627
Vi använder variabeln x i stället för 'theta'.
cos4x = Re(e4ix) = Re (eix)4 = Re (cosx + isinx)4 = [ i-termerna tas ej med ] =
cos4x - 6cos2xsin2x + sin4x = [ sin2x = 1 - cos2x ] = cos4x - 6cos2x(1 - cos2x) + (1 - cos2x)2 =
cos4x - 6cos2x + 6cos4x + 1 - 2cos2x + cos4x = 8cos4x - 8cos2x + 1 = [ cos2x = (1 + cos2x)/2 ] =
8cos4x - 4(1 + cos2x) + 1 = 8cos4x - 4cos2x - 3,
V.S.B.
628a)
Utnyttja sambandet (1 + i)2 = 2i.
(1 + i)100 = ((1 + i)2)50) = (2i)50 = [ enligt de Moivre, 2i = 2ei/2 ] = 250(cos50
/2 + isin50
/2) =
250(cos( + 24
) + isin(
+ 24
) = 250(cos
+ isin
) = 250(-1 + 0) = -250
V.S.B
628b)
(1 + i)100 = (2i)50 = 250(i2)25 = 250(-1)25 = 250(-1) = -250
V.S.B.