
Mining Long, Sharable Patterns in Trajectories of

Moving Objects

Gyozo Gidófalvi / Torben Bach Pedersen

Geomatic aps / Aalborg University
gyg@geomatic.dk / tbp@cs.aau.dk

Abstract

The efficient analysis of spatio–temporal data,
generated by moving objects, is an es-
sential requirement for intelligent location–
based services. Spatio-temporal rules can be
found by constructing spatio–temporal bas-
kets, from which traditional association rule
mining methods can discover spatio–temporal
rules. When the items in the baskets are
spatio–temporal identifiers and are derived
from trajectories of moving objects, the dis-
covered rules represent frequently travelled
routes. For some applications, e.g., an intel-
ligent ridesharing application, these frequent
routes are only interesting if they are long
and sharable, i.e., can potentially be shared
by several users. This paper presents a data-
base projection based method for efficiently
extracting such long, sharable frequent routes.
The method prunes the search space by mak-
ing use of the minimum length and sharable
requirements and avoids the generation of
the exponential number of sub–routes of long
routes. A SQL–based implementation is de-
scribed, and experiments on real life data
show the effectiveness of the method.

1 Introduction

In recent years Global Positioning Systems (GPS) have
become increasingly available and accurate in mobile
devices. As a result large amounts of spatio–temporal
data is being generated by users of such mobile devices,
referred to as moving objects in the following. Tra-
jectories of moving objects, or trajectories for short,
contain regularities or patterns. For example, a per-
son tends to drive almost every weekday to work ap-
proximately at the same time using the same route.
The benefits of finding such regularities or patterns is
many–fold. First, such patterns can help the efficient

Proceedings of the third Workshop on STDBM

Seoul, Korea, September 11, 2006

management of trajectories. Second, they can be used
to facilitate various Location–Based Services (LBS).
One LBS example is an intelligent rideshare applica-
tion, which finds sharable routes for a set of commuters
and suggests rideshare possibilities to them, is consid-
ered. Such a rideshare application can be one possible
solution to the ever increasing congestion problems of
urban transportation networks.

Patterns in trajectories for an intelligent rideshare
application are only interesting if those patterns are
sharable by multiple commuters, are reoccurring fre-
quently, and are worthwhile pursuing, i.e., are long
enough for the savings to compensate for the coordi-
nation efforts. The discovery of Long, Sharable Pat-
terns (LSP) in trajectories is difficult for several rea-
sons. Patterns do not usually exist along the whole
trajectory. As a example, consider two commuters A
and B living in the same area of town, leaving for
work approximately the same time, and working in
the same part of town. Given the underlying road
network and traffic conditions, for a given support
threshold the middle part of the trips of the two com-
muters may be frequent, the initial and final parts may
not. In recent work [4] a general problem transfor-
mation method, called pivoting, was proposed for the
analysis of spatio–temporal data. Pivoting is the pro-
cess of grouping a set of records based on a set of
attributes and assigning the values of likely another
set of attributes to groups or baskets. Pivoting ap-
plied to spatio–temporal data allows the construction
of spatio–temporal baskets, which can be mined with
traditional association rule mining algorithms. When
the items in the baskets are spatio–temporal identifiers
and are derived from trajectories, the discovered rules
represent frequently travelled routes. While there ex-
ist several efficient association rule mining methods [6],
the straight–forward application of these algorithms to
spatio–temporal baskets representing trajectories is in-
feasible for two reasons. First, all sub–patterns of fre-
quent patterns are also frequent, but not interesting,
as longer patterns are preferred. Second, the support
criterion used in association rule mining algorithms
is inadequate for a rideshare application, i.e., a fre-

quent itemset representing a frequent trajectory pat-
tern, may be supported by a single commuter on many
occasions and hence presents no rideshare opportunity.

In this paper, to overcome the above difficulties of
finding LSPs in trajectories, a novel method is given.
According to a new support criterion, the proposed
method first efficiently filters the trajectories to con-
tain only sub-trajectories that are frequent. Next, it
removes trajectories that do not meet the minimum
length criterion. Then it alternates two steps until
there are undiscovered LSPs. The first step entails
the discovery of a LSP. The second step entails the fil-
tering of trajectories by the previously discovered pat-
tern. An advantage of the proposed method is the ease
of implementation in commercial Relational Database
Management Systems (RDBMSes). To demonstrate
this, a SQL–based implementation is described. The
effectiveness of the method is demonstrated on the
publicly available INFATI data, which contains tra-
jectories of cars driving on a road network.

The herein presented work is novel in several as-
pects. It is the first to consider the problem of mining
LSPs in trajectories. It describes a novel transforma-
tion, and the relationship between the problem of min-
ing LSPs in trajectories and mining frequent itemsets.
Finally, it describes an effective method with a simple
SQL–implementation to mine such LSPs in trajecto-
ries.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
transformation, the use of the framework in frequent
itemset mining, and formally defines the task of min-
ing LSPs in trajectories. he proposed algorithm and a
SQL–based implementation for mining such patterns
is described in Section 4. Section 5 presents experi-
mental results. Finally Section 6 concludes and points
to future research.

2 Related work

Frequent pattern mining is a core field in data min-
ing research. Since the first solution to the problem
of frequent itemset mining [1, 2], various specialized
in–memory data structures have been proposed to im-
prove the mining efficiency, see [6] for an overview. It
has been recognized that the set of all frequent item-
sets is too large for analytical purposes and the infor-
mation they contain is redundant. To remedy this, two
modification to the task have been proposed: mining
of Closed Frequent Itemsets (CFI) and mining of max-
imal frequent itemsets. A frequent itemset X is closed
if no itemset Y exists with the same support as X such
that X ⊂ Y . A frequent itemset X is maximal if no
frequent itemset Y exists such that X ⊂ Y . Prominent
methods that efficiently exploit these modifications to
the problem are MAFIA, GenMax, CLOSET(+), and
CHARM [6]. Later in the paper, a relationship be-
tween the problems of mining LSPs in trajectories

and mining CFIs are described. While CFI mining
methods can be modified to find the desired solution
that meets the sharable criterion, they employ com-
plex data structures and their implementation is quite
involved; hence their augmentation is difficult. In par-
ticular, a projection-based CFI mining algorithm that
employs an in–memory FP-tree to represent itemsets,
would need to be modified at every node to maintain
a set of distinct objects at that have transactions as-
sociated with them that support the itemset that is
represented by the node. In comparison, the herein
presented method –building on work presented in [11]–
exploits the power of commercial RDBMSs, yielding a
simple, but effective solution.

Since trajectories are temporally ordered sequences
of locations, sequential pattern mining [3] naturally
comes to mind. However, a straight forward inter-
pretation of trips as transactions and application of
a state–of–the–art closed frequent sequential pattern
mining algorithm [15] does not yield the desired so-
lution, since in this case sequences of frequent sub-
trajectories would be found. Furthermore, since the
trajectories can contain hundreds of items, closedness
checking of frequent itemsets even for prominent meth-
ods would be computationally expensive. Interpret-
ing single elements of trajectories as transactions and
applying closed sequential pattern mining could find
frequent sub–trajectories. However a number of prob-
lems arise. First, to meet the sharable criterion, the
in–memory data structures would need similar, non-
trivial augmentation as described above. Second, since
patterns in trajectories could be extremely long, even
state–of–the–art sequential mining methods [12, 15]
would have a difficulties handling patterns of such
lengths. Third, patterns in trajectories repeat them-
selves, which cannot be handled by traditional se-
quential pattern mining algorithms. The extraction
of spatio–temporal periodic patterns from trajectories
is studied in [9], where a bottom–up, level–wise, and
a faster top–down mining algorithm is presented. Al-
though the technique is effective, the patterns found
are within the trajectory of a single moving object. In
comparison, the herein presented method effectively
discovers long, sharable, periodic patterns.

Moving objects databases are particular cases of
spatio–temporal databases that represent and man-
age changes related to the movement of objects. A
necessary component to such databases are specialized
spatio–temporal indices such as the Spatio–Temporal
R–tree (STR–tree) and Trajectory–Bundle tree (TB–
tree) [7]. An STR-tree organizes line segments of a tra-
jectory according to both their spatial properties and
the trajectories they belong to, while a TB–tree only
preserves trajectories. If trajectories are projected to
the time–of–day domain, STR–tree index values on
the projected trajectories could be used as an alter-
native representation of trajectories. While this ap-

proach would reduce the size of the problem of mining
LSPs in trajectories, it would not solve it. In compar-
ison, the herein presented method solves the problem
of mining LSPs in trajectories, which is orthogonal,
but not unrelated to indexing of trajectories.

In [13] a way to effectively retrieve trajectories in
the presence of noise is presented. Similarity func-
tions, based on the longest sharable subsequence, are
defined, facilitating an intuitive notion of similarity
between trajectories. While such an efficient similar-
ity search between the trajectories will discover similar
trajectories, the usefulness of this similarity in terms of
length and support would not be explicit. In compar-
ison, there herein proposed method returns only pat-
terns that meet the user–specified support and length
constraints. Furthermore, the trajectory patterns re-
turned by our method are explicit, as opposed to the
only implicit patterns contained in similar trajectories.

3 Long, sharable patterns in trajecto-
ries

The following section describes a novel transformation
of raw trajectories. This transformation allows (1) the
formulation of the problem of mining LSPs in trajec-
tories in a framework similar to that used in frequent
itemset mining, (2) to establish a relationship between
the two problems.

3.1 From trajectories to transactions

The proposed transformation of raw trajectories con-
sists of three steps: identification of trips, projection of
the temporal dimension, and spatio–temporal region
substitution. It is assumed that locations of moving
objects are sampled over a long history. That is, a
raw trajectory is a long sequence of (x, y, t) measure-
ments at regular time intervals.

Identification of trips

A trip is a temporally consecutive set or se-
quence of measurements such that for any measure-
ment mi in the sequence, the sum of spatial dis-
placement during the k measurements immediately
following mi, denoted dk, is larger than some user–
defined displacement, δ. Trips can be identified
in a straight–forward manner by linearly scanning
through a trajectory, and calculating dk using a look–
ahead window of k measurements. That is, scanning
through the total trajectory from the beginning, the
first measurement for which dk > δ, signals the begin-
ning of the first trip. Consecutive measurements are
part of this trip until a measurement is reached for
which dk ≤ δ, which signals the end of the first tra-
jectory. Trips following the first trip are detected in
the same fashion from the remaining part of the total
trajectory. Figure 1(a) shows three example trips that
are derived from the total trajectory of one moving
object.

0 5 10 15 20 25 30 35 40
0

5

10

15
Mon 8:00

Tu 8:00

Wed 8:00

x−dimension

y−dimension

tim
e−

di
m

en
si

on
 /

da
te

−
tim

e
do

m
ai

n trip 1

trip 2

trip 3

d
k
 > δ → start of trip 1

d
k
 < δ → end of trip 1

(a) Identification of trips in
raw trajectories

0 5 10 15 20 25 30 35 40

0

5

10

15
8:00

8:05

8:10

8:15

8:00

8:00

8:30

8:35

x−dimension
y−dimension

tim
e−

di
m

en
si

on
 /

tim
e−

of
−

da
y

do
m

ai
n

spatio−temporal region

(b) Time–of–day projection and
spatio–temporal region substi-
tution

Figure 1: From trajectories to transactions

Projection of the temporal dimension

Since frequent patterns within a single object’s tra-
jectory are expected to repeat themselves daily, the
temporal dimension of the so identified trips is pro-
jected down to the time–of–day domain. This pro-
jection is essential to discover the daily periodic na-
ture of patterns in trajectories. Mining patterns with
other periodicity can be facilitated by projections of
the temporal domain to appropriate finer, or coarser
levels of granularity. Finer levels of granularity can be
used to detect patterns with shorter periodicity. For
example, a delivery person might use a different route
depending on the time–of–hour knowing that at the
given time of the hour certain traffic conditions arise,
which make an otherwise optimal delivery route sub–
optimal. The detection of these patterns in delivery
routes requires the projection of the temporal dimen-
sion to the time–of–hour domain. Conversely, coarser
levels of granularity can be used to detect patterns
with longer periodicity. For example, a person might
visit his bank only at the end of pay periods. The de-
tection of this pattern requires the projection of the
temporal dimension to the day–of–month domain. Fi-
nally, to discover the pattern that the above mentioned
person makes these visits to his bank Saturday morn-
ings following the end of pay periods, requires the pro-
jection of the temporal domain to a combination of the
day–of-month, the day–of-week, and the part–of-day
domains. Performing different projections is part of
the inherently iterative and only semi-automatic pro-
cess of doing data mining when the exact format of the
patterns searched for is not known beforehand. Figure
1(b) shows the projection of the temporal dimension
to the time–of–day domain for the three trips identi-
fied in Figure 1(a). Since the projection of a single
database record is a constant operation, the total pro-
cessing time of this transformation step is optimal and
linear in the number of database records.

Spatio–temporal region substitution

Trajectories are noisy. One source of this noise is
due to imprecise GPS measurements. From the point
of view of patterns in such trajectories, slight devia-
tion of trajectories from the patterns can be viewed as
noise. Examples of such deviations could be due to a
few minute delay, or to the usage of different lanes on

A

C

B

GFE

D

KJIH L

8:00

8:158:10

8:00

8:05

8:058:05

8:10

8:25

8:20

8:25

8:20

8:25

8:35

8:30

8:35

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

Figure 2: Illustration of the sample trajectory DB

the route. Hence, while a person might be driving from
home to work at approximately the same time of day
using approximately the same route, the chance of two
identical trajectories is highly unlikely. Consequently,
patterns in raw trajectories are few and certainly not
long. Thus, patterns have to be mined in trajecto-
ries represented in a generalized way, yielding general
patterns in trajectories. To achieve this generalization
of trajectories, individual (x, y, t) measurements of a
trajectory are discretized and mapped to the spatio–
temporal regions they fall into. Thus, a generalized
trajectory is constructed by substituting (x, y, t) mea-
surements with the spatio–temporal regions they map
to. If within a trajectory multiple (x, y, t) measure-
ments map to the same spatio–temporal region, they
are substituted with a single instance of the corre-
sponding spatio–temporal region. The box in Fig-
ure 1(b) represents such a spatio–temporal region.
Since spatio–temporal substitution of a single data-
base record can be achieved using simple arithmetics
from the spatial and temporal coordinates, the pro-
cessing time of this transformation step is optimal and
linear in the number of database records.

3.2 Example trajectory database

Figure 2 visualizes a sample trajectory database. It
shows the trajectories of trips of 5 moving objects,
which were derived using the three transformation
steps described in Section 3.1. For clarity, the tem-
poral dimension is projected down to the 2D–plane.
Spatio–temporal regions are defined by the square cells
and a five minute interval centered around time in-
stances written inside the square. Each connected line
represents specific trips of a particular object. The
number of times that trip was performed by the ob-
ject is represented in the width of the line, and is also
written in parenthesis next to the object name in the
legend. For example, the trip trajectory associated
with object 3 was performed 4 times by the object.
The object was in spatial regions HD, HC, HB, IB, and
IC during time intervals 8:05± 2.5 minutes, 8:10± 2.5
minutes, 8:15 ± 2.5 minutes, 8:20 ± 2.5 minutes, and

8:25 ± 2.5 minutes, respectively. In the following a
spatio-temporal region will be referred to by its con-
catenated values of the cell identifiers along the x– and
y–axis, and the corresponding time instance denoting
the center of the time interval of the spatio–temporal
region. Hence, trips associated with object 3 will be
denoted by the a sequence {HD8:05, HC8:10, HB8:15,
IB8:20, IC8:25}. Furthermore, the trajectory database
T is assumed to be in a relational format with schema
〈oid, tid, item〉, where item is a single item, that is
part of the transaction tid associated with object oid.
Hence, each of the four trips of object 3 is represented
by 5 unique rows in T .

3.3 Problem statement

After performing the three above transformation steps,
the data set can be represented in a database T con-
taining tuples 〈oid, tid, s〉, where oid is an object iden-
tifier, tid is a trip identifier, and s is a sequence
of spatio–temporal region identifiers. Since spatio–
temporal region identifiers contain a temporal com-
ponent, the sequence s can, without loss of informa-
tion, be represented as a set of spatio–temporal region
identifiers. Conforming to the naming convention used
in the frequent itemset mining framework, a spatio–
temporal region identifier will be equivalently referred
to as an item, and a sequence of spatio–temporal re-
gion identifiers will be equivalently referred to as a
transaction. Let X be a set of items, called an item-
set. A transaction t satisfies an itemset X iff X ⊆ t.
Let STX denote the set of transactions that satisfy X.
The following definitions are emphasized to point out
the differences between the frequent itemset mining
framework and the one established here.

Definition 1 The n–support of an itemset X in
T , denoted as X.supp(n), is defined as the number of
transactions in STX if the number of distinct oids as-
sociated with the transactions in STX is greater than
or equal to n, and 0 otherwise. The n–support of

an item i in T , denoted as i.supp(n), is equal to the
n–support of the itemset that contains only i.

Definition 2 The length of an itemset X, denoted
as |X|, is defined as the number of items in X.

Definition 3 An itemset X is n–frequent in T if
X.supp(n) ≥ MinSupp, and X is long if |X| ≥
MinLength, where MinLength, MinSupp, and n are
user–defined values.

Definition 4 An itemset X is n–closed if there ex-
ists no itemset Y such that X ⊂ Y and X.supp(n) =
Y.supp(n).

The task of mining LSPs in trajectories can be de-
fined as finding all long, n–closed, n–frequent itemsets.
Itemsets that meet these requirements are also referred
to as LSPs, or just patterns.

A

C

B

GFE KJIH L

8:158:10

8:10

8:25

8:20

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

(a) The sample DB after STEP 1

A

C

B

GFE KJIH L

8:158:10 8:258:20

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

(b) The sample DB after STEP 2

A

C

B

GFE KJIH L

8:158:10 8:258:20

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

(5,5)

(5,11)

(0,8)

(5,11)(5,11)(5,5)(5,11)

(c) STEP 3: Item–conditional sample DB
TF |FC8:05 and pattern discovery

Figure 3: Illustration of steps 1, 2, and 3

4 Projection–based LSP mining

Now let us turn to the description of the proposed me-
thod for mining LSPs in trajectories. This description
is based on a number of observations, each of which
is associated with a particular step in the method. In
related technical report [5], these observations are also
stated as lemmas, and their corresponding proofs show
the correctness and completeness of the method. To
demonstrate the simplicity of the implementation in
a RDBMS, for each step a simple SQL–statement is
given. The effect of each step is also illustrated on
the previously introduced sample trajectory database
assuming MinLength = 4, MinSupp = 2, and n = 2.

STEP 1: Filtering infrequent items

Items, i.e., spatio–temporal regions that are not fre-
quent in T cannot be part of a LSP. Hence as first step
of the method, T is filtered such that it contains items
with n–support larger than or equal to MinSupp.

The first step can be formulated in two SQL state-
ments:

INSERT INTO F (item, i_cnt)
SELECT item, count(*) i_cnt FROM T
GROUP BY item HAVING COUNT(DISTINCT oid) >= n

AND COUNT(*) >= MinSupp

CREATE VIEW TFV AS
SELECT T.oid, T.tid, T.item
FROM T, F
WHERE T.item = F.item

The first statement finds items that meet the unique
support criterion. The second statement constructs a
filtered view of T , called TFV, in which transactions
only contain the items found by the previous state-
ment.

The effects of the first step are illustrated in Fig-
ure 3(a). Spatio–temporal regions, which are part of
trajectories that belong to less than 2 distinct objects,
are removed from trajectories. From the point of view
of an intelligent rideshare application these spatio–
temporal regions are uninteresting, since these parts
of the trajectories cannot be shared by any objects,
i.e., are not sharable.

STEP 2: Filtering of short transactions

Transactions, i.e., trip trajectories, having less than
MinLength frequent items cannot satisfy a LSP. Hence,

the second step of the method further filters TFV
and constructs TF that only contain transactions that
have at least MinLength number of items.

The second step can be formulated in one SQL
statement:

INSERT INTO TF (tid, oid, item)
SELECT tid, oid, item FROM TFV
WHERE tid IN

(SELECT tid FROM TFV GROUP BY tid
HAVING COUNT(item) >= MinLength)

The sub–select is used to find trip identifiers that have
at least MinLength number of items. The outer part
of the statement selects all records belonging to these
trip identifiers and inserts them into TF.

The effects of the second step are illustrated in Fig-
ure 3(b). In particular, the remaining sharable parts
of trips belonging to objects 3 and 5 are deleted, be-
cause the length of them is not greater than or equal
to MinLength, which is 4 in the example. Also, note
that although in this case items HB8:15 and IB8:20
did not become infrequent in TF, they lost n–support.

Before stating further observations and continuing
with the development of the proposed method it is im-
portant to note the following. The set of discoverable
LSPs from T is equivalent to the set of discoverable
LSPs from TF. This is ensured by first two observa-
tions. Since further steps of the proposed method will
discover LSPs from TF, these two observation ensure
the correctness of the method so far. However, it is
also important to note that not all transactions in TF
necessarily satisfy a LSP. This is due to the sequen-
tiality of the first two steps. After the first step all
the remaining items in transactions are frequent items.
Then, in the second step, some of these transactions,
which are not long, are deleted. Due to this deletion a
frequent item in the remaining long transactions may
become non–frequent, which in turn may cause some
transactions to become short again. While there is no
simple solution to break this circle, note that the cor-
rectness of the first and second steps are not violated
since the deleted items and transactions could not have
satisfied a LSP.

STEP 3: Item–conditional DB projection

For the following discussion, adopted from [10], let
an item–conditional database of transactions, equiva-
lently referred to as an an item–projected database, be

A

C

B

GFE KJIH L

8:158:10 8:25

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

(a) The sample DB after STEP 5

A

C

B

GFE KJIH L

8:158:10 8:25

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

(8,11)

(8,8)

(8,11)(8,11)(8,11)

(b) Item–conditional DB TF |LA8:35 and
PDD

A

C

B

GFE KJIH L

8:158:10 8:25 8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

(c) Sample DB after the second PDD

Figure 4: Illustration of Pattern Discovery and Deletion phases

defined as:

Definition 5 Let T be a database of transactions, and
i an item in T . Then, the item–conditional database
of transactions, is denoted as T|i and contains all the
items from the transactions containing i.

The construction of an item–conditional database of
transactions can be formulated in a single SQL state-
ment as:

INSERT INTO T_i (oid, tid, item)
SELECT t1.oid, t1.tid, t1.item
FROM TF t1, TF t2
WHERE t1.tid = t2.tid and t2.item = i

Given n frequent items in T , the problem of finding
CFIs can be divided into n subproblems of finding the
CFIs in each of the n item–projected databases [10].
Using the divide–and–conquer paradigm, each of these
n subproblems can be solved by recursively mining the
item-projected databases as necessary.

STEP 4: Discovery of the single most frequent

closed itemset

Since i is in every transaction of the item–projected
database T|i, and hence has maximum n–support, the
items in T|i can be grouped in two: items that have the
same n–support as i, and items that have n–support
less than that of i. The set of items that have the same
n–support in the T|i as i is the Single Most Frequent
Closed Itemset (SMFCI) in T|i. The fourth step of the
method discovers this SMFCI.

The fourth step can be formulated in two SQL state-
ments:

INSERT INTO FT_i (item, i_cnt)
SELECT item, COUNT(*) i_cnt FROM T_i
GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

SELECT item FROM FT_i
WHERE i_cnt = (SELECT MAX(i_cnt) FROM FT_i)

The first statement derives n–support of n–frequent
items in the item–projected database, while the second
statement selects those items from these n–frequent
items that have maximum n–support.

Figure 3(c) shows the effects of projecting TF based
on the item FC8:05. The numbers in parentheses show
the n–support of the items in TF |FC8:05 and TF re-
spectively. The SMFCI that is immediately discovered
from TF |FC8:05 is {FC8:05, GB8:10, HB8:15, IB8:20,

JB8:25, KB8:30}. LA8:35 is the only item that is in
TF |FC8:05, but is not in the discovered SMFCI. Since
further projecting TF |FC8:05 on LA8:35 yields a data-
base of transactions where no item meets the minimum
n–support criterion, the discovered SMFCI is the only
CFI present in TF |FC8:05. Since the discovered SMFCI
meets both the minimum length and an minimum n–
support criteria it is a pattern.

STEP 5: Deletion of unnecessary items

The subproblems that are recursively solved by the
method presented so far are overlapping. That is to
say, viewed from a top level, a CFI that has n items is
at least once discovered in each of the n corresponding
item–projected databases. To eliminate this redun-
dancy, both in the mining process and the result set,
observe that an item j can be deleted from TF if it has
the same n–support in TF |i as in TF. The intuition
behind the observation is the following. If j has the
same n–support in TF |i as in TF, it implies that all
the transactions in TF that satisfy j are also present
in TF |i. Thus, the set of patterns containing j, which
can be discovered from TF, can also be discovered from
TF |i.

The fifth step can be formulated in two SQL state-
ments:
INSERT INTO FT_i (item, i_cnt)
SELECT item, count(*) i_cnt FROM T_i
GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

DELETE FROM TF WHERE TF.item IN
(SELECT F.item FROM F, FT_i
WHERE F.item = FT_i.item
AND F.i_cnt = FT_i.i_cnt)

The first statement counts the n–support of items in
TF |i. The second statement deletes all items in TF
that have the same n–support in TF as in TF |i.

Figure 4(a) shows the effects of deleting the un-
necessary items after the mining of TF |FC8:05. Since
items FC:8:05 and IB8:20 have the same n–support
in TF |FC8:05 as in TF, shown in Figure 3(c), they are
deleted from TF. Items remaining in TF are shown in
Figure 4(a).

Item-projection ordered by increasing n–

Support

A LSP p in T , containing items i1 . . . ik, can be dis-
covered from any one of the item–projected databases

T|i1 , . . . , T|ik
. Steps 4 and 5 of the proposed method

assure that p will be discovered from exactly one of
these item–projected databases, but the method pre-
sented so far does not specify which one. While this
point is irrelevant from the point of view of correctness,
it is crucial from the point of view of effectiveness.

To illustrate this, assume that i1.supp(n) <
i2.supp(n) < . . . < ik.supp(n). If projections are per-
formed in decreasing order of item n–support, then,
first T|ik

is constructed, then T|ik|ik−1
is constructed

from it, and so on, all the way to T|ik|ik−1|...|i1 , from
which finally p is discovered. If on the other hand,
projections are performed in increasing order of item
n–support, then p is discovered from the first item–
projected database that is constructed, namely T|i1 .

Assume that p and its qualifying (k− l+1) (at least
l–long) sub–patterns are the only LSPs in T . Then
during the whole mining process, the total number of
projections in the decreasing processing order is Pdec =
k, whereas in the increasing processing order the total
number of projections is only Pinc = k − l + 1. If k
and l are comparable and large, then Pdec ≫ Pinc .
Similar statements can be made about the total size
of the projected databases in both cases. Hence, item–
projection should be performed in increasing order of
item n-support.

Alternating pattern discovery and deletion

Alternating steps 3, 4 and 5, all patterns can be
discovered in a recursive fashion. The sequential ap-
plication of these steps is referred to as a Pattern Dis-
covery and Deletion phase (PDD). Mining terminates
when all items have been deleted from TF.

Figures 3(c) and 4(a) shows the effects of the first
of these PDD phases. Figures 4(b) and 4(c) show
the effect of the next pattern PDD phase. Since af-
ter the first PDD phase LA8:35 has the lowest n–
support in TF, namely 8, it is chosen as the next
item to base the database projection on. Figure 4(b)
show TF |LA8:35 with the corresponding n–support of
the items in TF |FC8:05 and TF respectively. Since
all the items have the same n–support in TF |FC8:05

as LA8:35, namely 8, the closed itemset {GB8:10,
HB8:15, JB8:25, KB8:30, LA8:35} is discovered. Since
this closed itemset both meets the minimum length
and n–support requirements it is recorded as a pat-
tern. In the deletion part of this PDD phase, item
LA8:35 is deleted from TF as the only item that have
the same n–support in TF |LA8:35 as in TF. The results
of this deletion are shown on Figure 4(c).

The third and final PDD phase is implicitly shown
in Figure 4(c). Since after the second PDD phase all
the items in TF have the same n–support, the next
projection is performed on any one of the items, i,
and the resulting item–projected database, TF |i, is
identical to the current state of TF, depicted on Fig-
ure 4(c). Since all the items in TF |i have the same
n–support as i, the closed itemset {GB8:10, HB8:15,

A

C

B

GFE KJIH L

8:158:10 8:258:20

8:35

8:30

PAT. 1: O(1,2), S(5), L(6)

8:05

PAT. 2: O(1,5), S(8), L(5) PAT. 3: O(1,2,5), S(11), L(4)

Figure 5: Three patterns in the sample DB

JB8:25, KB8:30} is discovered. Since this closed item-
set meets both the minimum length and n–support re-
quirements, it is recorded as a pattern. Finally, items
having the same n–support in TF |i as in TF, which in
this case means all the items in TF |i, are deleted from
TF. After this deletion part of the final PDD phase,
TF becomes empty and the mining terminates. Figure
5 shows the three patterns that are discovered during
the mining. Supporting oids, n–supports, and length
for each discovered patterns are shown in the legend.

LSP mining algorithm

Using the observations and the associated steps,
the complete algorithm for mining LSPs in trajecto-
ries is given in Figure 6. Since item–projected data-
bases are constructed at every level of the recursion
and are modified across levels when deleting unnec-
essary items, the level of recursion L is passed as an
argument in the recursive procedure, and is used as
a superscript to associate databases to the levels they
were constructed in.

Lines 2 and 3 in the MineLSP procedure represent
step 1 and 2 of the method, and they construct the fil-
tered database of transactions at the initial level, level
0. Line 4 processes frequent items in TF 0 in ascending
order of n–support. Line 5 represent step 3 of the me-
thod, and for each such frequent item i, it constructs
the item–conditional database of transactions TF 0

|i at
level 0. Line 6 calls procedure FindLSP to extract all
LSPs from TF 0

|i recursively.

Lines 2 and 3 in the FindLSP procedure represent
steps 1 and 2 of the method, and they construct the
filtered database of transactions at the current level
L. Line 4 represents step 4 of the method, and it finds
the SMFCI P in TFL

long . Line 5 represents step 5 of
the method, and it deletes all items from the filtered
database of transactions of the previous level, TFL−1

long ,

that have the same n-support in TFL−1
long as in TFL

freq ,
the current level. Lines 6 and 7 check if the single
most frequent closed itemset P meets the minimum
requirements and store it accordingly. Lines 8 and 9
processes frequent items in TFL

long , which are not in
P , in ascending order of n–support. Line 10 represent
step 3 of the method, and for each such frequent item
i it constructs the item–conditional database of trans-

(1) procedure MineLSP (T , MinSupp, MinLength, n)

(2) TF0

freq ← MinSupportFilter (T , MinSupp, n)

(3) TF0

long ← MinLengthFilter (TF0

freq , MinLength)

(4) for each freq item i in TF0

long ordered by asc n–supp

(5) TF0

|i ← ConstructConditionalDB (TF0

long , i)

(6) FindLSP (TF0

|i, 1, MinSupp, MinLength, n)

(7) end for each

(1) procedure FindLSP (T ,L,MinSupp,MinLength,n)

(2) TFL

freq ← MinSupportFilter (T , MinSupp, n)

(3) TFL

long ← MinLengthFilter (TFL

freq , MinLength)

(4) (P, P.supp(n)) ← FindSMFCI (TFL

long)

(5) TF
L−1

long
← DeleteUnnecessaryItems (TF

L−1

long
, TFL

freq)

(6) if P.supp(n) ≥ MinSupp and |P | ≥ MinLength

(7) StorePattern (P , P.supp(n))

(8) for each freq item i in TFL

long ordered by asc n–supp

(9) if i is not in P

(10) TFL

|i ← ConstructConditionalDB (TFL

long , i)

(11) FindLSP (TFL

|i, L + 1, MinSupp, MinLength, n)

(12) end for each

Figure 6: The LSP algorithm

actions TFL
|i at the current level L. Finally, line 11

recursively calls procedure FindLSP to find LSPs in
TFL

|i at the next level.

The structure and functionality of procedures
MineLSP and FindLSP have a significant overlap.
While the two functions can be merged into one, the
separation of the two is used to emphasize the facts
that (1) DeleteUnnecessaryItems presumes the exis-
tence of databases constructed at the previous level,
and (2) FindSMFCI correctly operates only on an
item–projected database, and hence it can only be ap-
plied at level 1 and above.

Several implementation details are worth mention-
ing. First, DeleteUnnecessaryItems deletes items from
TFL−1

long based on the n–support of items in TFL
freq ,

not TFL
long . This is important, as it was noted that

MinLengthFilter decreases the n–support of items in
TFL

freq , thereby possibly making an unnecessary item
appear to be necessary. Second, arguments to func-
tions and operands in statements are logical, i.e., the
functions and statements can be more efficiently imple-
mented using previously derived tables. For example,
both FindSMFCI and DeleteUnnecessaryItems are im-
plemented using previously derived n–support count
tables not the actual trajectory tables. Third, simple
shortcuts can significantly improve the efficiency of the
method. For example, during the derivation of TFL

freq ,

if the number of unique frequent items in TFL
freq is less

than MinLength, no further processing is required at
that level, since none of the CFIs that can be derived
from TFL

freq are long. To preserve clarity, these simple
shortcuts are omitted from Figure 6.

5 Experimental evaluation

The proposed method was implemented using MS-
SQL Server 2000 running on Windows XP on a 3.6GHz
Pentium 4 processor with 2GB main memory. The me-
thod was tested on the publicly available INFATI data
set, which comes from intelligent speed adaptation ex-
periments conducted at Aalborg University. This data
set records cars moving around in the road network of
Aalborg, Denmark over a period of several months.
20 distinct test cars and families participated in the
INFATI experiment; Team–1 consisting of 11 cars op-
erated between December 2000 and January 2001 and
Team–2 consisting of 9 cars operated between Febru-
ary and March 2001. Each car was equipped with a
GPS receiver, from which GPS positions were sampled
every second whenever the car was operated. Addi-
tional information about the experiment can be found
in [8].

The method presented in Section 3.1 identifies trips
from continuous GPS measurements, which is not the
case in the INFATI data. Hence in this case, a trip
was defined as sequence of GPS readings where the
time difference between two consecutive readings is less
than 5 minutes. Using the definition, the INFATI data
contains 3699 trips. After projecting the temporal di-
mension to the time–of–day domain and substituting
the noisy GPS readings with 100 meter by 100 me-
ter by 5 minutes spatio-temporal regions, the resulting
trajectory database has the following characteristics.
There are 200929 unique items in the 3699 transac-
tions. The average number of items in a transaction is
approximately 102. The average n–support of 1–, 2–,
and 3–frequent items is 1.88, 4.2 and 6.4 respectively.
Notice that the averages only include the n–supports
of 1–, 2–, and 3– frequent items.

Two sets of experiments were performed, each
varying one of the two parameters of the algorithm,
MinSupp and MinLength. The performance of the al-
gorithms was measured in terms of processing time
and working space required, where the working space
required by the algorithm was approximated by the
sum of the rows in the projected tables that were con-
structed by the algorithm. Both measures were evalu-
ated in an absolute and a relative, per pattern, sense.
Figures 7(a), 7(c), and 7(e) show the results of the
first set of experiments, where MinSupp = 2, n = 2
and MinLength is varied between 120 and 530. Lower
settings for MinLength were also tested, but due to
the very low MinSupp value these measurement were
terminated after exceeding the 2 hour processing time
limit. Noting the logarithmic scale in Figure 7(a) it is
evident that both the running time and the working
space required by the algorithm exponentially increase
as the MinLength parameter is decreased. Examining
the same quantities in a relative, per pattern sense,
Figure 7(e) reveals that the average running time and
average working space required per pattern is approx-

100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

MinLength

to
ta

l p
ro

ce
ss

in
g

tim
e

(s
ec

)

Absolute Time and Space Performace vs MinLength

100 150 200 250 300 350 400 450 500
10

2

10
4

10
6

10
8

to
ta

l w
or

ki
ng

 s
pa

ce
 (

of

 r
ow

s)working space

processing time

(a) Absolute time and space

5 10 15 20 25 30 35
10

0

10
2

10
4

Absolute Time and Space Performace vs MinSupp

to
ta

l p
ro

ce
ss

in
g

tim
e

(s
ec

)

MinSupp

10
0

10
5

10
10

to
ta

l w
or

ki
ng

 s
pa

ce
 (

of

 r
ow

s)

processing time

working space

(b) Absolute time and space

10
0

10
1

10
2

10
3

10
4

Number of Patterns and Ineffective Projections vs MinLength

of

 p
at

te
rn

s

MinLength
100 150 200 250 300 350 400 450 500

10
0

10
1

10
2

10
3

10
4

of

 in
ef

fe
ct

iv
e

pr
oj

ec
tio

ns
ineffective projections

patterns

(c) Number of patterns

10
0

10
2

10
4

10
6

Number of Patterns and Ineffective Projections vs MinSupp

of

 p
at

te
rn

s

MinSupp
5 10 15 20 25 30 35

10
0

10
1

10
2

10
3

of

 in
ef

fe
ct

iv
e

pr
oj

ec
tio

nsineffectibe projections

patterns

(d) Number of patterns

100 150 200 250 300 350 400 450 500
0

20

40
Relative Time and Space Performace vs MinLength

pr
oc

es
si

ng
 ti

m
e

pe
r

pa
tte

rn
 (

se
c)

MinLength

0

5000

10000

w
or

ki
ng

 s
pa

ce
 p

er
 p

at
te

rn
 (

of

 r
ow

s)processing time

working space

(e) Relative time and space

5 10 15 20 25 30 35
0

2

4
Relative Time and Space Performace vs MinSupp

pr
oc

es
si

ng
 ti

m
e

pe
r

pa
tte

rn
 (

se
c)

MinSupp

0

2000

4000

w
or

ki
ng

 s
pa

ce
 p

er
 p

at
te

rn
 (

of

 r
ow

s)processing time

working space

(f) Relative time and space

Figure 7: Performance evaluation for various
MinLength (a,c,e) and MinSupp (b,d,f) settings

imately linearly decreasing as the MinLength param-
eter is decreased. The presence of the two irregular
bumps in Figure 7(e) can be explained in relation to
the number of patterns found, and the number of in-
effective projections that yield no patterns, shown in
Figure 7(c). The sharp increases in relative process-
ing time and working space are due to the fact that
the algorithm is unable to take some of the shortcuts
and it performs relatively more ineffective projections
yielding no pattern discovery. The sharp decreases can
be explained by the presence of an increasing number
of patterns that share the total pattern discovery cost.

Similar observations can be made about the second
set of experiments, shown in Figures 7(b), 7(d), and
7(f), where MinLength = 50, n = 2 and MinSupp
is varied between 7 and 33. For example, the sharp
decrease in relative processing time in Figure 7(f) when
going from MinSupp = 33 to MinSupp = 32 is simply
due to the sudden appearance of patterns in the data
for the given parameters. While there is only 1 pattern
for MinSupp = 33, and an order of magnitude more
number of patterns for MinSupp = 32, the projections
performed and hence the absolute processing time to
discover these patterns is approximately the same in
both cases. Hence, the relative processing time for
MinSupp = 33 is an order of magnitude larger than
that for MinSupp = 32.

Figure 8(a) shows a 50–fold down–sampled version

4500
5000

5500
6000

6500

6.1

6.2

6.3

6.4

x 10
4

0

1

2

3

4

x 10
4

X−coor (100m)

Trajectories of 20 moving objects in INFATI

Y−coor (100m)

T
im

e
(5

m
in

)

(a) Moving object trajectories

5000
5200

5400
5600

5800
6000

6.2

6.25

6.3

6.35

6.4

x 10
4

800

1000

1200

1400

1600

1800

2000

X−coor (100m)Y−coor (100m)

T
im

e−
of

−
da

y
(5

m
in

)

(b) 28 discovered LSPs

Figure 8: LSP discovery results in INFATI

of the trajectories of the 20 moving objects in the IN-
FATI data set. While some regularities are apparent
in it to the human eye, to find LSPs in it seems like a
daunting task. Figure 8(b) shows 28 LSPs in it that
are at least 200 long, sharable for at least 2 distinct
objects, and have a support of at least 2.

In conclusion, the experiments show that the me-
thod is effective and robust to changes in the user–
defined parameter settings, MinLength and MinSupp,
and is a useful analysis tool for finding LSPs in moving
object trajectories.

6 Conclusions and future work

The herein presented work, for the first time, considers
the problem of mining LSPs in trajectories, and trans-
forms it to a framework similar to that used in frequent
itemset mining. A database projection based method,
and its simple SQL–implementation is presented for
mining LSPs in trajectories. The effectiveness of the
method is demonstrated on a real world data set.

The large number of patterns discovered are diffi-
cult to analyze. To reduce this number, future work
will consider the mining of a compressed patterns in
trajectories [14].

In future work, we also plan to perform additional
experiments on larger real world data sets when such
become available. These experiments will include the
investigation of scale–up properties of the algorithm as
the number of moving objects are increasing and/or
as the granularity of the spatio–temporal regions is
varied.

Acknowledgments

This work was supported in part by the Danish Min-
istry of Science, Technology, and Innovation under
grant number 61480.

References

[1] R. Agrawal, T. Imilienski, and A. Swami. Mining Asso-
ciation Rules between Sets of Items in Large Databases.
In Proc. of SIGMOD, pp. 207–216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of VLDB, pp. 487–499, 1994.

[3] R. Agrawal and R. Srikant. Mining Sequential Pat-
terns. In Proc. of ICDE, pp. 3–14, 1995.

[4] G. Gidofalvi and T. B. Pedersen. Spatio-Temporal Rule
Mining: Issues and Techniques. In Proc. of DaWaK,
pp. 275–284, 2005.

[5] G. Gidofalvi and T. B. Pedersen. Mining Long,
Common Patterns in Trajectories of Moving
Objects. A DB Technical Report (15), 2006:
www.cs.auc.dk/DBTR/DBPublications/DBTR-15.pdf

[6] B. Goethals. Survey on frequent pattern mining.
citeseer.ist.psu.edu/goethals03survey.html

[7] C. S. Jensen, D. Pfoser, and Y. Theodoridis. Novel Ap-
proaches to the Indexing of Moving Object Trajecto-
ries. In Proc. of VLDB, pp. 395-406, 2000.

[8] C. S. Jensen, H. Lahrmann, S. Pakalnis, and S.
Runge. The INFATI data. Time Center TR–79, 2004:
www.cs.aau.dk/TimeCenter

[9] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. W. Cheung. Mining, Indexing, and
Querying Historical Spatiotemporal Data. In Proc. of

KDD, pp. 236–245, 2004.
[10] J. Pei, J. Han, and R. Mao. CLOSET: An efficient

algorithm for mining frequent closed itemsets. In Proc.

of DMKD, pp. 11-20, 2000.
[11] X. Shang, K.-U. Sattler, and I. Geist. Efficient Fre-

quent Pattern Mining in Relational Databases. In Proc.

of LWA, pp. 84–91, 2004.
[12] I. Tsoukatos and D. Gunopulos. Efficient Mining of

Spatiotemporal Patterns. In Proc. of SSTD, pp. 425–
442, 2001.

[13] M. Vlachos, D. Gunopoulos, and G. Kollios. Discover-
ing Similar Multidimensional Trajectories. In Proc. of

ICDE, pp. 673–685, 2002.
[14] D. Xin, J. Han, X. Yan, and H. Cheng. Mining Com-

pressed Frequent-Pattern Sets. In Proc. of VLDB, pp.
709–720, 2005.

[15] X. Yan, J. Han, and R. Afshar. CloSpan: Mining
closed sequential patterns in large datasets. In Proc.

of SDM, pp. 166–177, 2003.

