
CAB–SHARING: AN EFFECTIVE, DOOR–TO–DOOR,
ON–DEMAND TRANSPORTATION SERVICE

Győző Gidófalvi1, Torben Bach Pedersen2

1Geomatic ApS, Nybrogade 20, 1203 Copenhagen K, Denmark, T:(+45) 7020 5046, gyg@geomatic.dk

2Aalborg University, Fr. Bajers Vej 7E, 9220 Aalborg , Denmark,T:(+45) 9635 9975, tbp@cs.aau.dk

ABSTRACT

City transportation is an increasing problem. Public transportation is costeffective, but do
not provide doortodoor transportation; This makes the far more expensive cabs attractive and
scarce. This paper proposes a location-based Cab-Sharing Service (CSS), which reduces cab
fare costs and effectively utilizes available cabs. The CSS accepts cab requests from mobile
devices in the form of origin-destination pairs. Then it automatically groups closeby requests to
minimize the cost, utilize cab space, and service cab requests in a timely manner. Simulation-
based experiments show that the CSS can group cab requests in away that effectively utilizes
resources and achieves significant savings, making cab-sharing a new, promising mode of trans-
portation.

KEYWORDS

Location-Based Services, LBS, cab–sharing, ride–sharing, optimization.

INTRODUCTION

Transportation in larger cities, including parking, is an ever increasing problem that affects
the environment, the economy, and last but not least our lives. Traffic jams and the hustle of
parking take up a significant portion of our daily lives and cause major headaches. Solving the
problem by extending the road network is a costly and non–scalable solution. A more feasible
solution to the problem is to reduce the number of cars on the existing road network. To achieve
this, collective / public transportation tries to satisfy the general transportation needs of larger
groups in a cost–effective manner. While being cost–effective, the services offered by public
transportation often (1) do not meet the exact, door–to–door transportation needs of individuals,
(2) require multiple transfers and detours that significantly lengthen travel times, and (3) are
limited in off–peak hours. For these reasons, the far more expensive service offered by cabs /
taxis, which meet the exact transportation needs of individuals and also eliminates the problem
of parking, are in great demand. To better satisfy this demand, this paper presents an LBS
that makes use of simple technologies and tools to offer a newcost– and resource–effective,
door–to–door transportation means, namelycab–sharing.

Collective transportation is not a new concept. It is encouraged and subsidized by transporta-
tion authorities all over the world. The optimization of collective transportation has also been

1

considered. For an extensive list of research papers in thisarea, the reader is referred to [7].
Two papers, however, are worth highlighting. First, in [3],where the idea of the present re-
search originates from, in an off–line fashion, long, shareable patterns are sought in historical
trajectories of moving objects to aid an intelligent ride–sharing application. Second, in [1] an
almost “personalized” transportation system is proposed that alters the fixed–line buss service
to include variable itineraries and timetables. In comparison, the herein proposed CSS treats
the optimization of collective transportation as a truly online process, and alters the inherently
routeless transportation service offered by cabs.

PROBLEM STATEMENT

Let R
2 denote the 2-dimensional Euclidean space, and letT ≡ N

+ denote the totally ordered
time domain. LetR = {r1, . . . , rn} be a set ofcab requests, such thatri = 〈tr, lo, ld, te〉, where
tr ∈ T is therequest timeof the cab request,lo ∈ R

2 andld ∈ R
2 are theorigin anddestination

locationsof the cab request, andte ≥ tr ∈ T is theexpiration timeof the cab request, i.e., the
latest time by which the cab request must be serviced. A cab requestri =< tr, lo, ld, te > is
valid at timet if tr ≤ t ≤ te. Let ∆t = te − tr be called thewait timeof the cab request. Let
a cab–shares ⊆ R be a subset of the cab requests. A cab–share is valid at timet if all cab
requests in s are valid at timet. Let |s| denote the number of cab request in the cab–share. Let
d(l1, l2) be a distance measure between two locationsl1 andl2. Let m(s, d(., .)) be a method
that constructs a valid and optimal pick-up and drop-off sequence of requests for a cab–share
s and assigns a unique distance to this sequence based ond(., .). Let thesavingsp for a cab
requestri ∈ s bep(ri, s) = 1− m(s,d(.,.))/|s|

m({ri},d(.,.))
. Then, thecab-sharing problemis to find a disjoint

partitioningS = {s1 ⊎ s2 ⊎ . . .} of R, such that∀sj ∈ S, sj is valid, |sj| ≤ K, and the
expression

∑
sj∈S

∑
ri∈sj

p(ri, sj) is maximized.

CAB–SHARING SERVICE

The Cab–Sharing Service (CSS) is depicted in Figure 1. Before using the CSS, a user signs up
with the CSS and creates a prepaid user account to pay for the service. A registered user sends

Figure 1 – Cab–sharing service components/process.

a cab request in the form of an
origin–destination pair and an op-
tional validity period of the request.
In case no validity period is spec-
ified, the cab request is assumed
to be valid from the time it is re-
ceived until some default time limit
has been reached. The requests are
submitted via a mobile device by
sending two address lines to a pre-
mium SMS service, called Premium
Cab–Sharing Service. A more user–
friendly specification of requests
could include GPS–based localiza-
tion of origins and/or the ability of

users selecting origins and/or destinations from a list of frequent addresses, or even a voice–
recognition–enabled, automatic call center. In either case, once received, the Premium Cab–

2

Sharing Service sends the two address lines to a Geocoding Service, which validates them and
returns the exact coordinates for them. Then these origin and destination coordinates, along
with a user identifier are sent to a Cab–Sharing Engine. The Cab–Sharing Engine then, in an
online fashion, automatically groups “closeby” requests into a cab–share to minimize the total
transportation cost, thereby providing significant savings to the users of the service. Once a
cab–share is constructed, the cost of the share is deducted from the account of every partic-
ipant of the cab–share. Then, after receiving the information about the cab–share, the CSS
forwards the information to the Cab–Scheduling / Cab–Routing Engine, which assigns cabs
to cab–shares so that cab space is utilized and cab requests are serviced in a timely manner.
Finally, the CSS sends an SMS to the user about the cab fare, such as cost and schedule of the
fare. A web–demo of the CSS is available at:www.cs.aau.dk/˜gyg/CSS/ .

GROUPING OF CAB REQUESTS

Cab requests can be viewed as data points in spatio–temporal space. Partitioningn data points
into k groups based on pairwise similarity of the data points according to a distance measure is
referred to as the clustering problem, an extensively researched problem of computer science.
Clustering is known to be NP-hard[2]. However, there are a number of efficient bottom-up and
top-down methods that approximate the optimal solution within a constant factor in terms of a
clustering criterion, which is expressed in terms of the distance measure.

Hence it is only natural to approach the cab-sharing problemas a clustering problem and adopt
efficient approximations to the task at hand. For these approximation algorithms to converge
to a local optima, an appropriate distance metricd(., .) between two cab requests and/or cab–
shares needs to be devised. Ford(., .) to be a metric for any three cab requests or cab–shares
i, j, k is has to satisfy the following four conditions:d(., .) ≥ 0 (non-negativity),d(i, i) = 0
(identity),d(i, j) = d(j, i) (symmetry), andd(i, j) + d(j, k) ≥ d(i, k) (triangular inequality).

While a clustering approach may find a near-optimal cab-sharing solution, it has several draw-
backs. Since a cab request is only valid during a specific timeinterval, the set of valid cab re-
quest that can be considered for clustering is changing overtime. While a hard time-constraint
can be incorporated into a distance measure, the measure will not satisfy the triangular inequal-
ity requirement. An alternative approach could at every time stept retrieve the set of valid cab
requests, and perform a partitioning-based clustering on the set according to some distance met-
ric. However, since at any time instancet the number of valid cab requestsnt and the number
of possibleK-sized valid cab–shares are comparable, an iterative partitioning-based clustering
approach would entailO(n2

t) distance calculations per iteration at every time instancet, making
it infeasible in practice.

Since a cab requestri has a request timetr and an expiration timete it is natural to view it as
a part of a data stream. When finding cab–shares in such a stream, two opposite approaches
are obvious. In the first approach, referred to as thelazy approach, the grouping of requests
is delayed as long as possible to find cab–shares with higher savings. In the second approach,
referred to as theeagerapproach, request are grouped into cab–shares as early as possible to
deliver a timely service. Next, the lazy version of a greedy,bottom-up grouping of cab requests
is described. For ease of presentation, the described grouping method instead of maximizing
savings, solves the equivalent problem of minimizing totaltravel cost; it is shown in Figure 2.

3

(0) cabShare(R, K, min saving)
(1) S ← {}

(2) for (t = 1 .. T)
(3) {Rx, Rq} ← getValidRequests(R, t)
(4) E ← calculateE(Rx, {Rx ∪ Rq})
(6) while (|Rx| > 0)

(7) êmin ← mini mink≤K

∑k
1

E(i,k)
k

(8) {i, k} ← argmini argmink≤K

∑k
1

E(i,k)
k

(9) s ← {r1
i , r

2
i , . . . r

k
i }

(10) if p̂(ri, s) < min saving then break
(11) S ← {S ∪ s}

(12) E ← removeSfromE(E, s)
(13) endwhile
(14) S ← {S∪ addRestAsSingles(Rx) }
(15) endfor

Figure 2 – Lazy version of a greedy,
bottom-up grouping of cab requests

At any timet, valid cab requests can be divided
into two sets:Rx, the set of valid requests that
expire at time stept, andRq, the rest of the
valid requests that expire some time aftert (line
3). Given two cab requestsri andrj, let

e(ri, rj) =
m({ri, rj}, d(., .)) − m({ri}, d(., .))

m({ri}, d(., .))

be the fractional extra costof including rj

in ri’s cab fare. Using the pairwise frac-
tional extra costs, the fractional extra cost of
a cab shares w.r.t. ri is estimated aŝe(s) =∑

rj∈s e(ri, rj), and the average savings for a
cab requestrj ∈ s is estimated aŝp(rj, s) =

1 − 1+ê(s)
|s|

. Furthermore, letrk
i be the cab re-

quest that has thek-th lowest fractional extra
cost w.r.t. ri. In line 4, these fractional extra
costs are calculated between cab requests inRx

and{Rx ∪ Rq} and for allri ∈ Rx these frac-
tional extra costs are stored in a 2–dimensional arrayE, such thatE[i, k] = e(ri, r

k
i), i.e.,E is

is sorted increasingly in row major order. Then, using only the lowestK entries for each cab
request inE, in an iterative fashion the currently best (lowest amortized cost / highest savings)
cab–shares is found (lines 7–9) and request in it are removed from consideration (line 12) by
settingE[rj, .] andE[., rj] to some large value for allrj ∈ s. This process continues until the
currently best savingspmax is less thanmin saving , at which point all the remaining cab
request inRx are assigned to their own “cab–share” resulting in no savings for them (line 14).

A SIMPLE SQL IMPLEMENTATION

The grouping method for parametersmax k andmin saving can be easily implemented in
a few SQL statements as described bellow. First, after geocoding, valid requests are stored in a
tableR q = 〈rid,tr,te,xo,yo,xd,yd 〉, whererid is a unique identifier for the request,
tr andte are request and expiration times, and(xo,yo) and(xd,yd) are origin and destina-
tion coordinates. Then, using a temporal predicate, expiring requests are selected fromR q and
stored in a tableR x with the same schema. Finally, a distance functiond(x1,y1,x2,y2)
is defined between two 2D coordinates. Then, the fractional extra cost functione for the origin
and destination coordinates of the requestsri andrj can be defined in SQL–99 [5] as follows.

CREATE FUNCTION e(rixo FLOAT, riyo FLOAT, rixd FLOAT, riyd F LOAT,
rjxo FLOAT, rjyo FLOAT, rjxd FLOAT, rjyd FLOAT)

RETURNS FLOAT
BEGIN

DECLARE ri_dist, ed FLOAT
SET ri_dist = d(rixo, riyo, rixd, riyd)
SET ed = d(rjxo, rjyo, rixo, riyo) + d(rjxd, rjyd, rixd, riyd)
RETURN (ed / ri_dist)

END

4

Step 1: Calculating Fractional Extra Costs

After creating a tableE = 〈ri,rj,e 〉 to store the fractional extra costs, the fractional extra
costs between the requestsri in R x andrj in R q can be calculated in SQL–99 as follows.

INSERT INTO E (ri, rj, e)
SELECT x.rid ri, q.rid rj,

e(x.xo,x.yo,x.xd,x.yd,q.xo,q.yo,q.xd,q.yd)
FROM R_x x, R_q q
WHERE x.rid <> q.rid

AND e(x.xo,x.yo,x.xd,x.yd,q.xo,q.yo,q.xd,q.yd) <= 1

The first condition in theWHEREclause excludes the fractional extra cost ofri with itself,
which is 0 by definition. The reason for doing so is to avoid falsely identifyingri on its
own as the currently best (lowest amortized cost = 0 / highestsavings = 1) “cab–share” in the
processing steps to follow. The second condition in theWHEREclause is a pruning heuristic
that excludes(ri ,rj) request combinations fromE where the fractional extra cost exceeds 1,
in which case neitherri nor any cab–share containingri can benefit from includingrj .

Step 2: Calculating Amortized Costs

Relational Database Management Systems (RDBMSs) aresetoriented and the inherently declar-
ative SQL language does not provide adequate support to implement operations onsequences,
e.g., cumulative sum. Procedural language constructs thatallow iteration over the elements of a
sequence do exist in SQL, but are implemented less efficiently. Hence, programmers normally
revert to other procedural languages to perform such operations. Nevertheless, the calcula-
tion of cumulative sum can be implemented in SQL in a declarative fashion using a self–join.
Hence, after creating a tableAE = 〈ri,rj,ae,k 〉, the summations on line 7 and 8 of the
grouping method in Figure 2, i.e. the amortized costs can be calculated in a single SQL–99
statement as follows.

INSERT INTO AE (ri, rj, ae, k)
SELECT a.ri, a.rj, (SUM(b.e)+1)/(COUNT(*)+1) ae, COUNT(*)+1 k
FROM E a, E b
WHERE a.ri = b.ri AND a.e >= b.e
GROUP BY a.ri, a.rj
HAVING COUNT(*)+1 <= max_k

TheWHEREclause for every(ri ,rj) combination from the tablea assigns asetof (ri ,rj)
combinations from the tableb, such thatri ’s match in the two tables and the fractional extra
costs values (e) in tableb are less than or equal to the values in tablea. The latter condition
in a sense imposes anorder on theset. The aggregation for each such(ri ,rj) combination
(set) is achieved through theGROUP BYclause. The corresponding aggregatesae andk are
calculated by the two expressions in theSELECTstatement, whereae is the amortized cost
of the best cab–share of sizek that contains requestsri andrj . Finally, theHAVINGclause
excludes cab–shares larger than sizemax k from further consideration. Note that, while the
calculations of sequence–oriented cumulative aggregates, for example amortized cost (ae) are
simple to express in SQL, the computation performed is not optimal. While the computational
complexity of sequence–oriented cumulative aggregates isO(n), for a sequence of lengthn,
the complexity of the above method based on self-joins isO(n2). Nevertheless, the self–join
based simple SQL implementation can process in real–time upto 100,000 requests per day.

5

Step 3: Selecting the Best Cab–share

After creating a tableCS = 〈sid,rid 〉 to store the cab–shares, one can select the savings,
b savings , the size,b k , and, conditioned on themin savings parameter, store the re-
quests of the currently best cab–share (with ID =s) in two SQL–99 statements as follows.

SELECT ri, (1-ae), k INTO b_rid, b_savings, b_k
FROM AE ORDER BY ae LIMIT 1

INSERT INTO CS (sid, rid)
SELECT s sid, b_rid rid FROM AE
UNION
SELECT s sid, rj rid FROM AE WHERE k <= b_k AND ri = b_rid

Step 4: Pruning the Search Space

Since a cab request can only be part of a single cab–share, if the current best cab–share meets
the minimum saving requirement, and is added toCS, the requests in it have to be discarded
from further considerations for finding cab–shares in the future. This can be achieved by delet-
ing tuples from theE table that refer to the requests in question. The SQL–99 statement for this
is as follows.

DELETE FROM E
WHERE ri IN (SELECT rid FROM CS WHERE sid = s)

OR rj IN (SELECT rid FROM CS WHERE sid = s)

Periodic, Iterative Scheduling of Cab Requests

All cab requests inR x are grouped in an iterative fashion by executing steps 2 through 4
until (1) there are no more cab–shares that meet the minimum savings requirement, or (2) all
requests inR x has been assigned to some cab–share. The loop iterating through these steps
is placed in a stored procedure. Using the automatic task scheduling facilities of the operating
system,cron in Linux or Task Scheduler in Windows, this stored procedure is executed
periodically. Keeping the period of the executions of the stored procedure short (frequency of
executions high) has several advantages. First, the shorter the period, the longer requests can be
delayed until theyhave to begrouped into cab-shares, giving the requests more opportunities
to end up in a good cab–share. In effect, the set of expiring requests is composed of requests
that will expire before the next scheduled execution of the stored procedure. Second, smaller
sets of expiring requests means smallerE andAE tables, which are cheaper to maintain during
the iterations of a single execution of the stored procedure.

EXPERIMENTS

To test the proposed methods, cab request data was simulatedusing ST-ACTS, a spatio–
temporal activity simulator [4]. Based on a number of real world data sources, ST–ACTS sim-
ulates realistic trips of approximately 600,000 individuals in the city of Copenhagen, Denmark.
For the course of a workday, out of the approximately 1.55 million generated trips, approxi-
mately 251,000 trips of at least 3–kilometer length were selected and considered as potential
cab requests. Experiments were performed for various maximum cab–share sizesK ∈ [2, 8],
wait times∆t ∈ [1, 20], and cab request densities, i.e., various–sized, random subsets of the

6

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

number of requests

fraction of unshared cab fares
avg. savings for all cab fares
avg. savings for shared cab fares only

(a) Average savings and fraction of unshared cab fares

0 0.5 1 1.5 2 2.5 3

x 10
4

2

2.5

3

3.5

4

number of requests

avg. number of passengers for for all cab fares
avg. number of passengers for shared cab fares only

(b) Cab space utilization

Figure 3 – Performance evaluations for varying number of cabrequests.

set of potential cab requests. Figures [3(a), 3(b)], in which the units on the x scale is 10,000
cab requests, show some of the results for parameter settingsK = 4, min saving = 0.3, and
∆t = 15 minutes (common for all cab requests).

Figure 3(a) shows (1) the fraction of unshared cab requests,and (2) the average savings forall
fares, and for theshared fares only. As the density of cab requests increases, and hence the
likelihood of two individuals wanting to travel around the same time from approximately the
same origin location to approximately the same destinationlocation increases, the number of
cab–shares, meeting the required minimum savings also increases. Consequently, the fraction
of unshared requests decreases to a point where only about 2%of the cab requests cannot be
combined into cab–shares that meet the required minimum savings. Similarly, as the density of
the cab requests increases, the average savings for fares also increases up to a point where the
average savings per fares is0.66±0.11 considering all the fares, and is0.68±0.06 considering
shared fares only. In other words, the CSS is able to group cab requests in a way such that
the cost of 97.5% of the cab fares can be reduced by two thirds on average. Figure 3(b) shows
how well cab space is utilized. As the density of cab requestsincreases, the average number
of passengers per cab also increases up to a point where the average number of passengers per
cab is3.89 ± 0.49 considering all the fares, and is3.94 ± 0.27 considering shared fares only.

Due to space limitations, the detailed results of the experiments showing the effects of parame-
ters∆t andK are omitted, but they can be summarized as follows. The∆t experiments confirm
that due to the linear relationship between∆t and the resulting spatio–temporal density ofvalid
cab requests, there exists a correspondence between the above results and the omitted results,
i.e., since the spatio–temporal density of valid cab requests for 15,000 requests with∆t = 15
minutes are about the same as for 30,000 requests with∆t = 7.5 minutes, the average savings
and cab utilization are approximately the same in both cases. TheK experiments confirm that
under a fixed cab request density, both the savings and cab utilizations saturate. In the case of
30,000 requests forK ∈ [2, 8], the average savings for shares gradually increases from0.47 to
0.79 and the average number of passengers for shares gradually increases from2 to 6.1.

The savings come at the expense of some delay in the CSS when meeting the end–to–end
transportation needs of its users. There are three sources for this delay. First, thegrouping
time, i.e., the time that a user has to wait until his/her requestsis grouped into a cab–share,
which is upper bounded by thewait timeparameter of the requests. Second, thepickup time,
i.e., the extra time a user has to wait because some of the other members of the cab–share
need to be picked up before him/her. Finally, theadditional travel time, i.e., the extra time
the cab–fare takes due to the increased length of the shared part of the cab–fare. Because no
realistic simulation of the transportation phase of the CSS was performed, the delay incurred
due to the latter two sources has been evaluated in terms of extra distances relative to the length
of the original requests. Due to the close to constant results for various cab request densities,

7

the measurements on the delay due to the above three sources can be (independently from the
cab request density) summarized as follows. The average grouping time is11.7 minutes with
a standard deviation of5.9 minutes. The average pickup time is equivalent to10.7 ± 13.5%
of the length of the original request. Given the average length of requests of4.95 kilometers,
and assuming an average transportation speed of 40 km/h in the city, the average pickup time is
approximately0.8±1.1 minutes. The average additional travel time is equivalent to7.9±10.1%
of the length of the original request, or is approximately0.6 ± 0.9 minutes. Hence in total, the
approximate additional service delay an average CSS user experiences compared to using a
conventional cab service is approximately12.1± 7.9 minutes, arguably a small price to pay for
the savings.

CONCLUSION AND FUTURE WORK

Motivated by the need for a novel transportation alternative that is convenient, yet affordable,
this paper proposes a new LBS, namely a Cab–Sharing Service (CSS). To achieve the desired
reduction in transportation cost, the paper proposes a greedy grouping algorithm, along with a
simple but effective SQL implementation, that optimally groups “close by” requests into cab–
shares. Experiments on simulated, but realistic cab request data show that in exchange of a
short (5–15 minute) wait time, the CSS can group together requests in a way that effectively
utilizes resources and provides significant savings to the user.

Future work is planned along several directions. First, since it is natural to view the incoming
requests as a data stream, the CSS is being implemented using an in–memory Data Stream
Management System (DSMS) [6]. Second, the cab–sharing problem is a hard optimization
problem, hence investigating new heuristics for it is planned. Third, while the proposed greedy
method is computationally efficient, a number of improvements to it are possible, for example
to use spatial indices to prune the search space of possible cab–share candidates. Finally, while
not considered here, the optimization of the Cab–Scheduling/ Routing Engine through spatio–
temporal cab request demand prediction is planned.

ACKNOWLEDGEMENTS

This work was supported in part by the Danish Ministry of Science, Technology, and Innovation
under grant number 61480.

REFERENCES

[1] T. G. Crainic, F. Malucelli, and M. Nonato. Flexible many-to-few + few-to-many = an
almost personalized transit system. InProc. of TRISTAN, pp. 435–440, 2001.

[2] J. Han and M. Kamber. “Data Mining: Concepts and Techniques”. Morgan Kaufmann,
2005.

[3] G. Gidófalvi and T. B. Pedersen. Mining Long, Sharable Patterns in Trajectories of Moving
Objects. InProc. of STDBM, pp. 49–58, 2006.

[4] G. Gidófalvi and T. B. Pedersen. ST–ACTS: A Spatio-Temporal Activity Simulator. In
Proc. of ACM-GIS, pp. 155–162, 2006.

[5] Standard SQL 1999, ISO/IEC 9075:1999.
[6] E. Zeitler and T. Risch. Using stream queries to measure communication performance of a

parallel computing environment. To appear inProc. of DEPSA, 2006.
[7] Transportation Problems:www.di.unipi.it/optimize/transpo.html

8

