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Low-Complexity Energy-Efficient Scheduling for
Uplink OFDMA

Guowang Miao, Nageen Himayat, Geoffrey Ye Li, and Shilpa Talwar

Abstract—Energy-efficient wireless communication is very im-
portant for battery-constrained mobile devices. For mobile de-
vices in a cellular system, uplink power consumption dominates
the wireless power budget because of RF power requirements
for reliable transmission over long distances. Our previous work
in this area focused on optimizing energy efficiency by maxi-
mizing the instantaneous bits-per-Joule metric through iterative
approaches, which resulted in significant energy savings for
uplink cellular OFDMA transmissions. In this paper, we develop
energy efficient schemes with significantly lower complexity when
compared to iterative approaches, by considering time-averaged
bits-per-Joule metrics. We consider an uplink OFDMA system
where multiple users communicate to a central scheduler over
frequency-selective channels with high energy efficiency. The
scheduler allocates the system bandwidth among all users to
optimize energy efficiency across the whole network. Using time-
averaged metrics, we derive energy optimal techniques in “closed
forms” for per-user link adaptation and resource scheduling
across users. Simulation results show that the proposed schemes
not only have low complexity but also perform close to the
globally optimum solutions obtained through exhaustive search.

Index Terms—Energy efficiency, OFDMA, bits per Joule, link
adaptation, resource allocation.

I. INTRODUCTION

W IRELESS communication systems have experienced
tremendous growth in the past couple of decades.

While this growth is expected to continue unabated, the contin-
ued success of wireless networks depends on their ability to ef-
ficiently utilize limited network resources to meet increasingly
higher quality-of-service (QoS) requirements. While higher
capacity wireless links are expected to meet the increasing
QoS demand of multimedia applications, these high data rate
links also result in increasing device power consumption.
The slow improvement of battery technologies [2] has led
to an exponentially increasing gap between the required and
available battery capacity [3]. Additionally, shrinking device
sizes further impose an ergonomic limit on battery capacity.
Hence, energy efficiency is becoming increasingly important
for wireless system design.
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As wireless is a shared medium, device energy efficiency is
affected not only by the layers composing the point-to-point
communication link, but also by the interaction between the
links in the entire network. Hence, a systematic approach,
including both transmission and multi-user resource manage-
ment, is required for energy-efficient wireless communica-
tions.

Since the quality of wireless channels varies with time,
frequency, and location, link adaptation can be used to improve
transmission performance. With link adaptation, modulation
order, coding rate, and transmit power can be selected accord-
ing to channel state information (CSI). Traditional systems are
built to operate on a fixed set of operating points [4], e.g., no
power adaptation or rate adaptation. This results in excessive
energy consumption or pessimistic data rate for peak channel
conditions. Hence, a set of physical (PHY) layer parameters
should be adjusted to adapt wireless channels to improve
energy efficiency. Information theorists have studied energy-
efficient transmission for at least two decades [5], [6]. The
work in [5] defines reliable communication under a finite en-
ergy constraint in terms of the capacity per unit energy, which
is the maximum number of bits that can be transmitted per unit
energy. It is also shown in [5] that the capacity per unit energy
is achieved using an unlimited number of degrees of freedom
per information bit, e.g., with infinite bandwidth [7] or long-
duration regime communications [8]. For example, the lowest
order modulation should be always used while accommodating
the delay constraint [8] to minimize energy consumption. The
information-theoretic results derived in [7], [8] focus only on
transmit power when considering energy consumption during
transmission. In reality, a device also incurs additional circuit
power during transmission, which is relatively independent
of the transmission rate [9]–[11]. In this case, the method to
transmit with the longest duration is no longer the best since
circuit energy consumption is proportional to the transmission
duration. The energy dissipation consisting of both transmitter
electronics and radio front (RF) output is studied in [9], and
several energy-minimization techniques, including modulation
and multiple access protocols, are derived for short-range
asymmetric micro-sensor systems. It is shown that a high order
modulation may enable energy savings compared with binary
modulation for some short-range applications by decreasing
the transmission duration. In [10], these ideas are extended to
a detailed energy consumption analysis specifically for both
uncoded and coded M-ary quadrature amplitude modulation
(M-QAM) and multiple frequency shift keying (MFSK) in
additive white Gaussian noise channels. Here, energy-efficient
transmission is formulated to find a tradeoff among transmis-
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sion energy, circuit energy, and transmission duration. Simi-
larly, a steepest descent gradient algorithm is designed in [12]
to obtain the optimal rate that minimizes the average power
consumption subject to a constraint on average throughput.

Due to limited wireless resources, intricate performance
tradeoffs exist between an individual user and the whole
network. The exploitation of diversity across all users will
further reduce overall network energy consumption. Wireless
resources can be managed in different domains to improve
network energy efficiency. For example, in the time domain,
e.g., in a time-division multiple access (TDMA) network, the
channel medium is shared through time division. Each user
tends to extend its transmission time to save energy, which
contradicts the intention of energy savings of other users.
Thus, the allocation of time duration among all users is critical
in determining network energy efficiency. Because the modu-
lation order determines data rate and thus the time transmitting
a certain amount of information, finding the optimal slot length
for each user is equivalent to determining its corresponding
constellation size [13]. Spatial domain cooperation can also be
used to improve system energy efficiency. It has been observed
that significant energy savings can be achieved and the savings
grow almost linearly with distance when either transmitter or
receiver cooperation is allowed [14], [15].

While extensive efforts have been undertaken to improve
energy-efficient resource management in both the spatial and
time domains, little effort has been devoted to the frequency
domain. In fact, increasing transmission bandwidth improves
energy efficiency. However, it is impossible to allocate the
entire system bandwidth exclusively to one user since this may
hurt the energy efficiency of other users. Hence, it is critical to
consider overall network energy efficiency when performing
frequency-domain resource management. The frequency selec-
tivity of wideband wireless channels further accentuates this
necessity. Additionally, orthogonal frequency division multiple
access (OFDMA) has emerged as one of the prime multiple
access schemes for next generation wireless networks[16],
[17]. While extensive research has been done to improve
throughput [18], [19], limited has been conducted for energy-
efficient communications in OFDMA systems. Our previous
work in [11], [20]–[22] studied the uplink communications in
wireless OFDMA systems to improve the energy efficiency
of mobile users. Specifically, we focused on optimizing a
“bits-per-Joule” metric to target energy-efficiency instead of
throughput or peak rates. Circuit power consumption, in
addition to transmit power, was also explicitly included in our
optimization. In our previous work, the optimal solutions were
obtained with the help of iterative approaches, which were not
only complex but also incurred additional energy consump-
tion due to multiple iterations. Therefore lower-complexity
techniques for achieving energy-efficient communication are
highly desirable.

In this paper, we will develop schemes to reduce the
complexity associated with the iterative search techniques
proposed in [11], [20], [21]. Both low-complexity energy-
efficient link adaptation and resource allocation schemes will
be designed. With the help of locally linear approximation,
we use a time-averaged “bits-per-Joule” energy efficiency
metric to obtain closed-form link adaptation and resource

Fig. 1. Network architecture.

allocation schemes for uplink OFDMA systems in frequency-
selective channels and the proposed approaches perform close
to the global optimum. The rest of the paper is organized
as follows. In Section II, we describe the system model
and design objectives. Then we develop energy-efficient link
adaptation and resource allocation schemes in Sections III and
IV, respectively. Simulation results are provided in Section V.
Finally, we conclude the paper and summarize the results in
Section VI.

II. SYSTEM DESCRIPTION

We focus on an uplink OFDMA system, as shown in Figure
1, as the radio frequency (RF) transmit power for a user
dominates the limited power budget of a battery-constrained
mobile device. The base station (BS) assigns subchannels for
each user to optimize the overall network energy efficiency.
Channels are assumed to be frequency-selective and with
block fading, i.e. the channel state is constant within each
frame [23]. Accurate channel state information is available to
both BS and mobile users to optimize energy-efficient commu-
nications. The link adaptation and resource allocation settings
are allowed to vary from one frame to another according to
the channel state information.

Consider a network with 𝑁 users and 𝐾 subchannels.
Denote the index set of all subchannels as 𝒦 = {1, 2, ⋅ ⋅ ⋅ ,𝐾}
and the index set of subchannels assigned to User 𝑛 at Frame
𝑡 to be 𝒞𝑛[𝑡]. Each subchannel is assigned to only one user in
each frame. Consequently,

𝒞𝑖[𝑡]
∩

𝒞𝑗[𝑡] = ∅, ∀𝑖 ∕= 𝑗∪
𝑖

𝒞𝑖[𝑡] ⊆ 𝒦,
(1)

where ∅ denotes an empty set. The data rate of User 𝑛 at
Frame 𝑡 is

𝑟𝑛[𝑡] =
∑

𝑘∈𝒞𝑛[𝑡]

𝑟𝑛𝑘[𝑡], (2)
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where 𝑟𝑛𝑘[𝑡] is the data rate of User 𝑛 at subchannel 𝑘
and depends on the frequency-selective fading. If we use
exponentially-weighted low-pass filter to get average data rate
of User 𝑛 at Frame 𝑡, it can be expressed as

𝑇𝑛[𝑡] = (1 − 1

𝑤
)𝑇𝑛[𝑡− 1] +

1

𝑤
𝑟𝑛[𝑡], (3)

where 𝑤 ≫ 1.

Denote the signal-to-noise ratio (SNR) for reliable recep-
tion of 𝑟𝑛𝑘[𝑡] to be

𝜂𝑛𝑘 = 𝑆(𝑟𝑛𝑘[𝑡]). (4)

For example, the achievable data transmission rate 𝑟𝑖 is
determined by [24]

𝑟𝑖 = 𝐵 log2(1 +
𝜂𝑖
Γ

), (5)

and correspondingly 𝑆() is given by

𝜂𝑛𝑘 =
(

2
𝑟𝑖
𝐵 − 1

)
Γ, (6)

where Γ is the SNR gap between the channel capacity
and a practical coding and modulation scheme. For coded
quadrature-amplitude modulation (QAM), the gap is [24]

Γ = 9.8 + 𝛾𝑚 − 𝛾𝑐 (dB), (7)

where 𝛾𝑚 is system design margin and 𝛾𝑐 is coding gain. For
Shannon capacity (P.373 of [25]), Γ = 0 dB. We can see in (6)
that function 𝑆(𝑟) is strictly convex in 𝑟 and 𝑆(0) = 0. Hence,
in general, we do not specify the exact form of 𝑆(𝑟) and only
assume 𝑆(𝑟) to be strictly convex in 𝑟 and 𝑆(0) = 0. Denote
the signal power attenuation of User 𝑛 on Subchannel 𝑘 at
Frame 𝑡 to be 𝑔𝑛𝑘[𝑡], then the required power on Subchannel
𝑘 for User 𝑛 to transmit at a rate of 𝑟𝑛𝑘[𝑡] will be

𝑝𝑛𝑘[𝑡] =
𝜂𝑛𝑘𝜎

2

𝑔𝑛𝑘[𝑡]
=

𝑆(𝑟𝑛𝑘[𝑡])𝜎2

𝑔𝑛𝑘[𝑡]
, (8)

where 𝜎2 is the power of additive white Gaussian noise
(AWGN). The overall transmit power of User 𝑛 is

𝑝𝑛[𝑡] =
∑

𝑘∈𝒞𝑛[𝑡]

𝑝𝑛𝑘[𝑡]. (9)

As indicated in [11], [20], circuit power, 𝑝𝑐, in addition to
the transmit power, also needs to be considered in energy-
efficient communications. While transmit power is used for
reliable data transmission, circuit power represents energy
consumption of device electronics themselves. The overall
weighted moving average power consumption, 𝑃𝑛[𝑡], is also
obtained using an exponentially weighted moving average
low-pass filter, that is,

𝑃𝑛[𝑡] = (1 − 1

𝑤
)𝑃𝑛[𝑡− 1] +

1

𝑤
(𝑝𝑛[𝑡] + 𝑝𝑐𝑛[𝑡]). (10)

The circuit power, 𝑝𝑐𝑛[𝑡], is measured at Frame 𝑡 by User
𝑛. Here, the power consumption of each user is divided
into two parts. 𝑝𝑐𝑛[𝑡] models the part of power consumption
independent of the radio transmission, e.g. link adaptation,
while 𝑝𝑛[𝑡] the part depending on the radio transmission.

For energy-efficient communications, users want to send as
much data as possible with a given amount of energy. Hence,

with energy △𝑒 consumed in a duration △𝑡, User 𝑛 wants to
send a maximum amount of data by choosing 𝑟𝑛𝑘[𝑡], 𝑘 ∈ 𝒞𝑛[𝑡],
to maximize

𝑇𝑛[𝑡] △ 𝑡

△𝑒
, (11)

which is equivalent to maximize

𝑢𝑛[𝑡] =
𝑇𝑛[𝑡]

△𝑒/△ 𝑡
=

𝑇𝑛[𝑡]

𝑃𝑛[𝑡]
. (12)

𝑢𝑛 is called average energy efficiency of User 𝑛. Adapting
transmission rate and power to optimize equation (12) is
referred to as energy-efficient link adaptation.

If the overall transmit power is fixed, the objective of
Equation (12) is equivalent to maximizing the overall through-
put and existing water-filling power allocation approaches
[18], [25] can be used. However, besides adapting the power
distributions on all subchannels, the overall transmit power
can also be adapted according to the states of all subchannels
and the history of data transmission and power consumption to
maximize the average energy efficiency. Hence, the solution
to Equation (12) is different from existing power allocation
schemes that maximize throughput with power constraints.

When multiple users are involved in a wireless network, the
BS determines subchannel assignment to optimize the overall
network performance. Two multi-user energy efficiency met-
rics, arithmetic and geometric means of the energy efficiency
of all users in the network, can be considered. Considering
these performance metrics in the context of spectral efficiency,
we note that the arithmetic-mean metric leads to power alloca-
tion for sum throughput maximization, and assures no fairness
since some users may have zero throughput. However, the
geometric-mean metric introduces proportional fairness among
all users [26], [27]. Analogously, we call energy-efficiency
optimization schemes using geometric- or arithmetic-mean
metrics to be energy-efficient schedulers with or without
fairness, respectively.

With the arithmetic-mean metric, the subchannels are al-
located to maximize the arithmetic average of the energy
efficiency of all users, i.e. to maximize

𝑈 [𝑡] =

𝑁∑
𝑛=1

𝑢𝑛[𝑡]. (13)

With the geometric-mean metric, the subchannels are al-
located to maximize the geometric average of the energy
efficiency of all users, i.e. to maximize

𝑉 [𝑡] =

𝑁∑
𝑛=1

log(𝑢𝑛[𝑡]). (14)

Sometimes, the circuit power dominates the power con-
sumption in the above optimization, e.g. in short-range com-
munications where low transmit power is needed to compen-
sate for path loss. For example, consider a commercial 802.11
network adapter, Cisco Aironet 802.11a/b/g Wireless CardBus
Adapter. As shown in [28], its operating voltage is 3.3 Volts
and when it transmits at 54 Mbps, the current is 554 milliamps.
Then the overall power consumption, including both transmit
power and circuit power, is 3.3 × 554 = 1828 milliwatts.
However, as shown in [28], the transmit power for reliable
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data transmission can be only 20 milliwatts when the data
rate is 54 Mbps for a communications range of 13 meters.
Assuming a power amplifier efficiency of 20%, the overall
transmit power for reliable data transmission for this device is
expected to be 100 mW. Hence, the circuit power consumption
is 1828 − 100 = 1728 milliwatts. More examples can be
easily found for other types of short-range communications,
e.g. Bluetooth. In this case, maximizing energy efficiency in
(12) is equivalent to maximizing throughput 𝑇𝑛[𝑡] as 𝑃𝑛[𝑡]
is almost independent of transmit power allocation and rate
adaptation. Correspondingly, (13) is equivalent to maximizing
the sum of throughput weighted by the inverse of circuit
power and (14) equals maximizing the product of throughput.
The dependence of the optimization on circuit power will be
further demonstrated later.

In the following, we develop link adaptation and resource
allocation strategies in closed-forms, based on optimizing the
energy-efficient metrics discussed in this section.

III. ENERGY-EFFICIENT LINK ADAPTATION

In this section, we investigate energy-efficient link adapta-
tion for a single user with a given channel assignment. There-
fore, user index, 𝑛, is dropped in the subsequent discussion in
this section.

From Section II, we need to determine the data rates at all
subchannels to maximize

𝑢[𝑡] =
𝑇 [𝑡]

𝑃 [𝑡]

=
(1 − 1

𝑤 )𝑇 [𝑡− 1] + 1
𝑤

∑
𝑘 𝑟𝑘[𝑡]

(1 − 1
𝑤 )𝑃 [𝑡 − 1] + 1

𝑤 (
∑

𝑘 𝑝𝑘[𝑡] + 𝑝𝑐[𝑡])
,

(15)

where 𝑝𝑘[𝑡 + 1] is given by (8). Denote the data rate vector
on all assigned subchannels to be r[𝑡]. Then 𝑢[𝑡] is a function
of r[𝑡]. As shown in Appendix A, 𝑢[𝑡] is a strictly quasi-
concave function of r[𝑡] and hence, a unique globally optimal
rate vector, r∗[𝑡], always exists [29] and every element in r∗[𝑡]
satisfies

∂𝑢[𝑡]

∂𝑟𝑘[𝑡]
= 0 (16)

if 𝑟𝑘[𝑡] > 0. Note that in (15), only 𝑟𝑘[𝑡] and 𝑝𝑘[𝑡] are
functions of 𝑟𝑘[𝑡] and other terms are independent of 𝑟𝑘[𝑡].
Then solving (16) yields the following optimal rate condition

∂𝑝𝑘[𝑡]

∂𝑟𝑘[𝑡]
=

𝑃 [𝑡]

𝑇 [𝑡]
=

1

𝑢[𝑡]
, ∀𝑘. (17)

If 𝑤 ≫ 1, as assumed, 𝑃 [𝑡] ≈ 𝑃 [𝑡− 1] and 𝑇 [𝑡] ≈ 𝑇 [𝑡− 1],

∂𝑝𝑘[𝑡]

∂𝑟𝑘[𝑡]
=

𝑃 [𝑡 − 1]

𝑇 [𝑡− 1]
=

1

𝑢[𝑡− 1]
, ∀𝑘. (18)

Together with (8), we have

𝑆
′
(𝑟𝑘[𝑡]) =

1

𝑢[𝑡− 1]

𝑔𝑘[𝑡]

𝜎2
, ∀𝑘. (19)

where 𝑆
′
(⋅) is the derivative of the function 𝑆(⋅). Conse-

quently, the optimal data rate follows immediately,

𝑟∗𝑘[𝑡]= max

(
𝑆

′−1( 1

𝑢[𝑡− 1]

𝑔𝑘[𝑡]

𝜎2

)
, 0

)
∀𝑘 ∈ 𝒞[𝑡]. (20)

where 𝑆
′−1() is the inverse function of 𝑆

′
. The corresponding

optimal power allocation is

𝑝∗𝑘[𝑡] =
𝑆(𝑟∗𝑘[𝑡])𝜎2

𝑔𝑘[𝑡]
, ∀𝑘 ∈ 𝒞[𝑡]. (21)

Note that in the above derivation, approximation is only
used in (18). If 𝑤 is sufficiently large, the approximation error
is closed to zero and (20) and (21) are almost globally optimal.

If each subchannel is experiencing AWGN and the Shannon
capacity (P.373 of [25]) is achieved on each subchannel, 𝑟 =
𝐵 log2(1+𝜂). Then 𝑆(𝑟) = 2

𝑟
𝐵 −1, where 𝐵 is the subchannel

bandwidth. The optimal data rate on Subchannel 𝑛 is

𝑟∗𝑘[𝑡]= max

(
𝐵 log2

(
𝐵𝑔𝑘[𝑡]

𝑢[𝑡− 1]𝜎2 log 2

)
, 0

)
∀𝑘 ∈ 𝒞[𝑡].

(22)
The corresponding optimal power allocation on Subchannel 𝑛
is

𝑝∗𝑘[𝑡] = max

(
𝐵

𝑢[𝑡− 1] log 2
− 𝜎2

𝑔𝑘[𝑡]
, 0

)
∀𝑘 ∈ 𝒞[𝑡], (23)

which is a water-filling power allocation with a water level of
𝐵

𝑢[𝑡−1] log 2 , as in Figure 2. We can see that the energy-efficient
link adaptation in (20), (21), (22), and (23) is determined
by 𝑢[𝑡 − 1] and 𝑔𝑘[𝑡], and is expressed in closed form.
This significantly reduces the complexity associated with the
iterative solutions developed earlier in [11]. From Figure 2,
we can also see that every shadowed part corresponds to the
power allocated on each subchannel.

IV. ENERGY-EFFICIENT RESOURCE ALLOCATION

In this section, we will consider low-complexity energy-
efficient resource allocation for multi-user networks. Here
index 𝑛 is necessary to indicate a particular user. Schedulers
based on both the arithmetic and the geometric mean will be
derived.

A. Energy-Efficient Scheduler without Fairness Consideration

In this section, the subchannels are assigned such that the
sum energy efficiency 𝑈 [𝑡] is maximized. Since 𝑈 [𝑡 − 1] is
fixed, it is equivalent to maximize

△𝑈 = 𝑈 [𝑡] − 𝑈 [𝑡− 1]

=

𝑁∑
𝑛=1

𝑢𝑛[𝑡] −
𝑁∑

𝑛=1

𝑢𝑛[𝑡 − 1]

=

𝑁∑
𝑛=1

(𝑢𝑛[𝑡] − 𝑢𝑛[𝑡− 1]).

(24)

We can see that

𝑢𝑛[𝑡] − 𝑢𝑛[𝑡− 1] =
𝑇𝑛[𝑡]

𝑃𝑛[𝑡]
− 𝑇𝑛[𝑡− 1]

𝑃𝑛[𝑡 − 1]

=
𝑇𝑛[𝑡]𝑃𝑛[𝑡 − 1] − 𝑃𝑛[𝑡]𝑇𝑛[𝑡− 1]

𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]
.

(25)

Substituting Equations (3) and (10) into (25), we have

𝑢𝑛[𝑡]− 𝑢𝑛[𝑡− 1]

=

⎛
⎝𝑃𝑛[𝑡 − 1]

∑
𝑘∈𝒞𝑛[𝑡]

𝑟𝑛𝑘[𝑡]−
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Fig. 2. Low-complexity energy-efficient water-filling power allocation.

𝑇𝑛[𝑡− 1](
∑

𝑘∈𝒞𝑛[𝑡]

𝑝𝑛𝑘[𝑡]+𝑝𝑐𝑛[𝑡])

⎞
⎠/(𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1])

=
∑

𝑘∈𝒞𝑛[𝑡]

𝑃𝑛[𝑡− 1]𝑟𝑛𝑘[𝑡]− 𝑇𝑛[𝑡− 1]𝑝𝑛𝑘[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]
− 𝑇𝑛[𝑡− 1]𝑝𝑐𝑛[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]

=

𝐾∑
𝑘=1

𝐼𝑘(𝒞𝑛[𝑡])
𝑃𝑛[𝑡]𝑟𝑛𝑘[𝑡]− 𝑇𝑛[𝑡− 1]𝑝𝑛𝑘[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡 − 1]

− 𝑇𝑛[𝑡− 1]𝑝𝑐𝑛[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]
,

where indicator function 𝐼𝑘(𝒞𝑛) is defined as

𝐼𝑘(𝒞𝑛) =

{
1 𝑘 ∈ 𝒞𝑛,
0 otherwise.

(26)

Hence, the subchannel assignment is to maximize

△𝑈=

𝑁∑
𝑛=1

(𝑢𝑛[𝑡] − 𝑢𝑛[𝑡− 1])

=

𝑁∑
𝑛=1

𝐾∑
𝑘=1

𝐼𝑘(𝒞𝑛[𝑡])
𝑃𝑛[𝑡− 1]𝑟𝑛𝑘[𝑡]−𝑇𝑛[𝑡− 1]𝑝𝑛𝑘[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]

−
𝑁∑

𝑛=1

𝑇𝑛[𝑡− 1]𝑝𝑐𝑛[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]

=

𝐾∑
𝑘=1

𝑁∑
𝑛=1

𝐼𝑘(𝒞𝑛[𝑡])
𝑃𝑛[𝑡− 1]𝑟𝑛𝑘[𝑡]−𝑇𝑛[𝑡− 1]𝑝𝑛𝑘[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]

−
𝑁∑

𝑛=1

𝑇𝑛[𝑡− 1]𝑝𝑐𝑛[𝑡]

𝑤𝑃𝑛[𝑡]𝑃𝑛[𝑡− 1]
.

Denote the allocation metric to be

𝐽(𝑛, 𝑘) =
𝑃𝑛[𝑡 − 1]𝑟𝑛𝑘[𝑡] − 𝑇𝑛[𝑡− 1]𝑝𝑛𝑘[𝑡]

𝑃𝑛[𝑡]𝑃𝑛[𝑡 − 1]

≈ 𝑃𝑛[𝑡 − 1]𝑟𝑛𝑘[𝑡] − 𝑇𝑛[𝑡− 1]𝑝𝑛𝑘[𝑡]

𝑃 2
𝑛 [𝑡− 1]

=
𝑟𝑛𝑘[𝑡]

𝑃𝑛[𝑡 − 1]
− 𝑢𝑛[𝑡 − 1]

𝑝𝑛𝑘[𝑡]

𝑃𝑛[𝑡− 1]
,

(27)

where 𝑟𝑛𝑘[𝑡] is given by (20) and 𝑝𝑛𝑘[𝑡] (21).

It is easy to see that △𝑈 is maximized by assigning
subchannel 𝑘 to the user with the highest allocation metric
𝐽(𝑛, 𝑘) on that subchannel, that is, the optimal subchannel
assignment is

𝒞∗
𝑛 = {𝑘∣𝐽(𝑛, 𝑘) > 𝐽(𝑚, 𝑘), ∀𝑚 ∕= 𝑛}, ∀𝑛. (28)

Note that in the above derivation, approximation is used in
(27). If 𝑤 is sufficiently large, the approximation error is close
to zero and the proposed scheduler is almost globally optimal.

When the circuit power dominates the power consumption,
the allocation metric is

𝐽𝑡(𝑛, 𝑘) ≈ 𝑟𝑛𝑘[𝑡]

𝑃𝑛[𝑡− 1]
. (29)

Assume all users consume the same circuit power and 𝑃𝑛[𝑡−1]
is the same for all users. Since the user with the maximum
𝑟𝑛𝑘[𝑡] is the same as the one with the maximum SINR on that
subchannel, the energy-efficient scheduler is equivalent to ap-
plying the traditional max-SINR scheduler on each subchannel
to achieve the highest spectral efficiency [30], which is,

𝒞∗
𝑛 = {𝑘∣𝑟𝑛,𝑘 > 𝑟𝑚,𝑘, ∀𝑚 ∕= 𝑛}, ∀𝑛. (30)
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B. Energy-Efficient Scheduler with Fairness Consideration

In order to maximize the geometric mean of the energy effi-
ciency of all users, the subchannels are assigned to maximize

𝑉 [𝑡] =

𝑁∑
𝑛=1

log(𝑢𝑛[𝑡]), (31)

which is equivalent to maximize

△𝑉 = 𝑉 [𝑡] − 𝑉 [𝑡− 1]

=

𝑁∑
𝑛=1

log(𝑢𝑛[𝑡])−
𝑁∑

𝑛=1

log(𝑢𝑛[𝑡− 1])

=

𝑁∑
𝑛=1

(
log

(
𝑇𝑛[𝑡]

𝑇𝑛[𝑡 − 1]

)
− log

(
𝑃𝑛[𝑡]

𝑃𝑛[𝑡 − 1]

))
.

(32)

Using the Taylor series expansion and the fact that 𝑤 ≫ 1,
we have

log

(
𝑇𝑛[𝑡]

𝑇𝑛[𝑡− 1]

)
= log

(
1− 1

𝑤
+

1
𝑤

∑
𝑘∈𝒞𝑛

𝑟𝑛𝑘[𝑡]

𝑇𝑛[𝑡 − 1]

)

≈ log(1 − 1

𝑤
) +

∑
𝑘∈𝒞𝑛

𝑟𝑛𝑘[𝑡]

𝑇𝑛[𝑡 − 1](𝑤 − 1)
.

(33)

Similarly, we have

log

(
𝑃𝑛[𝑡]

𝑃𝑛[𝑡− 1]

)

≈ log(1 − 1

𝑤
) +

∑
𝑘∈𝒞𝑛

𝑝𝑛𝑘[𝑡] + 𝑝𝑐𝑛[𝑡]

𝑃𝑛[𝑡− 1](𝑤 − 1)
.

(34)

Hence, △𝑉 can be expressed as

△𝑉 =

𝑁∑
𝑛=1

( ∑
𝑘∈𝒞𝑛[𝑡]

𝑟𝑛𝑘[𝑡]

𝑇𝑛[𝑡 − 1](𝑤 − 1)

−
∑

𝑘∈𝒞𝑛[𝑡]
𝑝𝑛𝑘[𝑡] + 𝑝𝑐𝑛[𝑡]

𝑃𝑛[𝑡− 1](𝑤 − 1)

)

=

𝑁∑
𝑛=1

𝐾∑
𝑘=1

(
𝐼𝑘(𝒞𝑛[𝑡])

( 𝑟𝑛𝑘[𝑡]

𝑇𝑛[𝑡 − 1](𝑤 − 1)

− 𝑝𝑛𝑘[𝑡]

𝑃𝑛[𝑡 − 1](𝑤 − 1)

))−
𝑁∑

𝑛=1

𝑝𝑐𝑛[𝑡]

𝑃𝑛[𝑡 − 1](𝑤 − 1)

=

𝐾∑
𝑘=1

𝑁∑
𝑛=1

(
𝐼𝑘(𝒞𝑛[𝑡])

( 𝑟𝑛𝑘[𝑡]

𝑇𝑛[𝑡 − 1]

− 𝑝𝑛𝑘[𝑡]

𝑃𝑛[𝑡 − 1]

)
/(𝑤 − 1)

)
−

𝑁∑
𝑛=1

𝑝𝑐𝑛[𝑡]

𝑃𝑛[𝑡− 1](𝑤 − 1)
.

Denote the allocation metric to be

𝐽𝑓 (𝑛, 𝑘) =
𝑟𝑛𝑘[𝑡]

𝑇𝑛[𝑡− 1]
− 𝑝𝑛𝑘[𝑡]

𝑃𝑛[𝑡− 1]
, (35)

where 𝑟𝑛𝑘[𝑡] is given by (20) and 𝑝𝑛𝑘[𝑡] (21). Therefore, △𝑉
is maximized by assigning subchannel 𝑘 to the user with the
highest allocation metric 𝐽𝑓 (𝑛, 𝑘) on that subchannel, that
is, the optimal subchannel assignment achieving proportional
fairness is

𝒞∗
𝑛 = {𝑘∣𝐽𝑓 (𝑛, 𝑘) > 𝐽𝑓 (𝑚, 𝑘), ∀𝑚 ∕= 𝑛}, ∀𝑛. (36)

In the above derivation, approximations are used in (33) and
(34). If 𝑤 is sufficiently large, the approximation error is zero
and the proposed scheduler is almost globally optimal.

When the circuit power dominates the power consumption,
the allocation metric is

𝐽𝑡𝑓 (𝑛, 𝑘) ≈ 𝑟𝑛𝑘[𝑡]

𝑇𝑛[𝑡− 1]
, (37)

and the energy-efficient scheduler is equivalent to applying
the traditional proportional-fair scheduler [26], [27] on each
subchannel, that is,

𝒞∗
𝑛 = {𝑘∣𝐽𝑡𝑓 (𝑛, 𝑘) > 𝐽𝑡𝑓 (𝑚, 𝑘), ∀𝑚 ∕= 𝑛}, ∀𝑛. (38)

V. NUMERICAL RESULTS

In the previous sections, we have obtained closed-form
expressions for energy-efficient link adaptation and resource
allocation. In this section, we compare these proposed schemes
with the global optima to evaluate the suboptimality gap.
For link adaptation, the global optimum is the solution that
globally maximizes (15). Since 𝑢[𝑡] in (15) is strictly quasi-
concave in the data rate vector r[𝑡], a local optimal solution is
also globally optimal [29] and we use the iterative approach
in [21] to obtain the global optimal link adaptation. For
energy-efficient schedulers, the global optimum is the solution
that globally maximizes 𝑈 [𝑡] in (13) or 𝑉 [𝑡] in (14). We
exhaustively search all possible subchannel assignments as
well as the corresponding optimal link adaptation. The solution
that achieves the highest 𝑈 [𝑡] or 𝑉 [𝑡] is globally optimal.
The weight of the exponentially weighted low-pass filter,
the number of subchannels, and the number of users in the
system determine the approximation accuracy in deriving the
closed-form approaches in this paper. Hence, we will focus
on their impact on the system energy efficiency performance.
Although actual throughput and energy efficiency trade offs
are important part of energy aware design, they have been
discussed in our previous work [21], [22] and are not repeated
here. The focus here is to evaluate the performance of low-
complexity schemes.

ITU multipath pedestrian channel A [31] is used to model
the frequency-selective fading. Capacity approaching coding is
assumed. Figure 3 compares the low-complexity suboptimal
approaches with the global optimal approaches for energy-
efficient link adaptation when there are 10 subchannels in
the system. The energy efficiency of the proposed link adap-
tation is normalized by the energy efficiency of the global
optimal solution. We show the normalized energy efficiency
with different weights, 𝑤. 𝜖 is the transmit power to circuit
power ratio assuming the transmit power is allocated such
that the average achieved spectral efficiency is one bit/s/Hz.
The circuit power is varied to have different 𝜖 values. From
the figure the proposed link adaptation performs closely to
the global optimum, with a performance loss of less than 2%
when 𝑤 > 10. Figure 4 further demonstrates the normalized
energy efficiency when the system has different numbers of
subchannels. We can see while more subchannels result in
less approximation accuracy of the proposed low-complexity
energy-efficient link adaptation scheme, larger 𝑤 can be used
to ensure a small suboptimality gap.
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Figure 5 shows the normalized energy efficiency of different
schedulers in a three-user network. Since we need to exhaus-
tively search all possible subchannel assignments as well as
the corresponding optimal link adaptation to find the global
optimal solution, the complexity grows exponentially. For
example, when there are three users and eight subchannels in
the network, there are 38 = 6561 possible channel assignments
and for each channel assignment we need to iteratively search
for the optimal link adaptation for each user. To reduce the
complexity, the network is configured eight subchannels. As
shown in Figure 5, the performance loss of the proposed low-
complexity close-form schedulers and link adaptation is within
5% when 𝑤 > 10. Table I further demonstrates the impact
of the number of users on the system performance when the
network has eight subchannels.

As shown in Figures 3 and 5, both weight, 𝑤, and transmit
to circuit power ratio, 𝜖, impact the system performance. The
selection of the weight determines the approximation accuracy
of (18), (27), (33), and (34). For example, in (27), 𝑃𝑛[𝑡] is
approximated by 𝑃𝑛[𝑡−1]. It is easy to see that when 𝑤 = ∞,
𝑃𝑛[𝑡] = 𝑃𝑛[𝑡−1] according to (10) and there is no approxima-
tion error. However, whenever 𝑤 is finite, there is an approxi-
mation error and this error decreases with 𝑤. This can be seen
if we define the error to be 𝑒𝑟𝑟 = ∣𝑃𝑛[𝑡]−𝑃𝑛[𝑡−1]∣, in which
𝑃𝑛[𝑡] is the true value and 𝑃𝑛[𝑡−1] is the approximate value of
𝑃𝑛[𝑡] in (27). Referring to (10), 𝑒𝑟𝑟 = ∣−𝑃𝑛[𝑡−1]+𝑝𝑛[𝑡]+𝑝𝑐𝑛[𝑡]∣

𝑤
and 𝑒𝑟𝑟 decreases with 𝑤. Furthermore, the approximation
error determines the accuracy of the allocation metric (third
line of (27)). Hence, the selection of 𝑤 impacts the system
performance. Similar analysis can be applied to (18), (33)
and (34). The impact of the transmit power to circuit power
ratio, 𝜖, is the same as the impact of circuit power. When
circuit power is larger, our previous work [21] has shown
that energy-efficient link adaptation will choose higher data
rate. Intuitively, this is because when circuit power is larger,
energy-efficient link adaptation tends to transmit at a higher
data rate to reduce the transmission time such that the circuit
energy consumption can be reduced. Hence, when circuit
power is larger, the actual optimal energy-efficient data rate
is also larger. Furthermore, the optimal transmit power is
also larger according to (21). However, to obtain closed-form
solutions, we have approximated that 𝑇 [𝑡] ≈ 𝑇 [𝑡 − 1] and
𝑃 [𝑡] ≈ 𝑃 [𝑡 − 1]. Given 𝑤, the approximation error depends
on the actual optimal data rate and transmit power in 𝑇 [𝑡]
and 𝑃 [𝑡]. Hence, the circuit power impacts the approximation
accuracy and thus the system performance. Besides 𝑤 and
𝜖, the number of users and sub-channels in the system also
impact the system performance. Note that approximation is
used on each subchannel for each user to achieve close-form
link adaptation on all subchannels. When there are multiple
users and subchannels in the system, the approximation errors
on all subchannels of all users will be accumulated to impact
the behavior of both scheduling and link adaptation. Hence,
the suboptimality gap also depends on the number of users and
subchannels in the system, as shown in Table I and Figure 4.
However, the approximation accuracy can always be improved
by using higher values of 𝑤.
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Fig. 3. Normalized energy efficiency of a single link varying the weight of
low-pass filer, w (𝜖: transmit to circuit power ratio).
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Fig. 4. Normalized energy efficiency of a single link varying the number of
subchannels ( 𝜖 = 1).

VI. CONCLUSION

This paper developed low-complexity energy efficient
link adaptation and resource allocation schemes for uplink
OFDMA communication systems. By considering time av-
eraged bit-per-Joule metrics, we derived energy optimal link
adaptation and resource scheduling techniques in closed forms
and the results are also summarized in Table II. Our solutions
are applicable for frequency selective channels and account for
time varying circuit power in computing the time-averaged
energy efficient metrics. The simulation results included in
this paper show that the proposed low-complexity schemes
perform close to the globally optimum solutions obtained
through exhaustive search, under a variety of scenarios.
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TABLE I
IMPACT OF THE NUMBER OF USERS

Number of Users Normalized energy efficiency Normalized energy efficiency
of Max-AM scheduler of Max-GM scheduler

2 0.958 0.9952
3 0.9394 0.9931
4 0.9337 0.9926

TABLE II
MAIN RESULTS

Function Formula

Link adaptation 𝑟∗𝑘[𝑡]= max
(
𝑆

′−1( 1
𝑢[𝑡−1]

𝑔𝑘[𝑡]
𝜎2

)
, 0
)

and 𝑝∗𝑘[𝑡] =
𝑆(𝑟∗𝑘[𝑡])𝜎

2

𝑔𝑘[𝑡]
, ∀𝑘 ∈ 𝒞[𝑡].

Scheduler w/o fairness 𝐽(𝑛, 𝑘) = 𝑟𝑛𝑘[𝑡]
𝑃𝑛[𝑡−1] − 𝑢𝑛[𝑡− 1] 𝑝𝑛𝑘[𝑡]

𝑃𝑛[𝑡−1] and 𝒞∗
𝑛 = {𝑘∣𝐽(𝑛, 𝑘) > 𝐽(𝑚, 𝑘), ∀𝑚 ∕= 𝑛}, ∀𝑛

Scheduler w/ fairness 𝐽𝑓 (𝑛, 𝑘) = 𝑟𝑛𝑘[𝑡]
𝑇𝑛[𝑡−1] − 𝑝𝑛𝑘[𝑡]

𝑃𝑛[𝑡−1] and 𝒞∗
𝑛 = {𝑘∣𝐽𝑓 (𝑛, 𝑘) > 𝐽𝑓 (𝑚, 𝑘), ∀𝑚 ∕= 𝑛}, ∀𝑛
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Fig. 5. Normalized average energy efficiency of a three-user network (𝑤:
weight of low-pass filer; 𝜖: the average transmit power to circuit power ratio;
Max-AM: max arithmetic mean energy-efficient scheduler; and Max-GM:
max geometric mean energy-efficient scheduler).

APPENDIX A
QUASICONCAVITY OF ENERGY EFFICIENCY FUNCTION

Proof: Denote the sublevel sets of 𝑢[𝑡] as

Γ𝛼 = {r[𝑡] ર 0
∣∣𝑢[𝑡] ≥ 𝛼} for any real 𝛼, (A.39)

where 0 is the zero vector and symbol ર denotes vector
inequality and r[𝑡] ર 0 means each element of r[𝑡] is
nonnegative. According to Proposition C.9 of [29], 𝑢[𝑡] is
strictly quasiconcave if and only if Γ𝛼 is strictly convex for
any real number 𝛼. When 𝛼 ≤ 0, 𝑢[𝑡] ≥ 𝛼 for all r[𝑡]. Hence,
Γ𝛼 is strictly convex when 𝛼 ≤ 0. Now we investigate the
case when 𝛼 > 0. Γ𝛼 is equivalent to

Γ𝛼=

{
r[𝑡] ર 0

∣∣∣∣ (1− 1
𝑤
)𝑇 [𝑡− 1] + 1

𝑤

∑
𝑘 𝑟𝑘[𝑡]

(1− 1
𝑤
)𝑃 [𝑡− 1] + 1

𝑤
(
∑

𝑘 𝑝𝑘[𝑡] + 𝑝𝑐[𝑡])
≥ 𝛼

}

=

{
r[𝑡] ર 0

∣∣∣∣∣ 1𝑤
∑
𝑘

𝑟𝑘[𝑡]− 𝛼

𝑤

∑
𝑘

𝑝𝑘[𝑡] +𝑄 ≥ 0

}

=

{
r[𝑡] ર 0

∣∣∣∣∣ 1𝑤
∑
𝑘

𝑟𝑘[𝑡]− 𝛼

𝑤

∑
𝑘

𝑆(𝑟𝑘[𝑡])𝜎
2

𝑔𝑘[𝑡]
+𝑄 ≥ 0

}
.

(A.40)

where 𝑄 = (1 − 1
𝑤 )𝑇 [𝑡 − 1] − 𝛼(1 − 1

𝑤 )𝑃 [𝑡 − 1] − 𝛼
𝑤𝑝𝑐[𝑡].

Since 𝑆(𝑟) is strictly convex in 𝑟, it is easy to see that Γ𝛼

is strictly convex. Hence, we have the strict quasiconcavity of
𝑢[𝑡].
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