesharing applicatiese
frequent routes are only interesting if they are long and sharablezare poten-
tially be shared by several users. This paper presents a databpsztipndased
method for efficiently extracting such long, sharable frequent rotites method
prunes the search space by making use of the minimum length and Ish@rab
quirements and avoids the generation of the exponential number absués-of
long routes. Considering alternative modelling options for trajectoriedsléa
the development of two effective variants of the method. SQL-basele ngm-
tations are described, and extensive experiments on both real liféargedscale

synthetic data show the effectiveness of the method and its variants.

1 Introduction

In recent years Global Positioning Systems (GPS) have bedotneasingly available
and accurate in mobile devices. As a result large amountpaifos-temporal data is

being generated by users of such mobile devices, referradrwving objectsn the



following. Trajectories of moving objects, or trajectaifor short, contain regularities
or patterns. For example, a person tends to drive almosy exerkday to work approxi-

mately at the same time using the same route. The benefitglofdisuch regularities or

patterns is many—fold. First, such patterns can help thei&fti management of trajec-
tories. Second, they can be used to facilitate various limtaBased Services (LBS).
One LBS example is an intelligent rideshare applicationictviinds sharable routes
for a set of commuters and suggests rideshare possibititibem, is considered. Such
a rideshare application can be one possible solution toubeiecreasing congestion

problems of urban transportation networks.

Patterns in trajectories for an intelligent rideshare @agibn are only interesting
if those patterns are sharable by multiple commuters, arectering frequently, and
are worthwhile pursuing, i.e., are long enough for the sg&ito compensate for the
coordination efforts. The discovery of Long, Sharable état (LSP) in trajectories is
difficult for several reasons. Patterns do not usually extstg the whole trajectory. As
a example, consider two commutetsand B living in the same area of town, leaving
for work approximately the same time, and working in the saare of town. Given the
underlying road network and traffic conditions, for a givepgort threshold the middle
part of the trips of the two commuters may be frequent, thiirand final parts may
not. In recent work [5] a general problem transformationhrodi calledpivoting was
proposed for the analysis of spatio—temporal data. Pigasirthe process of grouping
a set of records based on a set of attributes and assigninglines of likely another
set of attributes to groups or baskets. Pivoting applieptdis—temporal data allows
the construction of spatio—temporal baskets, which can inedrwith traditional as-
sociation rule mining algorithms. When the items in the baskee spatio—temporal
identifiers and are derived from trajectories, the disoedeules represent frequently
travelled routes. While there exist several efficient asgmni rule mining methods [8],
the straight—forward application of these algorithms tat®p-temporal baskets rep-
resenting trajectories is infeasible for two reasons.tFat sub—patterns of frequent
patterns are also frequent, but not interesting, as longgtenms are preferred. Second,

the support criterion used in association rule mining atgors is inadequate for a ride-



share application, i.e., a frequent itemset representfrggaent trajectory pattern, may
be supported by a single commuter on many occasions and pegsEnts no rideshare

opportunity.

In this paper, to overcome the above difficulties of findingPsSn trajectories, a
novel method is given. According to a new support critertbe, proposed method first
efficiently filters the trajectories to contain only subjciories that are frequent. Next,
it removes trajectories that do not meet the minimum lengthrion. Then it alternates
two steps until there are undiscovered LSPs. The first stefi®the discovery of a LSP.
The second step entails the filtering of trajectories by tiegipusly discovered pattern.
An advantage of the proposed method is the ease of impletr@nia commercial
Relational Database Management Systems (RDBMSes). Tordgrate this, a SQL—
based implementation is described. Considering the glotmmlelling of trajectories,
leads to the development of two other effective variantdhefgroposed method. The
effectiveness of the method and its variants are demoadtrat the publicly available
INFATI data, which contains trajectories of cars driving @moad network, and on a

number of large—scale synthetic data sets.

The herein presented work is novel in several aspects. liditst to consider the
problem of mining LSPs in trajectories. It describes a ndxehsformation, and the
relationship between the problem of mining LSPs in trajgetoand mining frequent
itemsets. Finally, it describes an effective method witlingpte SQL—implementation

to mine such LSPs in trajectories.

The remainder of the paper is organized as follows. Secti@vidws related work.
Section 3 describes the transformation, the use of the framkein frequent itemset
mining, and formally defines the task of mining LSPs in tripeies. Section 4 discusses
a ndve method for mining LSPs and points out its shortcomingstiSn 5 describes
the proposed algorithm and a SQL—based implementation iiingLSPs. Section 6
presents alternative modelling of trajectories and dsrixaxiants of the proposed me-
thod based on these modelling options. Section 7 presetatidadieexperimental results.

Finally Section 8 concludes and points to future research.
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2 Related work

Frequent pattern mining is a core field in data mining resedsince the first solu-
tion to the problem of frequent itemset mining [1, 2], vasapecialized in—memory
data structures have been proposed to improve the minirgjeeitly, see [8] for an
overview. It has been recognized that the set of all freqitenisets is too large for
analytical purposes and the information they contain isinednt. To remedy this, two
modification to the task have been proposed: mining of Cléseduent Itemsets (CFl)
and mining of maximal frequent itemsets. A frequent itemses closedif no item-
setY exists with the same support a5 such thatX C Y. A frequent itemsefX is
maximalif no frequent itemselt” exists such tha\ C Y. Prominent methods that
efficiently exploit these modifications to the problem are MA [4], GenMax [10],
CLOSET [14], CLOSET(+) [19], and CHARM [22]. Later in the papa relationship
between the problems of mining LSPs in trajectories andmgiliFls are described.
While CFI mining methods can be modified to find the desiredtemitthat meets the
sharablecriterion, they employ complex data structures and theplémentation is
quite involved; hence their augmentation is difficult. Irrtpaular, a projection-based
CFI mining algorithm that employs an in-memory FP-tree fir@sent itemsets, would
need to be modified at every node to maintain a set of distisjetcts at that have trans-
actions associated with them that support the itemsetshapresented by the node. In
comparison, the herein presented method —building on warsemted in [16]-exploits
the power of commercial RDBMSs, yielding a simple, but dffecsolution.

Since trajectories are temporally ordered sequences afitors, sequential pattern
mining [3] naturally comes to mind. However, a straight fard/interpretation of trips
as transactions and application of a state—of-the—ant@lfsrequent sequential pattern
mining algorithm [21] does not yield the desired solutidnge in this case sequences of
frequent sub-trajectories would be found. Furthermormgesihe trajectories can con-
tain hundreds of items, closedness checking of frequemtsig¢s even for prominent
methods would be computationally expensive. Interpregingle elements of trajecto-
ries as transactions and applying closed sequential pattgring could find frequent

sub—trajectories. However a number of problems ariset, Eirsneet the sharable cri-



terion, the in—memory data structures would need similam-tnivial augmentation as
described above. Second, since patterns in trajectoridd b@ extremely long, even
state—of—the—art sequential mining methods [17, 21] wbalk a difficulties handling
patterns of such lengths. Third, patterns in trajectorggeat themselves, which can-
not be handled by traditional sequential pattern miningmtilgms. The extraction of
spatio—temporal periodic patterns from trajectoriesusligd in [13], where a bottom—
up, level-wise, and a faster top—down mining algorithm éspnted. Although the tech-
nique is effective, the patterns found are within the tri@jgcof a single moving object.
In comparison, the herein presented method effectivelgodiars long, sharable, peri-

odic patterns.

Moving objects databases are particular cases of spatipeaial databases that rep-
resent and manage changes related to the movement of objersessary component
to such databases are specialized spatio—temporal irglicbsas the Spatio—Temporal
R-tree (STR—tree) and Trajectory—Bundle tree (TB—treg). [An STR—tree organizes
line segments of a trajectory according to both their spatiaperties and the trajec-
tories they belong to, while a TB-tree only preserves ttajées. If trajectories are
projected to the time—of—day domain, STR-tree index vatuethe projected trajecto-
ries could be used as an alternative representation ottoajes. While this approach
would reduce the size of the problem of mining LSPs in trajees, it would not solve
it. In comparison, the herein presented method solves thigigm of mining LSPs in

trajectories, which is orthogonal, but not unrelated teekidg of trajectories.

In [18] a way to effectively retrieve trajectories in the peace of noise is presented.
Similarity functions, based on the longest sharable suesseg, are defined, facilitating
an intuitive notion of similarity between trajectories. Whsuch an efficient similarity
search between the trajectories will discover similarettyries, the usefulness of this
similarity in terms of length and support would not be explith comparison, there
herein proposed method returns only patterns that meetsétre-gpecified support and
length constraints. Furthermore, the trajectory pattezhaned by our method are ex-

plicit, as opposed to the only implicit patterns containedimilar trajectories.
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(a) Identification of trips in raw trajectories.(b) Time—of—day projection and spatio—temporal

region substitution.

Fig. 1. From trajectories to transactions

3 Long, sharable patterns in trajectories

The following section describes a novel transformationast trajectories. This trans-
formation allows (1) the formulation of the problem of migihSPs in trajectories in a
framework similar to that used in frequent itemset minira t6 establish a relationship

between the two problems.

3.1 From trajectories to transactions

The proposed transformation of raw trajectories consittsree steps: identification of
trips, projection of the temporal dimension, and spatimgeral region substitution. It
is assumed that locations of moving objects are sampledaol@rg history. That is, a

raw trajectory is a long sequence(of, y, t) measurements at regular time intervals.

Identification of trips

A trip is a temporally consecutive set or sequence of measemées such that for
any measurement; in the sequence, the sum of spatial displacement during: the
measurements immediately followimg;, denotediy, is larger than some user—defined
displacement). Trips can be identified in a straight—forward manner bydinhescan-

ning through a trajectory, and calculating using a look—ahead window &f mea-



surements. That is, scanning through the total trajectamy fthe beginning, the first
measurement for which; > ¢, signals the beginning of the first trip. Consecutive
measurements are part of this trip until a measurement eéhegbfor whichd, < 9,
which signals the end of the first trajectory. Trips follogithe first trip are detected in
the same fashion from the remaining part of the total trajgcFigure 1(a) shows three

example trips that are derived from the total trajectoryré enoving object.

Projection of the temporal dimension

Since frequent patterns within a single object’s trajectare expected to repeat
themselves daily, the temporal dimension of the so idedttfips is projected down to
the time—of-day domain. This projection is essential tealisr the daily periodic na-
ture of patterns in trajectories. Mining patterns with etheriodicity can be facilitated
by projections of the temporal domain to appropriate finegaarser levels of granu-
larity. Finer levels of granularity can be used to detectgrat with shorter periodicity.
For example, a delivery person might use a different roupeedding on the time—of—
hour knowing that at the given time of the hour certain tragfimditions arise, which
make an otherwise optimal delivery route sub—optimal. Tétection of these patterns
in delivery routes requires the projection of the tempotedahsion to the time—of—
hour domain. Conversely, coarser levels of granularity lmamused to detect patterns
with longer periodicity. For example, a person might visg hank only at the end of
pay periods. The detection of this pattern requires theeptmn of the temporal di-
mension to the day—of-month domain. Finally, to discover ghttern that the above
mentioned person makes these visits to his bank Saturdayimgsrfollowing the end
of pay periods, requires the projection of the temporal dontaa combination of the
day—of-month, the day—of-week, and the part—of-day domdierforming different
projections is part of the inherently iterative and only sentomatic process of doing
data mining when the exact format of the patterns searche fuot known before-
hand. Figure 1(b) shows the projection of the temporal dsimnto the time—of-day
domain for the three trips identified in Figure 1(a). Sinaephojection of a single data-
base record is a constant time operation, the total prowptigie of this transformation

step is optimal and linear in the number of database records.



Spatio—temporal generalization and substitution

Trajectories are noisy. One source of this noise is due todoipe GPS measure-
ments. From the point of view of patterns in such trajecgratight deviation of tra-
jectories from the patterns can be viewed as noise. Examplasch deviations could
be due to a few minute delay, or to the usage of different lamethe route. Hence,
while a person might be driving from home to work at approxighathe same time
of day using approximately the same route, the chance of demwtical trajectories is
highly unlikely. Consequently, patterns in raw trajeatsriare few and certainly not
long. Thus, patterns have to be mined in trajectories thatrepresented in a gener-
alized way, yielding general patterns in trajectories. réhare at least two different
approaches to achieve this generalization of trajectomggon—based spatio—temporal

generalization and road network based spatio—temporairgkration.

In the region-based spatio—temporal generalization agprandividual (x,y,t)
measurements of a trajectory are discretized and mappbd spatio—temporal regions
they fall into. Thus, a generalized trajectory is conseddiy substitutingz, y, t) mea-
surements with the spatio—temporal regions they map toithinva trajectory multiple
(z,y,t) measurements map to the same spatio—temporal region, thesubstituted
with a single instance of the corresponding spatio—tempegion. The box in Fig-
ure 1(b) represents such a spatio—temporal region. Sigaarebased spatio—temporal
substitution of a single database record can be achievad asnple arithmetics from
the spatial and temporal coordinates, the processing tfrttésotransformation step is

optimal and linear in the number of database records.

In the road network based spatio—temporal generalizappnoach, objects are as-
sumed to be moving on a road network and coordinates of whal{z, y, t) measure-
ments of a trajectory are matched to road segments of therlyimderoad network.
The process of matching trajectories to road segmentsledoalap matching and has
been studied extensively in the recent past. Figure 2 shmvsutcome of map match-
ing, where noisy GPS readings are “snapped” to the mostylikehd segments the

object was actually moving on. In general, two map matchp@aches exist: on—line



and off-line map matching. In on-line
map matching, the noisy GPS readings
are positioned onto the road network tak-

ing into account the past readings and the

+  Map matched readings topology of the road network. In off-line
o Noisy GPS readings
//\\/ Matched road segments

/\./ Road network

/

Fig. 2. Process / outcome of map matchingurements, which generally increases the

map matching, the positioning of GPS
readings onto the road network is per-
formed with some delay, hence methods

can take into consideration “future” mea-

matching accuracy and reduces the nec-
essary computation. In [15] a summary of different on—lind aff-line map matching
algorithms is provided and disadvantages of each appraeagdbsicribed. Once the co-
ordinates of trajectories are map matched, the individual, t) measurements of a
trajectory are discretized and mapped to the spatio—temhjmmntifiers composed of a
combination of road segment identifiers and temporal ilaervf within a trajectory
multiple (z, y,t) measurements map to the same spatio—temporal identifégr,afe
substituted with a single instance of the correspondingesg@amporal identifier. The
map matching task can be performed in a distributed fashjoork-board navigation
units of the moving objects. Based on the map matching ethétroad network based
spatio—temporal substitution of a single database recandbe achieved in constant
time using simple arithmetics from the temporal valuescleie processing time of

this transformation step is optimal and linear in the nundiefatabase records.
3.2 Example trajectory database

Figure 3 visualizes a sample trajectory database. It shberdrajectories of trips of
5 moving objects, which were derived using the three transftion steps described
in Section 3.1. For clarity, the temporal dimension is prtge down to the 2D—plane.
Spatio—temporal regions are defined by the square cells &inel minute interval cen-
tered around time instances written inside the square. Eachected line represents

specific trips of a particular object. The number of timeg thip was performed by the
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Fig. 3. lllustration of the sample trajectory DB

object is represented in the width of the line, and is alsdtemiin parenthesis next to
the object name in the legend. For example, the trip trajg@esociated with obje&
was performed! times by the object. The object was in spatial regions HD, HB,
IB, and IC during time interval8:05 + 2.5 minutes,8:10 + 2.5 minutes,8:15 + 2.5
minutes,8:20 + 2.5 minutes, and:25 + 2.5 minutes, respectively. In the following a
spatio-temporal region will be referred to by its concatedavalues of the cell identi-
fiers along the x— and y-axis, and the corresponding timeauiicst denoting the center
of the time interval of the spatio—temporal region. Hendpstassociated with obje8t
will be denoted by the a sequenfdD8:05, HC8:10, HB8:15, 1B8:20, 1C8:25 Fur-
thermore, the trajectory databé&bés assumed to be in a relational format with schema
(oid, tid, item), whereitem is a single item, that is part of the transactiod associ-
ated with objecbid. Hence, each of the four trips of objeXts represented by unique

rows inT.
3.3 Problem statement

After performing the three above transformation stepsdtta set can be represented
in a databasé containing tuplesoid, tid, s), whereoid is an object identifiertid is
a trip identifier, and; is a sequence of spatio—temporal region identifiers. Sipats-
temporal region identifiers contain a temporal componémetsequence can, without
loss of information, be represented asedhof spatio—temporal region identifiers. Con-

forming to the naming convention used in the frequent itamsaing framework, a
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spatio—temporal region identifier will be equivalentlyestd to as aftem and a se-
quence of spatio—temporal region identifiers will be eqeintly referred to as &rans-
action Let X be a set of items, called @emset A transactiont satisfiesan itemsetX’
iff X Ct.LetSTx denote the set of transactions that sati&fyThe following defini-
tions are emphasized to point out the differences betwesfrélquent itemset mining

framework and the one established here.

Definition 1 Then—support of an itemseX in T', denoted asX.supp(n), is defined
as the number of transactions 8’y if the number of distincbids associated with
the transactions ir6T'x is greater than or equal ta, and0 otherwise. Thex—support
of an itemi in T, denoted as.supp(n), is equal to then—support of the itemset that

contains onlyi.

Definition 2 Thelength of an itemsetX, denoted a$X|, is defined as the number of

items inX.

Definition 3 An itemsetX is n—frequentin T if X.supp(n) > MinSupp, and X
is long if | X| > MinLength, where MinLength, MinSupp, andn are user—defined

values.

Definition 4 An itemsetX is n—closedif there exists no itemséf such thatX c Y

and X.supp(n) = Y.supp(n).

The task of mining LSPs in trajectories can be defined as finalifong,n—closed,
n—frequent itemsets. Itemsets that meet these requirermentdso referred to as LSPs,

or just patterns.

4 Naive approach to LSP mining

The here presentedive approach uses the convenience and efficiency of an RDBMS.
For ease of exposure, consider the problem of finding longtsajjectories in trajecto-
ries. Meeting the unique support requirement of the origemk does not substantially
change the complexity of method to be described, but easedettcription and analy-

sis of it. Finding pairs of trajectories that have long sudjectories can be efficiently
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solved using 2—way self-joins. Generallj-way self—joins can be used to find groups
of K trajectories that share parts of their trajectories. Cgueetly, to discover all long
sub—trajectories, self—joins could be used in an iterati&g first discovering pairs, then
triples, and so on, finally leading to groups &f trajectories that have long, sharable
sub—trajectories. A solution based on self-joins has sbdsawbacks. As the num-
ber of trajectories is increasing, the maximum size of gsoniftrajectories that have a
long sub—trajectory is expected to increase as well. NByues this maximum group
size is increasing, the number of self—joins that need todsfopmed is increasing as
well. Although the sizes of the intermediate result setshef tonsecutive joins that
compose théd{—way self—join are non—increasing with every join opemat@nd hence
the required time to compute these joins is also non—inorgathe described(—way
self-join method is inefficient. In fact its worst case rumgntime is exponential i,
which is illustrated in the following. Consider a set &ftrajectories that have a long
sharable sub-trajectory in them. The iterativeway self—join method in the first iter-
ation, discovers all pairs of thed€ trajectories. Then in the next step, it discovers all
groups of3 of these trajectories, alternatively leading to the discgwf 2% subsets
of theseK trajectories. This is clearly inefficient from a computatib point of view
not to mention the complexity it introduces in the discoderesults. Since the ultimate
goal of an intelligent rideshare application is the optic@brdination of possible ride-
share opportunities of a set of commuters, the expongntaatie number of discovered

patterns is clearly a disadvantage from the user’s pointenf.v
5 Projection—based LSP mining

Now let us turn to the description of the proposed method fiing LSPs in trajecto-
ries. This description is based on a number of observateae) of which is associated
with a particular step in the method. These observationalacestated as lemmas, and
their corresponding proofs show the correctness and cdemgss of the method. To
demonstrate the simplicity of the implementation in a RDBNt# each step a simple
SQL-statement is given. The effect of each step is alsatriited on the previously
introduced sample trajectory database assumimglLength = 4, MinSupp = 2, and

n=2.



13

-—-0BJ.1(2) — OBJ.2(3) *==0BJ.3(4) OBJ. 4 (5) ===OBJ.5 (6)|

8:35
4

7

E—— —

8:30
/ .
7 8:10 s

Y,
8:05)

Fig.4.The sample DB after STEP 1

STEP 1: Filtering infrequent items
Items, i.e., spatio—temporal regions that are not freqirefit cannot be part of a
LSP. Hence as first step of the methddjs filtered such that it contains items with

n—support larger than or equal 3dinSupp.
Lemma 1 An item: with i.supp(n) < MinSupp cannot appear in a LSB.

Proof. The proof trivially follows from the minimum requirement tife n—support of
a patterrp. If i appears in a pattenm then the set of transactions satisfyimghust be
a subset of the transactions satisfyingConsequentlyp.supp(n) < i.supp(n). Forp
to be a pattermp.supp(n) > MinSupp. This is a clear contradiction, hen¢ecannot

appear in a pattern. O

The first step can be formulated in two SQL statements. Thesfissement finds
items that meet the unique support criterion. The secondmstnt constructs a filtered
view of T', calledTFV, in which transactions only contain the items found by thevpr

ous statement.

INSERT INTO F (item, icnt) SELECT item, count(*).cnt FROM T
GROUP BY item HAVING COUNT(DISTINCT oid)>= n AND COUNT(*) >= MinSupp

CREATE VIEW TFV AS SELECT T.oid, T.tid, T.item FROM T, F WHERE T.itemRtem

The effects of the first step are illustrated in Figure 4. Spatio-tempayelng, which are

part of trajectories that belong to less thadistinct objects, are removed from trajectories. From
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Fig. 5. The sample DB after STEP 2

the point of view of an intelligent rideshare application these spatio—terdmggians are uninter-

esting, since these parts of the trajectories cannot be shared by aatspbge, are not sharable.

STEP 2: Filtering of short transactions
Transactions, i.e., trip trajectories, having less thén Length frequent items cannot satisfy
a LSP. Hence, the second step of the method further filiélé and construct§F that only

contain transactions that have at le&&t Length number of items.
Lemma 2 A transactiont with |¢| < MinLength cannot satisfy a LSP.

Proof. The proof trivially follows from the definition of a LSP and the definition ofansaction
satisfying a patternp is a LSP < p.supp(n) > MinSupp and|p| > MinLength. Fort
to satisfyp, by definition all the items ip has to be present ih Since|t| < MinLength and
|p| > MinLength, there must exist at least one itemyitthat is not int. Hencet cannot satisfy

. O

The second step can be formulated in one SQL statement. The subisseaked to find trip
identifiers that have at leadfin Length number of items. The outer part of the statement selects

all records belonging to these trip identifiers and inserts theniliRto

INSERT INTO TF (tid, oid, item) SELECT tid, oid, item FROM TFV WHERE tid IN
(SELECT tid FROM TFV GROUP BY tid HAVING COUNT (item)-= MinLength)

The effects of the second step are illustrated in Figure 5 . In particulaeth@ning sharable
parts of trips belonging to objectsand5 are deleted, because the length of them is not greater
than or equal taVfinLength, which is4 in the example. Also, note that although in this case

items HB8:15 and I1B8:20 did not become infrequent i they lostn—support.
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Before stating further observations and continuing with the developnfethiegoroposed
method it is important to note the following. The set of discoverable LS#s ¥ is equivalent
to the set of discoverable LSPs froffr. This is ensured by first two observations. Since further
steps of the proposed method will discover LSPs ffoR) these two observation ensure the
correctness of the method so far. However, it is also important to natedhall transactions
in TF necessarily satisfy a LSP. This is due to the sequentiality of the first two. gtéips the
first step all the remaining items in transactions are frequent items. Tinéime second step,
some of these transactions, which are not long, are deleted. Due to létisna@ frequent item
in the remaining long transactions may become non-frequent, which imtayncause some
transactions to become short again. While there is no simple solution to thisatircle, note
that the correctness of the first and second steps are not violatedtisindeleted items and

transactions could not have satisfied a LSP.

STEP 3: Item—conditional DB projection
For the following discussion, adopted from [14], let an item—conditioatdlase of transac-

tions, equivalently referred to as an item—projected database, bedlafine

Definition 5 LetT be a database of transactions, ahdn item inT". Then, the item—conditional
database of transactions, is denotedigsand contains all the items from the transactions con-

taining .

The construction of an item—conditional database of transactions camrbeléted in a sin-

gle SQL statement as:

INSERT INTO T.i (oid, tid, item) SELECT t1.0id, t1.tid, t1.item FROM TF t1, TF t2
WHERE tl.tid = t2.tid and t2.item =i

Givenn frequent items iff", the problem of finding CFls can be divided intcsubproblems
of finding the CFls in each of theitem—projected databases [14]. Using the divide—and—conquer
paradigm, each of thesesubproblems can be solved by recursively mining the item-projected

databases as necessary.

STEP 4: Discovery of the single most frequent closed itemset

Sincei is in every transaction of the item—projected datatifseand hence has maximum
n—support, the items iff}; can be grouped in two: items that have the samsupport ag, and

items that havex—support less than that of The set of items that have the samesupport in
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Fig. 6. ltem—conditional sample DB’F'|rcg.0s and pattern discovery

theT|; asi is the Single Most Frequent Closed Iltemset (SMFCIYjin The fourth step of the
method discovers this SMFCI.

Lemma 3 Let: be an item andl'F'|; its corresponding item—projected database. Kebe the

set of items that have the samesupport inT'F'|; asi. ThenA is the SMFCI inTF|;.

Proof. Complementary tal, let B be a set of items that have-supportless thainin T'F ;. For A

to be closed there should not exist an item$etuch thatd C X andA.supp(n) = X.supp(n).
This implies that there should not exist an extra iterthat is present in all transactions in which
i is present. These transactions are exactly the set of transactions #etimaF’ ;. The only
remaining items that are not i and are present iff '|; are items inB. Since items in3 have
n—support less than the items.hthey could not be added té to form an itemsefX such that
A.supp(n) = X.supp(n). HenceA is a closed itemset. That is the SMFCI trivially follows

from the fact that the number of transactioni'|; is A.supp(n). O

The fourth step can be formulated in two SQL statements. The first statelmeves the
n—support ofn—frequent of items inl’F'|;,while the second statement selects those items from

thesen—frequent items that have maximusasupport.

INSERT INTO FTi (item, i_cnt) SELECT item, COUNT(*) icnt
FROM T.i GROUP BY item HAVING COUNT(DISTINCT oid)>= n

SELECT item FROM FTi WHERE i_cnt = (SELECT MAX(Lcnt) FROM FT.i)

Figure 6 shows the effects of projectii§ based on the item FC8:05. The numbers in paren-
theses show the—support of the items i'F rcg.0s and TF respectively. The SMFCI that is im-
mediately discovered fronl’F'|rcg.05 is {FC8:05, GB8:10, HB8:15, 1B8:20, JB8:25, KB8:R0
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LA8:35 is the only item that is ifl'F'|rcg.05 but is not in the discovered SMFCI. Since further
projecting T'F |rce.0s 0n LA8:35 yields a database of transactions where no item meets the mini-
mumn—support criterion, the discovered SMFCl is the only CFl presefithticg.os Since the
discovered SMFCI meets both the minimum length and an minimusupport criteria it is a

pattern.

Lemma 4 Given an item—projected databadd"|; and a partitioning of items in it into a set of
most frequent itemd, and a complementary set of iterBs the recursive application of item—
projection based on items iB followed by the discovery of the most frequent closed itemsets in

the respective projected databases finds all CFls in the item—projectedads@ F' ;.

Proof. Given any CFLX with X.supp(n) < A.supp(n) in TF;, we know thatX contains at
leastl itemb € B. If not, thenX contains only items iM, henceX.supp(n) > A.supp(n),
which is a clear contradiction. Then by Lemma3will be found as the SMFCIifT'F ;3 since

TF;» contains all, and only those transaction frdm'|; that satisfyb. O

STEP 5: Deletion of unnecessary items

The subproblems that are recursively solved by the method presamfedare overlapping.
That is to say, viewed from a top level, a CFI that hagems is at least once discovered in
each of then corresponding item—projected databases. To eliminate this redunthatizyn the
mining process and the result set, observe that anjteam be deleted fromF if it has the same
n—support inTF|; as inTF. The intuition behind the observation is the following jlhas the
samen—support inTF; as inTF, it implies that all the transactions ¥ that satisfy; are also
present inTF;. Thus, the set of patterns containifigwhich can be discovered froifF, can

also be discovered frorfiF;.

Lemma 5 After the construction of'F|;, an itemj can and must be deleted frofif if it has

the samen—support inTF; as inTF.

Proof. If j has the same-support inTF as in TF;, then the set of transactions that satigfy
in TF is exactly the same set of transactions that safisfy TF'|;. Since Lemma 4 guarantees
that all closed frequent itmesets will be foundli;, including those thaj participates in, it
is needless and incorrect to construct and e ; at a later point to find same CFls that

participates in again. Hencg¢can and must be deleted frof¥'. a

The fifth step can be formulated in one SQL statement. The statement déléens inTF

that have the same-support inTF as in T'F;.
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Fig. 7. The sample DB after STEP 5

DELETE FROM TF WHERE TF.item IN
(SELECT F.item FROM F, FIi WHERE F.item = FTi.item AND F.i.cnt = FT.i.i_cnt)

Figure 7 shows the effects of deleting the unnecessary items after thegnoinifiF |rcg.os
Since items FC:8:05 and IB8:20 have the samsupport inTF rcgosas inTF, shown in Figure

6, they are deleted froMF. Items remaining irTF are shown in Figure 7.

Item-projection ordered by increasing n—Support

A LSP p in T, containing itemsi; ... 14, can be discovered from any one of the item—
projected databasés; , ..., T);, . Steps 4 and 5 of the proposed method assurepthll be
discovered from exactly one of these item—projected databases, buethed presented so far
does not specify which one. While this point is irrelevant from the pointi@iv of correctness,

it is crucial from the point of view of effectiveness.

To illustrate this, assume that supp(n) < iz.supp(n) < ... < ix.supp(n). If projections
are performed in decreasing order of itersupport, then, firskj;, is constructed, thefy;, |;, ,

is constructed from it, and so on, all the wayrtg, |;,_,|...;:; » from which finallyp is discovered.

Jiro

If on the other hand, projections are performed in increasing ordigerfn—support, them is

discovered from the first item—projected database that is construetee|yi;, .

Assume thap and its qualifying(k — [ + 1) (at least—long) sub—patterns are the only LSPs
in T. Then during the whole mining process, the total number of projectionsinddlreasing
processing order i$;.. = k, whereas in the increasing processing order the total number of
projections is onlyP;,. = k — [ + 1. If k andl are comparable and large, th&q.. > Pi,..
Similar statements can be made about the total size of the projected databaseh cases.

Hence, item—projection should be performed in increasing order ofritspport.



19

---OBJ.1(2) =—=OBJ.2(3) == =0BJ.3(4) OBJ. 4 (5) —OBJ.5(6)|
8:35
Z(8:8)
811 8:15 825 | 8:30/
— ——
@®T [ (611 @®11) | (811)

Fig. 8. ltem—conditional DBTF'| xg:35 and pattern discovery

Alternating pattern discovery and deletion

Alternating steps 3, 4 and 5, all patterns can be discovered in a rextashion. The sequen-
tial application of these steps is referred to aRattern Discovery and Deletion phageDD).

Mining terminates when all items have been deleted fidm

Figures 6 and 7 shows the effects of the first of these PDD phasese&igand 9 show the
effect of the next pattern PDD phase. Since after the first PDD ph&8e3b has the lowest—
support inTF, namely 8, it is chosen as the next item to base the database projectiague. &
show T'F'| ag:35 With the corresponding—support of the items itl'F'|rcg.0s and TF respectively.
Since all the items have the samesupport inTF |rcg.05as LA8:35, namely 8, the closed itemset
{GB8:10, HB8:15, JB8:25, KB8:30, LA8:35s discovered. Since this closed itemset both meets
the minimum length and—support requirements it is recorded as a pattern. In the deletionfpart o
this PDD phase, item LA8:35 is deleted frohr as the only item that have the samesupport

in TF|Lag:35 as inTF. The results of this deletion are shown on Figure 9.

--0BJ.1(2) =—=OBJ.2(3) *=+OBJ.3(4) OBJ. 4 (5) === OBJ.5 (6)

8:1 8:15 8:25 | 8:30

Fig. 9. The sample DB after the second PDD phase
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Fig. 10. Three patterns in the sample DB

The third and final PDD phase is implicitly shown in Figure 9. Since after therskPDD
phase all the items iffF have the same—support, the next projection is performed on any one
of the itemsy, and the resulting item—projected databaBe);, is identical to the current state
of TF, depicted on Figure 9. Since all the itemslii'; have the same-support ag, the closed
itemset{ GB8:10, HB8:15, JB8:25, KB8:30is discovered. Since this closed itemset meets both
the minimum length and—support requirements, it is recorded as a pattern. Finally, items having
the samer—support inTF|; as inTF, which in this case means all the items7i#';, are deleted
from TF. After this deletion part of the final PDD phasef: becomes empty and the mining
terminates. Figure 10 shows the three patterns that are discovered thaimining. Supporting

0ids, n—supports, and length for each discovered patterns are shown in émelleg

LSP mining algorithm

Using the observations and the associated steps, the complete algoritmimifoy LSPs in
trajectories is given in Figure 11. Since item—projected databases astumtead at every level
of the recursion and are modified across levels when deleting unaegetesns, the level of
recursionL is passed as an argument in the recursive procedure, and is usedipsrscript to
associate databases to the levels they were constructed in.

Lines 2 and 3 in the MineLSP procedure represent steps 1 and 2 of thednand they
construct the filtered database of transactions at the initial level,delée 4 processes frequent
items in TF° in ascending order af—support. Line 5 represent step 3 of the method, and for
each such frequent item it constructs the item—conditional database of transactibﬁ% at
level 0. Line 6 calls procedure FindLSP to extract all LSPs fr@ﬂﬁﬂ- recursively.

Lines 2 and 3 in the FindLSP procedure represent steps 1 and 2 of thedpand they
construct the filtered database of transactions at the currentllevghe 4 represents step 4 of

the method, and it finds the SMF@ in TFEZ . Line 5 represents step 5 of the method, and

long*
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(1) procedure MineLSP (T', MinSupp, MinLength, n)
(2) TF},., — MinSupportFilter (", MinSupp, n)
() TFY,,, — MinLengthFilter (I'F},.,, MinLength)

(4) for eachfreqitemsiin TF?Ong ordered by ase—supp

(5) TF}; — ConstructConditionalDBTF?,,,,, i)

long1
(6) FindLSP (T'F?, 1, MinSupp, MinLength, n)

lir

(7) endforeach

(1) procedure FindLSP (I',L,MinSupp,MinLength,n)
2 TFfmq — MinSupportFilter (I, MinSupp, n)

(3) TFi,,, < MinLengthFilter (I'Ff;.,, MinLength)
(4) (P, P.supp(n)) — FindSMFCI (TFE,..)

long

(5) TF,,, — DeleteUnnecessaryltem$¢ ', TFJ.,)

(6) if P.supp(n) > MinSupp and |P| > MinLength
@) StorePattern®, P.supp(n))

(8) for eachfreqitemsi in TFﬁng ordered by ase—supp
9) if ¢isnotinP
(10) TF|; — ConstructConditionalDBTF';;,,,. i)

in ., L + 1, MinSupp, MinLength, n
11 FindLSP (°Ff;, L + 1, MinSupp, MinLength

(12) end for each

Fig. 11.The LSP algorithm

it deletes all items from the filtered database of transactions of the preeieels TFX !, that

long 1
have the same-support in TFILO;; asin TFfL,.eq, the current level. Lines 6 and 7 check if the
single most frequent closed itemd@imeets the minimum requirements and store it accordingly.
Lines 8 and 9 processes frequent iteméﬂﬁ{;ng, which are not inP, in ascending order of—
support. Line 10 represent step 3 of the method, and for each splefnt item it constructs the
item—conditional database of transacti(TEﬁ at the current level. Finally, line 11 recursively

calls procedure FindLSP to find LSPsT#; at the next level.

The structure and functionality of procedures MineLSP and FindLSP aaignificant over-
lap. While the two functions can be merged into one, the separation of the twedsto empha-

size the facts that (1) DeleteUnnecessaryltems presumes the existaetatabases constructed
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at the previous level, and (2) FindSMFCI correctly operates only on em-jeojected database,
and hence it can only be applied at level 1 and above.

Several implementation details are worth mentioning. First, DeleteUnraegéems deletes
items fromTF; - based on the—support of items i’ f,,,,, not TF,,,. This is important, as
it was noted that MinLengthFilter decreases thesupport of items irﬂ“Ff,.eq, thereby possibly
making an unnecessary item appear to be necessary. Secondeatgtmfunctions and operands
in statements are logical, i.e., the functions and statements can be maen#ffimplemented
using previously derived tables. For example, both FindSMFCI and@&étmecessaryltems are
implemented using previously derived-support count tables not the actual trajectory tables.
Third, simple shortcuts can significantly improve the efficiency of the ntbtkor example,
during the derivation olTFﬁ,eq, if the number of unique frequent items iﬂFf,,.eq is less than
MinLength, no further processing is required at that level, since none of the tB&i<an be
derived fromTFfL,,eq are long. To preserve clarity, these simple shortcuts are omitted fromeFigu

11.

6 Alternative modelling of trajectories and mining of LSPs

The region—based and the road network based spatio—temporabligatem approaches, pre-
sented in Section 3, model trajectories at a local (micro) level. Conatiguthe method pre-
sented in Section 5 analyzes the trajectories at the local level and dexdet$micro) patterns.
Alternatively, trajectories can also be modelled at the global (macral) istereby trips in tra-
jectories are represented as origin—destination pairs. Global (maodgliing and analysis of
trajectories is a domain of considerable interest in transportation and arzdysis [9]. For ex-
ample, recently a Cab—Sharing Service was proposed as an effelctoreto—door, on—demand
transportation service [7]. One component of the proposed Cabngisystem is a Cab—Routing
/ Scheduling Engine. The task of this engine is to route idle cabs and asdigriarequests or
groups of requests, so called cab—shares, such that the demaath$as optimally served both
in terms of the transportation cost of idle cabs and the service time ofsegu® enable this
optimization, as future work, the use of spatio—temporal patterns in caiesés for cab request
demand prediction is proposed. Since cab requests are naturallgesfae as origin—destination
pairs, the usefulness of macro analysis is apparent.
Hence, in the following two alternative options for modelling trajectories aiming of LSPs

are described. Section 6.1 describes a simple method with an SQL impédimerfor mining



23

LSPs in trajectories modelled at the global (macro) level. Section 6.2 ssime intuitive as-
sumptions, combines the macro and micro modelling options and LSP mirgtigods to derive

a hybrid version.

6.1 Macro modelling of trajectories and mining of LSPs

As briefly described above, when modelling trajectories at the globairohéevel, trips in tra-
jectories are represented as origin—destination pairs. The pregrace$saw trajectories can
be achieved using the same three transformation steps as describexdiam Se This includes
the possibility of using either the region—based or the road network baséid-semporal gen-
eralization approaches as is required from the application at hand. $o thistained transaction

database, a trajectory belonging to a particular object has exactly two items.

Mining global (macro) LSPs in the so obtained trajectory database cachievad using a

single SQL statement as follows.

SELECT aitem, ditem, SUM(supp) AS nsupp FROM
( SELECT oid, aitem, d.item, COUNT(*) AS supp FROM T
WHERE dist(aitem, d.item) >= MinDist
GROUP BY oid, aitem, ditem ) a

GROUP BY aitem, ditem

HAVING COUNT(*) >=n AND SUM(supp)>= MinSupp

The statement, without loss of generality, assumes that the trajectonadefahas the schema
(oid, tid, o-item, d_item), where in addition to the previously used notatiotitesn and ditem

are generalized spatio—temporal regions, or identifiers of the origirdastihation of the tra-
jectory, respectively. Since all the trajectories in the datatiabave exactly two items, it does
not make sense to talk about the length of a trajectory in terms of numiients in contains.
Instead, a distance functiafist() between two locations or items can be defined, and patterns
can be evaluated against\&n Dist criterion. The inner select statement calculates the supports
for object—specific origin—destination item combinations that satisfyMeDist criterion. The
outer select statement aggregates the results of the inner select statemadentifies origin—
destination item combinations that meet thresupport criterion, i.e., global (macro) LSPs, and

calculates their correspondimg-supports.
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6.2 Hybrid modelling of trajectories and mining of LSPs

The proposed global (macro) modelling approach of trajectories,|dfa@lgmacro) LSP mining
method and the SQL implementation given for it are likely to be very efficdastto the indexing
and aggregation support provided by RDBMSs. However, the disedvglobal (macro) LSPs,
will have very little relation to each other. For example, a set of individiaa (macro) LSPs,
considering the underlying road network, might give rise to local (ML&Ps that do not exist
in the macro model, but have a support that is equal to the sum afslupports of the individual
patterns. As an illustrative example consider the road network regessen the solid black

lines in Figure 12. Assume that for a par-

8:00 /8:30 ticular setting of the parameters, the global
w05l 510 | a5 | s20 8:25/ (macro) LSP mining method finds two
// global (macro) LSPs{FA8:00, LA8:30} and
8:00 8:30 {FC8:00, LC8:30Q, with n—supports 10 for

each. Assuming that the spatial regions FA,
LA, FC, and LC cover the only four cities
Fig. 12.Process / outcome of map matching in the area, and hence trajectories only start
and finish in these regions, the global (macro)
LSP mining method will not discover the local (micro) L$8B8:05, HB8:10, 1B8:15, JB8:20,
KB8:25} with n—support 20.

To overcome this deficiency of the global (macro) LSP mining methodglibleal (macro)
and the local (micro) modelling approaches and LSP mining methodseceonhbined into a hy-
brid modelling and LSP mining method as follows. First, perform globakfmel SP mining on
the spatio—temporally generalized input trajectories. Then, using thel gholero) LSPs and the
underlying road networlapproximaterajectories for the global (macro) LSPs, i.e., find shortest
paths between origin—destination pairs. Then, spatio—temporally geeahadiapproximated tra-
jectories and mine local (micro) LSPs in them, taking into account the g{ofzdro)n—supports
of the approximated trajectories. Taking into accaursupports of the approximated trajectories
can either be achieved by slightly modifying the local (micro) LSP mining oeth Section 5,
or simply the original version of it can be called with parameters- 1 and MinSupp = 1.
The latter is necessary and sufficient to ensure that (1) the approximnajiectories belonging to
the global (macro) LSPs are found as local (micro) LSPs as well, 2ttié€ local (micro) LSPs

found meet the originat—support criterion. Note that the spatio—temporal generalization of the
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(1) procedure HybridMineLSP (T'raj ;, MinDist, MinSupp, MinLength, n)
(2) Traj, < STGeneralize{raj ;)

3) LSP macro <— MacroMineLSP (raj ;, MinDist, MinSupp, n)

(4)  Traj , « ApproximateTraj LSPmacro)

(5) Trajs s < STGeneralize Traj 4)

(6)  LSPmicro < MiNeLSP (Iraj; 4, MinLength, MinSupp = 1, n = 1)

Fig. 13.The hybrid LSP mining method

input and approximated trajectories can either be regions—basedioretveork based. Figure 13
gives the pseudo code of the hybrid LSP mining method, as describgd.ab

While the hybrid LSP mining method is likely to reduce the number of input trajiss to
the local (micro) LSP mining method called internally, thereby achievingrafgignt speed—up
in running time, it does not findll the local (micro) LSPs. As an example consider the trajectories
in Figure 12. If MinSupp = 20, then the hybrid LSP mining method will not find any patterns
in the global (macro) LSP mining phase, and consequently will not figdaoal (micro) LSPs,
even though the local (micro) LS®5B8:05, HB8:10, 1B8:15, JB8:20, KB8:2%as am—support
of 20. Similarly, it can be argued that the hybrid LSP mining method will mat iny LSPs in
the example trajectory database in Section 3.2, for the parameters ubedrimning example
in Section 5. However, as the spatio—temporal generalization granulasty in the mining is
decreased the chances not identifying global (macro) LSPs thatigéséo local (micro) LSPs
is decreased. In summary, the hybrid LSP mining method is likely antizfealternative that

provides lossy and approximate results when compared to the locabjrh8P mining method.
7 Experimental evaluation

The proposed LSP mining methods were implemented using MS-SQLrS06 running on
Windows XP on a 3.6GHz Pentium 4 processor with 2GB main memory.eTtireups of ex-
periments were performed to test: (1) the parameter sensitivity of the(fog@o) LSP mining
method, (2) the scale—up properties of the local (micro) LSP mining rdetimad (3) the effec-
tiveness of the global (macro) modelling and LSP mining method with ot$péts parameters.
The three groups of experiments were performed on the following tiateesets respectively: (1)
the publicly available INFATI data set [12], which comes from intelligergtesppadaptation exper-
iments conducted at Aalborg University, (2) the synthetic ST-ACTS ti@jgclata set, and (3)
the ST-ACTS origin—destination data set, both of which were derived 86rACTS, a proba-
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bilistic, parameterizable, realistic Spatio-Temporal ACTivity Simulator$&lctions 7.1, 7.2 and
7.3 describe these data sets in detail, while Sections 7.4, 7.5 and 7eftpites results of the

respective groups of experiments. Finally, Section 7.7 visualizes ebthe mining results.

7.1 The INFATI data set

The INFATI data set records cars moving around in the road netwiagkklborg, Denmark over a
period of several months. 20 distinct test cars and families participathd INFATI experiment;
Team-1 consisting of 11 cars operated between December 2000raratyd2001 and Team—2
consisting of 9 cars operated between February and March 200k.daaevas equipped with
a GPS receiver, from which GPS positions were sampled every sedosdever the car was
operated. Additional information about the experiment can be founth [

The method presented in Section 3.1 identifies trips from continuous GRSuneenents,
which is not the case in the INFATI data. Hence in this case, a trip was dedeequence of
GPS readings where the time difference between two consecutivegsasliess than 5 minutes.
Using the definition, the INFATI data contains 3,699 trips. After projectirggtémporal dimen-
sion to the time—of—day domain and substituting the noisy GPS readings wittmé@® by 100
meter by 5 minutes spatio-temporal regions, the resulting trajectory datdlas the following
characteristics. There are 200,929 unique items in the 3,699 transackiom average number
of items in a transaction is approximately 102. The averagaipport of 1-, 2—, and 3—frequent
items is 1.88, 4.2 and 6.4 respectively. Notice that the averages omig@anthen—supports of

1-, 2—, and 3—frequent items.

7.2 The ST-ACTS trajectory data set

The ST-ACTS trajectory data set is based on the output of ST-ACT $ybalpitistic, parame-
terizable, realistic Spatio—Temporal ACTivity Simulator [6]. Based on rlmer of real world
data sources and a set of principles that try to modestiwéaland some of thehysicalaspects
of mobility, ST-ACTS simulates realistic spatio—temporal activity sequeatapproximately
600,000 individuals in the city of Copenhagen, Denmark. Since the aBT-eACTS is to simu-
late realistic spatio—temporal activities of individuals that contain patteati®erthan to simulate
detailed movements of individuals, the output of the ST-ACTS for eactilated individual is a
sequence of timestamped locations and activities. Two consecutive lecatisuch a sequence
can be seen as the origin and the destination of a trip’s trajectory. To obtafistic approxima-
tion for the missing part of the trajectories, using the underlying road mkhasegment-based

shortest path calculation was performed between the origin—destinaiisnopahe trips. The
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Fig. 14.Data characteristics of varying sized subsets of the ST-ACTS trajecitaysdt

so obtained trip trajectories are analogous in form and semantics to thedrggdhat can be
obtained using the road network based spatio—temporal generalizagiovaap as explained in
Section 3.1.

For the period of three working days, spatio—temporal activities of(bif@ividuals were
simulated, resulting in a total of 64,144 trips. Using segment—based rdogitvgeen origin—
destination pairs, an average trip is 1,850 meters long with a standardiolewfl,937 meters,
and is made up of 28 road segments with a standard deviation of 27 rgacbises. An aver-
age road segment is 66 meters long with a standard deviation of 64 n#gtersprojecting the
temporal dimension to the time—of-day domain and using the road segamsfmtial—, and
a 15-minute interval as temporal, generalization units, the resulting tragjetataibase has the
following characteristics. There are 330,940 unique items in the 64,adAddctions. The aver-
age number of items in a transactions is approximately 28. To test the spaisperties of the
proposed method, varying sized subsets of the ST-ACTS trajectorysefateere constructed.
Figure 14 summarizes the characteristics of these subsets in terms aftbem(Figure 14(a))
andn—support (Figure 14(b)) oi—frequent items. While not shown in Figure 14, the number
of trajectories linearly scales with the number of objects in the data sets e6)&@l trajecto-
ries for 500 objects and 64,144 trajectories for 5,000 objects. Similaarlimationships exists
between the number of number of objects and the avetagapport ofn—frequent items, Fig-
ure 14(b). The logarithmic like relationships between the number of okgectshe number of
n—frequent items is due to the fact that the increasing number of trajectoaieerse, and make
n—frequent, an increasing fraction of road segments of the total raadrie see Figure 14(a). In
other words, the number ef~frequent items naturally saturates as the density of the trajectories

increases.
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Fig. 15. Performance evaluation for variolginLength settings

7.3 The ST-ACTS origin—destination data set

The ST-ACTS origin—destination data set, similarly to the ST-ACTS trajectaiey skt, is also
based on the output of ST-ACTS. However, it includes the spatio—teinaatvities of 50,000
individuals for a period of three working days, resulting in a total of 886,trips. The aver-
age Euclidean distance between the origins and destinations of the trip9%neters with a
standard deviation of 1.555 meters. After projecting the temporal dioets the time—of-day
domain and substituting the origins and destinations of trips with 100 meter ®yn&fer by
15-minute spatio-temporal regions, the resulting trajectory databasieehfadlowing character-
istics. There are 139,480 unique items in the 1,671,612 transactiomavifiber of items in every
transactions is exactly 2, which correspond to an origin and a destinatitin-siemporal region.
The averagei—support (and count) of 1—, 2—, 3—, and 4—frequent items is 1,4971871), 2.14
(152,255), 3.24 (17,267), and 4.09 (3854) respectively. Notiaethe averages only include the

n—supports of 1-, 2—, 3—, and 4—frequent items.

7.4 Sensitivity experiments forMinSupp and MinLength parameters

The first group of experiments was performed to test the sensitivitycaf [onicro) LSP mining
method with respect to th&inSupp and MinLength parameters, and was using the INFATI data
set as input. Two sets of experiments were performed, each vargmgfahe two parameters

of the algorithm MinSupp and MinLength. The performance of the algorithm was measured in
terms of processing time and working space required, where the wagace required by the al-
gorithm was approximated by the sum of the rows in the projected tablese¢natanstructed by

the algorithm. Both measures were evaluated in an absolute and a redatipattern, sense. Fig-
ures 15(a), 15(b), and 15(c) show the results of the first set @rérpnts, wheré/inSupp = 2,

n = 2 and MinLength is varied between 120 and 530. Lower settingsiffinLength were also
tested, but due to the very loiinSupp value these measurement were terminated after exceed-

ing the 2 hour processing time limit. Noting the logarithmic scale in Figure 15gitident that
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Fig. 16. Performance evaluation for variolginSupp settings

both the running time and the working space required by the algorithm erftially increase as
the MinLength parameter is decreased. Examining the same quantities in a relativetigenp
sense, Figure 15(c) reveals that the average running time and ewscaking space required
per pattern is approximatelinearly decreasings theMinLength parameter is decreased. The
presence of the two irregular bumps in Figure 15(c) can be explainethition to the number of
patterns found, and the number of ineffective projections that yieldatteqms, shown in Figure
15(b). The sharp increases in relative processing time and workaug spe due to the fact that
the algorithm is unable to take some of the shortcuts and it performs réfativee ineffective
projections yielding no pattern discovery. The sharp decreases aiplaned by the presence
of an increasing number of patterns that share the total pattern digamstr

Similar observations can be made about the second set of experirsleod#) in Figures
16(a), 16(b), and 16(c), whetdinLength = 50, n = 2 and MinSupp is varied between 7 and
33. For example, the sharp decrease in relative processing time ireHi§(e) when going from
MinSupp = 33 to MinSupp = 32 is simply due to the sudden appearance of patterns in the
data for the given parameters. While there is only 1 patterdfotSupp = 33, and an order of
magnitude more number of patterns ffinSupp = 32, the projections performed and hence
the absolute processing time to discover these patterns is approximateynbersboth cases.
Hence, the relative processing time fdinSupp = 33 is an order of magnitude larger than that

for MinSupp = 32.

7.5 Scale—-up experiments for various input data sizes

The second group of experiments was performed to test the scaleepertes of the local
(micro) LSP mining method for varying size input data, and was pe€drasing the ST-ACTS
trajectory data set. For this group of experiments the algorithm’s pareswedee kept constant at

n = 4, MinSupp = 8 and MinLength = 25. In other words, the patterns sought for were sub—
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Fig. 17.Performance evaluation for various sized data sets, i.e., numbbjaxft®

trajectories with a minimum length of 25 road segments that were suppagregddast 4 objects
on average at least two times per object. The evaluation measures ubedekperiments were
the same as in the sensitivity experiments described in Section 7.4. Figshews the results of
this group of experiments. The results can be summarized as followtheAsimber of objects
increases linearly, i.e. the density of the trajectories increases lineaiputimber of patterns
increases sub—exponentially, see Figure 17(b). This naturally leadsite-exponential increase
in absolute running time (Figure 17(a) left) and working space (Figufe)Xright). However,
the examination of the same quantities in a relative, per pattern sensageee F7(c), reveals
that the average running time required per pattern gradually decreaseslose to constant
value of a few seconds as the density of the trajectories increases. This i® the fact that
as the density of the trajectories is increasing, the number of ineffeatdjegtions relative to
the number of patterns, i.e., the gap between the two, is decreasingigsee 17(c). Similar
observations can be made about the average working space reggiingattern. In summary, the
scale—up experiments show that both the running time of, and workirtg spguired by the local
(macro) LSP mining method scale sub—exponentially with the input data istzéreearly with

the output data size.

7.6 Global (macro) modelling and LSP mining experiments

The third groups of experiments was performed to test the effectgeniethe global (macro)
modelling and LSP mining method, as presented in Section 6.1. The expesimere performed

for varying spatio—temporal generalization granularities for varyin@/inSupp and MinDist
parameters, and were using the ST-ACTS origin—destination data set Egshows the results

of this group of experiments. The trends in the results are as expectettheAvalues for the
parameters,, MinSupp and MinDist increases the number of global (macro) LSPs decreases,

shown in Figures 18(a), 18(b), and 18(c), respectively. Similaltlgx@eriments show that as the
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spatio—temporal regions become coarser the number of patterns iftereases. Perhaps more
notable is the fact that for the rather large data set, with appropriate inpéserrunning time of

the global (macro) LSP mining method is independent of the parameteiis ander 2 seconds.

7.7 Visualization of patterns

To see the benefits of mining LSPs, the mining results of two mining taskdsaralized in the
following. Figure 19 presents the mining results of finding local (micrd)gpas in the region—
based spatio—temporally generalized INFATI data using the LSP algonitrmSection 5. Figure
19(a) shows a 50-fold down—sampled version of the trajectories oftiheoRing objects in the
INFATI data set. While some regularities are apparent in it to the humarnteyied LSPs in it
seems like a daunting task. Figure 19(b) shows 28 LSPs in it that aresa2along, sharable

for at least 2 distinct objects, and have a support of at least 2.
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Fig. 19.LSP discovery results in the INFATI data set



32

Segment Support Max N-support of Patterns
1-54 % g
55-138 9-10

/\/139-247 //\\71;-12
248 - 383

/A// 384 - 555 ANAL

7N/ 556 - 778 AAN

7N/ 779-1073 N\ 16

7N/ 1074 - 1529 N

7N/ 1530 - 2278 N
2279-3610 VaValk

Road Network Road Network

(a) Overall road segment support. (b) Max road segment-support of 298 LSPs.
Fig. 20.LSP discovery results for the ST-ACTS origin—destination data set

Figure 20 presents the mining results of finding local (micro) patterns imoe network
based spatio—temporally generalized ST-ACTS origin—destination datathsihybrid LSP min-
ing algorithm from Section 6.2. The global (macro) mining of LSPs wafpmed for parameters
n = 4, MinSupp = 8, andMinDist = 5,000 meters, and resulted in 109 global (macro) LSPs.
After determining the value for th&finLength parameter at 80, based on the minimum number
of road segments in the approximated trajectories of the global (ma&®3 Lthe local (micro)
mining of LSPs resulted in 298 local (micro) LSPs. Figure 20(a) shoeewkrall supports (fre-
guencies) of the road segments in the data. Figure 20(b) shows the mmaxirsupports of the
road segments induced by the collection of the 298 local (micro) LSP#eWs described in
Section 6.2, the hybrid LSP algorithm is not likely to fiall local (micro) LSPs, it does find
a relatively large number of additional local (micro) LSPs in a ratherelalgta set under 144

seconds.

It is important to note that the LSPs contain additional information, which lig jpartially,
or not presented in Figures 20(b) and 19(b), respectively. In péatichen—supports, distances,
and lengths are available fordividual patterns, and the patterns naturally have a temporal as-
pect to them. With regards to the latter feature of the patterns, since the itenpgttern have a
temporal component, an individual pattern refers to a particular timelagf Furthermore, since
the spatio—temporally generalized items in a given pattern form a sequreticee, the patterns
have adirection While a simple temporal, frequency analysis of road segments caal egygre-
gatedinformation about the number of objects on the road segments at atgiverof—day, such

analysis will not reveal movement patterns (including directions) of silpilmoving objects.
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This additional information of the LSPs is likely to be of immense value in trariapon and
urban planning, and is necessary for the application at hand, be th&gereride—sharing or

cab—sharing.

7.8 Summary of experimental results

In conclusion, the experimental evaluations can be summarized as $olimst, the sensitivity
experiments show that the LSP mining method, presented in Section étaffand is robust
to changes in the user—defined parameter settitaLength and MinSupp, and is a useful
analysis tool for finding LSPs in moving object trajectories. Second, ¢hlesup experiments
show that while the absolute running time and space required to find L&Rs sxponentially
with the input data size, this is mainly due to the fact that the number of LSParh@resent
in the input data, i.e., the output data size, also scales exponentially withpiltediaita size. The
scale—up experiments also demonstrate that the relative, per patiéonaace of the LSP min-
ing method gradually decreases to a constant value as the input dataiszeased. This later
property of the LSP method is due to the fact that as the input size is iecidas, the density of
the trajectories is increased, the effects of M Length and MinSupp pruning criteria become
more dominant and relatively less and less ineffective projectionseafermed. Third, the ex-
periments relating to global (macro) modelling and LSP mining, show thatrtb@elling option
and LSP mining method is extremely effective on large data sets, and és naglensitive to the
user—defined parameter settingsMinDist and MinSupp. Finally, brief experiments show that
the hybrid modelling and LSP mining method, while missing some local (mic®®)s due to the

partial global (macro) modelling, is able to find local (micro) LSPs in lafg sets effectively.

8 Conclusions and future work

The herein presented work, for the first time, considers the probleninifig LSPs in trajectories
and transforms it to a framework similar to that used in frequent itemseéhgn The transforma-
tion allows both region—-based and road network based spatio—temparkdjzations of trajec-
tories. Two methods and their simple SQL-implementations are presentaihfng either local
(micro) or global (macro) LSPs in such spatio—temporally generalizgectories. In an attempt
to speed up the local (micro) LSP mining method, the two methods are cedituia hybrid LSP

mining method, which is able to rapidly find most of the local (micro) LSPe &ffectiveness of
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the different LSP methods is demonstrated through extensive expesime both a real world
data set, and a number of large—scale, synthetic data sets.

Future work is planed along several directions. First, as discussellyliniel LSP method,
while is able to achieve significant speed-up compared to the local (nii&f®)mining method,
it does not find all the local (micro) LSPs in the trajectories. Hence futiork will consider to
quantify (1) the speed—up of the hybrid LSP method, and (2) the fraatitre local (micro) LSPs
found by the hybrid LSP method. Second, the large number of pattescsvered are difficult to
analyze. To reduce this number, future work will consider the mining @frapressed patterns
in trajectories [20]. Finally, future work will consider the partitioning of tidfgries using index

structures designed for trajectories, like in [11], to allow the distributedalighmining of LSPs.
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