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Abstract. The efficient analysis of spatio–temporal data, generated by moving

objects, is an essential requirement for intelligent location–based services. Spatio-

temporal rules can be found by constructing spatio–temporal baskets,from which

traditional association rule mining methods can discover spatio–temporal rules.

When the items in the baskets are spatio–temporal identifiers and are derived from

trajectories of moving objects, the discovered rules represent frequently travelled

routes. For some applications, e.g., an intelligent ridesharing application, these

frequent routes are only interesting if they are long and sharable, i.e.,can poten-

tially be shared by several users. This paper presents a database projection based

method for efficiently extracting such long, sharable frequent routes.The method

prunes the search space by making use of the minimum length and sharable re-

quirements and avoids the generation of the exponential number of sub–routes of

long routes. Considering alternative modelling options for trajectories, leads to

the development of two effective variants of the method. SQL–based implemen-

tations are described, and extensive experiments on both real life– andlarge–scale

synthetic data show the effectiveness of the method and its variants.

1 Introduction

In recent years Global Positioning Systems (GPS) have become increasingly available

and accurate in mobile devices. As a result large amounts of spatio–temporal data is

being generated by users of such mobile devices, referred toasmoving objectsin the
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following. Trajectories of moving objects, or trajectories for short, contain regularities

or patterns. For example, a person tends to drive almost every weekday to work approxi-

mately at the same time using the same route. The benefits of finding such regularities or

patterns is many–fold. First, such patterns can help the efficient management of trajec-

tories. Second, they can be used to facilitate various Location–Based Services (LBS).

One LBS example is an intelligent rideshare application, which finds sharable routes

for a set of commuters and suggests rideshare possibilitiesto them, is considered. Such

a rideshare application can be one possible solution to the ever increasing congestion

problems of urban transportation networks.

Patterns in trajectories for an intelligent rideshare application are only interesting

if those patterns are sharable by multiple commuters, are reoccurring frequently, and

are worthwhile pursuing, i.e., are long enough for the savings to compensate for the

coordination efforts. The discovery of Long, Sharable Patterns (LSP) in trajectories is

difficult for several reasons. Patterns do not usually existalong the whole trajectory. As

a example, consider two commutersA andB living in the same area of town, leaving

for work approximately the same time, and working in the samepart of town. Given the

underlying road network and traffic conditions, for a given support threshold the middle

part of the trips of the two commuters may be frequent, the initial and final parts may

not. In recent work [5] a general problem transformation method, calledpivoting, was

proposed for the analysis of spatio–temporal data. Pivoting is the process of grouping

a set of records based on a set of attributes and assigning thevalues of likely another

set of attributes to groups or baskets. Pivoting applied to spatio–temporal data allows

the construction of spatio–temporal baskets, which can be mined with traditional as-

sociation rule mining algorithms. When the items in the baskets are spatio–temporal

identifiers and are derived from trajectories, the discovered rules represent frequently

travelled routes. While there exist several efficient association rule mining methods [8],

the straight–forward application of these algorithms to spatio–temporal baskets rep-

resenting trajectories is infeasible for two reasons. First, all sub–patterns of frequent

patterns are also frequent, but not interesting, as longer patterns are preferred. Second,

the support criterion used in association rule mining algorithms is inadequate for a ride-
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share application, i.e., a frequent itemset representing afrequent trajectory pattern, may

be supported by a single commuter on many occasions and hencepresents no rideshare

opportunity.

In this paper, to overcome the above difficulties of finding LSPs in trajectories, a

novel method is given. According to a new support criterion,the proposed method first

efficiently filters the trajectories to contain only sub-trajectories that are frequent. Next,

it removes trajectories that do not meet the minimum length criterion. Then it alternates

two steps until there are undiscovered LSPs. The first step entails the discovery of a LSP.

The second step entails the filtering of trajectories by the previously discovered pattern.

An advantage of the proposed method is the ease of implementation in commercial

Relational Database Management Systems (RDBMSes). To demonstrate this, a SQL–

based implementation is described. Considering the globalmodelling of trajectories,

leads to the development of two other effective variants of the proposed method. The

effectiveness of the method and its variants are demonstrated on the publicly available

INFATI data, which contains trajectories of cars driving ona road network, and on a

number of large–scale synthetic data sets.

The herein presented work is novel in several aspects. It is the first to consider the

problem of mining LSPs in trajectories. It describes a noveltransformation, and the

relationship between the problem of mining LSPs in trajectories and mining frequent

itemsets. Finally, it describes an effective method with a simple SQL–implementation

to mine such LSPs in trajectories.

The remainder of the paper is organized as follows. Section 2reviews related work.

Section 3 describes the transformation, the use of the framework in frequent itemset

mining, and formally defines the task of mining LSPs in trajectories. Section 4 discusses

a näıve method for mining LSPs and points out its shortcomings. Section 5 describes

the proposed algorithm and a SQL–based implementation for mining LSPs. Section 6

presents alternative modelling of trajectories and derives variants of the proposed me-

thod based on these modelling options. Section 7 presents detailed experimental results.

Finally Section 8 concludes and points to future research.
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2 Related work

Frequent pattern mining is a core field in data mining research. Since the first solu-

tion to the problem of frequent itemset mining [1, 2], various specialized in–memory

data structures have been proposed to improve the mining efficiency, see [8] for an

overview. It has been recognized that the set of all frequentitemsets is too large for

analytical purposes and the information they contain is redundant. To remedy this, two

modification to the task have been proposed: mining of ClosedFrequent Itemsets (CFI)

and mining of maximal frequent itemsets. A frequent itemsetX is closedif no item-

setY exists with the same support asX such thatX ⊂ Y . A frequent itemsetX is

maximal if no frequent itemsetY exists such thatX ⊂ Y . Prominent methods that

efficiently exploit these modifications to the problem are MAFIA [4], GenMax [10],

CLOSET [14], CLOSET(+) [19], and CHARM [22]. Later in the paper, a relationship

between the problems of mining LSPs in trajectories and mining CFIs are described.

While CFI mining methods can be modified to find the desired solution that meets the

sharablecriterion, they employ complex data structures and their implementation is

quite involved; hence their augmentation is difficult. In particular, a projection-based

CFI mining algorithm that employs an in–memory FP-tree to represent itemsets, would

need to be modified at every node to maintain a set of distinct objects at that have trans-

actions associated with them that support the itemset that is represented by the node. In

comparison, the herein presented method –building on work presented in [16]–exploits

the power of commercial RDBMSs, yielding a simple, but effective solution.

Since trajectories are temporally ordered sequences of locations, sequential pattern

mining [3] naturally comes to mind. However, a straight forward interpretation of trips

as transactions and application of a state–of–the–art closed frequent sequential pattern

mining algorithm [21] does not yield the desired solution, since in this case sequences of

frequent sub-trajectories would be found. Furthermore, since the trajectories can con-

tain hundreds of items, closedness checking of frequent itemsets even for prominent

methods would be computationally expensive. Interpretingsingle elements of trajecto-

ries as transactions and applying closed sequential pattern mining could find frequent

sub–trajectories. However a number of problems arise. First, to meet the sharable cri-
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terion, the in–memory data structures would need similar, non-trivial augmentation as

described above. Second, since patterns in trajectories could be extremely long, even

state–of–the–art sequential mining methods [17, 21] wouldhave a difficulties handling

patterns of such lengths. Third, patterns in trajectories repeat themselves, which can-

not be handled by traditional sequential pattern mining algorithms. The extraction of

spatio–temporal periodic patterns from trajectories is studied in [13], where a bottom–

up, level–wise, and a faster top–down mining algorithm is presented. Although the tech-

nique is effective, the patterns found are within the trajectory of a single moving object.

In comparison, the herein presented method effectively discovers long, sharable, peri-

odic patterns.

Moving objects databases are particular cases of spatio–temporal databases that rep-

resent and manage changes related to the movement of objects. A necessary component

to such databases are specialized spatio–temporal indicessuch as the Spatio–Temporal

R–tree (STR–tree) and Trajectory–Bundle tree (TB–tree) [11]. An STR–tree organizes

line segments of a trajectory according to both their spatial properties and the trajec-

tories they belong to, while a TB–tree only preserves trajectories. If trajectories are

projected to the time–of–day domain, STR–tree index valueson the projected trajecto-

ries could be used as an alternative representation of trajectories. While this approach

would reduce the size of the problem of mining LSPs in trajectories, it would not solve

it. In comparison, the herein presented method solves the problem of mining LSPs in

trajectories, which is orthogonal, but not unrelated to indexing of trajectories.

In [18] a way to effectively retrieve trajectories in the presence of noise is presented.

Similarity functions, based on the longest sharable subsequence, are defined, facilitating

an intuitive notion of similarity between trajectories. While such an efficient similarity

search between the trajectories will discover similar trajectories, the usefulness of this

similarity in terms of length and support would not be explicit. In comparison, there

herein proposed method returns only patterns that meet the user–specified support and

length constraints. Furthermore, the trajectory patternsreturned by our method are ex-

plicit, as opposed to the only implicit patterns contained in similar trajectories.



6

0 5 10 15 20 25 30 35 40
0

5

10

15
Mon 8:00

Tu 8:00

Wed 8:00 

x−dimension

y−dimension

tim
e−

di
m

en
si

on
 / 

da
te

−
tim

e 
do

m
ai

n trip 1

trip 2

trip 3

d
k
 > δ → start of trip 1

d
k
 < δ → end of trip 1

(a) Identification of trips in raw trajectories.

0 5 10 15 20 25 30 35 40

0

5

10

15
8:00

8:05

8:10

8:15

8:00

8:00

8:30

8:35

x−dimension
y−dimension

tim
e−

di
m

en
si

on
 / 

tim
e−

of
−

da
y 

do
m

ai
n

spatio−temporal region

(b) Time–of–day projection and spatio–temporal

region substitution.

Fig. 1.From trajectories to transactions

3 Long, sharable patterns in trajectories

The following section describes a novel transformation of raw trajectories. This trans-

formation allows (1) the formulation of the problem of mining LSPs in trajectories in a

framework similar to that used in frequent itemset mining, (2) to establish a relationship

between the two problems.

3.1 From trajectories to transactions

The proposed transformation of raw trajectories consists of three steps: identification of

trips, projection of the temporal dimension, and spatio–temporal region substitution. It

is assumed that locations of moving objects are sampled overa long history. That is, a

raw trajectory is a long sequence of(x, y, t) measurements at regular time intervals.

Identification of trips

A trip is a temporally consecutive set or sequence of measurements such that for

any measurementmi in the sequence, the sum of spatial displacement during thek

measurements immediately followingmi, denoteddk, is larger than some user–defined

displacement,δ. Trips can be identified in a straight–forward manner by linearly scan-

ning through a trajectory, and calculatingdk using a look–ahead window ofk mea-
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surements. That is, scanning through the total trajectory from the beginning, the first

measurement for whichdk > δ, signals the beginning of the first trip. Consecutive

measurements are part of this trip until a measurement is reached for whichdk ≤ δ,

which signals the end of the first trajectory. Trips following the first trip are detected in

the same fashion from the remaining part of the total trajectory. Figure 1(a) shows three

example trips that are derived from the total trajectory of one moving object.

Projection of the temporal dimension

Since frequent patterns within a single object’s trajectory are expected to repeat

themselves daily, the temporal dimension of the so identified trips is projected down to

the time–of–day domain. This projection is essential to discover the daily periodic na-

ture of patterns in trajectories. Mining patterns with other periodicity can be facilitated

by projections of the temporal domain to appropriate finer, or coarser levels of granu-

larity. Finer levels of granularity can be used to detect patterns with shorter periodicity.

For example, a delivery person might use a different route depending on the time–of–

hour knowing that at the given time of the hour certain trafficconditions arise, which

make an otherwise optimal delivery route sub–optimal. The detection of these patterns

in delivery routes requires the projection of the temporal dimension to the time–of–

hour domain. Conversely, coarser levels of granularity canbe used to detect patterns

with longer periodicity. For example, a person might visit his bank only at the end of

pay periods. The detection of this pattern requires the projection of the temporal di-

mension to the day–of–month domain. Finally, to discover the pattern that the above

mentioned person makes these visits to his bank Saturday mornings following the end

of pay periods, requires the projection of the temporal domain to a combination of the

day–of-month, the day–of-week, and the part–of-day domains. Performing different

projections is part of the inherently iterative and only semi-automatic process of doing

data mining when the exact format of the patterns searched for is not known before-

hand. Figure 1(b) shows the projection of the temporal dimension to the time–of–day

domain for the three trips identified in Figure 1(a). Since the projection of a single data-

base record is a constant time operation, the total processing time of this transformation

step is optimal and linear in the number of database records.
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Spatio–temporal generalization and substitution

Trajectories are noisy. One source of this noise is due to imprecise GPS measure-

ments. From the point of view of patterns in such trajectories, slight deviation of tra-

jectories from the patterns can be viewed as noise. Examplesof such deviations could

be due to a few minute delay, or to the usage of different laneson the route. Hence,

while a person might be driving from home to work at approximately the same time

of day using approximately the same route, the chance of two identical trajectories is

highly unlikely. Consequently, patterns in raw trajectories are few and certainly not

long. Thus, patterns have to be mined in trajectories that are represented in a gener-

alized way, yielding general patterns in trajectories. There are at least two different

approaches to achieve this generalization of trajectories: region–based spatio–temporal

generalization and road network based spatio–temporal generalization.

In the region–based spatio–temporal generalization approach individual(x, y, t)

measurements of a trajectory are discretized and mapped to the spatio–temporal regions

they fall into. Thus, a generalized trajectory is constructed by substituting(x, y, t) mea-

surements with the spatio–temporal regions they map to. If within a trajectory multiple

(x, y, t) measurements map to the same spatio–temporal region, they are substituted

with a single instance of the corresponding spatio–temporal region. The box in Fig-

ure 1(b) represents such a spatio–temporal region. Since region–based spatio–temporal

substitution of a single database record can be achieved using simple arithmetics from

the spatial and temporal coordinates, the processing time of this transformation step is

optimal and linear in the number of database records.

In the road network based spatio–temporal generalization approach, objects are as-

sumed to be moving on a road network and coordinates of individual(x, y, t) measure-

ments of a trajectory are matched to road segments of the underlying road network.

The process of matching trajectories to road segments is called map matching and has

been studied extensively in the recent past. Figure 2 shows the outcome of map match-

ing, where noisy GPS readings are “snapped” to the most likely road segments the

object was actually moving on. In general, two map matching approaches exist: on–line
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and off–line map matching. In on–line

map matching, the noisy GPS readings

are positioned onto the road network tak-

ing into account the past readings and the

topology of the road network. In off–line

map matching, the positioning of GPS

readings onto the road network is per-

formed with some delay, hence methods

can take into consideration “future” mea-

surements, which generally increases the

matching accuracy and reduces the nec-

essary computation. In [15] a summary of different on–line and off–line map matching

algorithms is provided and disadvantages of each approach is described. Once the co-

ordinates of trajectories are map matched, the individual(x, y, t) measurements of a

trajectory are discretized and mapped to the spatio–temporal identifiers composed of a

combination of road segment identifiers and temporal intervals. If within a trajectory

multiple (x, y, t) measurements map to the same spatio–temporal identifier, they are

substituted with a single instance of the corresponding spatio–temporal identifier. The

map matching task can be performed in a distributed fashion by on–board navigation

units of the moving objects. Based on the map matching results the road network based

spatio–temporal substitution of a single database record can be achieved in constant

time using simple arithmetics from the temporal values, hence the processing time of

this transformation step is optimal and linear in the numberof database records.

3.2 Example trajectory database

Figure 3 visualizes a sample trajectory database. It shows the trajectories of trips of

5 moving objects, which were derived using the three transformation steps described

in Section 3.1. For clarity, the temporal dimension is projected down to the 2D–plane.

Spatio–temporal regions are defined by the square cells and afive minute interval cen-

tered around time instances written inside the square. Eachconnected line represents

specific trips of a particular object. The number of times that trip was performed by the
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Fig. 3. Illustration of the sample trajectory DB

object is represented in the width of the line, and is also written in parenthesis next to

the object name in the legend. For example, the trip trajectory associated with object3

was performed4 times by the object. The object was in spatial regions HD, HC,HB,

IB, and IC during time intervals8:05 ± 2.5 minutes,8:10 ± 2.5 minutes,8:15 ± 2.5

minutes,8:20 ± 2.5 minutes, and8:25 ± 2.5 minutes, respectively. In the following a

spatio-temporal region will be referred to by its concatenated values of the cell identi-

fiers along the x– and y–axis, and the corresponding time instance denoting the center

of the time interval of the spatio–temporal region. Hence, trips associated with object3

will be denoted by the a sequence{HD8:05, HC8:10, HB8:15, IB8:20, IC8:25}. Fur-

thermore, the trajectory databaseT is assumed to be in a relational format with schema

〈oid, tid, item〉, whereitem is a single item, that is part of the transactiontid associ-

ated with objectoid. Hence, each of the four trips of object3 is represented by5 unique

rows inT .

3.3 Problem statement

After performing the three above transformation steps, thedata set can be represented

in a databaseT containing tuples〈oid, tid, s〉, whereoid is an object identifier,tid is

a trip identifier, ands is a sequence of spatio–temporal region identifiers. Since spatio–

temporal region identifiers contain a temporal component, the sequences can, without

loss of information, be represented as asetof spatio–temporal region identifiers. Con-

forming to the naming convention used in the frequent itemset mining framework, a
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spatio–temporal region identifier will be equivalently referred to as anitem, and a se-

quence of spatio–temporal region identifiers will be equivalently referred to as atrans-

action. Let X be a set of items, called anitemset. A transactiont satisfiesan itemsetX

iff X ⊆ t. Let STX denote the set of transactions that satisfyX. The following defini-

tions are emphasized to point out the differences between the frequent itemset mining

framework and the one established here.

Definition 1 Then–support of an itemsetX in T , denoted asX.supp(n), is defined

as the number of transactions inSTX if the number of distinctoids associated with

the transactions inSTX is greater than or equal ton, and0 otherwise. Then–support

of an item i in T , denoted asi.supp(n), is equal to then–support of the itemset that

contains onlyi.

Definition 2 Thelength of an itemsetX, denoted as|X|, is defined as the number of

items inX.

Definition 3 An itemsetX is n–frequent in T if X.supp(n) ≥ MinSupp, and X

is long if |X| ≥ MinLength, whereMinLength, MinSupp, andn are user–defined

values.

Definition 4 An itemsetX is n–closedif there exists no itemsetY such thatX ⊂ Y

andX.supp(n) = Y.supp(n).

The task of mining LSPs in trajectories can be defined as finding all long,n–closed,

n–frequent itemsets. Itemsets that meet these requirementsare also referred to as LSPs,

or just patterns.

4 Näıve approach to LSP mining

The here presented naı̈ve approach uses the convenience and efficiency of an RDBMS.

For ease of exposure, consider the problem of finding long sub–trajectories in trajecto-

ries. Meeting the unique support requirement of the original task does not substantially

change the complexity of method to be described, but eases the description and analy-

sis of it. Finding pairs of trajectories that have long sub–trajectories can be efficiently



12

solved using 2–way self–joins. Generally,K–way self–joins can be used to find groups

of K trajectories that share parts of their trajectories. Consequently, to discover all long

sub–trajectories, self–joins could be used in an iterativeway, first discovering pairs, then

triples, and so on, finally leading to groups ofK trajectories that have long, sharable

sub–trajectories. A solution based on self–joins has several drawbacks. As the num-

ber of trajectories is increasing, the maximum size of groups of trajectories that have a

long sub–trajectory is expected to increase as well. Naturally, as this maximum group

size is increasing, the number of self–joins that need to be performed is increasing as

well. Although the sizes of the intermediate result sets of the consecutive joins that

compose theK–way self–join are non–increasing with every join operation, and hence

the required time to compute these joins is also non–increasing, the describedK–way

self–join method is inefficient. In fact its worst case running time is exponential inK,

which is illustrated in the following. Consider a set ofK trajectories that have a long

sharable sub-trajectory in them. The iterativeK–way self–join method in the first iter-

ation, discovers all pairs of theseK trajectories. Then in the next step, it discovers all

groups of3 of these trajectories, alternatively leading to the discovery of 2K subsets

of theseK trajectories. This is clearly inefficient from a computational point of view

not to mention the complexity it introduces in the discovered results. Since the ultimate

goal of an intelligent rideshare application is the optimalcoordination of possible ride-

share opportunities of a set of commuters, the exponentially large number of discovered

patterns is clearly a disadvantage from the user’s point of view.

5 Projection–based LSP mining

Now let us turn to the description of the proposed method for mining LSPs in trajecto-

ries. This description is based on a number of observations,each of which is associated

with a particular step in the method. These observations arealso stated as lemmas, and

their corresponding proofs show the correctness and completeness of the method. To

demonstrate the simplicity of the implementation in a RDBMS, for each step a simple

SQL–statement is given. The effect of each step is also illustrated on the previously

introduced sample trajectory database assumingMinLength = 4, MinSupp = 2, and

n = 2.
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STEP 1: Filtering infrequent items

Items, i.e., spatio–temporal regions that are not frequentin T cannot be part of a

LSP. Hence as first step of the method,T is filtered such that it contains items with

n–support larger than or equal toMinSupp.

Lemma 1 An itemi with i.supp(n) < MinSupp cannot appear in a LSPp.

Proof. The proof trivially follows from the minimum requirement ofthen–support of

a patternp. If i appears in a patternp, then the set of transactions satisfyingp must be

a subset of the transactions satisfyingi. Consequently,p.supp(n) ≤ i.supp(n). For p

to be a patternp.supp(n) ≥ MinSupp. This is a clear contradiction, hencei cannot

appear in a pattern. ⊓⊔

The first step can be formulated in two SQL statements. The first statement finds

items that meet the unique support criterion. The second statement constructs a filtered

view of T , calledTFV, in which transactions only contain the items found by the previ-

ous statement.

INSERT INTO F (item, icnt) SELECT item, count(*) icnt FROM T

GROUP BY item HAVING COUNT(DISTINCT oid)>= n AND COUNT(*) >= MinSupp

CREATE VIEW TFV AS SELECT T.oid, T.tid, T.item FROM T, F WHERE T.item =F.item

The effects of the first step are illustrated in Figure 4. Spatio–temporal regions, which are

part of trajectories that belong to less than2 distinct objects, are removed from trajectories. From
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the point of view of an intelligent rideshare application these spatio–temporal regions are uninter-

esting, since these parts of the trajectories cannot be shared by any objects, i.e., are not sharable.

STEP 2: Filtering of short transactions

Transactions, i.e., trip trajectories, having less thanMinLength frequent items cannot satisfy

a LSP. Hence, the second step of the method further filtersTFV and constructsTF that only

contain transactions that have at leastMinLength number of items.

Lemma 2 A transactiont with |t| < MinLength cannot satisfy a LSPp.

Proof. The proof trivially follows from the definition of a LSP and the definition of a transaction

satisfying a pattern.p is a LSP ⇐⇒ p.supp(n) ≥ MinSupp and |p| ≥ MinLength. For t

to satisfyp, by definition all the items inp has to be present int. Since|t| < MinLength and

|p| ≥ MinLength, there must exist at least one item inp that is not int. Hence,t cannot satisfy

p. ⊓⊔

The second step can be formulated in one SQL statement. The sub–selectis used to find trip

identifiers that have at leastMinLength number of items. The outer part of the statement selects

all records belonging to these trip identifiers and inserts them intoTF.

INSERT INTO TF (tid, oid, item) SELECT tid, oid, item FROM TFV WHERE tid IN

(SELECT tid FROM TFV GROUP BY tid HAVING COUNT(item)>= MinLength)

The effects of the second step are illustrated in Figure 5 . In particular, theremaining sharable

parts of trips belonging to objects3 and5 are deleted, because the length of them is not greater

than or equal toMinLength, which is4 in the example. Also, note that although in this case

items HB8:15 and IB8:20 did not become infrequent inTF, they lostn–support.
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Before stating further observations and continuing with the development of the proposed

method it is important to note the following. The set of discoverable LSPs from T is equivalent

to the set of discoverable LSPs fromTF. This is ensured by first two observations. Since further

steps of the proposed method will discover LSPs fromTF, these two observation ensure the

correctness of the method so far. However, it is also important to note that not all transactions

in TF necessarily satisfy a LSP. This is due to the sequentiality of the first two steps. After the

first step all the remaining items in transactions are frequent items. Then,in the second step,

some of these transactions, which are not long, are deleted. Due to this deletion a frequent item

in the remaining long transactions may become non–frequent, which in turnmay cause some

transactions to become short again. While there is no simple solution to breakthis circle, note

that the correctness of the first and second steps are not violated sincethe deleted items and

transactions could not have satisfied a LSP.

STEP 3: Item–conditional DB projection

For the following discussion, adopted from [14], let an item–conditional database of transac-

tions, equivalently referred to as an item–projected database, be defined as:

Definition 5 LetT be a database of transactions, andi an item inT . Then, the item–conditional

database of transactions, is denoted asT|i and contains all the items from the transactions con-

taining i.

The construction of an item–conditional database of transactions can be formulated in a sin-

gle SQL statement as:

INSERT INTO T i (oid, tid, item) SELECT t1.oid, t1.tid, t1.item FROM TF t1, TF t2

WHERE t1.tid = t2.tid and t2.item = i

Givenn frequent items inT , the problem of finding CFIs can be divided inton subproblems

of finding the CFIs in each of then item–projected databases [14]. Using the divide–and–conquer

paradigm, each of thesen subproblems can be solved by recursively mining the item-projected

databases as necessary.

STEP 4: Discovery of the single most frequent closed itemset

Sincei is in every transaction of the item–projected databaseT|i, and hence has maximum

n–support, the items inT|i can be grouped in two: items that have the samen–support asi, and

items that haven–support less than that ofi. The set of items that have the samen–support in
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Fig. 6. Item–conditional sample DBTF |FC8:05 and pattern discovery

theT|i asi is the Single Most Frequent Closed Itemset (SMFCI) inT|i. The fourth step of the

method discovers this SMFCI.

Lemma 3 Let i be an item andTF |i its corresponding item–projected database. LetA be the

set of items that have the samen–support inTF |i asi. ThenA is the SMFCI inTF |i.

Proof. Complementary toA, letB be a set of items that haven–support less thani in TF |i. ForA

to be closed there should not exist an itemsetX such thatA ⊂ X andA.supp(n) = X.supp(n).

This implies that there should not exist an extra itemie that is present in all transactions in which

i is present. These transactions are exactly the set of transactions that make upTF |i. The only

remaining items that are not inA and are present inTF |i are items inB. Since items inB have

n–support less than the items inA they could not be added toA to form an itemsetX such that

A.supp(n) = X.supp(n). HenceA is a closed itemset. ThatA is the SMFCI trivially follows

from the fact that the number of transaction inTF |i is A.supp(n). ⊓⊔

The fourth step can be formulated in two SQL statements. The first statement derives the

n–support ofn–frequent of items inTF |i,while the second statement selects those items from

thesen–frequent items that have maximumn–support.

INSERT INTO FT i (item, i cnt) SELECT item, COUNT(*) icnt

FROM T i GROUP BY item HAVING COUNT(DISTINCT oid)>= n

SELECT item FROM FTi WHERE i cnt = (SELECT MAX(i cnt) FROM FTi)

Figure 6 shows the effects of projectingTF based on the item FC8:05. The numbers in paren-

theses show then–support of the items inTF |FC8:05 andTF respectively. The SMFCI that is im-

mediately discovered fromTF |FC8:05 is {FC8:05, GB8:10, HB8:15, IB8:20, JB8:25, KB8:30}.
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LA8:35 is the only item that is inTF |FC8:05, but is not in the discovered SMFCI. Since further

projectingTF |FC8:05 on LA8:35 yields a database of transactions where no item meets the mini-

mumn–support criterion, the discovered SMFCI is the only CFI present inTF |FC8:05. Since the

discovered SMFCI meets both the minimum length and an minimumn–support criteria it is a

pattern.

Lemma 4 Given an item–projected databaseTF |i and a partitioning of items in it into a set of

most frequent itemsA, and a complementary set of itemsB, the recursive application of item–

projection based on items inB followed by the discovery of the most frequent closed itemsets in

the respective projected databases finds all CFIs in the item–projected databaseTF |i.

Proof. Given any CFIX with X.supp(n) < A.supp(n) in TF |i, we know thatX contains at

least1 item b ∈ B. If not, thenX contains only items inA, henceX.supp(n) ≥ A.supp(n),

which is a clear contradiction. Then by Lemma 3,X will be found as the SMFCI inTF |i|b, since

TF |i|b contains all, and only those transaction fromTF |i that satisfyb. ⊓⊔

STEP 5: Deletion of unnecessary items

The subproblems that are recursively solved by the method presentedso far are overlapping.

That is to say, viewed from a top level, a CFI that hasn items is at least once discovered in

each of then corresponding item–projected databases. To eliminate this redundancy,both in the

mining process and the result set, observe that an itemj can be deleted fromTF if it has the same

n–support inTF |i as inTF. The intuition behind the observation is the following. Ifj has the

samen–support inTF |i as inTF, it implies that all the transactions inTF that satisfyj are also

present inTF |i. Thus, the set of patterns containingj, which can be discovered fromTF, can

also be discovered fromTF |i.

Lemma 5 After the construction ofTF |i, an itemj can and must be deleted fromTF if it has

the samen–support inTF |i as inTF.

Proof. If j has the samen–support inTF as inTF |i, then the set of transactions that satisfyj

in TF is exactly the same set of transactions that satisfyj in TF |i. Since Lemma 4 guarantees

that all closed frequent itmesets will be found inTF |i, including those thatj participates in, it

is needless and incorrect to construct and mineTF |j at a later point to find same CFIs thatj

participates in again. Hence,j can and must be deleted fromTF . ⊓⊔

The fifth step can be formulated in one SQL statement. The statement deletesall items inTF

that have the samen–support inTF as inTF |i.
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Fig. 7.The sample DB after STEP 5

DELETE FROM TF WHERE TF.item IN

(SELECT F.item FROM F, FTi WHERE F.item = FTi.item AND F.i cnt = FT i.i cnt)

Figure 7 shows the effects of deleting the unnecessary items after the mining of TF |FC8:05.

Since items FC:8:05 and IB8:20 have the samen–support inTF |FC8:05as inTF, shown in Figure

6, they are deleted fromTF. Items remaining inTF are shown in Figure 7.

Item-projection ordered by increasingn–Support

A LSP p in T , containing itemsi1 . . . ik, can be discovered from any one of the item–

projected databasesT|i1 , . . . , T|ik
. Steps 4 and 5 of the proposed method assure thatp will be

discovered from exactly one of these item–projected databases, but themethod presented so far

does not specify which one. While this point is irrelevant from the point ofview of correctness,

it is crucial from the point of view of effectiveness.

To illustrate this, assume thati1.supp(n) < i2.supp(n) < . . . < ik.supp(n). If projections

are performed in decreasing order of itemn–support, then, firstT|ik
is constructed, thenT|ik|ik−1

is constructed from it, and so on, all the way toT|ik|ik−1|...|i1 , from which finallyp is discovered.

If on the other hand, projections are performed in increasing order ofitem n–support, thenp is

discovered from the first item–projected database that is constructed, namelyT|i1 .

Assume thatp and its qualifying(k − l + 1) (at leastl–long) sub–patterns are the only LSPs

in T . Then during the whole mining process, the total number of projections in the decreasing

processing order isPdec = k, whereas in the increasing processing order the total number of

projections is onlyPinc = k − l + 1. If k andl are comparable and large, thenPdec ≫ Pinc .

Similar statements can be made about the total size of the projected databases in both cases.

Hence, item–projection should be performed in increasing order of itemn-support.
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Fig. 8. Item–conditional DBTF |LA8:35 and pattern discovery

Alternating pattern discovery and deletion

Alternating steps 3, 4 and 5, all patterns can be discovered in a recursive fashion. The sequen-

tial application of these steps is referred to as aPattern Discovery and Deletion phase(PDD).

Mining terminates when all items have been deleted fromTF.

Figures 6 and 7 shows the effects of the first of these PDD phases. Figures 8 and 9 show the

effect of the next pattern PDD phase. Since after the first PDD phase LA8:35 has the lowestn–

support inTF, namely 8, it is chosen as the next item to base the database projection on. Figure 8

showTF |LA8:35 with the correspondingn–support of the items inTF |FC8:05 andTF respectively.

Since all the items have the samen–support inTF |FC8:05as LA8:35, namely 8, the closed itemset

{GB8:10, HB8:15, JB8:25, KB8:30, LA8:35} is discovered. Since this closed itemset both meets

the minimum length andn–support requirements it is recorded as a pattern. In the deletion part of

this PDD phase, item LA8:35 is deleted fromTF as the only item that have the samen–support

in TF |LA8:35 as inTF. The results of this deletion are shown on Figure 9.
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Fig. 9.The sample DB after the second PDD phase
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The third and final PDD phase is implicitly shown in Figure 9. Since after the second PDD

phase all the items inTF have the samen–support, the next projection is performed on any one

of the items,i, and the resulting item–projected database,TF |i, is identical to the current state

of TF, depicted on Figure 9. Since all the items inTF |i have the samen–support asi, the closed

itemset{GB8:10, HB8:15, JB8:25, KB8:30} is discovered. Since this closed itemset meets both

the minimum length andn–support requirements, it is recorded as a pattern. Finally, items having

the samen–support inTF |i as inTF, which in this case means all the items inTF |i, are deleted

from TF. After this deletion part of the final PDD phase,TF becomes empty and the mining

terminates. Figure 10 shows the three patterns that are discovered during the mining. Supporting

oids,n–supports, and length for each discovered patterns are shown in the legend.

LSP mining algorithm

Using the observations and the associated steps, the complete algorithm formining LSPs in

trajectories is given in Figure 11. Since item–projected databases are constructed at every level

of the recursion and are modified across levels when deleting unnecessary items, the level of

recursionL is passed as an argument in the recursive procedure, and is used asa superscript to

associate databases to the levels they were constructed in.

Lines 2 and 3 in the MineLSP procedure represent steps 1 and 2 of the method, and they

construct the filtered database of transactions at the initial level, level0. Line 4 processes frequent

items inTF 0 in ascending order ofn–support. Line 5 represent step 3 of the method, and for

each such frequent itemi, it constructs the item–conditional database of transactionsTF 0

|i at

level0. Line 6 calls procedure FindLSP to extract all LSPs fromTF 0

|i recursively.

Lines 2 and 3 in the FindLSP procedure represent steps 1 and 2 of the method, and they

construct the filtered database of transactions at the current levelL. Line 4 represents step 4 of

the method, and it finds the SMFCIP in TFL
long . Line 5 represents step 5 of the method, and
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(1) procedureMineLSP (T , MinSupp, MinLength, n)

(2) TF 0

freq ← MinSupportFilter (T , MinSupp, n)

(3) TF 0

long ← MinLengthFilter (TF 0

freq , MinLength)

(4) for each freq itemi in TF 0

long ordered by ascn–supp

(5) TF 0

|i ← ConstructConditionalDB (TF 0

long , i)

(6) FindLSP (TF 0

|i, 1, MinSupp, MinLength, n)

(7) end for each

(1) procedure FindLSP (T ,L,MinSupp,MinLength,n)

(2) TFL
freq ← MinSupportFilter (T , MinSupp, n)

(3) TFL
long ← MinLengthFilter (TFL

freq , MinLength)

(4) (P ,P .supp(n)) ← FindSMFCI (TFL
long )

(5) TFL−1

long ← DeleteUnnecessaryItems (TFL−1

long , TFL
freq )

(6) if P .supp(n) ≥ MinSupp and |P | ≥ MinLength

(7) StorePattern (P , P .supp(n))

(8) for each freq itemi in TFL
long ordered by ascn–supp

(9) if i is not inP

(10) TFL
|i ← ConstructConditionalDB (TFL

long , i)

(11) FindLSP (TFL
|i, L + 1, MinSupp, MinLength, n)

(12) end for each

Fig. 11.The LSP algorithm

it deletes all items from the filtered database of transactions of the previouslevel,TFL−1

long , that

have the samen-support inTFL−1

long as inTFL
freq , the current level. Lines 6 and 7 check if the

single most frequent closed itemsetP meets the minimum requirements and store it accordingly.

Lines 8 and 9 processes frequent items inTFL
long , which are not inP , in ascending order ofn–

support. Line 10 represent step 3 of the method, and for each such frequent itemi it constructs the

item–conditional database of transactionsTFL
|i at the current levelL. Finally, line 11 recursively

calls procedure FindLSP to find LSPs inTFL
|i at the next level.

The structure and functionality of procedures MineLSP and FindLSP have a significant over-

lap. While the two functions can be merged into one, the separation of the two isused to empha-

size the facts that (1) DeleteUnnecessaryItems presumes the existenceof databases constructed
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at the previous level, and (2) FindSMFCI correctly operates only on an item–projected database,

and hence it can only be applied at level 1 and above.

Several implementation details are worth mentioning. First, DeleteUnnecessaryItems deletes

items fromTFL−1

long based on then–support of items inTFL
freq , notTFL

long . This is important, as

it was noted that MinLengthFilter decreases then–support of items inTFL
freq , thereby possibly

making an unnecessary item appear to be necessary. Second, arguments to functions and operands

in statements are logical, i.e., the functions and statements can be more efficiently implemented

using previously derived tables. For example, both FindSMFCI and DeleteUnnecessaryItems are

implemented using previously derivedn–support count tables not the actual trajectory tables.

Third, simple shortcuts can significantly improve the efficiency of the method. For example,

during the derivation ofTFL
freq , if the number of unique frequent items inTFL

freq is less than

MinLength, no further processing is required at that level, since none of the CFIsthat can be

derived fromTFL
freq are long. To preserve clarity, these simple shortcuts are omitted from Figure

11.

6 Alternative modelling of trajectories and mining of LSPs

The region–based and the road network based spatio–temporal generalization approaches, pre-

sented in Section 3, model trajectories at a local (micro) level. Consequently, the method pre-

sented in Section 5 analyzes the trajectories at the local level and deriveslocal (micro) patterns.

Alternatively, trajectories can also be modelled at the global (macro) level, whereby trips in tra-

jectories are represented as origin–destination pairs. Global (macro) modelling and analysis of

trajectories is a domain of considerable interest in transportation and urban analysis [9]. For ex-

ample, recently a Cab–Sharing Service was proposed as an effective, door–to–door, on–demand

transportation service [7]. One component of the proposed Cab–Sharing System is a Cab–Routing

/ Scheduling Engine. The task of this engine is to route idle cabs and assign cabs to requests or

groups of requests, so called cab–shares, such that the demand forcabs is optimally served both

in terms of the transportation cost of idle cabs and the service time of requests. To enable this

optimization, as future work, the use of spatio–temporal patterns in cab requests for cab request

demand prediction is proposed. Since cab requests are naturally represented as origin–destination

pairs, the usefulness of macro analysis is apparent.

Hence, in the following two alternative options for modelling trajectories and mining of LSPs

are described. Section 6.1 describes a simple method with an SQL implementation for mining
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LSPs in trajectories modelled at the global (macro) level. Section 6.2, using some intuitive as-

sumptions, combines the macro and micro modelling options and LSP mining methods to derive

a hybrid version.

6.1 Macro modelling of trajectories and mining of LSPs

As briefly described above, when modelling trajectories at the global (macro) level, trips in tra-

jectories are represented as origin–destination pairs. The preprocessing of raw trajectories can

be achieved using the same three transformation steps as described in Section 3. This includes

the possibility of using either the region–based or the road network based spatio–temporal gen-

eralization approaches as is required from the application at hand. In theso obtained transaction

database, a trajectory belonging to a particular object has exactly two items.

Mining global (macro) LSPs in the so obtained trajectory database can be achieved using a

single SQL statement as follows.

SELECT oitem, d item, SUM(supp) AS nsupp FROM

( SELECT oid, oitem, d item, COUNT(*) AS supp FROM T

WHERE dist(oitem, d item)>= MinDist

GROUP BY oid, oitem, d item ) a

GROUP BY oitem, d item

HAVING COUNT(*) >= n AND SUM(supp)>= MinSupp

The statement, without loss of generality, assumes that the trajectory databaseT has the schema

〈oid, tid, o item, d item〉, where in addition to the previously used notation, oitem and ditem

are generalized spatio–temporal regions, or identifiers of the origin anddestination of the tra-

jectory, respectively. Since all the trajectories in the databaseT have exactly two items, it does

not make sense to talk about the length of a trajectory in terms of number ofitems in contains.

Instead, a distance functiondist() between two locations or items can be defined, and patterns

can be evaluated against aMinDist criterion. The inner select statement calculates the supports

for object–specific origin–destination item combinations that satisfy theMinDist criterion. The

outer select statement aggregates the results of the inner select statement, and identifies origin–

destination item combinations that meet then–support criterion, i.e., global (macro) LSPs, and

calculates their correspondingn–supports.
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6.2 Hybrid modelling of trajectories and mining of LSPs

The proposed global (macro) modelling approach of trajectories, the global (macro) LSP mining

method and the SQL implementation given for it are likely to be very efficientdue to the indexing

and aggregation support provided by RDBMSs. However, the discovered global (macro) LSPs,

will have very little relation to each other. For example, a set of individual global (macro) LSPs,

considering the underlying road network, might give rise to local (micro) LSPs that do not exist

in the macro model, but have a support that is equal to the sum of then-supports of the individual

patterns. As an illustrative example consider the road network represented by the solid black
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Fig. 12.Process / outcome of map matching

lines in Figure 12. Assume that for a par-

ticular setting of the parameters, the global

(macro) LSP mining method finds two

global (macro) LSPs,{FA8:00, LA8:30} and

{FC8:00, LC8:30}, with n–supports 10 for

each. Assuming that the spatial regions FA,

LA, FC, and LC cover the only four cities

in the area, and hence trajectories only start

and finish in these regions, the global (macro)

LSP mining method will not discover the local (micro) LSP{GB8:05, HB8:10, IB8:15, JB8:20,

KB8:25} with n–support 20.

To overcome this deficiency of the global (macro) LSP mining method, theglobal (macro)

and the local (micro) modelling approaches and LSP mining methods can be combined into a hy-

brid modelling and LSP mining method as follows. First, perform global (macro) LSP mining on

the spatio–temporally generalized input trajectories. Then, using the global (macro) LSPs and the

underlying road network,approximatetrajectories for the global (macro) LSPs, i.e., find shortest

paths between origin–destination pairs. Then, spatio–temporally generalize the approximated tra-

jectories and mine local (micro) LSPs in them, taking into account the global(macro)n–supports

of the approximated trajectories. Taking into accountn–supports of the approximated trajectories

can either be achieved by slightly modifying the local (micro) LSP mining method in Section 5,

or simply the original version of it can be called with parametersn = 1 andMinSupp = 1.

The latter is necessary and sufficient to ensure that (1) the approximated trajectories belonging to

the global (macro) LSPs are found as local (micro) LSPs as well, and (2) the local (micro) LSPs

found meet the originaln–support criterion. Note that the spatio–temporal generalization of the
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(1) procedureHybridMineLSP (Traj I , MinDist , MinSupp, MinLength, n)

(2) TrajG ← STGeneralize (Traj I )

(3) LSPmacro ← MacroMineLSP (TrajG, MinDist , MinSupp, n)

(4) TrajA ← ApproximateTraj (LSPmacro)

(5) TrajGA ← STGeneralize (TrajA)

(6) LSPmicro ← MineLSP (TrajGA, MinLength, MinSupp = 1, n = 1)

Fig. 13.The hybrid LSP mining method

input and approximated trajectories can either be regions–based or road network based. Figure 13

gives the pseudo code of the hybrid LSP mining method, as described above.

While the hybrid LSP mining method is likely to reduce the number of input trajectories to

the local (micro) LSP mining method called internally, thereby achieving a significant speed–up

in running time, it does not findall the local (micro) LSPs. As an example consider the trajectories

in Figure 12. IfMinSupp = 20, then the hybrid LSP mining method will not find any patterns

in the global (macro) LSP mining phase, and consequently will not find any local (micro) LSPs,

even though the local (micro) LSP{GB8:05, HB8:10, IB8:15, JB8:20, KB8:25} has ann–support

of 20. Similarly, it can be argued that the hybrid LSP mining method will not find any LSPs in

the example trajectory database in Section 3.2, for the parameters used inthe running example

in Section 5. However, as the spatio–temporal generalization granularity used in the mining is

decreased the chances not identifying global (macro) LSPs that giverise to local (micro) LSPs

is decreased. In summary, the hybrid LSP mining method is likely an effective alternative that

provides lossy and approximate results when compared to the local (micro) LSP mining method.

7 Experimental evaluation

The proposed LSP mining methods were implemented using MS-SQL Server 2000 running on

Windows XP on a 3.6GHz Pentium 4 processor with 2GB main memory. Three groups of ex-

periments were performed to test: (1) the parameter sensitivity of the local (micro) LSP mining

method, (2) the scale–up properties of the local (micro) LSP mining method, and (3) the effec-

tiveness of the global (macro) modelling and LSP mining method with respect to its parameters.

The three groups of experiments were performed on the following threedata sets respectively: (1)

the publicly available INFATI data set [12], which comes from intelligent speed adaptation exper-

iments conducted at Aalborg University, (2) the synthetic ST–ACTS trajectory data set, and (3)

the ST–ACTS origin–destination data set, both of which were derived fromST–ACTS, a proba-
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bilistic, parameterizable, realistic Spatio–Temporal ACTivity Simulator [6].Sections 7.1, 7.2 and

7.3 describe these data sets in detail, while Sections 7.4, 7.5 and 7.6 present the results of the

respective groups of experiments. Finally, Section 7.7 visualizes someof the mining results.

7.1 The INFATI data set

The INFATI data set records cars moving around in the road network of Aalborg, Denmark over a

period of several months. 20 distinct test cars and families participated inthe INFATI experiment;

Team–1 consisting of 11 cars operated between December 2000 and January 2001 and Team–2

consisting of 9 cars operated between February and March 2001. Each car was equipped with

a GPS receiver, from which GPS positions were sampled every secondwhenever the car was

operated. Additional information about the experiment can be found in [12].

The method presented in Section 3.1 identifies trips from continuous GPS measurements,

which is not the case in the INFATI data. Hence in this case, a trip was defined as sequence of

GPS readings where the time difference between two consecutive readings is less than 5 minutes.

Using the definition, the INFATI data contains 3,699 trips. After projecting the temporal dimen-

sion to the time–of–day domain and substituting the noisy GPS readings with 100meter by 100

meter by 5 minutes spatio-temporal regions, the resulting trajectory database has the following

characteristics. There are 200,929 unique items in the 3,699 transactions. The average number

of items in a transaction is approximately 102. The averagen–support of 1–, 2–, and 3–frequent

items is 1.88, 4.2 and 6.4 respectively. Notice that the averages only include then–supports of

1–, 2–, and 3–frequent items.

7.2 The ST–ACTS trajectory data set

The ST–ACTS trajectory data set is based on the output of ST–ACTS, a probabilistic, parame-

terizable, realistic Spatio–Temporal ACTivity Simulator [6]. Based on a number of real world

data sources and a set of principles that try to model thesocialand some of thephysicalaspects

of mobility, ST–ACTS simulates realistic spatio–temporal activity sequencesof approximately

600,000 individuals in the city of Copenhagen, Denmark. Since the aim ofST–ACTS is to simu-

late realistic spatio–temporal activities of individuals that contain patterns, rather than to simulate

detailed movements of individuals, the output of the ST–ACTS for each simulated individual is a

sequence of timestamped locations and activities. Two consecutive locations in such a sequence

can be seen as the origin and the destination of a trip’s trajectory. To obtain arealistic approxima-

tion for the missing part of the trajectories, using the underlying road network, a segment–based

shortest path calculation was performed between the origin–destination pairs of the trips. The
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Fig. 14.Data characteristics of varying sized subsets of the ST–ACTS trajectory data set

so obtained trip trajectories are analogous in form and semantics to the trajectories that can be

obtained using the road network based spatio–temporal generalization approach as explained in

Section 3.1.

For the period of three working days, spatio–temporal activities of 5,000 individuals were

simulated, resulting in a total of 64,144 trips. Using segment–based routingbetween origin–

destination pairs, an average trip is 1,850 meters long with a standard deviation of 1,937 meters,

and is made up of 28 road segments with a standard deviation of 27 road segments. An aver-

age road segment is 66 meters long with a standard deviation of 64 meters.After projecting the

temporal dimension to the time–of–day domain and using the road segmentsas spatial–, and

a 15–minute interval as temporal, generalization units, the resulting trajectory database has the

following characteristics. There are 330,940 unique items in the 64,144 transactions. The aver-

age number of items in a transactions is approximately 28. To test the scale–up properties of the

proposed method, varying sized subsets of the ST–ACTS trajectory dataset were constructed.

Figure 14 summarizes the characteristics of these subsets in terms of the number (Figure 14(a))

andn–support (Figure 14(b)) ofn–frequent items. While not shown in Figure 14, the number

of trajectories linearly scales with the number of objects in the data sets between 6,601 trajecto-

ries for 500 objects and 64,144 trajectories for 5,000 objects. Similar linear relationships exists

between the number of number of objects and the averagen–support ofn–frequent items, Fig-

ure 14(b). The logarithmic like relationships between the number of objectsand the number of

n–frequent items is due to the fact that the increasing number of trajectories traverse, and make

n–frequent, an increasing fraction of road segments of the total road network, see Figure 14(a). In

other words, the number ofn–frequent items naturally saturates as the density of the trajectories

increases.
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Fig. 15.Performance evaluation for variousMinLength settings

7.3 The ST–ACTS origin–destination data set

The ST–ACTS origin–destination data set, similarly to the ST–ACTS trajectory data set, is also

based on the output of ST–ACTS. However, it includes the spatio–temporal activities of 50,000

individuals for a period of three working days, resulting in a total of 835,806 trips. The aver-

age Euclidean distance between the origins and destinations of the trips is 1,199 meters with a

standard deviation of 1.555 meters. After projecting the temporal dimension to the time–of–day

domain and substituting the origins and destinations of trips with 100 meter by 100 meter by

15–minute spatio-temporal regions, the resulting trajectory database hasthe following character-

istics. There are 139,480 unique items in the 1,671,612 transactions. The number of items in every

transactions is exactly 2, which correspond to an origin and a destination spatio–temporal region.

The averagen–support (and count) of 1–, 2–, 3–, and 4–frequent items is 1.12 (1,497,871), 2.14

(152,255), 3.24 (17,267), and 4.09 (3854) respectively. Noticethat the averages only include the

n–supports of 1–, 2–, 3–, and 4–frequent items.

7.4 Sensitivity experiments forMinSupp and MinLength parameters

The first group of experiments was performed to test the sensitivity of local (micro) LSP mining

method with respect to theMinSupp andMinLength parameters, and was using the INFATI data

set as input. Two sets of experiments were performed, each varying one of the two parameters

of the algorithm,MinSupp andMinLength. The performance of the algorithm was measured in

terms of processing time and working space required, where the working space required by the al-

gorithm was approximated by the sum of the rows in the projected tables that were constructed by

the algorithm. Both measures were evaluated in an absolute and a relative,per pattern, sense. Fig-

ures 15(a), 15(b), and 15(c) show the results of the first set of experiments, whereMinSupp = 2,

n = 2 andMinLength is varied between 120 and 530. Lower settings forMinLength were also

tested, but due to the very lowMinSupp value these measurement were terminated after exceed-

ing the 2 hour processing time limit. Noting the logarithmic scale in Figure 15(a) itis evident that
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Fig. 16.Performance evaluation for variousMinSupp settings

both the running time and the working space required by the algorithm exponentially increase as

theMinLength parameter is decreased. Examining the same quantities in a relative, per pattern

sense, Figure 15(c) reveals that the average running time and average working space required

per pattern is approximatelylinearly decreasingas theMinLength parameter is decreased. The

presence of the two irregular bumps in Figure 15(c) can be explained in relation to the number of

patterns found, and the number of ineffective projections that yield no patterns, shown in Figure

15(b). The sharp increases in relative processing time and working space are due to the fact that

the algorithm is unable to take some of the shortcuts and it performs relatively more ineffective

projections yielding no pattern discovery. The sharp decreases can beexplained by the presence

of an increasing number of patterns that share the total pattern discovery cost.

Similar observations can be made about the second set of experiments,shown in Figures

16(a), 16(b), and 16(c), whereMinLength = 50, n = 2 andMinSupp is varied between 7 and

33. For example, the sharp decrease in relative processing time in Figure 16(c) when going from

MinSupp = 33 to MinSupp = 32 is simply due to the sudden appearance of patterns in the

data for the given parameters. While there is only 1 pattern forMinSupp = 33, and an order of

magnitude more number of patterns forMinSupp = 32, the projections performed and hence

the absolute processing time to discover these patterns is approximately the same in both cases.

Hence, the relative processing time forMinSupp = 33 is an order of magnitude larger than that

for MinSupp = 32.

7.5 Scale–up experiments for various input data sizes

The second group of experiments was performed to test the scale–up properties of the local

(micro) LSP mining method for varying size input data, and was performed using the ST-ACTS

trajectory data set. For this group of experiments the algorithm’s parameters were kept constant at

n = 4, MinSupp = 8 andMinLength = 25. In other words, the patterns sought for were sub–
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Fig. 17.Performance evaluation for various sized data sets, i.e., number of objects

trajectories with a minimum length of 25 road segments that were supported by at least 4 objects

on average at least two times per object. The evaluation measures used inthe experiments were

the same as in the sensitivity experiments described in Section 7.4. Figure 17 shows the results of

this group of experiments. The results can be summarized as follows. Asthe number of objects

increases linearly, i.e. the density of the trajectories increases linearly, the number of patterns

increases sub–exponentially, see Figure 17(b). This naturally leads to asub–exponential increase

in absolute running time (Figure 17(a) left) and working space (Figure 17(a) right). However,

the examination of the same quantities in a relative, per pattern sense, see Figure 17(c), reveals

that the average running time required per pattern gradually decreasesto a close to constant

value of a few seconds as the density of the trajectories increases. This isdue to the fact that

as the density of the trajectories is increasing, the number of ineffective projections relative to

the number of patterns, i.e., the gap between the two, is decreasing, seeFigure 17(c). Similar

observations can be made about the average working space requiredper pattern. In summary, the

scale–up experiments show that both the running time of, and working space required by the local

(macro) LSP mining method scale sub–exponentially with the input data size and linearly with

the output data size.

7.6 Global (macro) modelling and LSP mining experiments

The third groups of experiments was performed to test the effectiveness of the global (macro)

modelling and LSP mining method, as presented in Section 6.1. The experiments were performed

for varying spatio–temporal generalization granularities for varyingn, MinSupp andMinDist

parameters, and were using the ST–ACTS origin–destination data set. Figure 18 shows the results

of this group of experiments. The trends in the results are as expected. As the values for the

parametersn, MinSupp andMinDist increases the number of global (macro) LSPs decreases,

shown in Figures 18(a), 18(b), and 18(c), respectively. Similarly, all experiments show that as the
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Fig. 18.Number of global (macro) LSPs for varying spatio–temporal granularities and parameter

settings

spatio–temporal regions become coarser the number of patterns found increases. Perhaps more

notable is the fact that for the rather large data set, with appropriate indexing the running time of

the global (macro) LSP mining method is independent of the parameters and is under 2 seconds.

7.7 Visualization of patterns

To see the benefits of mining LSPs, the mining results of two mining tasks are visualized in the

following. Figure 19 presents the mining results of finding local (micro) patterns in the region–

based spatio–temporally generalized INFATI data using the LSP algorithm from Section 5. Figure

19(a) shows a 50–fold down–sampled version of the trajectories of the 20 moving objects in the

INFATI data set. While some regularities are apparent in it to the human eye, to find LSPs in it

seems like a daunting task. Figure 19(b) shows 28 LSPs in it that are at least 200 long, sharable

for at least 2 distinct objects, and have a support of at least 2.
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Fig. 19.LSP discovery results in the INFATI data set
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Fig. 20.LSP discovery results for the ST–ACTS origin–destination data set

Figure 20 presents the mining results of finding local (micro) patterns in theroad network

based spatio–temporally generalized ST-ACTS origin–destination data using the hybrid LSP min-

ing algorithm from Section 6.2. The global (macro) mining of LSPs was performed for parameters

n = 4, MinSupp = 8, andMinDist = 5, 000 meters, and resulted in 109 global (macro) LSPs.

After determining the value for theMinLength parameter at 80, based on the minimum number

of road segments in the approximated trajectories of the global (macro) LSPs, the local (micro)

mining of LSPs resulted in 298 local (micro) LSPs. Figure 20(a) shows the overall supports (fre-

quencies) of the road segments in the data. Figure 20(b) shows the maximum n–supports of the

road segments induced by the collection of the 298 local (micro) LSPs. While, as described in

Section 6.2, the hybrid LSP algorithm is not likely to findall local (micro) LSPs, it does find

a relatively large number of additional local (micro) LSPs in a rather large data set under 144

seconds.

It is important to note that the LSPs contain additional information, which is only partially,

or not presented in Figures 20(b) and 19(b), respectively. In particular, then–supports, distances,

and lengths are available forindividual patterns, and the patterns naturally have a temporal as-

pect to them. With regards to the latter feature of the patterns, since the items ina pattern have a

temporal component, an individual pattern refers to a particular time–of–day. Furthermore, since

the spatio–temporally generalized items in a given pattern form a sequencein time, the patterns

have adirection. While a simple temporal, frequency analysis of road segments can reveal aggre-

gatedinformation about the number of objects on the road segments at a giventime–of–day, such

analysis will not reveal movement patterns (including directions) of similarly moving objects.
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This additional information of the LSPs is likely to be of immense value in transportation and

urban planning, and is necessary for the application at hand, be that intelligent ride–sharing or

cab–sharing.

7.8 Summary of experimental results

In conclusion, the experimental evaluations can be summarized as follows. First, the sensitivity

experiments show that the LSP mining method, presented in Section 5, is effective and is robust

to changes in the user–defined parameter settings,MinLength andMinSupp, and is a useful

analysis tool for finding LSPs in moving object trajectories. Second, the scale–up experiments

show that while the absolute running time and space required to find LSPs scales exponentially

with the input data size, this is mainly due to the fact that the number of LSPs that are present

in the input data, i.e., the output data size, also scales exponentially with the input data size. The

scale–up experiments also demonstrate that the relative, per pattern, performance of the LSP min-

ing method gradually decreases to a constant value as the input data size isincreased. This later

property of the LSP method is due to the fact that as the input size is increased, i.e., the density of

the trajectories is increased, the effects of theMinLength andMinSupp pruning criteria become

more dominant and relatively less and less ineffective projections are performed. Third, the ex-

periments relating to global (macro) modelling and LSP mining, show that thismodelling option

and LSP mining method is extremely effective on large data sets, and is rather insensitive to the

user–defined parameter settings,n, MinDist andMinSupp. Finally, brief experiments show that

the hybrid modelling and LSP mining method, while missing some local (micro)LSPs due to the

partial global (macro) modelling, is able to find local (micro) LSPs in largedata sets effectively.

8 Conclusions and future work

The herein presented work, for the first time, considers the problem ofmining LSPs in trajectories

and transforms it to a framework similar to that used in frequent itemset mining. The transforma-

tion allows both region–based and road network based spatio–temporal generalizations of trajec-

tories. Two methods and their simple SQL–implementations are presented for mining either local

(micro) or global (macro) LSPs in such spatio–temporally generalized trajectories. In an attempt

to speed up the local (micro) LSP mining method, the two methods are combined to a hybrid LSP

mining method, which is able to rapidly find most of the local (micro) LSPs. The effectiveness of
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the different LSP methods is demonstrated through extensive experiments on both a real world

data set, and a number of large–scale, synthetic data sets.

Future work is planed along several directions. First, as discussed, thehybrid LSP method,

while is able to achieve significant speed-up compared to the local (micro)LSP mining method,

it does not find all the local (micro) LSPs in the trajectories. Hence futurework will consider to

quantify (1) the speed–up of the hybrid LSP method, and (2) the fractionof the local (micro) LSPs

found by the hybrid LSP method. Second, the large number of patterns discovered are difficult to

analyze. To reduce this number, future work will consider the mining of acompressed patterns

in trajectories [20]. Finally, future work will consider the partitioning of trajectories using index

structures designed for trajectories, like in [11], to allow the distributed / parallel mining of LSPs.
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