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1.1. Irreducibility and dimension of topological spaces.

(1.1.1) Setup. [G](EGA 20, 0.14.3) Let X be a topological space. A non-empty→
subset is irreducible if it can not be written as a union of two proper closed subset,
or equivalently, if any two open non empty subsets intersect.

(1.1.2) Definition. The combinatorial dimension , denoted dimX , of a topo-
logical space X is the supremum of the length n of chains

X0 ⊂ X1 ⊂ · · · ⊂ Xn

of irreducible closed subsets of X.
Given a closed irreducible subset Y of X. The combinatorial codimension ,

denoted codim(Y,X) , is the supremum of the length n of chains

Y = X0 ⊂ X1 ⊂ · · · ⊂ Xn

of irreducible closed subsets Xi of X.

(1.1.3) Definition. A chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of irreducible closed subsets of
a topological space X is saturated if there is no irreducible closed subset Z of X
such that Zi ⊂ Z ⊂ Zi+1 for some i.

A topological space X is catenary if the codimension codim(Z, Y ) is finite for
all pairs Z ⊂ Y of closed irreducible subsets and every saturated chain

Z = Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = Y

of irreducible closed subsets have the same length.

(1.1.4) Proposition. A topological space X is catenary if and only if the codi-
mension codim(Z, Y ) is finite for all pairs Z ⊂ Y of irreducible closed subsets,
and for every irreducible closed subset T of Z we have that

codim(T, Y ) = codim(T, Z) + codim(Z, Y ).

Proof. It is clear that the formula of the Proposition holds when X is catenary.
Conversely, assume that the formula holds, and that we have two chains between

X and Y with lenghts m and n, and with m ≤ n. If m = 1 we must have
that m = n. We prove the assertion by induction on m and assume that the
Proposition holds for all chains of length m. Assume that m > 1 and m < n.
Let Z = Z0 ⊂ · · · ⊂ Zm = Y be a saturated chain of length m. We have that
codim(Z0, Zm) ≥ n > m and codim(Z0, Z1) = 1. Hence it follows from the formula
of the Proposition that

codim(Z1, Zm) = codim(Z0, Zm) − codim(Z0, Z1) > m− 1.

However, it follows from the induction assumption that we have codim(Z1, Zm) =
m − 1. Hence we obtain a contradiction to the assumption that m < n, and we
must have that m = n.

snitt
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(1.1.5) Definition. A topolgical space X is noetherian if every descending chain

X1 ⊇ X2 ⊇ · · ·

of closed subsets of X is stationary.

(1.1.6) Remark. Every subspace of a noetherian space is noetherian.
Moreover, every noetherian space X is compact. Indeed, consider the family

of closed subsets of X that are not compact. If this family is not empty it has a
minimal element Y . Given an open covering (Ui)i∈I of Y . For any i such that
Ui is non empty we have that Y \ Ui is a proper closed subset of Y and thus can
be covered by a finite number of the members of (Ui)i∈I . However, then Y is
covered by these members and Ui, and consequently Y is compact, contrary to the
assumption. Hence the family is empty.

(1.1.7) Proposition. Every noetherian topological space X can be uniquely writ-
ten as a union X = ∪ni=1Xi of irreducible closed subsets Xi of X such that
Xi 6⊆i6=j Xj.

Proof. Consider the family of closed subsets of X that can not be written as a
finite union of closed irreducible subsets. If the family is empty it has a minimal
member Y . Then Y is not irreducible so Y = Y1 ∪ Y2 where Y1 and Y2 are proper
closed subsets of Y . However, then Y1 and Y2, and thus Y , can be written as a
finite union of closed irreducible subsets, contary to the assumption on Y . The
family is thus empty and we have proved the first part of the Proposition.

For the second part, assume that X = ∪mi=1X
′
i. For each i we have that Xi ⊆

∪mj=1X
′
j , and thus Xi ⊆ X ′

j for some j. A similar reasoning shows that Xj ⊆ Xk

for some k. Thus i = k and we have that Xi = X ′
j. In this way we see that the

members of the sets {X1, . . . , Xn} and {X ′
1, . . . , X

′
m} are pairwise equal and we

have proved the Proposition.

(1.1.8) Definition. Given a noetherian space X. The irreducible sets Xi of X
in Proposition (1.1.7) are called the irreducible components of X.→

We say that X has pure dimension if all the components Xi have the same
finite dimension.

For each point x in X we denote by dimxX the maximum of the dimensions
of the irreducible components passing by x.

(1.1.9) Remark. We have that

dimX =
n

max
i=1

dimXi

because every irreducible subset in X is contained in one of the irreducble com-
ponents Xi.
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1.2. Constructible sets.

(1.2.1) Setup. [G] [EGA 11, III0, 9.1, 9.2, 9.3]

Let X be a topological space.

(1.2.2) Definition. Given a topological space X and two points x and y. We
say that y is a specialization of x or that x specializes to y if y is in the closure
{x} of x in X. We also say that x is a generization of y. When X = {x}, that is,
when all points of X are specializations of x, we say that x is a genric point for
X.

(1.2.3) Remark. Given a point x in a topological space X. Then {x} is a closed
irreducible subset of X with generic point x.

(1.2.4) Definition. A subset of a topological space is locally closed if it is the
intersection of a closed and an open subset.

(1.2.5) Definition. Given a noetherian topological space X. A subset is con-
structible if it belongs to the smallest family of subsets of X that contain all
closed subsets and that are closed under finite intersections and passing to the
complement.

(1.2.6) Remark. The constructible sets in a noetherian topological space can
equivalently be defined as the smallest family of subsets of X that contain all open
subsets and is closed under finite unions and passing to the complement.

(1.2.7) Proposition. Given a subset Z of a noetherian topological space X. The
following three assertions are equivalent:

(1) The set Z is constructible.
(2) The set Z is a finite union of locally closed subsets of X.
(3) The set Z is a finite disjoint union of locally closed subsets of X.

Proof. It is clear that (3) implies (2) and that (2) implies (1).

We show that (1) implies (2). Since the set of locally closed subsets contains
all open sets it suffices to show that the family of sets that consists of all finite
unions of locally closed sets is closed under finite intersections and passing to the
complement. It is clear that it is closed under finite unions. Write Z as a union
Z = ∪mi=1(Ui ∩ V

c
i ) of locally closed sets, where Ui and Vi are open subsets of X.

Then we have that

Zc =
m⋂

i=1

(Ui ∩ V
c
i )c =

m⋂

i=1

(U ci ∪ Vi) =
m⋂

i=1

U ci
⋃

(Ui
⋂
Vi).

snitt
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Consequently we have that Zc is the disjoint union of the sets

U ci1 ∩ · · · ∩ U cir ∩ (Uir+1
∩ Vir+1

) ∩ · · · ∩ (Uin ∩ Vim),

where {i1, . . . , in} = {1, . . . , n}.
Next we show that (2) implies (3). Let Z = ∪mi=1Zi be the union of locally

closed sets Zi. Then Z is the disjoint union of the sets

Zi1 ∩ · · · ∩ Zir \ (Zir+1
∪ · · · ∪ Zin = Zi1 ∩ · · · ∩ Zir ∩ (Zir+1

∪ · · · ∪ Zin)c)

= Zi1 ∩ · · · ∩ Zir ∩ Zcir+1
∩ · · · ∩ Zcin ,

where {i1, . . . , im} = {1, . . . ,m}. We saw above that Zcj is a disjont union of
locally closed subsets. Consequently we have that all the above sets are locally
closed and that (3) holds for Z.

(1.2.8) Lemma. Given a noetherian topological space X. A subset Z of X is
constructible if and only if, for every closed irreducible subset Y of X such that
Z ∩Y is dense in Y , we have that Z ∩Y contains an open non empty subset of Y .

Proof. Assume that Z is constructible and write Z = ∪mi=1(Vi ∩ Zi), where Vi is
open inX and Zi is closed inX. Let Y be a closed irreducible subset ofX such that
Z∩Y is dense in Y . We have that Z∩Y = ∪mi=1((Vi∩Y )∩(Zi∩Y )). We obtain that

Y = (Z ∩ Y ) ⊆ ∪mi=1(Zi∩Y ). However Y is irreducible so that Y ⊆ Zi∩Y for some
i. It follows that Y = Zi∩Y . Then we have that Vi∩Y = (Vi∩Y )∩(Zi∩Y ) ⊆ Z∩Y .

Conversely, assume that Z ∩ Y contains an open non empty subset of Y for all
closed irreducible subsets of X such that Z ∩Y is dense in Y . Consider the family
F consisting of closed subsets Y of X such that Z ∩ Y is not constructible. If this
family is non empty it has a minimal element. We replace X by this set, and can
assume that Z ∩ Y is constructible for all proper closed subsets Y of X.

If we have that X = X1 ∪ X2, where X1 and X2 are proper closed subsets of
X, then we have that Z ∩X1 and Z ∩X2 are constructible and consequently we
have that Z = (Z ∩X1) ∪ (Z ∩X2) is constructible.

On the other hand, if X is irreducible and the closure Z is properly contained
in X we have that Z = Z ∩ Z is constructible. Finally, if X is irreducible and
X = Z then, by assumption, Z contains an open non empty subset U of X. Then
Y = X \ U is a proper closed subset of X and we have that Z = U ∩ (Y ∩ Z) is
constructible.

In all cases we have that Z = Z ∩ X is constructible. Consequently we have
that F is empty and we have proved the Lemma.

(1.2.9) Proposition. Given a noetherian topological space such that every closed
irreducible subset has a generic point. Let Z be a constructible subset of X and let
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x be a point of Z. Then Z is a neighbourhood of x if and only if every generization
of x is in Z.

Proof. It is clear that if Z is a neighbourhood of x, then every generization of x
is in Z.

Conversely, assume that every generization of x is in Z. Let F be the family of
closed subsets Y ofX that contain x and are such that Y ∩Z is not a neighbourhood
of x in Y . If F is not empty it contains a minimal element. We can replace this
subset with X and assume that Z∩Y is a neighbourhood of x for all proper closed
subsets Y of X.

Assume that X = X1 ∪ X2, where X1 and X2 are proper closed subsets. If
x ∈ Xi there is an open subset Ui of Xi such that x ∈ Ui ⊆ Z ∩Xi. On the other
hand, if x /∈ Xi then we let Ui = ∅. Let Yi = Xi \ Ui and let Y = Y1 ∪ Y2. Then
Y is closed in X and U = X \ Y is a neighbourhood of x. Moreover we have that
U ⊆ U1 ∪ U2 ⊆ Z, and consequently we have that Z is a neighbourhood of x.

If X is irreducible with generic point x′, then x′ is in Z. Consequently we have
that X is the closure of Z, and it follows from Lemma (1.2.8) that there is an open→
subset U of X contained in Z. If x is in U we have that Z is a neighbourhood of
x. If not we have that Y = X \ U is a proper closed subset of X that contains x.
Consequently Z ∩ Y is a neighbourhood of x in Y . Let F be the closure of X \ Z
in X. Then we have that F is the closure of X \ Z in X \ U = Y . Consequently
we have that x is not in F . Consequently we have that X \ F is a neighbourhood
of x which is contained in Z.

In both the cases we have that Z is a neighbourhood of x in X. This contradicts
the assumption on X. Consequently the family F is empty and we have proved
the Proposition.

(1.2.10) Proposition. Given a noetherian topological space where all closed ir-
reducible subsets have a generic point. A subset U is open if and only if, for
every point x in U , every generization of x is contained in U , and U ∩ {x} is a

neighbourhood of x in {x}.

Proof. It is clear that every open subset satisfies the conditions of the Proposition.

Conversely, assume that the conditions are satisfied. It follows from Lemma
(1.2.8) that U is constructible and from Proposition (1.2.9) that U is open.→→

(1.2.11) Lemma. Given an integral domain B and a subring A of B such that
B is a finitely generated A-algebra. Then there is a non zero element a in A such
that SpecAa is contained in the image of the map SpecB → SpecA.

Proof. Write B = A[x1, . . . , xn]. Denote by K and L the quotient field of A re-
spectively B. If necessary, renumber the generators x1, . . . , xn such that x1, . . . , xr
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is a transcendence basis for L over K. We have relations

bi0x
n0

i + · · · bin0
= 0 for i = r + 1, . . . , n

with the bkj in A[x1, . . . , xr]. Let a in A[x1, . . . , xr] be one of the non zero coeffi-
cients of the polynomial b =

∏n
i=r+1 bi0.

Let P be a prime ideal of A such that a /∈ P . Let Q = P [x1, . . . , xr]. Then
Q is a prime ideal in A[x1, . . . , xr] and we have that b /∈ Q and consequently we
have that BQ is integral over A[x1, . . . , xr]Q. We obtain that there is a prime
ideal R in BQ which contracts to QA[x1, . . . , xr]Q. Then the contraction of R to
A[x1, . . . , xr] is Q and the contraction of R to A is consequently A. Hence the
contraction of R ot B contracts to P in A. Consequently P is in the image of
SpecB and we have proved the Lemma.

(1.2.12) Proposition. (Chevalley) Given a morphism of finite type f :X → Y
of noetherian schemes. For each constructible subset Z of X the subset f(Z) of Y
is constructible.

Proof. Write Z = ∪ni=1Zi where each Zi is locally closed. We give each Zi the
reduced structure. The immersion of Zi in X is of finite type since X is noetherian.
It follows that we can replace X by the disjoint union of the Zi and consequently
can assume that X = Z and that X is reduced.

Given a closed irreducible subset T of Y such that T ∩ f(X) is dense in T . It
follows from Lemma (1.2.8) that it suffices to show that T ∩ f(X) contains an→
open subset of T . Since T ∩ f(X) = ff−1(T ) we can replace Y by T and X by
f−1(T ), both with their reduced structure. Consequently we can assume that X
is reduced that Y is integral, and that f(X) is dense in Y .

We shall prove that f(X) contains an open non empty subset of Y , and can
assume that X and Y are affine. Write X = ∪mi=1Xi as a union of irreducible
sets Xi. Since Y is irreducible we have that at least one of the f(Xi) is dense in
Y . Consequently we can assume that X is affine and integral. Let X = SpecB
and Y = SpecA. Then A and B are integral domains and A is contained in B.
Since f is of finite type the same is true for the A-algebra B. Consequently the
Proposition follows from Lemma (1.2.11).→
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1.3. Constructible functions.

(1.3.1) Setup. [2] [EGA 11, III0, 9.3] Given a noetherian topological space X.

(1.3.2) Definition. A map h:X → T from a noetherian topological space X to
a set T is constructible if h−1(t) is a constructible subset of X for all t in T and
h−1(t) is empty except for a finite number of elements t of T .

(1.3.3) Proposition. Given a map h:X → T from a noetherian toplogical space
X to a set T . Then h is constructible if and only if, for every closed irreducible
subset Y of X, there is an open non empty subset U of Y , such that h is constant
on U .

Proof. Assume that h is constructible and let Y be a closed irreducible subset.
Then we have that h−1(t) is empty for all but a finite number t1, . . . , tn of points
in T , and Y is the union of the closures of Y ∩ h−1(ti) for i = 1, . . . , n. Since Y is
irreducible we have that Y is contained in the closure of Y ∩ h−1(ti) for some i.
Consequently Y is the closure of the constructible subset Y ∩ h−1(ti). It follows
from Lemma (?) that Y ∩ h−1(ti) contains an open non empty subset U of Y .→
Moreover, we have that h takes the value ti on U .

In order to show the converse statement we consider the family F of closed
subsets Y of X such that h|Y is not constructible. If F is non empty it has a
miminal element Y .

Assume that Y = ∪ni=1Yi is a union of proper closed subsets Yi. Then h|Yi is
constructible for i = 1, . . . , n. Consequently we have that h|Y is constructible,
contrary to the assumption that Y is in F .

If Y is irreducible it follows from the assumption of the Proposition that there is
an open non empty subset U of Y where h is constant. However, then h|(Y \U) is
constructible because Y is minimal in F . Since constructible subsets of Y \U are
constructible in Y it follows that h|Y is constructible, contrary to the assumption
that Y is in F .

It follows that F is empty and that the Proposition holds.

(1.3.4) Corollary. Given a noetherian topological space X where every closed
irreducible subset has a generic point. A map h:X → T into a set T is constructible
if h−1(t) is constructible for all t in T .

Proof. Given an irreducible closed subset Y of X and let y be the generic point
of Y . Then Y ∩ h−1h(y) is constructible in Y and contains y. In particular we
have that Y ∩ h−1h(y) is dense in Y . It follows from Lemma (?) that there is an→
open non empty subset U of Y contained in Y ∩ h−1h(y). However h(t) = h(y)
for t ∈ U . It follows from the Proposition that h is constructible.
snitt
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(1.3.5) Definition. A map h:X → T from a topological space X to an ordered
set T is upper semi continous if the set {x: h(x) < t} is open in X for all t ∈ T .

(1.3.6) Proposition. Given a noetherian topological space X where all the closed
irreducible subsets have a generic point. Let h:X → T be a constructible function
from X to an ordered set T . Then h is upper semi continous if and only if we
have, for every point x of X and every generization x′ of x that h(x′) ≤ h(x).

Proof. The function h has only a finite number of values since it is constructible.
Consequently h is upper semi contiuous if and only if the set

Zx = {x′ ∈ X: h(x′) ≤ h(x)}

is a neighbourhood of x for all x in X. We have that Zx is constructible because
it is a finite union of constuctible sets. It follows from Proposition (?) that Zz→
is a neighbourhood of x if and only if we have, for every irreducible closed subset
Y of X that contains x, that the generic point y of Y lies in Zx. However an
irreducible closed subset Y contains x if and only if the generic point of Y is a
generization of x. Consequently we have that Zx is a neighbourhood of x if and
only if every generization of x lies in Zx. Consequently the Proposition follows
from Proposition (?).→
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1.4. The ring of constructible functions.

(1.4.1) Definition. We let X be a noetherian scheme. For every subset Y of
X we denote by χY the characteristic function on Y . The set of all constructible
functions h:X → Z we denote by C(X). Sending an integer to the constant fuction
with the ineteger as value denines an injective map Z → C(X).

(1.4.2) Remark. We have that C(X) is a Z-algebra. Indeed, let f and g be in
C(X). Then fg and f + g only take a finite number of values. Moreover the sets

Xt = {x: (f + g)(x) = t}

and
Yt = {x: (fg)(x) = t}

are constructible because Xt is the disjoint union of the constructible sets

{x: f(x) = u} ∩ {x: g(x)t− u},

for a finite number of u ∈ Z, and Yt is the disjoint union of the constructible sets

{x: g(x) = u} ∩ {x: g(x) = t/u},

for a finite number of u ∈ Z when t 6= 0 and Y0 = {x: f(x) = 0} ∪ {x: g(x) = 0}.

(1.4.3) Remark. For every constructible set Z ⊆ X we have a direct sum
decomposition

C(X) = C(Z) ⊕ C(X \ Z)

given by
f = fχZ + (1 − χZ)f.

(1.4.3) Proposition. As a Z-module C(X) is free. A basis is given by the char-
acteristic functions of the closed irreducible subsets of X.

Proof. The characteristic functions of constructible closed subsets of X generate
the Z-module C(X) because, if h is constructible we have that

h =
∑

t∈Z

h(t)χXt
,

where Xt = {x:h(x) = t}. It follows from Proposition (?) that the constructible→
sets are disjoint unions of locally closed sets. Consequently we have that C(X)
is generated as a Z-module, by the characteristic function of locally closed sets.
snitt



12 January 2006 Chp 1.4 The ring of constructible functions 2

Given a locally closed set U ∩ Z, where U is open and Z is closed in X. Then we
have that

χU∩Z = χZ − χUc∩Z .

Hence the characteristic functions of closed sets generate C(X) as a Z-module. We
shall show, by noetherian induction, that che characteristic functions of closed sets
can be written as sums, with integer coefficients, of the characteristic functions of
closed irreducible sets. Let F be the family of all non empty closed subsets of X
whose characteristic function is not in the group generated by the characteristic
functions of closed irreducible sets. If F is non empty it contains a smallest member
Y . Then Y can not be irreducible.

If Y = Y1 ∪ Y2 is a union of two proper closed subsets we have that

χY = χY1
+ χY2

− χY1∩Y2
.

However the sets Y1, Y2 and Y1 ∩ Y2 are all in the family F . It follows that Y is
also in the family, contrary to the assumption. Consequently the set F is empty
and we have shown that the characteristic functions of closed irreducible subsets
generate C(X).

Finally we have to show that the characteristic functions of closed irreducible
subsets are linearly independent over Z. Assume that

m∑

i=1

niχXi
= 0

where X1, . . . , Xm are different closed irreducible sets and where n1, . . . , nm are
non zero integers. Let Xi be a maximal element among the sets X1, . . . , Xm. We
can not have that Xi ⊆ ∪j 6=iXj because then the irreducibility of Xi would imply
that Xi ⊆ Xj for some j 6= i which contradicts the maximality of Xi. We can
therefore choose an point x ∈ Xi \ ∪j 6=iXj . We obtain that

0 =

m∑

i=1

niχXi
(x) = ni,

which contradicts the assumption that all the ni are non zero. Consequently we
have no relation of the form

∑m
i=1 niχXi

= 0, unless all the ni are zero.
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1.5. The mapping cone.

(1.5.1) Setup. The objects that we shall treat will be modules over a fixed ring,
or more generally, OX -modules on a fixed scheme X.

We shall write a complex of modules (F , d) on the form

· · · → F−1 d−1

−−→ F0 d0
−→ F1 → · · · ,

where F i sits in degree i. The homology module in degree i of the complex we
denote by H i(F).

(1.5.2) Definition. Given an integer i. The complex (F [i], d[i]) translated i
times is defined by

F [i]j = F i+j and d[i]j = (−1)idi+j .

A map ϕ:F → G of complexes is a quasi isomorphism if it induces an isomorphism
Hi(ϕ):Hi(F) → Hi(G) of homology groups for all i.

Given two complexes (F , dF) and (G, dG). We denote by (F ⊕ G, dF ⊕ dG) the
complex given by

(F ⊕ G)i = F i ⊕ Gi, and (dF ⊕ dG)i =
(
di
F 0

0 d
Gi

)
.

(1.5.3) Definition. Given a map ϕ:F → G of complexes. The mapping cone
(K(ϕ), d(ϕ)) of ϕ is the complex defined by

K(ϕ)i = F i+1 ⊕ Gi, and d(ϕ)i =
(

−di+1 0

ϕi+1 di

)
.

In other words, if (f, g) are local sections of F i+1 ⊕ Gi then we have that

d(ϕ)i(f, g) = (−di+1f, ϕi+1f + dig).

(1.5.4) Remark. Given an OX -module M we associate to M the complex

· · · → 0 → M → 0 → · · · ,

where M sists in degree 0. Given a map of OX -modules M → N . We obtain a
map ϕ:F → G of the corresponding complexes. Then the mapping cone K(ϕ) is
the complex

· · · → 0 → M
ϕ
−→ N → 0 → · · · ,

where M sits in degree −1 and N in degree 0.
snitt
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(1.5.5) Remark. Given a complex F of OX -modules and let ϕ: 0 → F be the
map from the zero complex. Then K(ϕ) = F .

(1.5.6) Lemma. There is an exact sequence of complexes

0 → G

(
0

1

)

−−−→ K(ϕ)
( 1 0 )
−−−→ F [1] → 0.

In particular we have a long exact sequence

· · · → Hi(F)
δi

−→ Hi(G) → Hi(K(ϕ)) → H i+1(F)
δi+1

−−−→ · · · .

Proof. It is easy to check that the maps in the short sequence are maps of com-
plexes. For the right map it is important that d[1]j = −dj . It is clear that we
obtain a short exact sequence.

(1.5.6) Proposition. In the long exact sequence of Lemma (1.5.5) we have that→
δi = Hi(ϕ).

In particular, the map ϕ is a quasi isomorphism if and only if K(ϕ) is acyclic.

Proof. It suffices to check the Proposition locally. Take an element f in F [1]i+1 =
F i such that −dif = d[1]i−1f = 0. The element f is the image of the element
(f, 0) in Ki−1(ϕ) = F i ⊕ Gi−1 and the image of (f, 0) by the differential in K(ϕ)
is (−dif, ϕif + di−10) = (0, ϕi(f)). Consequently the image of the class of f by δi

is equal to the class of ϕi(f) in Hi(G). Hence we have proved the first part of the
Proposition. The second part follows immediately from the first part.

(1.5.8) Proposition. Given a commutative diagram

0 −−−−→ F ′ α′

−−−−→ F
α′′

−−−−→ F ′′ −−−−→ 0

ϕ′

y ϕ

y ϕ′′

y

0 −−−−→ G′ β′

−−−−→ G
β′′

−−−−→ G′′ −−−−→ 0

of complexes of OX -modules, where the horizontal sequences are exact. Then we
have an exact sequence of complexes

0 → K(ϕ′)

(
α′ 0

0 β′

)

−−−−−−→ K(ϕ)

(
α′′ 0

0 β′′

)

−−−−−−→ K(ϕ′′) −→ 0.

Proof. The proof is an easy computation.
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(1.5.9) Lemma. Given maps of complexes ϕ:F → G and ψ:G → H. We obtain
a map of complexes

η =
(
ϕ −1

0 ψ

)
:F ⊕ G → G ⊕H.

Moreover, we obtain an exact sequence of complexes

0 → K(ϕ)




1 0

0 0

0 1

0 0




−−−−−→ K(η)

(
0 1 0 0

0 0 0 1

)

−−−−−−−→ K(ψ) → 0.

Proof. It is clear that η is a map of complexes. Moreover, it is clear that the short

sequence is exact in each degree. To check that α =




1 0

0 0

0 1

0 0


 and β =

(
0 0 0 0

0 0 0 1

)

are maps of complexes it suffices to verify from the equalities Aα = α
(

−d 0

ϕ d

)
and

βA =
(

−d 0

ϕ d

)
where A =




−d 0 0 0

0 −1 0 0

ϕ −1 0 0

0 ψ 0 d


.

(1.5.10) Lemma. Given maps of complexes ϕ:F → G and ψ:G → H of OX -

modules, and let η =
(
ϕ −1

0 ψ

)
:F ⊕ G → G ⊕ H be the resulting maps. Then we

obtain an exact sequence

0 → K(idG)




0 0

−1 0

0 1

0 −ψ




−−−−−−−−→ K(η)

(
1 0 0 0

0 0 ψ 1

)

−−−−−−−→ K(ψϕ) → 0.

Proof. It is easy to check, locally, that the sequence is exact in each degree. To

show that α =




0 0

−1 0

0 1

0 −ψ


 and β =

(
1 0 0 0

0 0 ψ 1

)
are maps of complexes we only have

to check that α
(

−d 0

1 d

)
= Aα and βA =

(
−d 0

ψϕ d

)
β where A =




−d 0 0 0

0 −d 0 0

ϕ −1 d 0

0 ψ 0 d


.

(1.5.11) Proposition. Given maps of complexes ϕ:F → G and ψ:G → H of

OX -modules, and let η =
(
ϕ −1

0 ψ

)
:F ⊕ G → G ⊕ H be the resulting maps. Then

there is a long exact sequence

· · · → Hi−1(K(ψ))
δi

−→ Hi(K(ϕ)) → H i(K(ψϕ)) → H i(K(ψ)) → · · · .
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Proof. It follows from Lemma (1.5.8) that we have a long exact sequence→

· · · → Hi−1(K(ψ))
δi

−→ Hi(K(ϕ)) → H i(K(η)) → H i(K(ψ)) → · · · ,

From Lemma (1.5.6) it follows that H i(K(idG)) = 0. Consequently it follows from→

Lemma (1.5.8) that H i(K(η)) = H i(K(ψϕ)), for all i.→
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1.5. Additive functions on complexes.

(1.5.1) Setup. The objects that we shall treat in this sections are OX -modules
over a fixed scheme X. We give a class C ′ of OX modules and an additive function

λ′: C′ → A

into an abelian group A. That is, for every exact sequence

0 → M′ → M → M′′ → 0

of modules in C′ we have that

λ′(M) = λ′(M′) + λ′(M′′).

We denote by C the class consisting of all complexes (F , d), where the coho-
mology modules H i(F) are all in C′ and where all except a finite number of the
Hi(F) are zero. The family C ′ will, as usual, be considered as a subfamily of C, by
identification of a module M with the complex · · · → 0 → M → 0 → · · · , where
M sits in degree zero. We can extend λ′ to a function

λ: C → A,

by

λ(F) =

∞∑

i=0

(−1)iλ(Hi(F)).

It follows from the cohomology sequence associated to a short exact sequence of
members of C that λ is additive . That is, given a short exact sequence

0 → F ′ → F → CalF ′′ → 0

of sequences in C, then we have that

λ(F) = λ(F ′) + λ(F ′′).

More generally, given a homomorphism ϕ:F → G of complexes such that the
mapping cone K(ϕ) is in C, we write

λ(ϕ) = λ(K(ϕ)).

(1.5.2) Remark. Given a homomorphism ϕ:M → N of OX -modules. We
consider the modules as complexes. It follows from Remark (?) that the mapping→

cone K(ϕ) of the resulting map of complexes is the complex · · · → 0 → M
ϕ
−→

N → 0 → · · · , with N in degree −1 and M in degree 0. Consequently we have
that K(ϕ) is in C if and only if kerϕ and cokerϕ are in C. When this is true we
have that

λ(ϕ) = λ(cokerϕ) − λ(kerϕ).

In this case λ(ϕ) is often called the Herbrand quotient of ϕ.
snitt
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(1.5.3) Remark. Given a complex F and let ϕ: 0 → F be the map from the null
complex. The we have that K(ϕ) = F , and if F is in C we have that λ(ϕ) = λ(F).

(1.5.4) Proposition. Given a map ϕ:F → G of complexes that are in C and
such that K(ϕ) is in C. Then we have that

λ(ϕ) = λ(G) − λ(F).

Proof. The Proposition immediately follows from the exact sequence of Lemma
(?).→

(1.5.5) Proposition. Given a commutative diagram

0 −−−−→ F ′ −−−−→ F −−−−→ F ′′ −−−−→ 0

ϕ′

y ϕ

y ϕ′′

y

0 −−−−→ G′ −−−−→ G −−−−→ G ′ −−−−→ 0

of complexes, where the horizontal sequences are exact. If the sequences K(ϕ′),
K(ϕ) and K(ϕ′′) are all in C, we have that

λ(ϕ) = λ(ϕ′) + λ(ϕ′′).

Proof. The Proposition is an immediate consequence of Proposition (?).→

(1.5.6) Proposition. Given maps ϕ:F → G and ψ:G → H of complexes such
that K(ϕ), K(ψ) and K(ψϕ) are in C. Then we have that

λ(ψϕ) = λ(ϕ) + λ(ψ).

Proof. The Proposition is an immediate consequence of Proposition (?).→



12 January 2006 Chp 2.1 The dimension of algebras 1

2.1. The dimension of algebras.

(2.1.1) Setup. The Krull dimension , denoted dimA , of a ring is the combi-
natorial dimension of SpecA [33] [A-M Ch. 8]. The height , denoted htA , of a
prime ideal P of A is the dimension dimAP of the localization of A in P .

A chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of prime ideals in A are saturated if the corre-
sponding chain of irreducible sets in SpecA is saturated.

(2.1.2) Remark. For all prime ideals P in A we have that htP = dimAP =
codim(SpecA/P, SpecA). When A is noetherian we have that htP = dimAP is
finite [33] [A-M 11.14].

(2.1.3) Definition. A ring A is catenary if SpecA is catenary, and A is univer-
sally catenary if every finitely generated A-algebra is catenary.

(2.1.4) Remark. If A is catenary, every residue is catenary. Hence A is univer-
sally catenary if and only if polynomial rings A[x1, . . . , xn] over A are catenary.
Moreover, if A is catenary then the quotient of A in any multiplicatively closed
system is catenary.

It follows from Proposition (top, 1.4) that a noetherian domain A is catenary→
if and only if, for every pair of prime ideals P ⊂ Q we have that

htQ = htP + htQ/P

or, for every pair of primes P ⊂ Q in A such that htQ/P = 1 we have that

htQ = htP + 1.

(2.1.5) Theorem. (Noethers normalization lemma). Given an algebra A of finite
type over a field k and let

I1 ⊆ I2 ⊆ · · · ⊆ Ip

be a chain of ideals in A with Ip 6= A. Then there are algebraically independent
elements x1, . . . , xn of A such that:

(1) The ring A is integral over k[x1, . . . , xn]. [33] [A-M Ch. 5 p. 60].
(2) There are integers h(1) ≤ h(2) ≤ · · · ≤ h(p) such that

Ii ∩ k[x1, . . . , xn] = (x1, . . . , xh(i)), for i = 1, . . . , p.

Proof. It suffices to prove the Theorem when A is a quotient of a ring of polyno-
mials k[y1, . . . , ym] over k. Indeed, writing A = k[y1, . . . , ym]/I ′0, the inverse image
of the chain of ideals of the theorem by the residue map gives a chain

I ′0 ⊆ I ′1 ⊆ · · · ⊆ I ′p
snitt
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of ideals in the polynomial ring k[y1, . . . , ym]. If the Theorem holds for the polyno-
mial ring k[y1, . . . , ym] there are algebraically independent elements x′1, . . . , x

′
n′ and

a sequence of integers h′(0), . . . , h′(p) that satisfy (1) and (2) for k[y1, . . . , ym] and
the chain I ′0 ⊆ · · · ⊆ I ′p of ideals. We have that I ′0∩k[x

′
1, . . . , x

′
n′ ] = (x′1, . . . , x

′
h′(0)),

and consequently the map k[y1, . . . , ym] → A induces an isomorphism between
k[x′h′(o)+1, . . . , x

′
n′ ] and k[x1, . . . , xn], where xi is the image of x′h′(0)+i and n =

n′ = h′(0). Hence the Theorem holds for A with x1, . . . , xn and h(i) = h′(i)−h′(0)
for i = 1, . . . , p.

We first assume that p = 1 and that I1 is a principal ideal generated by an
element x1 /∈ k. Then we have that

x1 = p(y1, . . . , ym) =
∑

(i1,...,im)

a(i1,...,im)y
i1
1 · · · yimm ,

for some elements a(i1,...,im) ∈ k. Choose positive integers r2, . . . , rm and let
xi = yi − yri

1 , for i = 2, . . . ,m. We have that y1 satisfies the polynomial equation

∑

(i1,...,im)

a(i1,...,im)y
i1
1 (x2 + yr21 )i2 · · · (xm + yrm

1 )im − x1 = 0

with coefficients in k[x1, . . . , xm]. Let f(i1, . . . , im) = i1+r2i2+· · ·+rmim. We see
that, choosing ri = li where l is greater than the total degree of p, we can obtain
that the degree f(i1, . . . , im) of the highest power of y1 in each of the summands
above, are all different. With such a choise of the ri we have that y1 is integral over
k[x1, . . . , xm]. It follows from the transitivity of integral dependence [33] [A-M 5.4]
that y1, . . . , ym are all integral over k[x1, . . . , xm]. Consequently we have that A
in integral over k[x1, . . . , xm] [33] [A-M 5.3].

We have that I1 ∩ k[x1, . . . , xm] = x1k[x1, . . . , xm] because every element in
I1∩k[x1, . . . , xm] can be written as a = x1a

′ with a in k[x1, . . . , xm]. Consequently
we have that a′ is in A ∩ k(x1, . . . , xm). However, we have that k[x1, . . . , xm]
is algebraically closed in k(x1, . . . , xm) ([AM?]), and consequently that a′ is in→
k[x1, . . . , xm]. Hence we have that a ∈ x1k[x1, . . . , xm]. We have finished the case
p = 1 and I1 principal.

Next assume that p = 1 and I1 arbitrary. We prove this case by induction on
m. If m = 1 the Theorem is trivally true. We can assume that I1 6= 0. Let x1 ∈ I1
be a non zero element. Then x1 /∈ k. By the case when I ′1 is principal we can
find algebraically independent elements x1, t2, . . . , tm in A such that A is integral
over k[x1, t2, . . . , tm] and x1A ∩ k[x1, t2, . . . , tm] = x1k[x1, t2, . . . , tm]. It follows
from the induction assumption that there are algebraically independent elements
x2, . . . , xm in k[t2, . . . , tm] and an integer h′(1) such that the Theorem holds for
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the ring k[t2, . . . , tm] and the ideal I1 ∩ k[t2, . . . , tm]. We have that x1, x2, . . . , xm
are algebraically independent, and, since x1 ∈ I1, we have that

I1 ∩ k[x1, . . . , xm] = x1k[x1, . . . , xm] + I1 ∩ k[x2, . . . , xm].

It follows that the elements x1, . . . , xm and the integer h(1) = h′(1) + 1 have the
required properties with respect to k[x1, . . . , xm] and the ideal I1. Hence we have
proved the Theorem for p = 1.

To prove the Theorem for arbitrary p we use induction on p. Assume that the
Theorem holds for p − 1. Then there are elements t1, . . . , tm and integers h(1) ≤
· · · ≤ h(p−1) that satisfy the Theorem for the chain I1 ⊆ I2 ⊆ · · · ⊆ Ip−1. Let r =
h(p− 1). It follows from the case p = 1 applied to the algebra k[tr+1, . . . , tm] and
the ideal Ip∩k[tr+1, . . . , tm] that there are elements xr+1, . . . , xm in k[tr+1, . . . , tm]
and an integer h′(1) that satisfy the Theorem for the ring k[tr+1, · · · , tm] and the
ideal Ip∩k[tr+1, . . . , tm]. Let xi = ti for i = 1, . . . , r. Then the elements x1, . . . , xm
and the integers h(1) ≤ · · · ≤ h(p− 1) ≤ h(p) = r + h′(1) satisfy the assertions of
the Theorem because the elements x1, . . . , xr are in Ip, and thus

Ip ∩ k[x1, . . . , xm] = (x1, . . . , xr)k[x1, . . . , xm] + Ip ∩ k[xr+1, . . . , xm].

(2.1.6) Proposition. Given an integral domain A which is a finitely generated
algebra over the field k. Then the following three assertions hold:

(1) For every saturated chain of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pr in A we
have that r = td. deg.k A.

(2) dimA = td. deg.k A.
(3) For every prime ideal P in A we have that

dimA = dimAP + dimA/P.

Proof. We have that (1) implies (2). Moreover, from (1) applied to chains that
contain P we see that (1) implies (3),.

In order to prove (1) we take algebraically independent elements x1, . . . , xn in
A such that A is integral over k[x1, . . . , xn] and such that Pi ∩ k[x1, . . . , xn] =
(x1, . . . , xh(i)) for some integers 0 ≤ h(0) ≤ h(1) ≤ · · · ≤ h(r) ≤ n. Then n =
td. deg.k A and we must have that r ≤ n and h(0) = 0. Since the chain P0 ⊂ P1 ⊂
· · · ⊂ Pr is saturated we must have that r = n. Indeed, if h(i + 1) > h(i) + 1
we can extend the ideal (x1, . . . , xh(i)+1) to a prime ideal P such that Pi ⊂ P ⊂
Pi+1, using going down [33] [A-M, 5.16] on the algebra A/Pi and the subalgebra
k[x1, . . . , xn]/k[x1, . . . , xn] ∩ Pi = k[xh(i)+1, . . . , xn].
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(2.1.7) Corollary. The field k is universally catenary.

Proof. It suffices to show that the polynomial ring A = k[x1, . . . , xn] is catenary.
Let P ⊂ Q be prime ideals in A. It follows from assertion (3) of the Proposition
that

htP = n− dimA/P

and
htQ = n− dimA/Q.

Using the same assertion on A/P we obtain that

htQ/P + dimA/Q = dimA/P.

From the above three equations we obtain that

htQ/P = htQ− htP.

Using the last equation for the chain P ⊂ Q ⊂ R of prime ideals we obtain the
equation

htR/P = htR/Q+ htQ/P.

We have seen in Remark (2.1.4) that the last equation implies that A is catenary.→
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2.2. Associated ideals.

(2.2.1) Setup. Most of the material from [44] [L X.2, X.3]

(2.2.2) Definition. Given a ring A and an A-module M . The annihilator ,
denoted annx , of an element x of M is the ideal {a ∈ A: ax = 0} in A. The ideal
∩x∈M ann x is denoted by annM and called the annihilator of M .

A prime ideal P of A is associated to M if it is the annihilator of a non zero
element of M . We denote the set of associated primes of M by assM = assAM .

An element a in A i called locally nilpotent if there, for every element x in M ,
is a non negative integer nx such that anxx = 0.

The prime ideals P such that MP 6= 0 we call the support of M . We denote
the support of M by suppM .

(2.2.3) Lemma. Given A-module M , and let x be an element in M . For each
prime ideal P in A we have that (Ax)P 6= 0 if and only if annx ⊆ P .

Proof. Assume that (Ax)P 6= 0. Then tx 6= 0 for all t /∈ P . Consequently we have
that annx ⊆ P .

Conversely, assume that (Ax)P = 0. Then there is a t /∈ P such that tx = 0.
Consequently we have that annx /∈ P .

(2.2.4) Proposition. Given an A-module M and an element a in A. The fol-
lowing assertions are equivalent:

(1) The element a is locally nilpotent.
(2) The element a is contained in every prime ideal P such that MP 6= 0.

Proof. Assume that a is locally nilpotent and let P be a prime ideal such that
MP 6= 0. Then there is an element x ∈ M such that tx 6= 0 for all t /∈ P , and an
n such that anx = 0. It follows that an ∈ P and thus a ∈ P

Conversely, assume that a is not locally nilpotent. Then there is an element
x ∈ M such that anx 6= 0 for all n ≥ 0. Choose an ideal P which is maximal
among the ideals that contain annx and are disjoint from {1, a, a2, . . .}. Then P
is a prime ideal and (Ax)P 6= 0. Consequently we have that MP 6= 0.

(2.2.5) Proposition. Given a non zero A-module M , and let P be an ideal that
is maximal among the annihilators annx of elements x in M . Then P is a prime
ideal.

Proof. Let P = annx, and let ab ∈ P with a /∈ P . Then ax 6= 0 and ann(ax) ⊇
bA+ P . It follows from the maximality of P that b ∈ P .
snitt
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(2.2.6) Corollary. Given a noetherian ring A and an A-module M . Then M
has an associated ideal.

When M is finitely generated there is a chain

M = M0 ⊃ M1 ⊃ · · · ⊃Mn = 0

of submodules such that Mi−1/Mi is isomorphic to A/Pi, where Pi is a prime
associated to M .

Proof. Since A is noetherian there is a maximal element among the annihilators
to elements in M . It follows from the Proposition that such a maximal element is
associated to M . Hence we have proved the first part of the Corollary.

To prove the second part we let N be a maximal element among the submodules
of M for which the Corollary holds. If N 6= M we have that M/N 6= 0. Conse-
quently, there is an associated prime of M/N . Let P = ann y for some y ∈ M/N ,
and denote by x an element ofM that maps to y. We have that Ay ∼= A/P ⊆M/N
and N + Ax/N ∼= A/P . This contradicts the maximality of N . Consequently we
must have that N = M .

(2.2.7) Proposition. Given a noetherian ring A and an A-module M . Let a be
an element in A. Then ax = 0 for some non zero element x in M , if and only if
a lies in a prime which is associated to M .

Proof. It is clear that if a is contained in some associated ideal then ax = 0, for
some x in M .

Conversely, assume that ax = 0 for some x 6= 0. It follows from Prop (2.2.5)→
that Ax has an associated prime ideal P . It is clear that a ∈ P . However, P is
also associated to M .

(2.2.8) Proposition. Given a noetherian ring and an A-module M . Let a be an
element in A. The following assertions are equivalent:

(1) The element a is locally nilpotent.
(2) The element a is contained in all associated primes of M .
(3) The element a lies in all the prime ideals P such that MP 6= 0.

If P is a prime ideal such that MP 6= 0 then P contains a prime which is
associated to M .

Conversely, if P is prime ideal which contains an associated prime of M , then
MP 6= 0.

Proof. We have already seen in Proposition (2.2.4) that (1) and (3) are equivalent.→
Moreover it is clear that (1) implies (2).

To show that (2) implies (3) it suffices to prove that if MP 6= 0 for some prime
ideal P , then P contains an associated prime. When MP 6= 0 we have an element
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x ∈M such that (Ax)P 6= 0. Consequently there is an element y/t 6= 0 in (Ax)P ,
with y ∈ Ax and t /∈ P , with annihilator a prime ideal Q. Then we have that
Q ⊆ P because, otherwise there would be a b ∈ Q\P such that by/t = 0 in (Ax)P ,
which contradicts that y/t 6= 0. Let b1, . . . , bn be generators for Q. Then there are
elements s1, . . . , sn in A\P such that sibiy = 0. We have that A is the annihilator
of the element s1 · · · sny because, it is contained in the annihilator of this element,
and, if as1 · · · sny = 0 we have that ay = 0 in (Ax)P , and consequently a ∈ Q.

(2.2.9) Corollary. Given a noetherian ring A and an A-module M . The follow-
ing assertions are equivalent:

(1) There is exactly one associated prime ideal for M .
(2) We have that M 6= 0 and for every element a in A we have that a is locally

nilpotent or ax = 0 holds only for the element x = 0.

When the assertions hold the associated ideal consists of the locally nilpotent
elements.

Proof. It follows from Proposition (2.2.7) that ax = 0 only for x = 0 if and only→
if a is not contained in an associated prime.

If there is only one associated prime ideal it follows from the Proposition that
all the elements in the associated prime are locally nilpotent.

Conversely, if (2) holds, the locally nilpotent elements will be those that are
contained in some associated prime ideal. Hence it follows from the Proposition
that the union of the associated prime ideals will be equal to their intersection. It
follows that (1) holds.

(2.2.10) Remark. It follows from Proposition (2.2.8) that when A is noetherian→
and M is finitely generated we have that

rad(annM) =
⋂

P∈suppM

P =
⋂

Passociated

P.

Moreover, it follows that

suppM = {P ∈ SpecA: annM ⊆ M}.

Indeed, we just say that each prime belonging to suppM contains annM . Con-
versely, if MP = 0 we choose generators m1, . . .mn of M and obtain t1, . . . , tn
such that timi = 0, for i = 1, . . . , n. Then t1 · · · tn is contained in annM , and
consequently annM 6⊆ P .

(2.2.11) Proposition. Given an A-module M . Let N be a submodule of M .
Every prime associated to N is associated to M . The associated primes of M are
associated to N or to M/N .
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Proof. The first assertion is clear.
Let P be associated to M . Then P = annx for some x ∈M . If Ax∩N = 0 we

have that P is associated to M/N . If Ax ∩N 6= 0 we choose an non zero element
y = ax with a ∈ A. Then P = ann y because P ⊆ ann y, and if by = 0 for some
b ∈ A we have that ba ∈ P , and since a /∈ P we have that b ∈ P .

(2.2.12) Proposition. Given a finitely generated module M over a noetherian
ring A. The every submodule N can be written as an intersection N = N1∩· · ·∩Nn
of submodules Ni such that each M/Ni only has one associated prime ideal.

Proof. Consider the set of submodules of M for which the Proposition does not
hold. If this set is non empty there is a maximal element N . Then M/N can not
have only one associated prime. It follows from Corollary (2.2.9) that there is an→
element a ∈ A such that the homomorphism ϕ:M/N →M/N given by ϕ(x) = ax
is neither injective nor nilpotent. We therefore obtain a sequence

kerϕ ⊆ kerϕ2 ⊆ · · ·

of proper submodules of M . This sequence must stop. Assume that kerϕr =
kerϕr+1 = · · · and let ψ = ϕr. We have that kerψ and Imψ are proper submod-
ules of M and we have that kerψ = kerψ2, and consequently that kerψ∩Imψ = 0.
Let N1 and N2 be the inverse images of kerφ respectively Imφ in M . Then N1

and N2 contain N properly and N = N1 ∩N2. By the maximality of N we have
that the Proposition holds for N1 and N2. Consequently the Proposition holds for
N , which contradicts the assumption on N . It follows that the set of submodules
of M , for which the Proposition does not hold, is empty.

(2.2.13) Corollary. Let M be a finitely generated module over a noetherian ring
A. Then the associated prime primes of M coincide with the associated prime
ideals of M/Ni for any minimal decomposition 0 = N1 ∩ · · · ∩ Nn in modules Ni
such that M/Ni has only one associated prime ideal.

Proof. It follows from the Proposition that we can write 0 = N1 ∩ · · · ∩Nn where
M/Ni has only one associated prime ideal. We obtain an injection

M →M/N1 ⊕ · · · ⊕ · · ·M/Nn.

It follows from Proposition (2.2.11) that the associated ideals of M are among the→
associated primes of M/N1, . . . ,M/Nn.

Conversely, assume that n is minimal and let N = N2 ∩ · · · ∩Nn. Then N 6= 0
because the intersection is assumed to be minimal. Then N = N/N ∩ N1

∼=
N +N1/N1 ⊆M/N1. Consequently the module N has only one associated prime,
the prime associated to M/N1. It follows that this prime is also associated to
M .
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(2.2.14) Proposition. Let A be a noetherian ring. If A is reduced the associated
primes are the minimal prime ideals.

Proof. Every prime ideal contains an associated prime so every minimal prime is
associated.

Conversely, let P1, · · · , Pn be the minimal associated prime ideals. If P is an
associated prime ideal and t ∈ P \P1∪· · ·∪Pn there is a non zero a in A such that
aP = 0, and consequently ta = 0. However, then a ∈ P1∩· · ·∩Pn and hence a = 0
because A is an integral domain. This contradicts the assumption that a 6= 0 so
we must have that P ⊆ P1 ∪ · · · ∪ Pn. Hence, [41] [A-M 1.11], we have that P is
equal to one of the P1, . . . , Pn, and we have proved that all associated primes are
minimal.

(2.2.15) Lemma. Let I be an ideal in a noetherian ring A such that aI = 0
implies that a = 0. Then I contains a non zero divisor in A.

Proof. It follows from Proposition (2.2.7) that the zero divisors in A are the union→

of the associated prime ideals and it follows from Proposition (2.2.13) that there→
are only a finite number of associated primes. Hence, if I consists entirely of zero
divisors it follows from [41] [A-M 1.11] that I is contained in an associated prime.
However, then there is a non zero element a in A such that aI = 0.
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2.3. Length.

(2.3.1) Setup.

(2.3.2) Definition. ([A-M p. 76]) Given a ring A and an A-module M . A→
sequence

0 = Mn ⊂Mn−1 ⊂ · · · ⊂M0 = M

of modules is called a chain of length n . The chain is a composition series for M
it there is no submodule N of M such that Mi+1 ⊂ N ⊂Mi for some i.

(2.3.3) Proposition. ([A-M, 6.7]) Given an A-module M that has a composition→
series of length n. Then every composition series has length n and every chain
can be extended to a composition series.

Proof. Let M = M0 ⊃ M1 ⊃ M1 ⊃ · · · ⊃ Mn = 0 be a composition series for
M of shortest possible length. Given a submodule N of M . We obtain a chain
N = N0 ⊇ N1 ⊇ · · · ⊇ Nn = 0, where Ni = Mi ∩ N . We have that Ni−1/Ni ⊆
Mi−1/Mi, and consequently that either Ni−1/Ni = Mi−1/Mi or Ni−1/Ni. Hence
we obtain a composition series for N . This series has length n if and only if
Ni−1/Ni = Mi−1/Mi, for all i. By induction on n we see that N has length n if
and only if M = N . Thus a proper submodule of M has length strictly less than
n.

Denote by `′(N) the length of a shortest composition series for N . We have
that `′(M) = n, by assumption. Given a chain M = M ′

0 ⊃ M ′
1 ⊃ · · · ⊃ M ′

h = 0
of lenght h in M . We then have that n = `′(M) > `′(M ′) > · · · > `′(M ′

h) = 0,
and thus that h ≤ n. In other words, every chain has length at most n. When the
chain is not a composition series we have that at least one quotient M ′

i−1/M
′
i has

a proper submodule. Consequently we can find a stricly longer chain by inserting
a module M ′

i−1 ⊃ N ⊃ M ′
i . Consequently we either have h = n, and then

M ′
0 ⊃ M ′

1 ⊃ · · · ⊃ M ′
n is a composition series, or h < n and the chain can be

refined to a chain of length h + 1. We can continue to refine the chain until we
obtain a chain of length n, which is then a composition series.

(2.3.3) Definition. ([A-M, p. 77])We say that an A-moduleM has finite length if→
it has a composition series. The common length `(M) = `A(M) of the composition
series is called the length of the module.

(2.3.4) Lemma. ([A-M, 6.9])Let→

0 →M ′ →M →M ′′ → 0

be a short exact sequence of A-modules. Then M has finite length, if and only if
M ′ and M ′′ have finite length. When the lengths are finite we have that

`(M) = `(M ′) + `(M ′′).
snitt
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Proof. Given a composition series for M . The intersections of the modules in the
chain with M ′ and the images in M ′′ of the modules give chains that clearly give
rise to composition series in M ′ and M ′′.

Conversely, a composition series in M ′ together with the pull back to M of a
composition series of M ′′, give a composition series in M .

(2.3.4) Lemma. Let A → B be a homomorphism of a ring A into a integral
domain B. If B has finite length as an A-module, then B is a field.

Proof. Let b 6= 0 in B. We have a sequence (b) ⊇ (b2) ⊇ · · · of ideals in B. This
is, in particular, a sequence of A-modules and must stop since B has finite length
as an A-module, and consequently (br) = (br+1) = . . . for some r. Hence we have
that cbr+1 = br for some c in B. Since B is an integral domain we must have that
bc = 1. Consequently b has an iverse and B is a field.

(2.3.5) Proposition. Let A be a noetherian ring and M a finitely generated
A-module. Given a chain

M = M0 ⊃M1 ⊃ · · · ⊃Mr = 0

of A-modules such that Mi−1/Mi
∼= A/Pi, for i = 1, . . . , r, where Pi is a prime

ideal in A. Then M has finite length if and only if all primes Pi are maximal.
When M has finite length we have that

`(M) =
∑

P∈SpecA

`AP
(MP ).

Proof. When M is of finite length if follows by induction on i that each of the
rings A/Pi have finite length. Thus it follows from Lemma (2.3.4) that the ideals→
Pi are maximal.

Conversely, if all the Pi are maximal, we have that the rings A/Pi have finite
length. By descending induction on i we obtain that M has finite length.

Assume that M has finite length. Then the chain M0 ⊃ · · · ⊃ Mn is a compo-
sition series. We see from the series that the localization of M in a prime P is non
zero if and only if P = Pi for some i. It is clear that MPi

has a composition series
where all the quotients are of the form A/Pi and that each such quotient appears in
the composition series forMPi

as many times as it appears in the composition series
for M . We therefore obtain that `A(M) =

∑n
i=1 `A(A/Pi) =

∑
P∈SpecA `AP

(MP ).

(2.3.6) Corollary. Given a noetherian ring a finitely generated A-module A and
M . Then M has finite length if and only if the support, suppM , consists of
maximal ideals. The support is then finite.
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(2.3.7) Proposition. Given a local homomorphism A→ B of local rings A and
B with maximal ideals P respectively Q. Denote by d = [B/Q:A/P ] the degree of
the residue field extension. A non zero B-module M has finite length over A if
and only if d <∞ and M has finite length over B.

When M has finite length over A we have that

`A(M) = d`B(M).

Proof. If M is of finite length over A or B it is a finitely generated B-module.
Since the length is additive we can therefore assume that M = B/Q′, where Q′

is a prime ideal in B. It follows from Lemma (2.3.4) that if M has finite length,→
either as an A-module, or as a B-module,we have that Q′ = Q.

If B/Q has finite length over A it is a finitely generated A-module and thus
[B/Q:A/P ] <∞, and B/Q has finite length as a B-module because Q is maximal.
We then have that `A(B/Q) = `A/P (B/Q) = d = d`B(B/Q), and we have proved
the Lemma.



12 January 2006 Chp 2.4 Herbrand indices 1

2.4. Herbrand indices.

(2.4.1) Setup. Given a ring A. For every A-module M of finite length we
denote the length by `A(M). Given a map ϕ:F → G of A-modules such that the
cohomology groups H i(K(ϕ)) of the mapping cone of ϕ have finite length for all i
and are zero except for a finite number of i’s we obtain, as i Section (1.6) used on→

the associated scheme X = SpecA and OX -module M̃ , a length `A(ϕ). We say
that under the given condition the length is defined .

(2.4.2) Remark. Given a map ϕ:M → N of A-modules whose kernel and
cokernel have finite length. Then it follows from Remark (?) that→

`A(ϕ) = `A(N) − `A(M),

which is the usual Herbrand quotient of ϕ.

(2.4.3) Remark. Assume that A is noetherian and that F is a complex consisting
of finite generated A-modules such that H i(F) = 0 for all but a finite number of
i’s. Then all the H i(F) are of finite length if and only if, for all prime ideals P of
A, the localized complex FP given by

· · · → F−1
P

dP
−1

−−−→ F0
P

d0P−−→ FP 1 → · · ·

is acyclic, except possibly when P is maximal. Then there is only a finite number
of maximal ideals such that FP is not acyclic.

(2.4.4) Proposition. Given a map ϕ:F → G of complexes of A-modules such
that `A(ϕ) is defined. Then the length `AP

(ϕP ) is defined for all prime ideals P
of A and we have that

`A(ϕ) =
∑

P∈SpecA

`AP
(ϕP ).

Proof. By definition we have that `A(ϕ) = `A(K(ϕ)), where K(ϕ) is the mapping
cone of ϕ. It follows from Lemma (?) that we have→

`A(Hi(K(ϕ)) =
∑

P∈SpecA

`AP
(Hi(K(ϕ))P )

for all i. However, localization is exact so that H i(K(ϕ))P = Hi(K(ϕP )). Conse-
quently we have that

`A(K(ϕ)) =
∑

P∈SpecA

`AP
((ϕ)P ) =

∑

P∈SpecA

`AP
(K(ϕP )) =

∑

P∈SpecA

`AP
(ϕP ).

snitt
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(2.4.5) Proposition. Given a map ϕ:F → G of finite complexes of A-modules
of finite length. Then we have that

`A(ϕ) = `A(G) − `A(F).

Proof. The Proposition is an immediate consequence of Proposition (?).→

(2.4.6) Proposition. Given a commutative diagram

0 −−−−→ F ′ −−−−→ F −−−−→ F ′′ −−−−→ 0

ϕ′

y ϕ

y ϕ′′

y

0 −−−−→ G′ −−−−→ G −−−−→ G ′ −−−−→ 0

of complexes of A-modules. If two of the lengths `A(ϕ′), `A(ϕ) and `A(ϕ′′) are
defined, then the third is, and we have that

`A(ϕ) = `A(ϕ′) + `A(ϕ′′).

Proof. That the third length is defined when the two others are is an immediate
consequence of the properties of length of modules. The rest of the Proposition
follows immediately from Proposition (?).→

(2.4.7) Proposition. Given maps ϕ:F → G and ψ:G → H of complexes of A-
modules. It two of the lengths `A(ϕ), `A(ψ) and `A(ψϕ) are defined, then the third
is, and we have that

`A(ψϕ) = `A(ϕ) + `A(ψ).

Proof. That the third length is defined when the two others are follows from the
properties of the length of modules. The remaining part follows from Proposition
(?).→
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2.5. Noetherian rings.

(2.5.1) Lemma. (Artin-Rees) Given a noetherian ring A and an ideal I. Let M
be a finitely generated A-module and N a submodule. Then there exists a positive
integer m such that

InM ∩N = In−m(ImM ∩N)

for all n ≥ m.

Proof. It is clear that we have an inclusion In−m(ImM ∩ N) ⊆ InM ∩ N . In
order to prove the opposite inclusion we choose generators a1, . . . , ar for I and
m1, . . . ,ms for M . Let A[x1, . . . , xr] be the ring of polynomials in the variables
x1, . . . , xr with coefficients in A., and let

Jn = {(f1, . . . , fs)|fi ∈ A[x1, . . . , xr] homogeneous of degree n

and
s∑

i=1

fi(a1, . . . , ar)mi ∈ N}.

Denote by P the A[x1, . . . , xr]–submodule of A[x1, . . . , xr]
s generated by ∪∞

i=1Jn.
Since A[x1, . . . , xr] is noetherian we can find a finite number og generators

(p1,1, . . . , p1,s), . . . , (pt,1, . . . , pt,s)

for P . We can choose the pi such that the pi,j have the same degree dj for
i = 1, . . . , s. Let m be the maximum of d1, . . . , dt.

Given an element l ∈ InM ∩N . We can write l =
∑s
i=1 fi(a1, . . . , ar)mi, with

(f1, . . . , fs) ∈ Jn. consequently we get

(f1, . . . , fs) =
t∑

j=1

gj(x1, . . . , xr)(pj,1, . . . , pj,s)

with gj ∈ A[x1, . . . , xr]. On the left hand side we have homogeneious polynomials
of degree n. Consequently, we may, after possibly removing terms on the right
hand side, assume that deg gj + dj = n for j = 1, . . . , t and i = 1, . . . , s. Then we
have that

l =

s∑

i=1

fi(a1, . . . , ar)mi =

t∑

j=1

gj(a1, . . . , ar)

s∑

i=1

pi,j(a1, . . . , ar)mi

where
∑s
i=1 pi,j(a1, . . . , ar)mi ∈ IdjM ∩ N , since (pj,1, . . . , pj,s) ∈ Jdi

. for n ≥ m

we have that gJ(a1, . . . , ar) ∈ In−dj = In−mIm−dj . Consequently we have that

l ∈
∑t
j=1 I

n−mIm−dj (IdjM ∩N) ⊆ In−m(ImM ∩N).
snitt
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(2.5.2) Theorem. (Krull) Given a noetherian ring A and an ideal I in A. Let
M be a finitely generated A–module and let N = ∩∞

i=1I
nM . Then there is an

element a ∈ A such that (1 + a)N = 0.
In particular, when I ⊆ radA we have that ∩∞

i=1I
nM = 0.

Proof. It follows from the Artin–Rees Lemma (2.5.1) that we have an inclusion→
InM ∩N ⊆ In−m(ImM ∩N) ⊆ IN for big n. However we have that N ∈ InM for
all n. Thus we have that N ⊆ InM ∩N ⊆ IN , and thus that IN = N . It follows
from Nakayamas Lemma that there is an element a ∈ I such that (1 + a)N = 0.

When I ⊆ radA we have that 1+ a is a unit in A and consequently that n = 0.
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2.6. Flatness.

Definert i [73][A-M, Ch.2 p. 29]. Se [76][L, XVI, §3]

(2.6.1) Setup. Given a ring A and a prime ideal P . We shall write κ(P ) =
AP /PAP . Moreover, given an A-algebra B and a prime ideal Q in B. We denote
by Q∩A the contraction of Q to A, that is Q∩A = ϕ−1(Q), where ϕ:A→ B is
the map defining the algebra structure.

(2.6.2) Definition. Given an A-module M . The module M is flat over A if
every short exact sequence

0 → N ′ → N → N ′′ → 0

gives rise to a short exact sequence

0 →M ⊗A N
′ →M ⊗A N →M ⊗A N

′′ → 0.

(2.6.3) Remark.

(1) (Long exact sequences ) We can break long exact sequences into short exact
sequences. Hence M is flat over A if and only if every exact sequence

· · · → N ′ → N → N ′′ → · · ·

of A-modules gives rise to an exact sequence

· · · →M ⊗A N
′ → N ⊗A N →M ⊗A N

′′ → · · · .

(2) (Left exactness ) Since the tensor product is right exact (73) [A-M, 2.18]→
we have that M is flat over A if every injective map N ′ → N of A-modules
gives rise to an injective map M ⊗A N ′ →M ⊗A N ′′.

(3) (Localization )Let S be a multiplicatively closed subset of A. It follows
from the definition of localization S−1A of A in S that S−1A is a flat
A-module.

(4) (Base change ) Given a flat A-module N , and let B be an A-algebra.
Then B ⊗A N is a flat B-module. Indeed, for every B-module P we have
an isomorphism P ⊗B (B ⊗A N) ∼= P ⊗A N .

(5) (Direct sums ) For every set (Ni)i∈I of A-modules and every A-module P
we have that F ⊗A (⊕i∈INi) ∼= ⊕i∈I(P ⊗A Ni). We have that ⊕i∈INi is
exact in (Ni)i∈I if and only if it is exact in every factor Ni. Consequently
⊕i∈INi is flat over A if and only if each summand Ni is flat over A. It
follows in particular that every free A-module is flat. Moreover, projective
A-modules are flat because they are direct summands of free modules.

snitt
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(2.6.4) Lemma. Given an exact sequence

0 →M → N → F → 0

of A-modules, where F is flat. Then the sequence

0 → P ⊗AM → P ⊗A N → P ⊗A F → 0

is exact for all A-modules P .

Proof. Write P as a quotient of a free A-module L,

0 → K → L→ P → 0.

We obtain a commutative diagram

0
y

K ⊗AM −−−−→ K ⊗A N −−−−→ K ⊗A Fy
y

y

0 −−−−→ L⊗AM −−−−→ L⊗A N −−−−→ L⊗A Fy
y

P ⊗AM −−−−→ P ⊗A Ny
y

0 0

where the upper right vertical map is injective because F is flat, and the middle
left horizontal map is injective because L is free. A diagram chase gives that
P ⊗AM → P ⊗A N is injective.

(2.6.5) Proposition. Given an exact sequence

0 → F ′ → F → F ′′ → 0

of A-modules with F ′′ flat. Then F is flat if and only if F ′ is flat.
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Proof. Given an injective map M ′ →M . We obtain a commutative diagram

0
y

0 −−−−→ M ′ ⊗A F ′ −−−−→ M ′ ⊗A F −−−−→ M ′ ⊗A F ′′ −−−−→ 0
y

y
y

0 −−−−→ M ⊗A F ′ −−−−→ M ⊗A F −−−−→ M ⊗A F ′′ −−−−→ 0

.

The rows are exact to the left by Proposition (2.6.4), and we have injectivity of→
top vertical map since F ′′ is flat. The Proposition follows from a diagram chase.

(2.6.6) Lemma. Given an A-module M such that the map

I ⊗AM → IM

is an isomorphism for all ideals I in A. For every free A-module F and every
injective map K → F of A-modules we have that

K ⊗AM → F ⊗AM

is injective.

Proof. Since every element in K ⊗A M is mapped into F ′ ⊗A M where F ′ is a
finitely generated free submodule of F we can assume that F is finitely generated.

When the rank of F is 1 the Lemma follows from the assumption. We prove the
Lemma by induction on the rank r of F . We have an exact sequence 0 → F1 →
F → A → 0, where F1 is a free rank r − 1 module. Let K1 = K ∩ F1 and let K2

be the image of K in A. We obtain a diagram

0 0
y

y

K1 ⊗AM −−−−→ K ⊗AM −−−−→ K2 ⊗AM −−−−→ 0
y

y
y

0 −−−−→ F1 ⊗AM −−−−→ F ⊗AM −−−−→ A⊗AM

.

where the right and left vertical maps are injective by the induction assumption
and it follows from Lemma (2.6.6) that the lower left map is injective because A→
is free. A diagram chase proves that the middle vertical map is injective.
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(2.6.7) Proposition. An A-module M is flat if and only if the map

I ⊗AM → IM

is an isomorphism for all ideals finitely generated ideals I of A.

Proof. If M is flat the tensor product I⊗AM →M of the map I → A is injective
so I ⊗AM → IM is an isomorphism.

Conversely, we can assume that I ⊗AM → IM is an isomorphism for all ideals
I of A. Indeed, every element of I ⊗A M is contained in J ⊗A M , where J is a
finitely generated ideal, and if J ⊗A M → M is injective and the element is not
zero then it is not mapped to zero by the map I ⊗AM →M .

Let N ′ → N be an injective map and write N as a quotient 0 → K → F →
N → 0 of a free A-module F . Let F ′ be the inverse image of N ′ in F . Then we
have an exact sequence 0 → K → F ′ → N ′ → 0 and we obtain a commutative
diagram

0
y

K ⊗AM −−−−→ F ′ ⊗AM −−−−→ N ′ ⊗AM −−−−→ 0
y

y
y

K ⊗AM −−−−→ F ⊗AM −−−−→ N ⊗AM

,

where it follows from Lemma (2.6.6) that the middle vertical map is injective. A→
diagram chase shows that the right vertical map is injective. Consequently M is
flat over A.

(2.6.8) Remark. It follows from Proposition (2.6.7) that a module over a prin-→
cipal ideal domain is flat if and only if it does not have torsion.

(2.6.9) Lemma. Given a ring A and an A-module M . The following two asser-
tions are equivalent:

(1) The module M is flat over A.
(2) For every A module homomorphism u:F → M from a finitely generated

free module F , and for every element e in the kernel of u, there is a fac-
torization of u via an A-module homomorphism f :F → G into a finitely
generated free A-module G such that f(e) = 0, and an A-module homo-
morphism v:G→M .
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Proof. Assume that M is flat over A and that we have a homomorphism u:F →M
such that u(e) = 0 for some element e in F . Let f1, . . . , fm be a basis for F and
write e =

∑m
i=1 aifi and xi = u(fi). Then u(e) =

∑m
i=1 aixi = 0.

We define an A-module homomorphism a:F → A by a(fi) = ai for i = 1, . . . ,m

and we denote the kernel of a by E. From the exact sequence 0 → E
i
−→ F

a
−→

A → 0 we obtain an exact sequentce 0 → E ⊗A M
iM−−→ Mm aM−−→ M → 0.

We have that aM (x1, . . . , xm) =
∑m
i=1 aixi = 0. Consequently (x1, . . . , xm) =

iM (
∑n
j=1 ai,jfi⊗yj) = (

∑n
j=1 a1,jyj , . . . ,

∑n
j=1 am,jyj) for elements

∑m
i=1 ai,jfi in

E and yj in M , for j = 1, . . . , n. We have that 0 = a(
∑m
i−1 ai,jfi) =

∑m
i=1 ai,jai

for j = 1, . . . ,m. Let G be the free A-module with basis g1, . . . , gn and define
A-module homomorphisms f :F → G and v:G → M by f(fi) =

∑n
j=1 ai,jgj

for i = 1, . . . ,m respectively v(gj) = yj for j = 1, . . . , n. We then have that
vf(fi) = v(

∑n
j=1 ai,jgj) =

∑m
j=1 ai,jyj = xi = u(fi) for i = 1, . . . ,m and f(e) =

f(
∑m
i=1 aifi) =

∑m
i−1

∑n
j=1 aiai,jgj =

∑n
j=1(

∑m
i=1 aiai,j)gj = 0. Consequently

assertion (2) holds.

Conversely, assume that assertion (2) holds. We shall show that M is flat
over A by showing that the map I ⊗A M → M is injective for all ideals I in
A. Assume that we have an element

∑m
i=1 ai ⊗ xi in I ⊗A M that maps to zero

in M , that is
∑m
i=1 aixi = 0. We shall show that

∑
i=1 ai ⊗ xi = 0. Let F be

a free A–module with basis f1, . . . , fm and define an A-module homomorphism
u:F → M by u(fi) = xi for i = 1, . . . ,m. Then we have that e =

∑m
i=1 aifk is in

the kernel of u. By assumption there is a factorization of u via homomorphisms
f :F → G and v:G → M , where G is free with a basis g1, . . . , gn and f(e) = 0.
Write f(fi) =

∑n
j=1 ai,jgj for i = 1, . . . ,m and v(gj) = yj for j = 1, . . . , n. Then

we have that 0 = f(e) = f(
∑m
i=1 aifi) =

∑m
i=1

∑n
j=1 aiai,jgj, and consequently

that
∑m

i=1 aiai,j = 0 for j = 1, . . . , n. We have that xi = u(fi) = vf(fi) =
v(

∑n
j=1 ai,jgj) =

∑n
j=1 ai,jyj , for i = 1, . . . , n. Hence we have that

∑m
i=1 ai⊗xi =∑m

i=1

∑n
j=1 ai ⊗ ai,jyj =

∑m
i=1

∑n
j=1 aiai,j ⊗ yj = 0 =

∑n
j=1(

∑m
i=1 aiai,j) ⊗ yj .

We have proved that I ⊗A M → M is injective and consequently that M is flat
over A.

(2.6.10) Lemma. Given a map ϕ:A → B of rings and let F be a B-module.
Then F is flat over A if and only if FQ is flat over AP for all prime ideals P in
A and Q in B such that ϕ−1(Q) = P .

Proof. Assume that F is flat over A. Since BQ is flat over B the functor that
sends an AP -module N to BQ⊗B (N ⊗AF ) is exact. However BQ⊗B (F ⊗AN) =
FQ ⊗A N = FQ ⊗AP

N . Consequently the functor that sends N to FQ ⊗AP
N is

exact, that is, the AP -module FQ is flat.

Conversely, assume that FQ is a flat AP module for all prime ideals Q in B
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with P = ϕ−1(Q). The functor that sends an A-module N ot the AP -module NP
is exact. Consequently the functor that sends N to FQ⊗AP

NP is exact. However,
we have that FQ ⊗AP

NP = FQ ⊗AP
(AP ⊗A N) = FQ ⊗A N . Hence the functor

that sends an A–module N to FQ⊗AN is exact. However, the functor that sends
an A–module N to the B–module F ⊗A N is exact if and oly if the functor that
sends the A–module N to the BQ–module FQ ⊗A N is exact for all prime ideal Q
of B. We thus have that F is a flat A–module.

(2.6.11) Proposition. Given a local homomorphism A→ B of local rings, such
that B is flat over A. Then the resulting map SpecB → SpecA is surjective.

Proof. Given a prime ideal P in A. Since B/PB is flat over A/P we have that
B/PB 6= 0 and since B is flat over A we have that the image S in B/PB of the
non zero elements in A/P consists of non zero divisors in B/PB. Let Q be an
ideal which is maximal among the ideals in B/PB that are disjoint from S. Then
Q is a prime ideal and Q ∩ A/P = 0. The inverse image R of Q by the residue
map B → B/PB consequently satisfies ϕ−1(Q) = P .

(2.6.12) Corollary. Given a homomorphism ϕ:A→ B of rings, such that B is
flat over A. Let P be a prime ideal in A, and Q a prime ideal in B containing P .
Then there is a prime ideal R in B such that R ⊆ Q and ϕ−1(R) = P .

Proof. It follows from Proposition (2.6.9) that the map Aϕ−1(Q) → BQ is flat. The→
Proposition asserts that there is a prime ideal R′ in BQ such that the contraction
of R′ to Aϕ−1(Q) is equal to PAϕ−1(Q). Then we have that the contraction R of R′

to B is contained in Q and that ϕ−1(R) is equal to the contraction P of PAϕ−1(Q)

to A.

(2.6.13) Remark. The Corollary has many interesting reformulations and vari-
ations.

(1) The property of the Corollary can be restated by saying that flat maps
satisfy the going down property .

(2) The property of the Corollary can be stated geometrically as:
Let f : SpecB → SpecA be the map corresponding to the map A → B.

Given a point x in SpecX and assume that f(x) is a specialization of a
point η in SpecY . Then there is a point ξ in SpecX such that f(ξ) = η
and x is a specialization of ξ.

(3) It follows from the Corollary that the contraction ϕ−1(Q) of a minimal
prime Q in B to A is a minimal prime in A.

(4) A flat morphism of finite type to a noetherian scheme is open. Indeed,
it follows from Theorem (1.2.10) that f(SpecB) is constructible. Thus it→

follows from Proposition (?) that f(SpecB) is open.→
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(2.6.14) Proposition. Given a regular (73) [A-M, 11.22] one dimensional ring→
A and a homomorphism ϕ:A→ B into a noetherian ring B. Then B is flat over
A if and only if ϕ−1(Q) = 0 for all associated prime ideals Q in B.

In particular we have that if B is reduced then B is flat over A if and only if
ϕ−1(Q) = 0 for all minimal primes Q of B.

Proof. Assume thatB is flat over A and letQ be a prime ideal in B. If P = ϕ−1(Q)
is maximal we have that AP is a discrete valutation ring ([73] 9.2 and 11.23). Let
t ∈ PAP be a generator for the maximal ideal. Since t is not a zero divisor in
AP and BQ is a flat AP module it follows that t is not a zero divisor in BQ.
Consequently Q is not an associated prime in B.

Coversely, assume that ϕ−1(Q) is zero for all associated primes Q of B. It
follows from Proposition (?) that we must prove that BR is flat over Aϕ−1(R)→
for all prime ideals R in B. If ϕ−1(R) = 0 we have that Aϕ−1(R) is a field and

consequently that BR is flat. On the other hand, if P = ϕ−1(R) is a maximal ideal
we choose a t ∈ ϕ−1(R) that generates the ideal PAP . Since AP is a principal
ideal domain it follows from Remark (?) that it suffices to show that BR is a→
torsion free AP -module. Since all elements of AP can be written as a power of
t times a unit, this means that it suffices to prove that t is not a zero divisor
in BR. However, if t were a zero divisor in BR it follows from Proposition (ass)→
that it is contained in an associated prime ideal Q of B. However, by assumption
ϕ−1(Q) = 0. This is impossible because t 6= 0. Hence t is not zero divisor and we
have proved the Proposition.
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2.7. Flatness and associated primes.

(2.7.15∗) Lemma. Given a homomorphism A→ B of noetherian rings and a B-
module G which is flat over A. Let P be a prime ideal in A such that G/PG 6= 0.
Then we have that:

(1) assB(G/PG) = assB(G⊗A AP /PAP ).
(2) {P} = assA(G/PG) = assA(G⊗A AP /PAP ).
(3) The contraction of the ideals in assB(G/PG) to A is {P}.

Proof. (1) Since G is flat over A we have that GP is flat over AP . Consequently
G/PG = G ⊗A A/P and G ⊗A AP /PAP = G ⊗A A/P ⊗A AP is flat over A/P .
Since the ring A/P is a domain it follows that the non zero element in A/P are non
zero divisors in G/PG and G⊗A AP /PAP . It follows that {P} = assA(G/PG) =
assA(G⊗A AP /PAP ).

(2) Since the elements in A \ P are not zero divisors in G/PG we obtain an
injectionG/PG→ G/PG⊗AAP and consequently assB(G/PG) ⊆ assP (G/PG⊗A
AP ) = assB(G ⊗A AP /PAP ). Conversely, if Q = ann(x/t) is in assB(G ⊗A
AP /PAP ) with a ∈ G/PG and t ∈ A/P we have that Q = assx because t is
invertible in AP . Consequently we have that Q ∈ assB(G/PG).

(3) If Q ∈ assB(G/PG) there is an element x ∈ G/PG such that Q = annx
in B. Then we have that the contraction of Q to A is the annihilator of x in A.
Consequently we have that the contraction of Q to A is in assA(G/PG) = {P},
and thus equal to P .

A more general result than the following can be found in the written notes.
References are (82), (85), (86) [Ma, Ch 3, §9], [Mb, Ch. 8, §23] [EGA IV2, 24,→→→
3.3.1].

(2.7.16∗) Proposition. Given a flat A-algebra B. Then we have that

assB = ∪P∈assA assB(B/PB) = ∪P∈assA assB(B ⊗A AP /PAP ).

Proof. When P is in assA we have an injection A/P → A. Since B is flat over A
we obtain an injection A/P → A. It follows that assB(B/PB) ⊆ ass(B).

Conversely, let Q ∈ assB and let P be the contraction of Q to A.
We first show that P ∈ ass(A). Choose, as in Proposition (?), a minimal→

decomposition 0 = N1∩· · ·∩Nr of zero inA, such thatA/Ni has only one associated
prime Pi. Then it follows from Proposition (?) that the primes P1, . . . , Pr are the→
associated primes of A. We have an injective homomorphism A → ⊕r

i=1A/Ni
and, since B is flat over A, we get an injective homomorphism B → ⊕r

i=1B/NiB.
Consequently we have that Q ∈ assB/NiB for some i. However, we have that
snitt
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Pni ⊆ Ni, and thus Pni B/NiB = 0 for some integer n. In particular we have
that the elements of Pi are nilpotent for the module B/NiB, and consequently it
follows from Proposition (?) that Pi ⊆ P . On the other hand, the elements in→
A \Pi are not zero divisors in A/Ni, and, since B is flat over A, they are not zero
divisors in B/NiB = A/Ni ⊗A B. Hence A \ Pi is disjoint from P . It follows that
Pi = P , and thus that P ∈ assA.

Next we show that Q ∈ assB(B/PB). It follows from Proposition (?) that there→
is a chain of ideals A = I0 ⊃ I1 ⊃ · · · ⊃ It = 0 in A such that Ii−1/Ii ∼= A/Pi for
a prime ideal Pi in A. Since B is flat over A we obtain a chain B = I0 ⊃ I1B ⊃
· · · ⊃ ItB = 0, such that Ii−1B/IiB ∼= B/PiB. It follows that Q ∈ assB(B/PiB)
for some i. However, it follows from Lemma (?) that the contraction of Q to A→
is Pi. Consequently we have that Pi = P and Q ∈ assB(B/PB). We have proved
the first equality of the Proposition.

The last equality of the Proposition follows from Lemma (2.7.16).→

(2.7.17∗) Proposition. Given A-algebras B and C and assume that C is flat
over A. Then we have that

ass(B ⊗A C) =
⋃

Q∈assB

⋃

R′∈ass(κ(P )⊗AC)

assB⊗AC(κ(Q) ⊗κ(P ) κ(R))

where R is the contraction of R′ by the map C → CP and the contraction of Q
and R to A is P .

Proof. Proposition (2.7.16) applied to the flat B-algebra B ⊗A C yields→

ass(B ⊗A C) =
⋃

Q∈assB

assB⊗AC(BQ/QBQ ⊗ (B ⊗A C)).

On the other hand the same Proposition applied to the flat κ(P ) ⊗A C-algebra
κ(Q) ⊗A C gives the formula

assB⊗AC(κ(Q) ⊗A C)

=
⋃

R′∈ass(κ(P )⊗AC)

ass((κ(Q) ⊗A C) ⊗κ(P )⊗AC (κ(P ) ⊗A C)R′/R′(κ(P ) ⊗A C)).

It follows from Lemma (2.7.15) that the contraction of R′ to A is P , and hence→
the contraction of R to A is also P .

There is a canonical isomorphism

κ(Q) ⊗A C → κ(Q) ⊗A C ⊗κ(P )⊗AC (κ(P ) ⊗A C),
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where the ideal κ(Q)⊗AR corresponds to κ(Q)⊗AC⊗κ(P )⊗AC R
′. It follows that

we have an isomorphism

κ(Q) ⊗A κ(R) → (κ(Q) ⊗A C) ⊗κ(P )⊗AC (κ(P ) ⊗⊗AC)R′/R′(κ(P ) ⊗A C)R′ .

Finally we notice that we have a canonical isomorphism

κ(Q) ⊗A κ(R) → κ(Q) ⊗κ(P ) κ(R),

and we have proved the Proposition.
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2.8. Local criteria of flatness.

(2.8.1) Theorem. (Local criterion of flatness). Given a ring A, an ideal I in A,
and an A-module M . Consider the following assertions

(1) The module M is flat over A.
(2) The module M/IM is flat over A/I and the homomorphism I⊗AM →M

is injective.
(3) The module M/IM is flat over A/I and the homomorphism In/In+1 ⊗A

M → InM/In+1M is bijective for all n.
(4) The module M/InM is flat over A/In for all n.

Then we have that (1) implies (2), that implies (3), and that implies (4).

If A is noetherian, B is a finitely generated A-algebra such that I ⊆ rad(B),
and M is a finitely generated B-module. Then we have that (4) implies (1).

Proof. We proved in (?) that (1) implies (2).→

To prove that (2) implies (3) we first show that when (2) holds it follows that
when 0 → N ′ → N → N ′′ → 0 is an exact sequence of A-modules with IN ′′ = 0,
that is the A-module structure on N ′ induces an A/I-module structure on N ′′.
then 0 → N ′ ⊗A M → N ⊗A M → N ′′ ⊗A M → 0 is exact. To prove this we
choose surjective maps α:F ′ → N ′ and β:F → N of A-modules with F ′ fnad F ′′

free. Consider the natural commutative diagram

0 −−−−→ F ′ ⊕ IF −−−−→ F ′ ⊕ F −−−−→ F/IF −−−−→ 0

(α,β|IF )

y (iα,β)

y
y

0 −−−−→ N ′ −−−−→ N −−−−→ N ′′ −−−−→ p

with exact rows. Let 0 → G′ → G→ G′′ → 0 be the exact sequence of A-modules
induced on the kernels of the three vertical maps of the diagram. We obtain a
snitt
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commutative diagram

0
y

G′ ⊗AM −−−−→ G⊗AM −−−−→ G′′ ⊗AMy
y

y

0 −−−−→ (F ′ ⊕ IF ) ⊗AM −−−−→ (F ′ ⊕ F ) ⊗AM −−−−→ F/IF ⊗AMy
y

y

N ′ ⊗AM −−−−→ N ⊗AM −−−−→ N ′′ ⊗AMy
y

0 0

with exact rows and columns. The right vertical column is exact since Q⊗AM =
Q ⊗A/I M/IM for all A/I-modules Q because M/IM is flat over A/I, and the
middle horizontal row is exact since I ⊗AM →M is injective. It follows from the
diagram that N ′ ⊗AM → N ⊗AM is injective as we wanted to prove.

To prove that (2) implies (3) we consider the commutative diagram

0 −−−−→ In+1 ⊗AM −−−−→ In ⊗AM −−−−→ In/In+1 ⊗AM −−−−→ 0

αn+1

y αn

y γn

y

0 −−−−→ In+1M −−−−→ InM −−−−→ InM/In+1M −−−−→ 0

with exact rows. The top row is exact by the observation made immediately above.
We have that α1 is injective by assumption. consequently it follows by induction
on n that αn is injective, and thus bijective, for n = 1, 2, . . . . Consequently we
have a bijection In/In+1 ⊗AM = (In ⊗AM)/(In+1 ⊗AM) → InM/In+1M , and
we have proved that assertion (3) holds.

To prove that (3) implies (4) we fix n ≥ 0. We shall show that M/InM is flat
over A/In. For 0 ≤ i ≤ n− 1 we have a commutative diagram

Ii+1/In ⊗AM −−−−→ I i/In ⊗AM −−−−→ I i/Ii+1 ⊗AM −−−−→ 0

αi+1

y αi

y γi

y

0 −−−−→ I i+1M/InM −−−−→ I iM/InM −−−−→ I iM/Ii+1M −−−−→ 0.
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with exact rows. It follows from the assumptions that γi is an isomorphism for
i = 0, 1, . . . . By descending induction on i, starting with αn = 0, it follows that
αi is an isomorphism for i = 0, . . . , n. In particular we have that

α1: I/I
n ⊗AM = I/In ⊗A/In M/InM → IM/InM

is an isomorphism. It follows that (2) holds for the A/In-module M/InM , and
the ideal I/In. The proof that (2) implies (3) used for the A/In-module M/InM
shows that given an exact sequence 0 → N ′ → N → N ′′ → 0 of A/In-modules,
with IN ′′ = 0 we obtain an injection

N ′ ⊗A/In M/InM = N ′ ⊗AM → N ⊗AM = N ⊗A/In M/InM.

Consequently we have that M/InM is flat over A/In.

To prove that assertion (4) implies assertion (1) under the conditions of the last
part of the Theorem, we shall show that j: J⊗AM →M is injective for all finitely
generated ideals J of A. Since B is a noetherian A-albebra and M is a finitely
generated B-module we have that J⊗AM is a finitely generated B-module. Since
IB ⊆ rad(B) by assumption it follows from (2.5.2) that ∩∞

i=0I
n(J ⊗A M) = 0.→

Consequently it suffices to show that the kernel of j is contained in In(J⊗AM) for
all n. For fixed n it follows from the Artin-Rees Lemma (2.5.2) that Ik ∩ J ⊆ InJ→
for big k. We have maps

J ⊗AM
f
−→ J/(Ik ∩ J) ⊗AM

g
−→ (J/InJ) ⊗AM = (J ⊗AM)/In(J ⊗AM).

Since M/IkM is a flat A/Ik-module we have that the map

J/(Ik ∩ J) ⊗AM = J/(Ik ∩ J) ⊗A/Ik M/IkM →M/IkM

is injective. It follows from the diagram

J ⊗AM
f

−−−−→ J/(Ik ∩ J) ⊗AM

j

y
y

M −−−−→ M/IkM

that ker(j) ⊆ ker(f) ⊆ ker(gf) = In(J ⊗A M), which is the inclusion that we
wanted to prove.
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(2.8.4) Lemma. Given a local homomorphism A→ B of local noetherian rings,
and let P be the maximal ideal in A. Let u:M → N be a homomorphism of
finitely generated B-modules where N is flat over A. The following two assertions
are equivalent:

(1) The homomorphism u:M → N is injective and the cokernel is flat.
(2) The homomorphism idA/P ⊗Au:A/P ⊗AM → A/P ⊗A N is injective.

Proof. We have seen in (2.6.4) that (1) implies (2). To show that (2) implies (1)→
we denote by C the cokernel of u. We have a commutative diagram

0
y

P ⊗A u(M) −−−−→ P ⊗A N −−−−→ P ⊗A C −−−−→ 0
y

y
y

u(M) −−−−→ N −−−−→ C
y

y

0 −−−−→ A/P ⊗A u(M) −−−−→ A/P ⊗A N

of A-modules with exact rows and columns, where the middle vertical sequence
is exact because N is flat over A, and the bottom left map is injective by the
assumption that idA/P ⊗Au is injective. It follows from the diagram that P⊗AC →
C is injective. Since C/PC is flat over the field A/P it follows from the local
criterion of flatness that C is flat over A. Hence it follows from (2.6.5) that the→
kernel u(M) of the map N → C is flat over A. Denote by K the kernel of the
map M → u(M). We obtain an exact sequence 0 → A/P ⊗A K → A/P ⊗AM →
A/P⊗Au(M) → 0. However, we have that A/P⊗AM → A/P⊗Au(M) is injective
by the assumptions of the Lemma. Consequently we have that A/P ⊗A K = 0,
that is K = PK, and hence K = QK where Q is the maximal ideal of B. It
follows from Nakayamas Lemma that K = 0.
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2.9. Generic flatness.

(2.9.14) Lemma. Given an integral domain A and an A-algebra B of finite type.
Moreover, given a finitely generated B-module N . Then there is an element f ∈ A
such that Nf is free over Af .

Proof. Write B = A[u1, . . . , uh]. We shall prove the Lemma by induction on h.
When h = 0 we have that A = B. It follows from Lemma (2.6) that we can→
choose a filtration N = Nn ⊃ Nn−1 ⊃ · · · ⊃ N0 = 0 by A-modules such that
Ni/Ni−1 = A/Pi, where Pi is a prime ideal in A. Since A is an integral domain
we have that the intersection of the non zero primes Pi is not zero. Choose a non
zero f ∈ A in this intersection if there is one non zero prime Pi and let f = 1
otherwise. Then (Ni/Ni−1)f is zero if Pi is a non zero prime and isomorphic to
Af when Pi = 0. Consequently we have that Nf is a free Af–module.

Assume that h > 0 and that the Lemma holds for h − 1. Choose generators
n1, . . . , ns for the B-module N and write B′ = A[u1, . . . , uh−1]. Then B = B′[uh].
Moreover, let N ′ = B′n1 + · · ·B′ns. We have that N ′ is a finitely generated B′-
module such that BN ′ = N . It follows from the induction assumption used to
the A-algebra B′ and the B′-module N ′ that we can find an element f ′ ∈ A such
that N ′

f ′ is a free Af ′-module. It therefore remains to prove that we can find an

element f ′′ ∈ A such that (N/N ′)f ′′ is a free Af ′′ -module. To this end we write

N ′
i = N ′ + uhN

′ + · · ·+ uihN
′

and
Pi = {n ∈ N ′:ui+1

h n ∈ N ′
i}.

Clearly N ′
i is a B′-submodule of N and Pi a B′-submodule of N ′. We obtain a

filtration
N ′

1/N
′ ⊆ N ′

2/N
′ ⊆ · · · ⊆ N/N ′

of N/N ′ by B′-modules N ′
i/N

′ such that ∪iN ′
i/N

′ = N/N ′. The B′-linear homo-
morphism N ′ → N ′

i+1 which sends n to ui+1
h n defines an isomorphism N ′/Pi →

N ′
i+1/N

′
i for all i. Since B′ is noetherian, the sequence P0 ⊆ P1 ⊆ · · · ⊆ N ′

must stabilize. That is, among the quotients N ′
i+1/N

′
i there appears only a finite

number of B′-modules. It follows from the induction assumption that we can find
an element f ′′ ∈ A such that all the modules (N ′

i+1/N
′
i)f ′′ are free Af ′′ -modules.

Hence (N/N ′)f ′′ is a free Af ′′ -module, as we wanted to prove.
We shall give another proof of the algebraic Lemma of generic flatness.

(2.9.14∗) Lemma. Let A be an integral domain and B an A-algebra of finite
type. Moreover, let N be a finitely generated B-module. Then there is an element
f ∈ A such that Nf is free over Af .
snitt
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Proof. Let K be the quotient field of A. Then B ⊗A K is a K-algebra of finite
type and N ⊗A K is a B ⊗A K-module of finite type.

Let s = dim supp(N ⊗A K) be the Krull dimension of the support of N ⊗A K
in Spec(B ⊗A K). We shall prove the Lemma by induction on s. When s < 0
we have that N ⊗A K = 0. Since K is flat over A we have that N ⊗A K = 0
implies that each element in N has A torsion, and since N is a finitely generated
B-module there is an element f ∈ A such that fN = 0.

Fix an s ≥ 0 and assume that the Lemma holds for all modules with support of
lower dimension than s. Since s > 0 there is a sequence N = N1 ⊃ N2 ⊃ · · · ⊃ Ns
of B-modules such that Ni/Ni+1 = B/Pi, for some prime ideal Pi in B. It suffices
to prove the Lemma for the quotients Ni/Ni+1, because if Ni/Ni+1 and Ni+1 are
free then, Ni is free, and we can conclude that N is free by descending induction
on i. Hence we can assume that N = B/P , where P is a prime ideal in B. If
P ∩ A 6= 0 we can take f ∈ P ∩ A and get Nf = 0. Hence we can also assume
that P ∩A = 0. We have that the support of B/P ⊗A K in Spec(B ⊗A K) is the
same as the support in the closed subset Spec(B/P ⊗A K). Hence it suffices to
prove the Lemma for B/P . Hence we can assume that B is an integral domain
that contains A.

It follows from the Noether normalization Lemma that there are elements
x1, . . . , xs in B ⊗A K that are algebraically independent over K and such that
B ⊗A K is integral over K[x1, . . . , xs]. Let g ∈ A be a common multiple of
all the denominators that appear in the integral relatons, with coefficients in
K[x1, . . . , xs], for the generators of B as an A-algebra. Then Bg is integral over
C = Ag[x1, . . . , xs] and Bg is a finitely generated C-module. We can therefore find
a C-submodule of B isomorphic to C⊕t for some t such that all the elements in
the quotient module N ′ have C-torsion. We have that s = dim supp(N ⊗A K) =
tr. degK(B ⊗A K) = tr. degK(C ⊗A K), and since N ′ has C-torsion we have
that dim supp(N ′ ⊗A K) < tr. degK(C ⊗A K). It follows from the induction
hypothesis that we can find an element h ∈ Ag such that N ′

h is free over Agh.
However Ch is a free Agh-module. Hence, it follows from the exact sequence
0 → C⊕t

k → Bgh → N ′
k → 0 that Bgh is a free Agh-module, and we have proved

the Lemma.

(2.9.3) Theorem. Given a noetherian ring A, a finitely generated A–algebra B,
and a finitely generated B–module M . The the set

U = {Q ∈ SpecB|MQ flat over A}

is open in SpecB.

Proof. It follows from (Proposition .?) that it suffices to prove that every gener-→

alization of a point in U is contained in U , and that U ∩ {x} is a neighbourhood

of x in {x}.
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to prove the first condition we observe that if R ⊇ Q are prime ideals of B then
we have that N ⊗A MQ = (N ⊗A M) ⊗B BQ = (N ⊗A M) ⊗B GR ⊗BR

BQ =
(N ⊗A MR) ⊗BR

BQ. Consequently we have that MQ is a flat A–module when
MR is.

To prove the second condition we take a prime ideal Q of B such that MQ is
flat over A. Let P be the trace of Q in A. For every prime ideal R in B that
contains Q we have that PBR ⊆ radBR. It follows from the local criterion for
flatness (?) that MR is flat over A if and only if MR/PMR is glat over A/P and→
P ⊗AMR →MR is injective.

We have an exact sequence

0 → K → P ⊗AM →M → A/P ⊗AM → 0

of B–modules, that defines K. Since B is noetherian and M is finitely generated
over B we have that K is a finitely generated B–module. Since MQ is flat over A
we obtain, localizing the sequence at Q, that KQ = 0. Consequently there is an
b ∈ B such that KR = 0 for all primes R in B that do not contain b.

By generic flatness (?) there is an element a ∈ A\? such that MQ/PMQ→
is free over AQ/PAQ. For eacn prime R of B not containing a we then have
that MR/PMR is flat over A/P . Consequently we have that the open subset
{R ∈ SpecB|ab /∈ ab} is contained in U . Thus the second condition holds and we
have proved that U is open.
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2.10. The dimension of rings.

(2.10.1) Setup. Given a ring A and a prime ideal P . We write κ(P ) = AP /PAP .

(2.10.2) Theorem. Given a homomorphism ϕ:A → B of noetherian rings and
Q a prime ideal in B. Let P = ϕ−1(Q) be the contraction of Q to A. Then we
have that:

(1) htQ ≤ htP + dimBQ/PBQ.
(2) If going down holds between A and B we have equality in (1).

Proof. (1) We can replace A and B with AP and BQ and consequently assume
that ϕ is a local homomorphism between local rings. Then we can write (1) as

dimB ≤ dimA+ dimB/PB.

Let a1, . . . , ar be a system of parameters in A (?) [97] [A-M, Ch. 11, p. 122]→
and choose b1, . . . , bs in B such that the image of these elements in B/PB for
a parameter system for B/PB. Then we have, for some integers m and n, that
Qn ⊆ PB +

∑s
i=1 biB and Pm ⊆

∑r
i=1 aiA. Consequently we have that Qmn ⊆∑r

i=1 aiA+
∑s
i=1 biB. Thus we have that dimB ≤ r + s = dimA+ dimB/PB.

(2) Let dimB/PB = s and let Q = Q0 ⊃ Q1 ⊃ · · · ⊃ Qs ⊇ PB be a chain of
prime ideals in B. We haver that ϕ−1(Qi) = P , for i = 0, . . . , s, since ϕ−1(Q) = P .
Let dimA = r and let P = P0 ⊃ P1 ⊃ · · · ⊃ Pr be a chain of prime ideals in A.
Since we assume that going down holds between A and B there is a descending
chain

Qs ⊃ Qs+1 ⊃ · · · ⊃ Qs+r

of prime ideals in B such that ϕ−1(Qs+i) = Pi. Consequently we have that
dimB ≥ r + s = dimA + dimB/PB. Together with formula (1) we obtain
assertion (2).

(2.10.3) Theorem. ( The dimension formula) [EGA 24, IV, 5.58], [Ma, Ch. 5,
14.C], [Mb, Ch. 5, 15.5] Given a noetherian ring A and let B be an integral domain
that contains A. Let Q be a prime ideal in B, and let P = Q ∩ A. Then we have
that

htQ+ td. deg.κ(P ) κ(Q) ≤ htP + td. deg.AB,

where td. deg.AB is the transcendence degree of the quotient field of B over the
quotient field of A.

When B is a polynomial ring over A, or when A is universally caternary, we
have equality in the formula.

Proof. We can assume that B is a finitely generated A algebra. Indeed, if the right
hand side is finite and m and t are non negative integers such that m ≤ htQ and
snitt
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t ≤ td. deg.κ(P ) κ(Q), then we have a chain of prime ideals Q = Q0 ⊃ Q1 · · · ⊃ Qm
in B and elements and let c1, . . . , ct in B whose images in B/Q are algebraically
independent over A/P . Pick an element ai ∈ Qi−1 \ Qi, for i = 1, . . . ,m. Let
C = A[a1, . . . , am, c1, . . . , ct]. If the Theorem holds for C we have that

m+t ≤ ht(Q∩C)+td. deg.κ(P ) κ(Q∩C) ≤ htP+td. deg.AC ≤ htP+td. deg.AB.

Consequently the Theorem holds for B.
Assume that B is finitely generated as a A-algebra. We use induction on the

number of generators. Assume that B is generated by one element. If B = A[x] is
a polynomial ring over A we can replace A with the localization AP and B with
the localization BP = AP [x], and therefore assume that A is local with maximal
ideal P . Since B is flat over A, and consequently going down holds between A and
B by Remark (?). It follows from Theorem (2.10.2) that we have→→

htQ = htP + ht(Q/PB).

Since B/PB = κ(P )[x] is a polynomial ring in one variable over κ(P ) we have
that Q = PB or ht(Q/PB) = 1. If Q = PB we have that

htQ+ td. deg.κ(P ) κ(Q) = htP + ht(Q/PB) + 1 = htP + 1,

and if ht(Q/PB) = 1 we obtain that

htQ+ td. deg.κ(P ) κ(Q) = htP + ht(Q/PB) + 0 = htP + 1.

Consequently the formula holds with equality in both cases.
Next assume that B is generated by one element x over A, but that it is not

a polynomial ring. We can then write B = A[x]/I, where I is a non zero prime
ideal in A[x]. We have that td. deg.AB = 0. Since A ⊆ B we have that I ∩
A = 0. Consequently, if we denote by K the quotient field of A we have that
ht I = ht IK[t] = 1. Let Q′ be the inverse image of Q by the canonical surjection
A[x] → B. Then we have that Q = Q′/I and κ(Q) = κ(Q′). We obtain, using the
case when B is a polynomial ring over A, that

htQ ≤ htQ′ − ht I = htQ′ − 1 = htP + 1 + td. deg.κ(P ) κ(Q
′) − 1.

If A is universally catenary it follows from Remark (?) that htQ = htQ′ − ht I→
and we obtain equality.

We have proved the case when B is generated by one element over A. However,
if A ⊆ C ⊆ B and the formula of the Theorem holds bestween A and C and C
and B, it clearly holds between A and B. Consequently the Theorem follows by
induction.
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(2.10.4) Definition. When two rings A and B satisfy the conditions of the
Theorem and the formula of the Theorem holds with equality we say that the
dimesion formula holds between A and B.

(2.10.5) Theorem. A noetherian ring A is universally catenary if and only if
the dimension theorem holds between A/P and B for all prime ideals P of A and
all integral domains B containing A/P , such that B is finitely generated as an
A-algebra.

Proof. Assume that A is universally catenary. Then A/P is universally catenary
so we can assume that A is an integral domain and that B contains A. We have
that B = A[x1, . . . , xn]/I where A[x1, . . . , xn] is a polynomial ring over A and
I a prime ideal in A[x1, . . . , xn]. Let Q be a prime ideal in B. Then we have
that Q = R/I, where R is a prime ideal in A[x1, . . . , xn]. However the ring
A[x1, . . . , xn] is catenary, and consequently it follows from Proposition (?) that→
we have htQ = htR − ht I. Since we have equality in the formula of Theorem
(2.10.4) for polynomial rings we have that→

htR+ td. deg.κ(P ) κ(R) = htP + td. deg.AA[x1, . . . , xr]

and
ht I + td. deg.κ(0) κ(I) = ht 0 + td. deg.AA[x1, . . . , xr].

Consequently we have that

htQ = htR− ht I = htP + td. deg.κ(0) κ(I) − td. deg.κ(P ) κ(R).

However, we have that td. deg.κ(0) κ(I) = td. deg.AB and td. deg.κ(P ) κ(R) =

td. deg.κ(P ) κ(Q), and thus we obtain equality in the formula of Theorem (2.10.3).→
Conversely, assume that the dimension formula holds between A/P and B for

all prime ideals P in A, and all integral domains B that are finitely generated over
A/P . In order to show that A is universally catenary it sufficies to show that all
finitely generated A-algebras that are integral domains, are catenary. Given prime
ideals Q ⊆ Q′ in B. We must show that

dimBQ′/QBQ′ + dimBQ = dimBQ′ .

Denote by P and P ′ the contraction of Q respectively Q′ to A, and denote byK the
kernel of the homomorphism AP ′ → BQ′ . The image of AP ′ in BQ′ is isomorphic
to AP ′/K and we have that the dimension formula holds between AP ′/K and BQ′ .
Hence we obtain that

dimAP ′/K + td. deg.AP ′/K(BQ′) = dimBQ′ + td. deg.κ(P ′) κ(Q
′).
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On the other hand, the kernel of the homomorphism AP → BQ is equal to KAP
since B′

Q → BQ is injective. The dimenasion formula holds between AP /KAP
and BQ so that we obtain

dimAP /KAP + td. deg.AP /KAP
(BQ) = dimBQ + td. deg.κ(P ) κ(Q).

Finally, we use that B/Q is an integral domain that is finitely generated over A,
that the contraction of Q′/Q to A is P ′, and that the kernel of the homomorphism
AP ′ → BQ′/QBQ′ is PAP ′ . Thus the dimension formula holds between AP ′/PAP ′

and BQ′/QBQ′ and we obtain that

dimAP ′/PAP ′ + td. deg.AP ′/PAP ′
(BQ′/QBQ′)

= dimBQ′/QBQ′ + td. deg.κ(P ′) κ(Q
′).

We add the last two formuas and use that κ(P ) and κ(Q) are the fraction fields
of AP ′/PAP ′ respectively BQ′/QBQ′ , that AP /KAP and AP ′/K ave the same
fraction field, and that BQ and BQ′ ave the same fraction field. We obtain the
formula

dimAP /KAP + dimAP ′/PAP ′ + td. deg.AP ′/K(BQ′)

= dimBQ + dimBQ′/QBQ′ + td. deg.κ(P ′) κ(Q
′).

Since A is catenary we have that AP ′/K is catenary and from the chain P ′AP ′ ⊇
PAP ′/K we get the formula

dimAP ′/PAP ′ + dimAP /KAP = dimAP ′/K.

Consequently we have that

dimAP ′/K+td. deg.AP ′/K(BQ′) = dimBQ+dimBQ′/QBQ′ +td. deg.κ(P ′) κ(Q
′).

From the first formula we proved we thus obtain that

dimBQ′ = dimBQ + dimBQ′/QBQ′,

which is the formula we wanted to prove.

(2.10.6) Remark. We saw in Proposition (dim.alg.) that fields are univer-→

sally catenary. Consequently, it follows from Proposition (2.10.5) that the ring of→
integers Z is universally catenary.
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2.11. Regular sequences.

(2.11.1) Lemma. Given a ring A and a noetherian algebra B. Let M be a finitely
generated B-module, and J an ideal in B that is contained in the Jacobsson radical
of B.

If M/JnM is a flat A-module for all n > 0, we have that M is flat over A.
In particular, if b is an element in the Jacobsson radical of B which is regular

for M , and such that M/bM is flat over A. Then M is flat over A.

Proof. Let I ⊆ A be a finitely generated ideal in A. It follows from Lemma (?)→
that it suffices to show that the map u: I ⊗AM →M is injective.

For n ≥ 1 we have that

(I ⊗AM)/Jn(I ⊗AM) = (I ⊗AM) ⊗B B/J
n = I ⊗AM/JnM

and I ⊗AM/JnM →M/JnM is injective since M/JnM is flat over A. It follows
from the commutative diagram

I ⊗AM
u

−−−−→ M
y

y

(I ⊗AM)/Jn(I ⊗AM) −−−−→ M/JnM

that the kernel of u is contained in Jn(I⊗AM). We have that I⊗AM is a finitely
generated B-module. Since B is noetherian it follows that ∩∞

n=1J
n(I ⊗AM) = 0,

and consequently we have that the kernel of u is 0.
Given b as in the Lemma. Since b is regular for M we have an exact sequence

0 →M/biM
b
−→M/bi+1M →M/bM → 0.

It follows by induction on i, starting with i = 1, that M/biM is flat for all i.
Hence, it follows from the first part of the Lemma that M is flat.

(2.11.2) Lemma. Given a ring A and an ideal I. Let M be an A-module. If an
element x ∈ A is regular for I iM/Ii+1M for i = 0, 1, . . . , then x is regular for
M/IiM for i = 1, 2, . . . .

Moreover, if x is regular for M/I iM for i = 1, 2, . . . and ∩∞
i=1I

iM = 0, we
have that x is regular for M .

Proof. We show the first assertion by induction on i. For i = 1 the assertion holds
by assumption. Assume that x is regular for M/I iM and that there is an m ∈M
such that xm ∈ I i+1M . Since x is regular for M/I iM , , we have that m ∈ I iM ,
snitt
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and since x is regular for I iM/Ii+1M we obtain that m ∈ I i+1M , as we wanted
to show.

To prove the second assertion we take an m ∈ M . If m 6= 0 we can, since
∩∞
i=1I

iM = 0, choose an i such that m ∈ I iM \ Ii+1M . If xm ∈ Ii+1M we must
have that m ∈ I i+1M . Consequently we have that xm /∈ I i+1, and we conclude
that x is regular for M .

(2.11.3) Proposition. ([G] 0, 10, 15.1.1.6) Given noetherian local rings A and
B, and a local homomorphism A→ B. Let P be the maximal ideal of A and let M
be a finitely generated B-module. Given elements f1, . . . , fn in the maximal ideal
of B. The following assertions are equivalent:

(1) The sequence f1, . . . , fn is M -regular and we have that the residue modules

Mi = M/(
∑i
j=1 fjM) are flat A modules for j = 1, 2, . . . , n.

(2) The sequence f1, . . . , fn is M -regular, and we hae that the module Mn =
M/(

∑n
j=1 fjM) is flat over A.

(3) The module M is flat over A and the images g1, . . . , gn in B/PB of the
elements f1, . . . , fn are A/P ⊗AM -regular.

(4) The module M is flat over A, and for every homomorphism ρ:A→ A′ the
sequence 1 ⊗A f1, · · · , 1 ⊗A fn in A′ ⊗A B is A′ ⊗AM -regular.

Proof. It is clear that (1) implies (2) and that (4) implies (3).

We prove first that (2) implies (4). Note that Mi+1 = Mi/fi+1Mi. In order to
prove that M is flat over A it therefore suffices, by induction on i, starting with
M0 = M , to prove that for b regular in B and M/bM flat over A, we have that
M is flat over A. However, this follows by Lemma (?). Since M is flat over A→
it follows by induction on i that every regular sequence f1, . . . , fn for M gives a
regular sequence 1 ⊗A f1, . . . , 1 ⊗A fn for A′ ⊗AM .

To prove that (3) implies (1) we note that it follows from Lemma (?) that the→

multiplication M
f1
−→M is injective and that the cokernel M/f1M is flat over A.

We show by induction on i that the multiplication Mi−1
fi−→Mi−1 is injective and

that Mi is flat over A. The case i = 1 we just proved. Assume that the assertion

holds for i − 1. Since A/P ⊗Mi−1
fi−→ A/P ⊗A Mi−1 is injective it follows from

Lemma (?) that fi is injective and that Mi−1/fiMi−1 = Mi is flat over A.→

(2.11.5) Lemma. Given a ring A and an A-module M . Let x be an element of
A and J and ideal in A. Write I = J + xA. If x is regular for

∑∞
i=9 J

iM/J i+1M
the map

ϕ:

∞∑

j=0

J iM/J i+1M ⊗A (A/xA)[t] →
∞∑

j=0

IiM/Ii+1M
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that sends t to x is an isomorphism. In other words, the maps

ϕi:

i∑

j=0

J jM/J j+1M ⊗A (A/xA)ti−j → IiM/Ii+1M

induced by the injection J ⊆ I is an isomorphism for i = 0, 1, . . . .
Conversely, if we have that ∩∞

n=0I
n(M/JM) = 0 and ϕ is an isomorphism,

then x is M/JM -regular.

Proof. It is clear that ϕ is surjective. Fix a non-negative number h. Let

P =

h∑

j=0

J j/J j+1 ⊗A (A/xA)th−j and Q = IhM/Ih+1M.

We have that the A module P is filtered by the modules

Pi =
h∑

j=i

J jM/J j+1M ⊗A (A/xA)th−j

and Q by Qi = ϕ(Pi), for i = 0, . . . , h. In order to prove that ϕi is injective, it
suffices, since P0 = P and Ph+1 = 0, to show that the induced maps

Pi/Pi+1 = J iM/J iMx+ J i+1M → Qi/Qi+1

is injective, where Qi+1 is the image of R = J i+1Mxh−i−1 + J i+2Mxh−i−2 +
· · · + JhM in IhM/Ih+1M . Hence we must show that if y ∈ J iM and xh−iy ∈
R+ Ih+1M , we have that y ∈ xJ iM + J i+1M

Since x is regular for J iM/J i+1M for all i it follows from Lemma (?) that→

x is regular for M/J iM for all i. We have that xh−iy ∈ J i+1M + Ih+1M ⊆
J i+1M + xh−i+1M . Consequently there is an z ∈ M such that y − xz ∈ J i+1M .
Since y ∈ J iM and thus xz ∈ J iM we have that z ∈ J iM . Consequently we have
that y ∈ xJ iM + J i+1M , as we wanted to show.

To prove the converse it follows from Lemma (?) that it suffices to prove that→
x is regular for I i(M/JM)/I i+1(M/JM) = I iM +JM/Ii+1M +JM for all i. To
this end, let m ∈ I iM = xiM + JM . We must show that if xm ∈ I i+2M + JM i,
the we have that m ∈ I i+1M+JM . Write m = xim1+p with p ∈ JM and assume
that xm = xi+2m2 + q with q ∈ M . Then we have that xi+1m1 − xi+2m1 ∈ JM .
However we have that M/JM ⊗A (A/xA)ti+1 → Ii+1M/Ii+2M is injective and
m1 ⊗A ti+1 maps to zero. Thus we have that m1 ∈ xM + JM . However, then
we have that m ∈ xi+1M + JM = Ii+1 + JM and we have proved the converse
assertion.
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(2.11.6) Theorem. Given a ring A and an A-module M . Let x1, . . . , xr be an
M -regular sequence and write I = (x1, . . . , xr). Then the following assertions hold:

(1) We have that the homomorphism

ψr:M/IM ⊗A A[t1, . . . , tr] →
∞∑

i=0

IiM/Ii+1M

that sends ti to xi is an A-module isomorphism.
(2) If ψR is an A-module isomorphism and we have that

∩∞
j=0I

j(M/(x1, . . . , xi)M) = 0 for i = 1, . . . , r

we have that x1, . . . , xr is an M -regular sequence.

Proof. Write Js = (x1, . . . , xs). We show by induction on s that the map

ψs:M/JsM ⊗A A[t1, . . . , ts] →
∞∑

i=0

J isM/J i+1
s M,

is an isomorphism. For s = 1, with J = 0, we obtain from Lemma (?) that ψ1 is→
an isomorphism Assume that ψs with s ≤ p is an isomorphism. We have that xs
is regular for M/Js−1M and consequently regular for

∑∞
i=o J

i
s−1M/J i+1

s−1M . From

Lemma (?) we conclude that the map→

ϕ:

∞∑

i=0

J is−1M/J i+1
s−1M ⊗A (A/xsA)[ts] →

∞∑

i=0

J isM/J i+1
s M

is an isomorphism. However, it is clear that ψs = ϕ(ψs−1 ⊗A id(A/xsA)[ts]. Thus
ψs is an isomorphism and (1) holds.

To prove (2) we shall show that if ψs is an isomorphism and the condition
of the converse holds for i = 1, . . . , s, then we have that x1, . . . , xs is an M -
regular sequence. The assertion holds for s = 1 by Lemma (?) with J = 0.→
Assume that ψs−1 is an isomorphism and that (2) holds for i = 1, . . . , s− 1. By
assumption we have that x1, . . . , xs−1 is an M -regular sequence. We have seen
that ψs = ϕ(ψs−1 ⊗A id(A/xsA)[ts]). Since ψs−1 is surjective we have that if ψs is

an isomorphism, then ϕ is an isomorphism. It follows from Lemma (?) used on→
M/Js−1M that xs is M/Js−1M -regular, and we have proved the Theorem.
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(2.11.7) Proposition. Given a local homomorphism A→ B of local noetherian
rings, and let M be a finitely generated B-module. Let x1, . . . , xr be an A-regular
sequence and write I = (x1, . . . , xr). Then M is flat over A if and only if M/IM
is flat over A/I, and x1, . . . , xr is M -regular.

Proof. It is clear that if M is flat over A then M/IM is flat over A/I, and it
follows by induction on i that x1, . . . , xi is M regular for i = 1, . . . , r.

Conversely, assume that M/IM is flat over A/I and that x1, . . . , xr is M -
regular. It follows from the local criterion of flatness (?) that it suffices to prove→
that Ii/Ii+1 ⊗A M → IiM/Ii+1M is an isomorphism for i = 0, 1, . . . . Since the
sequence x1, . . . , xr is M -regular it follows from Theorem (?) that we have an→
isomorphism

(M/IM)⊗A A[t1, . . . , tr] →
∞∑

i=0

IiM/Ii+1M

and since the sequence x1, . . . , xr is A regular we have an isomorphism

(A/IA) ⊗A A[t1, . . . , tr] →
∞∑

i=0

Ii/Ii+1.

Consequently we have isomorphisms

M/IM ⊗A F → IiM/Ii+1M and A/I ⊗A F → Ii/Ii+1

where F is the free A-module generated by the monomials of degree i in t1, . . . , tr.
We tensor the last isomorphism by M over A and obtain an isomorphism

M/IM ⊗A F → Ii/Ii+1 ⊗AM.

However, the inverse of the latter map composed with the above isomorphism
M/IM ⊗A F → IiM/Ii+1M is the map I i/Ii+1 ⊗A M → IiM/Ii+1M and we
have proved the Proposition.
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2.12. Reduction to noetherian rings.

(2.12.1) Lemma. ([G] IV, 28, 11.2.4) Given a ring A and an ideal I of A. Let
A′ be an A–algebra and M an A–module. We write M ′ = A′ ⊗AM . Then there
is a commutative diagram with exact rows

0 −−−−→ K −−−−→ I ⊗AM −−−−→ M −−−−→ M/IM −−−−→ 0
y

y
y

y

0 −−−−→ K ′ −−−−→ IA′ ⊗A′ M ′ −−−−→ M ′ −−−−→ M ′/IM ′ −−−−→ 0

that defines the A–module K and the A′–module K ′. If the A/I–module M/IM
is flat, we have that the left vertical map defines a surjection A′ ⊗A K → K ′ of
A′–modules.

Proof. We first note that K and K ′ are A/I, respectively A′/IA′-modules. Con-
sequently we have that K = A/I⊗AK and K ′ = A′/IA′⊗A′K ′. Consequently we
have that A′⊗AK → K ′ is surjective if and only if the map A′/IA′⊗A/I K → K ′

is surjective.

Let L1 → L0 → M → 0 be an exact sequence with L1 and L0 free A-modules.
Write L′

i = A′ ⊗A Li for i = 0, 1. Then we have an exact sequence L′
1 → L′

0 →
M ′ → 0 is an exact sequence of A′-modules. We obtain a commuative diagram

0
y

T
y

I ⊗A L1 −−−−→ L1 −−−−→ A/I ⊗A L1 −−−−→ 0
y

y
y

0 −−−−→ I ⊗A L0 −−−−→ L0 −−−−→ A/I ⊗A L0y
y

y
y

0 −−−−→ K −−−−→ I ⊗AM −−−−→ M −−−−→ A/I ⊗AMy

0
snitt
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of A-modules, where the right vertical column defines T . Similarly we obtain a
commutative diagram

0
y

T ′

y

IA′ ⊗A′ L′
1 −−−−→ L′

1 −−−−→ A′/IA′ ⊗A′ L′
1 −−−−→ 0

y
y

y

0 −−−−→ IA′ ⊗A′ L′
0 −−−−→ L′

0 −−−−→ A′/IA′ ⊗A′ L′
0y

y
y

y

0 −−−−→ K ′ −−−−→ IA′ ⊗A′ M ′ −−−−→ M ′ −−−−→ A′/IA′ ⊗A′ M ′

y

0

of A′-modules where the right vertical column defines T ′.
It follows from the two above diagrams that we have a surjection T → K of A-

modules, respectively a surjection T ′ → K ′ of A′-modules. We have a commutative
diagram

0 −−→ T −−→ A/I ⊗A L1 −−→ A/I ⊗A L0 −−→ A/I ⊗AM −−→ 0
y

y
y

y

0 −−→ T ′ −−→ A′/IA′ ⊗A′ L′
1 −−→ A′/IA′ ⊗A′ L′

0 −−→ A′/IA′ ⊗A′ M ′ −−→ 0

with exact rows, where the upper row consists of A/I-modules and the bottom
of A′/IA/-modules, and the vertical maps are maps of A-modules. To prove the
Lemma it suffices to show that the map A′/IA′ ⊗A/I T → T ′ obtained from the
left vertical map of the latter diagram is surjective. We break the upper horizontal
sequence into two exact sequences

0 → Q→ A/I ⊗A L0 → A/I ⊗AM → 0

and
0 → T → A/I ⊗A L1 → Q→ 0
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of A/I-modules. Tensorize the last two sequences with A′/IA′ over A/I. We
obtain two exact sequences

0 → A′/IA′ ⊗A/I Q→ A′/IA′ ⊗A L0 → A′/IA′ ⊗AM → 0

and
A′/IA′ ⊗A/I T → A′/IA′ ⊗A L1 → A′/IA′ ⊗A Q→ 0

of A′/IA′-modules, where ethe first is exact since M/IM is a flat A/I-module by
assumption. Consequently we obtain a commutative diagram

B ⊗A/I T −−−→ B ⊗A L1 −−−→ B ⊗A L0 −−−→ B ⊗AM −−−→ 0
y

y
y

y

0 −−−→ T ′ −−−→ B ⊗A′ L′
1 −−−→ B ⊗A′ L′

o −−−→ B ⊗A′ M ′ −−−→ 0

of B = A′/IA′-modules, where the three right vertical maps are isomorphisms.
Consequently the left vertical map is surjective.

(2.12.2) Lemma. ([G] IV, 28, 2.5) Given a ring A and an ideal I of A. Let B
be an A-algebra, and M a B-module. Moreover, let A′ be a noetherian A-algebra.
Write B′ = A′ ⊗A B and M ′ = A′ ⊗A M = B′ ⊗B M . We assume that B′ is a
finitely generated A′-algebra and that M ′ is a finitely generated B′-module. Given
a prime ideal Q′ in B′ that contains IB′. We have a commutative diagram

0 −−−−→ K −−−−→ I ⊗AM −−−−→ M −−−−→ M/IM −−−−→ 0
y

y
y

y

0 −−−−→ K ′ −−−−→ IA′ ⊗A′ M ′ −−−−→ M ′ −−−−→ M ′/IM ′ −−−−→ 0
y

y
y

y

0 −−−−→ K ′
Q′ −−−−→ IA′ ⊗A′ M ′

Q′ −−−−→ M ′
Q′ −−−−→ M ′

Q′/IM ′
Q′ −−−−→ 0

with exact rows and columns, and where the two first rows define the A-module K
respectively the A′-module K ′. If M/IM is a flat A/I-module, and the composite
map K → K ′ → K ′

Q′ of the diagram is zero, we have that M ′
Q′ is a flat A′-module.

Proof. It follows from the assumptions of the Lemma that the A′/IA′ = A′⊗AA/I-
module M ′/IM ′ = A′ ⊗AM/IM is flat. Consequently we have that the A′/IA′-
module M ′

Q′/IM ′
Q′ is flat. It follows from the local criteron of flatness (?) that it→

suffices to prove that K ′
Q′ = 0.

It follows from Lemma (?) that the map A′ ⊗A K → K ′ is surjective. Since→
the composite map K → K ′ → K ′

Q′ is zero by assumption it follows that the

map K ′ → K ′
Q′ is zero. Since B′ is noetherian, and M ′ is a finitely generated B′-

module by assumption we have that K ′ is a finitely generated B′-module. Hence,
since the map K ′ → K ′

Q′ is zero, we have that K ′
Q′ = 0.
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(2.12.3) Lemma. Given a ring A. Let B be a finitely presented A-algebra and M
a finitely presented B-module. Then there is a finitely generated Z-subalgebra A0 of
A, a finitely generated A0-algebra B0, and a finitely generated B0-module M0, with
canonical maps B0 → B and M0 → M of A0-algebras, respectively B0-modules,
such that the resulting maps A⊗A0

B0 → B and B⊗B0
M0 = A⊗A0

M0 →M are
isomorphisms.

Proof. Write B = A[x1, . . . , xr]/I as the residue ring of the polynomial ring in
r variables x1, . . . , xr over A , by the finitely generated ideal I = (f1, . . . , fn),

and let Bm
(bi,j)
−−−→ Bn → M → 0 be a presentation of the B-module M . Choose

polynomials gi,j in A[x1, . . . , xr] whose classes in B are bi,j.
We define A0 to be the Z-algebra generated by the coefficients of the polynomials

f1, . . . , fn and g1,1, . . . , gm,n. Moreover let B0 = A0[x1, . . . , xr]/(f1, . . . , fn) and
let M0 be the cokernel of the map

Bm0
(bi,j)
−−−→ Bn0 .

The inclusion of A0[x1, . . . , xr] in A[x1, . . . , xr] induces a homomorphism B0 → B
and we have an isomorphism

A⊗A0
B0 = A⊗A0

A0[x1, . . . , xr]/(f1, . . . , fn) = A[x1, . . . , xr]/(f1, . . . , fn) = B.

Moreover, we have a commutative diagram

Bm0
(bi,j)

−−−−→ Bn0 −−−−→ M0 −−−−→ 0
y

y
y

Bm
(bi,j)

−−−−→ Bn −−−−→ M −−−−→ 0

where the upper row is an exact sequence of B0-modules and the vertical maps are
B0-module homomorphisms. Since the map A ⊗A0

Bi0 → Bi is an isomorphism
for i = m,n it follows that we get a canonical isomorphism A⊗A0

B0 →M .

(2.12.4) Remark. Given A,B and M as in Lemma (?), and let A0, B0 and M0→
satisfy the conditions of the conclusions of the Lemma. It is clear that we can find
finitely generated Z-algebras Aλ, with λ in some totally ordered index set I with
first element 0, such that Aλ ⊆ Aµ whenever λ ≤ µ, and with A = ∪λ∈IAλ. We
write Bλ = Aλ ⊗A0

B0 and Mλ = Aλ ⊗A0
M0. Then we have that Bλ is a finitely

generated Aλ-algebra, and Mλ is a finitely generated Bλ-module.
We obtain natural maps Bλ → Bµ and Mλ → Mµ when λ ≤ µ such that

Bµ = Aµ⊗Aλ
Bλ and Mµ = Aµ⊗Aλ

Mλ. Moreover we have natural maps Bλ → B
and Mλ → M that induce isomorphisms A ⊗Aλ

Bλ → B and A ⊗Aλ
Mλ =

B ⊗Bλ
Mλ →M , for all indices λ, and these maps are compatible with the maps

A⊗Aλ
Bλ → A⊗Aµ

Bµ and A⊗Aλ
Mλ → A⊗Aµ

Mµ when λ ≤ µ.
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Since A is the union of the rings Aλ we have that B is the union of the images
of the rings Bλ and that M is the union of the images of the modules Mλ.

(2.12.5) Theorem. Given a ring A, and let B be a finitely presented A-algebra
and M a finitely presented B-module which is flat over A. Then there is a finitely
generated Z-subalgebra A0 of A, a finitely generated A0-algebra B0, and a finitely
generated B0-module M0 which is flat over A0, together with canonical maps B0 →
B and M0 → M of A0-algebras respectively B0-modules, such that the resulting
maps A⊗A0

B0 → B and B ⊗B0
M0 = A⊗A0

M →M are isomorphisms.

Proof. It follows from Lemma (?) that we can find a finitely generated Z-sub-→
algebra A0 of A, a finitely generated A0-algebra B0 and a finitely generated B0-
module M0 together with canonical maps B0 → B and M0 → M such that the
resulting maps A⊗A0

B0 → B and A⊗A0
M0 = B⊗B0

M0 →M are isomorphisms.
We define Aλ, Bλ and Mλ for λ in some totally ordered index set as in Remark
(?). In order to prove the Theorem it suffices to prove that for every prime ideal→
Q in B there is a λ, dependent on Q, such that if Qλ is the trace of Q in Bλ, we
have that (Mλ)Qλ

is a flat Aλ-module. Indeed, then it follows from (?) ([M] 24.3,→
[G] 28, 11.1.1) that there is an open subset Uλ of SpecBλ such that (Mλ)Rλ

is a
flat Aλ-module for all Rλ ∈ Uλ, and by our assumptions we have that if Vλ is the
inverse image of Uλ by the map SpecB → SpecBλ coming frm the canonical map
Bλ → B, we have that SpecB is the union of the Vλ’s. Moreover we have that
Vλ ⊆ Vµ whenever λ ≤ µ, because if Mλ is a flat Aλ-module, and Rλ ⊆ Bλ comes
from a prime R ⊆ B, we have that (Mµ)Rµ

= (Aµ⊗Aλ
Mλ)Rµ

is a flat Aµ-module
for every prime ideal R′

µ in Bµ that restricts to Rλ and thus, in particular, to Rµ.
Consequently we have that R is in Vµ.

We have seen that {Vλ}λ is a family of stricly open subsets of SpecB whose
union is SpecB. Since SpecB is compact we have that SpecB = Vλ for some λ.
Consequently it suffices to fix a prime ideal Q in B and show that there is an index
λ such that (Mλ)Qλ

is a flat Aλ-module, where Qλ is the trace of Q in Bλ. Let P0

be the trace of Q in A0. By basis extension we can clearly replace A0 with AP0
,

and thus assume that A0 is local with maximal ideal P0, which is the trace of Q.
We have a commutative diagram

0 −−→ K0 −−→ P0 ⊗A0
Mo −−→ M0 −−→ A0/P0 ⊗AM −−→ 0

y
y

y
y

0 −−→ Kλ −−→ P0Aλ ⊗Aλ
Mλ −−→ Mλ −−→ Aλ/P0Aλ ⊗Aλ

Mλ −−→ 0
y

y
y

y

0 −−→ K −−→ P0A⊗AM −−→ M −−→ A/P0A⊗AM −−→ 0
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with exact rows. By assumption we have that KQ = 0. Since B0 is noetherian and
M0 is a finitely generated B0-module, we have that K0 is a finitely generated B0-
module. Choose generators k0

1, . . . , k
0
n for K0, and let kλ1 , . . . , k

λ
n, and k1, . . . , kn

be the image of these generators in Kλ respectively K. The map P0Aλ⊗Aλ
Mλ →

P0A⊗AM of the diagram is the same as the map P0Aλ ⊗A0
M0 → P0A⊗A0

M .
Since P0A is the union of the modules P0Aλ, it follows from the definition of a
tensor product that , if an element hλ ∈ Kλ lies in the kernel of Kλ → K, then
there is an index µ ≥ λ such that hλ lies in the kernel of Kλ → Kµ. We conclude
that, since KQ = 0, there is an element t ∈ B\Q such that tki = 0 for i = 1, . . . , n.
However, the ring B is the union of the images of Bλ → B. Hence there is an
index λ such that t is the image of tλ ∈ Bλ \Qλ. Consequently we have that tλk

λ
i

is in the kernel of Kλ → K. Thus there is an index µ ≥ λ such that tµk
µ
i = 0

for i = 1, . . . , n, where tµ is the image tλ by the map Bλ → Bµ. In particular
we have that tµ ∈ Bµ \ Qµ. Consequently we have that (Kµ)Qµ

= 0. It follows

from Lemma (?) applied to A0, I = P0, B0, M0, and A′ = Aµ, that (Mµ)Qµ
is a→

flat Aµ-module. The condition that M0/P0M0 is flat over A0/P0, is automatically
fulfilled because P0 is a maximal ideal.
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2.13. Fitting ideals.

(2.13.1) Setup. Let M be a finitely generated A-module, and fix a non-negative
integer r. Choose generators m1, . . . ,ms for M and let

N = {(a1, . . . , as) ∈ An: a1m1 + · · ·+ asms = 0}.

Moreover, choose generators {nα = (aα,1, . . . , aα,s)}α∈I for the A-module N . We
denote by Ir the ideal in A generated by the (s − r)-minors of the (#I × s)-
matrix A = (aα,1, . . . , aα,s)α∈I . When r < 0 we let Ir = (0) and when r is at
least equal to s or the number of elements in I we let Ir = A. We have that
0 = I−1 ⊆ I0 ⊆ · · · ⊆ Is = A = Is+1 = · · · .

(2.13.2) Note. Given an element n = (a1, . . . , as) in N . Let J be the ideal in A
generated by the s− r minors of the ((#I + 1)× s)-matrix B obtained from A by
adding (a1, . . . , as) as the first row. Then J = Ir. Indeed, it is clear that Ir ⊆ J
because the matrix A is formed from the rows 2, 3, . . . of B.

To prove the opposite inclusion we only have to show that the s − r-minors
containing the first row of B are contained in Ir. However, we have that n =
b1nα1

+ · · · bsnαs
, for some bi in A, and αi in I. Hence, the first row of B is a sum

of rows α1+1, · · · , αs+1 multiplied with b1, . . . , bs respectively. Hence the (s−r)-
minors containing the first row can be expanded as a sum of the (s − r)-minors
containing rows α1 + 1, . . . , αs + 1 multiplied by b1, . . . , bs. We consequently have
that J ⊆ Ir.

By (transfinite, if necessary) induction, we obtain that the ideal in A obtained
from the (s− r)-minors of the matrix obtained by adding to A rows coming from
any set of elements of N , is equal to Ir. In particular we obtain that the ideal Ir
is independent of the choise of generators nα. Indeed, if we chose another set of
generators for M , we have that the ideal obtained from the union of the two sets
of generators is equal to the ideal obtained from each set.

(2.13.3) Note. Let m be an element of M . Moreover, let

P = {(a, a1, . . . , as) ∈ As+1: am+ a1m1 + · · · + asms = 0}.

Then, if we writem = −b1m1+· · ·+bsms, with bi in A, we have that P contains the
element p = (1, b1, . . . , bs), and that P is generated by the element p and elements
{pα = (0, aα,1, . . . , aα,s)}α∈I , where {(aα,1, . . . , aα,s)}α∈I are generators for N .
Let J be the ideal in A generated by the (s−r+1)-minors of the ((#I+1)×(s+1))-
matrix whose first row is the element p and whose (α+ 1)’st row is the elements
pα. It follows from Note (2.13.2) that J is independent of the choise of generators→
of P . It is clear that we have an equality J = Ir. By induction on t we obtain that
snitt
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the ideal in A generated by the (s− r+ t)-minors of the (#I + t)× (s+ t)-matrix
obtained from m1, . . . ,ms and t additional elements, is equal to Ir.

In particular we have that the ideal Ir is independent of the choise of generators
m1, . . . ,ms of A. Indeed, if we had another set of generators we have that the ideal
obtained from the union of the two sets of generators is equal to the ideal obtained
from each set.

(2.13.4) Definition. Let M be a finitely generated A-module and r a non-
negative integer. In Setup (2.13.1) we chose generators m1, . . . ,ms of M and→
defined Ir to be the ideal generated by the (s − r)-minors of the matrix whose
rows are generators for the A-module N = {(a1, . . . , as) ∈ As:

∑s
i=0 aimi = 0}. In

Note (2.13.2) we proved that Ir is independent of the choise of generators for N ,→

and in Note (2.13.3) we showed that it is independent of the choise of generators→
of M . The ideal therefore depends on M only. We denote it by Fr(M) and call
it the r-th Fitting ideal of the module M .

(2.13.5) Remark. We have an inclusion Fr−1(M) ⊆ Fr(M).

(2.13.6) Note. Given generators m1, . . . ,ms for the A-module M . We obtain a
surjection

As → N

and it is clear that N of Setup (2.13.1) is the kernel to this map. The choise of→
generators {nα}α∈I for N gives an exact sequence

A⊕I → B⊕s →M → 0

of A-modules. It follows from Definition (2.13.4) that Fr(M) is the ideal of A→

generated by the (s− r)-minors to the (#I) × s-matrix A⊕I → A⊕s.

(2.13.7) Lemma. Let B be an A-algebra and let M be a finitely generated A-
module. Then we have an equality

Fr(M)B = Fr(M ⊗A B)

of ideals in B.

Proof. It follows from Remark (2.13.5) that we have a presentation→

A⊕I α
−→ A⊗s →M → 0

of M . We obtain a presentation

A⊕I ⊗A B = B⊕I α⊗idB−−−−→ A⊕s ⊗A B = Bs −→M ⊗A B → 0

of M ⊗A B. It follows from Remark (2.13.5) that Fr(M) and Fr(M ⊗A B) are→
generated by the (s− r)-minors of α respectively α⊗ idB .
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(2.13.8) Proposition. Assume that A is a local noetherian ring and M a finitely
generated module. Then M is free of rank r if and only if Fr(M) = A and
Fr−1(M) = 0.

Proof. When M is free of rank r we have a presentation 0 → Ar → M → 0 and
we obtain that Fr−1(M) = 0 and that Fr(M) = A by definition.

Conversely assume that Fr(M) = A and that Fr−1(M) = 0. Choose a presen-

tation At
α
−→ As →M → 0. If Fr(M) = A there is an (s− r)-minor of the matrix

α which is invertible. We can reorder the basis vectors for As and At such that
this minor is the one of the upper left corner of α. The (s− r)× (s− r)-matrix in
the upper left corner then defines an isomorphism between the A-modules spanned
by the first (s− r) basis vectors in As respectively At. By choosing new bases for
these A-modules we may assume that the (s − r) × (s − r) matrix in the upper
left corner is the identity matrix. We can now use row and column operatins on α
to put α in a form where the lower left r × (s− r) corner, respectively the upper
right (s− r) × (t − s+ r) corners are equal to zero. Since we have assumed that
Fr−1(M) = 0 we have that the left r × (t − s + r) corner also is zero. If follows
immediately from the form of the matrix α that M is free of rank r.
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2.14. Formal smoothness.

(2.14.1) Definition. ([G] 20, 0.19.9.1) Given a ring k and a k-algebra A. Let
B be an A-algebra. We say that B is formally smooth over A relative to k , if,
for every A-algebra C, for every nilpotent ideal I in C, and for every A-algebra

homomorphism u0:B → C/I that factors via C as B
u
−→ C

ϕ
−→ C/I, where u is a

k-algebra homomorphism and ϕ is the residue map, we also have a factorization

B
v
−→ C

ϕ
−→ C/I, where v is an A-algebra homomorphism. When A = k we say

that B is formally smooth over A if, for every A-algebra C, for every nilpotent
ideal I in C, and for every A-algebra homomorphism u0:B → C/I, we have a

factorization B@ > v >> C
ϕ
−→ C/I, where w is an A-algebra homomorphism.

When the latter factorization is unique we say that B is étale over A.

(2.14.2) Remark. It suffices to assume in Definition (?) that every homo-→

morphism u0:B → C/I that factors via B
u
−→ C

ϕ
−→ C/I, also factors via B

v
−→

C
ϕ
−→ C/I for all ideals I in C such that I2 = 0. Indeed we can sucessively lift

A→ B/I i−1 to A→ B/I i, and reason by induction.

(2.14.3) Lemma. We have that an A-algebra B is formally étale over A if and
only if B is formally smooth over A and Ω1

B/A = 0.

Proof. If Ω1
B/A = 0 we can not have two A-algebra homomorphism u, v:B →

C which give the same map under composition with ϕ:C → B. Indeed, then
u − v:B → C would be a non-trivial A-derivation when we consider C as a B-
algebra via ϕ or ψ.

Conversely, if B is formally étale we have that the isomorphism B → B⊗AB/I
factors via B → B ⊗A B/I2 in a unique way, where I is the ideal in B ⊗A B
that defines the diagonal. However, then the two A-algebra homomorphisms that
send an element to the first, respectively the second, factor give factorizations.
Consequently they are equal, and thus 1 ⊗A b − b⊗A 1 is in I2 for all b in B. In
others words we have that I = I2, and consequently that Ω1

B/A = 0.

(2.14.4) Proposition. Given a ring k. Then:

(1) The ring k is a formally smooth k-algebra.
(2) Given a formally smooth k-algebra, and a formally smooth A algebra B.

Then B is a formally smooth k-algebra.
(3) Given a formally smooth k-algebra A, and a k-algebra k′. Then we have

that k′ ⊗k A is a formally smooth k′-algebra.
(4) Given a formally smooth k-algebra A, and S and T multiplicatively closed

subsets of k respectively A, such that the image of S in A is contained in
T . Then we have that T−1A is a formally smooth S−1k-algebra.

snitt
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(5) Given k-algebras Ai for i = 1, . . . , n. Then we have that
∏n
i=1Ai is a

formally smooth k-algebra if and only if all the Ai are formally smooth
k-algebras.

Proof. All the properties are easy to check.

(2.14.5) Proposition. Given a formally smooth k-algebra A and let I be an ideal
in A. Then we have that

Ω1
A/k ⊗k A/I

is a projective A/I-module.

Proof. Given a surjection u:L→M of A/I-modules. It suffices to prove that the
map

HomA(Ω1
A/k, L)

Hom(id
Ω1

A/k
,u)

−−−−−−−−−−→ HomA(Ω1
A/k,M)

is surjective. In other words it suffices to prove that the map

Derk(A,L)
Derk(idA,u)
−−−−−−−−→ Derk(A,M)

is surjective. Let D:B → M be a k-derivation. Consider the homomorphism of
k-algebras

v:A→ A/I ⊕M

defined by v(a) = (u(a), Da), where u:A→ A/I is the residue map, and where we
consider A/I ⊕M as an A/I-algebra by (0,m)(0,m′) = (0, 0), for all m and m′ in
M . Since A is formally smooth over k we have a lifting

w:A→ A/I ⊕ L

of A/I ⊕ L
idA ⊕u
−−−−→ A/I ⊕M . The map w gives a k-derivation E:A → L defined

by w(a) = (u(a), E(a)) and, since (idA⊕u)w = v, we have that uE(a) = D(a).
Consequently D′ is a lifting of D.

(2.14.6) Theorem. Given a separable field extension L of a field K. Then L is
K-étale. If k is a subfield of K we have that Ω1

L/k = Ω1
K/k ⊗K L.

Proof. Let C be a K-algebra and I and ideal in C such that I2 = 0. Moreover
given a map ϕ:L→ C/I of K-algebras. Given a field L′ between K and L which
is finitely generated over K. Then we have that L′ = K(α) where α has a minimal
polynomial f(x) such that f ′(α) 6= 0. We want to lift ϕ|L′ to C. To this end we
have to find an element c of C such that f(c) = 0 and c ≡ ϕ(α) (mod I). Choose
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a c′ in C that maps to ϕ(α) by the residue map C → C/I. Then we have that
f(c′) ≡ ϕ(f(α)) ≡ 0 (mod I). We have that I2 = 0 for each d ∈ I. Consequently

f(c′ + d) = f(c′) + f ′(c)d

in C. However, we have that f ′(α) is a unit in L. Consequently ϕ(f ′(α)) ≡ f ′(c′)
(mod I) is a unit in C/I, and thus f ′(c) is a unit in C. With d = −f(c′)/f ′(c)
we have that f(c′ + d) = 0. We choose c = c′ + d and the K-algebra map
L′ = K(α) → C which sends α to c becomes a lifting. We see that this lifting is
unique. Consequently we can lift the map to the whole of L.

The second assertion of the Theorem follows from the first part and from the
equality Ω1

L/K = 0 of Lemma (?).→

(2.14.7) Theorem. ([G] 20, 0.22.6.1) Given a formally smooth k-algebra A and
an ideal I in A. The following two assertions are equivalent:

(1) The algebra A/I is formally smooth over k.
(2) The canonical map

δ: I/I2 → Ω1
A/k ⊗A A/I,

which sends the class of an element a in I to da⊗A 1, is left invertible.

Proof. To prove that (1) implies (2) we note that δ is left invertible if and only
if Derk(A,M) → HomA/I(I/I

2,M), which sends a derivation D:A → N to

the induced A/I-homomorphism I/I2 → M is surjective for all A/I-modules
M . We fix an A/I-module homomorphism u: I/I2 → M . Let C = A/I2 ⊕
M/{(a,m)|a is the class of an element in I and u(a) = m}. Then C is an A/I-
algebra when the multiplication is defined by (0,m)(0,m′) = (0, 0) for all m and
m′ in M . We have a canonical exact sequence

0 →M → C
σ
−→ A/I → 0.

The identity on A/I factors via a map v:A/I → C such that σvϕ = ϕ, where
ϕ:A → A/I is the residue map. Moreover, we have a canonical homomorphism
ψ:A→ A/I2 → C such that σψ = ϕ. We obtain a map ψ − vϕ:A→ C such that
σ(ψ− vϕ) = 0. Consequently we have that the image of ψ − vϕ is in M and thus
ψ − vϕ induces a k-derivation w:A→M , and thus an A/I-linear map w: I/I2 →
M . If a in I/I2 is the image of a in I we have that w(a)ψ(a)−vϕ(a) = ψ(a) = u(a),
where the last inequality holds since ψ(a) = (a, 0) = (0, u(a)) considered as a
subset of C for all a ∈ I.

To prove that (2) implies (1) we note that it follows from assertion (2) that the
map Derk(A,M) → HomA/I(I/I

2,M) is surjective for all A/I-modules M . Given
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a k-algebra B and an ideal J in B such that J2 = 0. Assume that we have a map
u:A/I → B/J of k-algebras. Since A is formally smooth over k we have that the

composite map A
ϕ
−→ A/I

u
−→ B/J lifts to a map v:A → B of k-algebras. We

have that ψv = uϕ where ψ:B → B/J is the residue map. If a ∈ I we have that
v(a) ∈ J . The map v induces a map w: I/I2 → B since J2 = 0 and the image
of w is in J . We consequently have a k-derivation D:A → B which induces w.
Since D has image in J it follows that D(a) = v(a) for all a ∈ I. We therefore
obtain a k-algebra homomorphism v − D:A → B which factors via A/I, and for
a ∈ A we have that ψ(v − D)(a) = ψv(a) − ψD(a) = ψv(a) = uϕ(a). Thus the
map A/I → B induced by v −D lifts u:A/I → B/J .

(2.14.8) Corollary. Assume that A and A/I are formally smooth over k. Then
we have that I/I2 is a projective A/I-module.

Proof. We have that I/I2 is a direct summand of the module Ω1
A/k⊗kA/I, which

is projective by Lemma (?).→

(2.14.9) Theorem. ([G] 20, 0.20.5.7, [M] 28.4) Given a k-algebra A and let
u:A→ B be a map of k-algebras. The following two assertions are equivalent:

(1) The algebra B is formally smooth over A relative a k.
(2) The B-module homomorphism

Ω1
A/k ⊗A B → Ω1

B/k

is left invertible.

Proof. We first prove that (1) implies (2). To show that the map in (2) is left
invertible we must prove that the map Derk(B,M) → Derk(A,M) is surjective for
all B-modules M . Fix a k-derivation D:A→M . Consider the A-algebra B ⊕M ,
where M is an ideal in B ⊕M with M 2 = 0, and where the A-algebra structure
is given by ϕ:A → B ⊕M , where ϕ(a) = (u(a), D(a)). The identity map on B
factors via the k algebra homomorphism B → B ⊕M , which sends B to the first
factor. Since B is formally smooth over A relative to k the identity on B factors
via an A-algebra homomorphism v:B → B ⊕M . The map E:B → M into the
second factor is a k-derivation, and since w is an A-algebra homomorphism we
obtain that E(u(a)b) = E(ab) = bD(a) + u(a)E(b), which for b = 1 gives that
D = Eu. Consequently we can lift D to E.

To show that (2) implies (1) we let C be an A-algebra via the homomorphism
ψ:A→ C, and let I ⊆ C be an ideal with I2 = 0.

Given an A-algebra homomorphism v0:B → C/I that factors via a k-algebra
homomorphism v:B → C/I. Then the A-algebra structure gives that v0u = ϕψ
and the lifting gives that ϕv = v0. Since we have that ϕ(ψ − vu)(a) = ϕψ −
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ϕvu(a) = v0u − v0u(a) = 0, for all a ∈ A, we obtain a k-derivation D:A → I
defined by D(a) = ψ(a) − vu(a), for all a ∈ A.

We can consider I as a B-module via v, and for c ∈ I and a ∈ A we have that
vu(a)c = (vu−ψ)(a)c+ψ(a)c = ψ(a)c, such that this B-module structure induces
an A-module structure that coincides with that induced by ψ. It follows from (2)
that D can be lifted to a k-derivation E:B → I, that is Eu = D0. We define
the homomorphism w:B → C by w(b) = v(b) + E(b) for b ∈ B. Since we have
that E(b) ∈ I and I2 = 0 this is a k-algebra homomorphism. Moreover we have
that w(u(a)b) = w(u(a))w(b) = (vu(a) + Eu(a))w(b) = (ψ(a) −Da+Da)w(b) =
ψ(a)w(b). Consequently w is an A-algebra homomorphism.

Finally we note that ϕw(b) = ϕv(b) + ϕE(b) = ϕv(b) = v0(b) since E(b) ∈ I.
Consequently we have that w lifts v0.

(2.14.10) Theorem. ([G] 20, 0.19.5.4) Given a formally smooth k-algebra A and
an ideal I ⊆ A such that A/I is smooth over k. The following two assertions are
equivalent:

(1) The k-algebra A is formally smooth.
(2) The A/I-module I/I2 is projective and the canonical homomorphism

ϕ: SymA/I(I/I
2) →

∞∑

i=0

Ii/Ii+1

is bijective.

Proof. We first show that (1) implies (2). It follows from Proposition (?) that→
I/I2 is a projective A/I-module. Let

En = A/In+1 and Fn = SymA/I(I/I
2)/In+1 SymA/I(I/I

2).

We have that the ideal I/In+1 is nilpotent in En. Consequently the identity

of A/I factors as A/I
f
−→ En → A/I, where f is a k-algebra homomorphism.

We have seen that I/I2 is a projective A/I-module. Consequently the identity

on I/I2 factors as I/I2 g
−→ I/In+1 → I/I2, where g is A/I-linear. From the

homomorphisms f and g we obtain a homomorphism SymA/I(I/I
2) → En of

A/I-algebras, where En is an A/I-algebra via f . It follows from the definition of g
that the homomorphism is zero on In+1 SymA/I(I/I

2). Thus we obtain a k-algebra

homomorphism v:Fn → En The latter map is surjective since f(ā) − ā ∈ I/In+1,
for all a ∈ I, and g(ā) − ā ∈ I2/In+1 for all a ∈ I. From the definition of v if also
follows that gr0 v and gr1 v are the identities on A/I respectively I/I2. We first
conclude that the kernel N of v lies in IFn, and consequently is nilpotent, and
then that gri v = ϕi for i ≤ n.
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Since A is formally smooth over k the canonical map pn:A → En = A/In+1

factors via A
w
−→ Fn

v
−→ En, where w is a k-algebra homomorphism. Since pn is an

A-algebra homomorphism and gr0 v is the identity, we have that w(I) ⊆ IFn, and

consequently that w(In+1) = 0. Thus w factors as A
pn−→ A/In+1 = En

w′

−→ Fn,

where the composite map En
w′

−→ Fn
v
−→ En is the identity, since vw = pn.

Consequently we have that gr0(w′) and gr1(w′) are the identity on A/I respectively
I/I2. However we have that gr(En) is generated by I/I2 as an A/I-algebra. We
obtain that the composite map

gri(Fn)
ϕi−→ gri(En)

gri(w′)
−−−−→ gri(Fn)

is the identity for i ≤ n. In particular we have that ϕi is injective for i ≤ n.
(2) ⇒ (1). Her må vi sannsynligvis bruke at Grothendiecks reduksjon fra ikke

noetherske til noetherske, som er gjort i eget kapittel.

(2.14.1) Lemma. Given a ring A and a finitely generated A-module M . More-
over, let F be a projective A-module and let ϕ:M → F be an A-linear map. Given
a prime ideal P in A. The following three assertions are equivalent:

(1) The map ϕP :MP → FP is left invertible.
(2) There are elements x1, . . . , xm in M and v1, . . . , vm in HomA(F,A) such

that MP =
∑m
i=1APxi and det(vi(ϕ(xj)) /∈ P .

(3) There is an element f ∈ A \ P such that ϕf :Mf → Ff is left invertible.

The set of prime ideals P in SpecA that satisfy the conditions of the Lemma is
open.

Proof. We have that F is a direct summand of a free A-module. Since M is finitely
generated we have that ϕ(M) is contained in a fintely generated free module. The
conditions (1), (2), (3) become the same if we replace F with the free submodule
containing M . Consequently we may assume that F is free and finitely generated.

We first prove that (1) implies (2). It follows from (1) that MP is a free AP -
module. Choose x1, . . . , xn in M that give a basis of MP . Then we have that
ϕP (x1), . . . , ϕP (xm) is part of a basis of FP . Consequently there are linear maps
v′i:MP → AP such that v′i(ϕP (xj)) = δi,j . Since FP is a free finitely generated

A-module we can write v′i = s−1
i v for some si ∈ A \ P , where vi ∈ HomA(F,A).

It is clear that det(vi(ϕ(xj)) /∈ P .
We next show that (2) implies (3). Since M is a finitely generated A-module and

MP =
∑m
i=1APxi there is an element g ∈ A \ P such that Mg =

∑m
i=1Agxi. Let

d = det(vi(ϕ(xj)) and f = gd. Then we have thatMf =
∑m
i=1Afxi and that d is a

unit in Af . The maps vi give a map B:Ff → Amf . Since we have that det(vi(ϕ(xj))

is invertible in Af we can find a matrix B′ = (b′i,j) such that B′B = idAf
. Then
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B′:Amf → Ff is a map that sends (a1, . . . , am) to (
∑m
i=1 akb

′
1,i, . . . ,

∑m
i=1 akbm,i).

We obtain that the composite map Mf
ϕf
−→ Ff

B
−→ Amf → Mf , where the right

hand map sends the vector (0, . . . , 0, a, 0, . . . , 0) with the 1 in the i’th coordinate,
to xi, is the identity. We have thus found a left inverse to ϕf .

It is clear that (3) implies (1).
Finally we notice that the prime ideals that satisfy (3) is open.

(2.14.12) Lemma. Given a ring A and a finitely generated A-module M . Then
every surjective A-linear homomorphism f :M →M is an automorphism.

Proof. We consider M as an A[t]-module via the action tm = α(m) of t on M . By
assumption we have that M = tM . It follows from Nakayama’s Lemma that there
is an element ϕ(t) ∈ A[t] such that (1+ tϕ(t))M = 0. However, then we have that
tm = 0, for some m ∈M , implies that m = 0. Hence f is injective.

(2.14.13) Lemma. Given a ring A and an ideal I in A. Moreover, let ϕ:M → F
be an A-linear homomorphism between A-modules, where F is projective. Assume
that one of the following conditions hold:

(1) The ideal I is nilpotent.
(2) The A-module M is finitely generated and I ⊆ rad(A).

Then the map ϕ is left invertible if and only if the induced map

ψ:M/IM → F/IF,

of A/I-modules, is left invertible.

Proof. It is clear that if ϕ is left invertible, then ψ is, even without the conditions
of the Lemma.

Assume conversely that ψ is left invertible with inverse ξ:F/IF → M/IM .

Since F is projective we can lift ξ to ζ:F →M . We obtain a map α:M
ϕ
−→ F

ζ
−→M .

Then we have that M = α(M) + IM since α induces the identity modulo I. It
follows from Nakayama’s Lemma that M = α(M). Consequently it follows from
Lemma (?) that α is an isomorphism. Hence α−1ζ is a left inverse to ϕ.→

(2.14.14) Theorem. ([M], 29.E, Theorem 64) Given a formally smooth k-algebra
A and an ideal I of A. Let R be a prime ideal in A/I and Q the inverse image of
R in A. Denote by P the restriction of Q to k and κ(Q) the residue field of AQ,
or equivalently of (A/I)R. The following assertions are equivalent:

(1) The ring (A/I)R is formally smooth over k, or kP .
(2) The map

(I/I2) ⊗A/I κ(Q) → Ω1
A/k ⊗A κ(Q)
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is left invertible
(3) The map

(I/I2) ⊗A/I A/IR → Ω1
A/k ⊗A (A/I)R

is left invertible.
(4) There are elements F1, . . . , Fr in I and D1, . . . , Dr in Derk(A,A/I) such

that IAQ =
∑r
i=1AQFi and det(DiFj) /∈ R.

(5) There is an element f ∈ (A/I) \ R such that (A/I)f is formally smooth
over k.

When the above conditions hold the set

{R ∈ Spec(A/I): (A/I)R is smooth over k},

is open in Spec(A/I).

Proof. We first prove that (1) implies (3). We know that AQ is formally smooth
over k, and we have that (A/I)R = AQ/IAQ, and Ω1

AQ/k
= Ω1

A/k ⊗A AQ. Hence

it follows from Theorem (?) that (1) implies (3).→
It is clear that (3) implies (2).
It follows from Proposition (?) that Ω1

A/k ⊗A (A/I)R is a projective (A/I)R-→

module. Consequently the it follows from Lemma (?) that (2) implies (3).→

That (3) implies (4) follows from Lemma (?) applied to the A/I-linear map→
I/I2 → Ω1

A/k ⊗A A/I.

We next prove that (4) implies (5). It follows from Lemma (?) applied to the→
A/I-linear map I/I2 → Ω1

A/k ⊗A A/I that there is an element f ∈ (A/I) \ R

such that I/I2 ⊗A/I (A/I)f → Ω1
A/k ⊗A (A/I)f is left invertible. Consequently it

follows from Theorem (?) that (A/I)f is formally smooth over A.→
It is clear that (5) implies (1).
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3.1. Products of algebraic schemes.

(3.1.1) Setup. We fix a field k.

(3.1.2) Lemma. [EGA 24, IV, 4.2.1] Given a finitely generated field extension K
of k and a field extension L of k. Then all the associated prime ideals in K ⊗k L
are minimal.

Denote by E be the residue field in an associated prime ideal of K ⊗k L. Then
we have that

td. deg.L(E) = td. deg.kK.

Proof. Note that the ring K ⊗k L is noetherian because K is the quotient field
to the residue ring of a polynomial ring k[x1, . . . , xn], and consequently K ⊗k L is
the quotient ring, in a multiplicative system, of a residue ring of the polynomial
ring L[x1, . . . , xn].

Since K is a finitely generated field extension of k we have that K is a finitely
generated field extension of the quotient field of a polynomial ring k[x1, . . . , xn].
The ring k[x1, . . . , xn]⊗kL = L[x1, . . . , xn] is an integral domain. Consequently the
ring k(x1, . . . , xn)⊗kL is an integral domain. The quotient field of k(x1, . . . , xn)⊗k
L is L(x1, . . . , xn).

The ring k(x1, . . . , xn) ⊗k L is a subring of K ⊗k L, since k(x1, . . . , xn) is a
subring of K. Moreover, we have that K is flat over k(x1, . . . , xn), and thus
K ⊗k L is flat over k(x1, . . . , xn) ⊗k L. Hence the associated primes in K ⊗k L
intersect the subring k(x1, . . . , xn) ⊗k L in (0) because the non zero elements of
k(x1, . . . , xn) ⊗k L are not zero divisors in K ⊗k L.

We have that K ⊗k L is an integral extension of k(x1, . . . , xn) ⊗k L since K is
an algebraic extension of k(x1, . . . , xn). Consequently (113) [A-M, Cor. 5.9] the→
associated prime ideals in K ⊗k L are minimal. We have proved the first part of
the Lemma.

To prove the last part we note that the residue field E of K⊗kL in an associated
prime is algebraic over the residue field L(x1, . . . , xn) of k(x1, . . . , xn)⊗k L in the
zero ideal. Consequently we have that td. deg.LE = td. deg.L L(x1, . . . , xn) = n =
td. deg.kK.

(3.1.3) Lemma. Given a morphism f :X → Y of schemes X and Y where Y
is irreducible. Denote by η the generic point of Y . Then there is a bijection
between the irreducible components of the fiber f−1(η) and the components of X
that dominate Y .

In particular, when X is irreducible with generic point ξ, there is a bijection be-
tween the components of X×kY and the components of κ(ξ)⊗kκ(η) that dominate
both factors.
snitt
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Proof. Let Z be a component of X ×k Y that dominates Y and denote by ζ the
generic point of Z. Then f(ζ) = η and consequently ζ ∈ f−1(η). The closure of
ζ in f−1(η) is a component of f−1(η), because otherwise it would be a subset of
a component whose generic point would be a generic point for a component of X
that strictly contains Z.

Conversely, let ζ be the generic point for a compoent of f−1(η). Let Z be the
closure of ζ in Z. Then Z will dominate Y , and Z is a component of X, beacuse
otherwise it would be contained in a component whose generic point would be in
f−1(η) and the closure of this generic point in f−1(η) will be an irreducible set
that strictly contains the given component of f−1(η).

The components of X ×k Y that dominate the second factor correspond, as we
have seen, to the components of X ×k κ(η). Such a component Z will dominate
the first factor if and only if the generic point ζ of Z is in κ(ξ)×k κ(η). The second
part therefore follows using the first part to the morphism X ⊗k κ(η) → X.

(3.1.4) Lemma. Let A be a ring and S a multiplicatively closed system of A. Let
Q be a prime ideal in S−1 and P the contraction of Q to A. Then the canonical
map AP → (S−1A)Q is an isomprhism.

Proof. We have a map S−1A → AP since P ∩ S = ∅. The elemnts in S−1A \ Q
can be written in the form a/s with a ∈ A \ P and s ∈ S. Then s /∈ P and the
element a/s in S−1A \ Q maps to the element a/s in AP \ PAP . It follows that
the above map induces a map (S−1A)Q → AP . It is clear that this map is the
inverse of the map of the Lemma.

(3.1.5) Proposition. [EGA 24, IV2, 4.2.4] Given a variety X and an integral
noetherian scheme Y over the field k. Then the followsing three assertions hold:

(1) The irreducible components of X×kY correspond bijectively to the minimal
prime ideals in R(X)⊗k R(Y ).

(2) The local ring OX×kY,ζ to X ×k Y in a generic point ζ of an irreducible
component of X ×k Y is isomorphic to the fraction ring of R(X)⊗k R(Y )
in the corresponding minimal prime.

(3) Let E be the residue field of X ×k Y in the generic point ζ. Then we have
that

dimX = td. deg.R(Y )E.

In particular, if Y is a variety all the components of X×kY have dimension
dimX + dimY .

Proof. Note that since X is a variety and Y is noetherian we have that X ×k Y is
noetherian.

(1) Let ξ and η be the generic points for X respectively Y . Then we have that
R(X) = κ(ξ) and R(Y ) = κ(η). Since the projections to the factors are flat it
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follows from Remark (?) that the components Z of X×k Y dominate X and Y . It→

follows from Lemma (3.1.3) that the irreducible components of X×k Y correspond→
to the components of κ(ξ) ×k κ(η), and these correspond to the minimal primes
of κ(ξ) ×k κ(η) by Lemma (3.1.2).→

(2) It suffices to show that (2) holds when X and Y are affine. Let X = SpecA
and Y = SpecB. It follows from assertion (1) that each minimal prime P in
A⊗k B is the contraction of a minimal prime ideal Q in R(X)⊗kR(Y ). However,
R(X) and R(Y ) are the localizations of A respectively B in the sets consisting of
the non zero elements. Consequently we have that R(X) ⊗k R(Y ) is the fraction
ring of A ⊗k B in a multiplicative set. Hence assertion (2) follows from Lemma
(3.1.4).→

(3) It follows from assertions (1) and (2) that the dimension of every irreducible
component Z of X ×k Y is equal to the transcendece degree of the residue field of
R(X)⊗kR(Y ) in a prime ideal that corresponds to the generic point for Z. It follws
from Lemma (3.1.2) that td. deg.R(Y )E = td. deg.k R(X) = dimX. When Y is→
a variety we get, reasoning the same way, that td. deg.R(X) E = td. deg.k R(Y ) =
dimY . Hence the dimension of each irreducible component is

td. deg.k E = td. deg.k R(X) + td. deg.R(X) E = dimX + dimY.

(3.1.6) Remark. It follows from Proposition (?) that in assertion (1) above we→
have that ass(X ×k Y ) = ass(κ(ξ) ⊗k κ(η)) = ass(R(X) ⊗k R(Y )), where ξ and
η are the generic point of X regaspectively Y . It follows from Lemma (?) that→
X ×k Y does not have imbedded components.

(3.1.7) Proposition. [EGA 24, IV2, 4.2.6] Given an algebraic scheme X and a
scheme Y that is noetherian and defined over the field k. The irreducible com-
ponents of X ×k Y are exactly the irreducible components of the closed subsets
X ′ ×k Y ′, where X ′ and Y ′ are irreducible components in X respectively Y , given
their reduced structure. Moreover, the irreducible components of X ′×kY

′ dominate
both factors.

Proof. Let X ′ and Y ′ be irreducible compoents in X respectively Y and let Z ′ be
an irreducible component of X ′ ×k Y

′. Then Z ′ is contained in a component Z
of X ×k Y . However, it follows from assertion (2) of Proposition (3.1.5) that Z ′→
dominates X ′ and Y ′. Consequently we have that Z maps into X ′ and Y ′ by the
two projections. Consequently we have that Z ⊆ X ′ ×k Y ′. Thus we must have
that Z = Z ′.

Conversely, let Z be a component ofX×kY . The images of Z inX and Y by the
two projections are irreducible and therefore contained in irreducible components
X ′ and Y ′. Consequently we have that Z ⊆ X ′×kY

′ and Z must be an irreducible
component of X ′ ×k Y ′.
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(3.1.8) Proposition. [EGA 24, IV2, 4.2.8] Given an algebraic scheme X and a
field extension K of k. Then the components of X and X ×k K have the same
dimensions.

Proof. Given a component Z of X ×k K. It follows from Proposition (3.1.7) that→
Z is a components X ′ ×k K for some irreducible component X ′ of X. Moreover
it follows from Proposition (3.1.5) that if E is the residue field in a generic point→
of Z we have that dimZ = td. deg.K E = dimX ′.
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3.2. Relative dimension.

(3.2.1) Setup. A morphism f :X → Y of schemes is flat if the ring OX,x is a
flat OY,f(x)-module, via the homomorphism induced by f , for all points x of X.

It follows from Proposition (?) that f is flat if and only if we have that OX(U) is→
flat over OY (V ), via the homomorphism induced by f , for all affine open subsets
U of X and V of Y such that f(U) ⊆ V .

(3.2.2) Definition. A morphism f :X → Y of noetherian schemes has relative
dimension n if, for all integral closed subschemes Z of Y we have that all compo-
nents of f−1(Z) dominate Z, and f−1f(x) is equidimensional of dimension n for
all points x in X.

(3.2.3) Proposition. [123] [H, 9.6] Given a flat morphism f :X → Y of finite
type between algebraic schemes X and Y , where Y is irreducible. The following
three assertions are equivalent:

(1) The morphism f has relative dimension n.
(2) Every irreducible component of X has dimension dimY + n.
(3) We have that f−1f(x) has pure dimension n for all points x in X.

Proof. The induced morphism f−1Z → Z is flat. Hence it follows from Remark
(?) that every component of f−1(Z) dominates Z, for every closed subvariety Z→
of Y . Consequently we have that assertions (1) and (3) are equivalent.

We will show that assertion (2) implies assertion (3). Given a point y in f(X)
and let Z be an irreducible components of f−1(y). Choose a closed point x in Z
which is not in any other component of f−1(y). Then we have that dimOf−1(y),x =

dimOZ,x. Since going down holds for flat morphisms it follows from Remark (?)→

and Proposition (?) that→

dimOX,x = dimOY,y + dimOX,x ×OY,y
κ(x).

We have that OX,x ×OY,y
κ(x) = Of−1(y)x. Moreover, since x is closed in Z we

have that dimOZ,x = dimZ. We have proved that

dimOX,x − dimOY,y = dimZ.

Since Y is irreducible and X is equidimensional it follows from Proposition (?)→
that

dimOX,x + dim {x} = dimX

and
dimOY,y + dim {y} = dimY.

snitt
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However, we have that x is closed in f−1(y). If follows from the Hilbert Nullstellen-

satz that κ(x) is algebraic over κ(y). Consequently we have that dim {x} = dim {y}
and we have proved that

n = dimX − dimY = dimZ.

Finally we prove that assertion (3) implies assertion (2). Let Z be an irreducible
component of X and let x be a closed point of Z which is not in any other com-
ponent of X. Then we have that dimOX,x = dimOZ,x = dimZ. Since x is closed
in Z we have that x is closed in f−1(y), and consequently that dimOf−1(y),x = n,
where y = f(x). Moreover we have that y = f(x) is closed in Y because κ(x), and
consequently κ(y) ⊆ κ(x) are algebraic over k. We obtain that dimOY,y = dimY .
Finally, since f is flat we have, as we observed above the formula

dimOX,x = dimOY,y + dimOf−1(y),x.

This prove that dimZ = dimY + n and we have proved the Proposition.

(3.2.4) Proposition. Given a flat morphism f :X → Y of noetherian schemes
of relative dimension n. For every morphism g:Y ′ → Y we have that the base
extension f ′:X ′ = X ×Y Y ′ → Y ′ is of relative dimension n.

Proof. Since f is flat, and consequently the induced morphism f−1Z ′ → Z ′ is

flat for all subschemes Z ′ of Y ′ it suffices to check that the fiber f ′−1
(y′) has pure

dimension n for all points y′ of Z ′. However we have that f ′−1
(y′) = X×Y κ(y′) =

X ×Y κ(g(y′)) ×κ(g(y′)) ×κ(y
′). Since f is of relative dimension n we have that

that X ×Y κ(y) is of pure dimension n. Consequently it follows from Proposition
(?) that X ×Y κ(y′) is of pure dimension n.→

(3.2.5) Lemma. Given a dominating morphism f :X → Y of finite type between
irreducible noetherian schemes. Let ξ be the generic point of X and let η = f(ξ).
For every point x of X the irreducible components of f−1f(x) have dimension at
least dim f−1(η).

Proof. Assume first that OY,f(x) is universally catenary for all points x of X. Let

x be a generic point for an irreducible component Z of f−1(y). It follows from the
dimension formula that we have

dimOX,x = dimOY,y + td. deg.κ(η) κ(ξ) − td. deg.κ(y) κ(x)

= dimOY,y + dim f−1(η) − dimZ.

On the other hand, it follows from Proposition (?) that dimOX,x ≤ dimOY,y +→
dimOX,x ⊗OY,y

κ(y). Since x is a generic point of f−1(y) and OX,x ⊗OY,y
κ(y) is
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the local ring of f−1(y) in x we obtain that dimOX,x ≤ dimOY,y. It follows that
dimZ ≥ dim f−1(η) as we wanted to show.

We shall reduce the general case to the situation when OY,f(x) is catenary for
all x in X.

It is clear that the assertion of the Lemma is local on Y and thus local on X.
We can also replace X and Y by their reduced subschemes. Consequently we can
assume that X = SpecA and Y = SpecB, where A and B are ingegral domains,
and A is a subring of B in such a way that B becomes a finitely generated A-
algebra. We can write B as a residue ring B = A[x1, . . . , xn]/I of the polynomial
ring k[x1, . . . , xn] by the prime ideal I. Let A0 ⊆ A be a finitely generated Z-
algebra that contains all the coefficients of a set of generators f1, . . . , fm of I. Let
B0 = A0[x1, . . . , xn]/(f1, . . . , fm). We have that the natural map B0 ⊗A0

A → B
is an isomorphism. Moreover we have that A0 is a subring of B0 because A is a
subring of B. Denote by P the kernel of the map B0 → B. Then P is a prime
ideal and P ∩ A0 = 0 because P is the inverse image of (0) by B0 → B. We
consequently obtain a factorization

B0 ⊗A0
A→ B0/P ⊗A0

A→ B

of the map B0⊗A0
A→ B. We can thus assume that we have an integral domain B0

that contains A0, such that B0 is a finitely generate algebra over A0 and such that
B0⊗A0

A→ B is an isomorphism. It follows from Remark (?) that Z is universally→
catenary, and consequently that A0 is universally catenary. Let X0 = SpecB0

and Y0 = SpecA0, and let f0:X0 → Y0 be the morphism corresponding to the
inclusion of A0 in B0. Moreover, let g:Y → Y0 be the morphism corresponding
to the inclusion of A0 in A. Denote by η the generic point of Y . Then η0 = g(η)
is the generic point of Y0. It follows from Proposition (?) that for every point x→

of X we have that the dimensions of the components of f−1
0 gf(x) are the same

as the dimension of the components of f−1f(x). It follows from the universally
catenary case that the dimensions of the components of f−1f(x) are at least equal
to dim f−1

0 (η0). However, again using Proposition (?), we have that dim f−1(η) =→

dim f−1
0 (η0), and we have proved the Lemma.

(3.2.6) Lemma. Given a morphism f :X → Y of finite type between noetherian
schemes, where Y is irreducible. Let Z be an irreducible component of X that
dominates Y and denote by ζ the generic point of Z. Moreover, let z be a point
in Z such that

dimOX,x = dimOY,y + dimOX,x ⊗OY,y
κ(y),

with y = f(x). Then we have that

dimx f
−1f(x) ≤ dim(f−1(η) ∩ Z) + dimOX,x − dimOZ,x.



12 January 2006 Chp 3.2 Relative dimension 4

Proof. It follows from the dimension formula (?) applied to the morphism g:Z →→
Y induced by f that we have

dimOZ,x ≤ dimOY,y − td. deg.κ(y) κ(x) + td. deg.κ(η) κ(ζ),

where η = f(ζ). Moreover, it follows from Remark (?) that→

dimx f
−1f(x) = dimOf−1(y),x + td. deg.κ(y) κ(x),

and from the same Remark we we obtain that

dim g−1(η) = td. deg.κ(η) κ(ζ).

Hence we obtain the formula

dimOZ,x ≤ dimOY,y + dimOf−1(y),x − dim f−1f(x) + dim g−1(Z).

However, we have Of−1(y),x = OX,x ⊗OY,y
κ(y) and g−1(η) = f−1(η) ∩ Z, and

consequently,

dimx f
−1f(x) ≤ dim(f−1(η) ∩ Z) dimOY,y + dimOX,x ⊗OY,y

κ(y) − dimOZ,x.

The Lemma thus follows from the assumptions.

(3.2.7) Proposition. Given a dominant morphism f :X → Y of finite type be-
tween integral noetherian schemes. Denote by ξ the generic point of X, and let x
be a point of X. Let η = f(ξ) and y = f(x). Assume that the formula

dimOX,x = dimOY,y + dimOX,x ⊗OY,y
κ(y)

holds. Then all the components of f−1f(x) have dimension dim f−1(η).

Proof. It follows from Lemma (3.2.5) that all the irreducible components of the→
fiber f−1f(x) have dimension at least dim f−1(η), and it follows from Lemma
(3.2.6), with X = Z that all the components of f−1f(x) has dimension at most→
dim f−1(η).

(3.2.8) Proposition. Given a flat morphism f :X → Y of finite type beween
noetherian schemes, where Y is irreducible. Assume that OX,x is equidimensional
for all x in X and that f−1(η) is equidimensional. Then we have that f−1f(x) is
equidimentional of dimension dim f−1(η) for all x in X.

Proof. Since f is flat it follows from Remark (?) that the assumption of Lemma→

(3.2.6) holds for all irreducible components Z of X and all x in Z. Moreover, since→
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OX,x is equidimensional we have that dimOX,x = dimOZ,z. We therefore obtain
that

dimx f
−1f(x) ≤ dim(f−1(η) ∩ Z).

Since f−1(η) is equidimensional it follows from Remark (?) that dim(f−1(η)∩Z) =→
dim f−1(η). All the components of f−1f(x) therefore have dimension at most equal
to dim f−1(η). Denote by g:Z → Y the morphism induced by f . It follows from
Lemma (3.2.5) that all the components of g−1g(x) have dimensions that are at→
least equal to dim(f−1(η)∩Z) = dim f−1(η). However, we have that g−1g(x) is a
closed subscheme of f−1f(x),. thus the dimensions of the components of f−1f(x)
that contain a component of g−1g(x) is at least equal to dim f−1(η). Since f−1f(x)
is the union of Z ∩ f−1f(x) = g−1g(x) for the irreducible components Z of X we
have that all the components of f−1f(x) have dimension at least equal to f−1(η).

(3.2.9) Theorem. (Chevalley) Given a morphism f :X → Y of finite type to a
noetherian scheme Y . For every integer n the set Fn(X) consisting of the points
x in X such that dimx f

−1f(x) ≥ n is closed.

Proof. We can assume that X and Y are reduced. Let F be the family consisting
of closed subschemes of X for which the Theorem does not hold. It F is not empty
it contains a minimal element Y ′. We can clearly assume that Y = Y ′ and thus
assume that the Theorem holds for all proper closed subshcemes of Y but not for
Y .

LetX1, . . . , Xn be the irreducible components ofX with their reduced structure.
We have that Fn(X) = ∪ni=1Fn(Xi) because every irreducible component of f−1(y)
is contained in an Xi ∩ f−1(y) and therefore in an irreducible component of Xi ∩
f−1(y), and conversely every irreducible component of Xi∩f−1(y) is contained in
a component of f−1(y) and, by the preceeding argument, equal to that component.
We can therefore assume that X is irreducible.

Denote by Z the integral subscheme of Y that has f(X) as underlying set. The
morphism X → Z induced by f is of finite type and the fibers are the same as the
fibers of f . We can therefore assume that Z = Y , and thus that Y is integral and
f dominating.

Let η be the generic point of Y . It follows from Lemma (3.2.5) that for n ≤→
dim f−1(η) we have that Fn(X) = X.

Assume that n > dim f−1(η). It follows from the Lemma (?) of generic flatness→
that there is an open non empty subset U of Y such that the morphism f−1(U) →
U induced by f , is flat. From Lemma (?) and Proposition (3.2.77) we obtain,→→
since going down holds for f , that dimx f

−1f(x) = dim f−1(η) for all x ∈ f−1(U).
Consequently we have that Fn(X) ⊆ f−1(Y \ U). By the assumption that the
Theorem holds for all proper irreducible subsets of Y we have that the Theorem
holds for Y \ U . Consequently Fn(X) is closed in Y \ U , and hence in Y . This
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contradicts the assumption that the Theorem holds for Y . Consequently the family
F is empty, and the Theorem holds.
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3.3. Total quotients.

(3.3.1) Setup. Given a ring A. We denote by R(A) the total quotien ring of
A, that is the localization of A in the multiplicatively closed set consisting of non
zero divisors in A.

(3.3.2) Remark. The natural map A→ R(A) is injective.

(3.3.3) Lemma. Given a ring A. An element of A is not a zero divisor in A
if and only if the image of the element in AP is not a zero divisor in AP for all
primes P of A.

Proof. Let a be an element in A which is not a zero divisor. Then for any prime
P of A the image of a in AP is is not a zero divisor in AP because, if ab/s = 0 in
AP we have that tab = 0 for some b in A and t in A \ P . However, then we have
that tb = 0 in A and consequently b/s = 0 in AP .

Conversely, if the image of a in AP is not a zero divisor in AP for all primes P
in A we have that the annihilator of a can not be contained in any prime ideal of
A. Consequently the annihilator contains 1 and we must have that a = 0.

(3.3.4) Remark. Given a scheme X. For every open subset U of X we have an
injective map OX(U) →

∏
x∈U OX,x. It follows from Lemma (3.3.3) that, when U→

is affine, the non zero divisors in OX(U) are exactly those elements that map to
non zero divisors in OX,x for all points x in U . In particular we obtain an injective
map

R(OX(U)) →
∏

x∈U

R(OX,x),

and, for every open affine subset V of U , we obtain a natural map

R(OX(U)) → R(OX(V )).

(3.3.5) Lemma. Given a ring A and a prime ideal P in A. Let c be an element
in the kernel of R(A) → R(AP ). Then there is an element s in A \ P such that c
is in the kernel of R(A) → R(As).

Proof. Write c = a/u with a and u in A, and where u is a non zero divisor. Then
a is in the kernel of the composite map A → R(A) → R(AP ), and consequently
in the kernel of A → AP → R(AP ). Since the map AP → R(AP ) is injective we
obtain that a is in the kernel of A→ AP . Consequently there is an s ∈ A \P such
that a is in the kernel of A → As. However, then we have that c = a/u is in the
kernel of R(A) → R(As).
snitt
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(3.3.6) Lemma. Given a noetherian ring A, a prime ideal P in A, and an ele-
ment a in A whose image in AP is not a zero divisor. Then there is an element s
in A \ P such that the image of a in As is not a zero divisor.

Proof. If a is not a zero divisor in A we can take s = 1.
Assume that a is a zero divisor and let a1, . . . , an be the generators for the

annihilator of a in A. Since a is not a zero divisor in AP there are elements
s1, . . . , sn in A \ P such that siai = 0 for i = 1, . . . , n. Let s = s1 · · · sn. Then
we have that a is not a zero divisor in As. Indeed, if ab/sm = 0 for some b ∈ A
and some non negative integer m we have that spba = 0 in A, for some non
negative integer p. In other words we have that spb is in the annihilator of a and
consequently that sp+1b = 0, or equivalently that b/sm = 0 in As.

(3.3.7) Lemma. Given a noetherian ring A, a prime ideal P in A and an element
c in R(AP ). Then there is an element s ∈ A \ P and an element in R(As) that
maps to c by the map R(As) → R(AP ).

Proof. We have that c is the quotient of a/u ∈ AP by b/v ∈ AP , with u, v in A\P ,
and a, b in A, and where the image of b in AP is not a zero divisor. It follows
from Lemma (3.3.6) that there is an element t in A \P such that the image of b in→
At is not a zero divisor. However, then b/v is not a zero divisor in Atuv because,
if it were a zero divisor we would have (tuv)mdb = 0 in A for some non negative
integer m and an element d in A. Then we have that the image in At of (uv)md
is zero and consequently that (tuv)pd = 0 in A for some non negative integer p.
Consequently the image of d in Atuv is zero. Let s = tuv. Then we have that
s ∈ A \ P and it is clear that the quotient of a/u by b/v in R(At) is mapped to c
by the map R(At) → R(AP ).

(3.3.8) Definition. For every open subset U of a scheme X we let

RX(U) ={(sx) ∈
∏

x∈U

R(OX,x)| for every x ∈ U there is an affine open neigh-

bourhood V of x contained in U, and an element in R(OX(V )) that

is mapped to sy by the map R(OX(V )) → R(OX,y) for every y ∈ V }.

(3.3.9) Remark. It is clear that RX defines a sheaf on X. We have an injection
OX(U) → RX(U) that sends an element s ∈ OX(U) to the fiber sx ∈ OX,x ⊆
R(OX,x). This gives an injection of sheaves

OX → RX .

We consider RX as an OX -algebra via this map. For all points x in X and every
neighbourhood U of x there is a natural map

RX (U) → R(OX,x),



12 January 2006 Chp 3.3 Total quotients 3

that sends the element (sx)x∈U to sx. Consequently there is a natural map

RX,x → R(OX,x).

It follows from Lemma (3.3.5) that this map is injective. Moreover, it follows→

from Lemma (3.3.7) that, when X is noetherian, the map is also surjective, and→
consequently an isomorphism.

(3.3.10) Proposition. Given a noetherian scheme X and an open affine subset
U = SpecA. Then the natural map

R(A) → RX(U)

is an isomorphism.

Proof. From the injective map A →
∏
P∈SpecAAP we obtain an injective map

R(A) →
∏
P∈SpecAR(AP ). Consequently we have that the map of the Proposition

is injective.
To prove that the map of the Proposition is surjective we take an element s =

(sP )P∈SpecU in RX(U). We can find open affine subsets SpecAfi
, for i = 1, . . . , n,

that cover U and elements si ∈ R(Afi
) such that the image of si in AP is sP for

all prime ideals P in A that do not contain fi. Consequently we have that si and
sj have the same image in R(Afifj

) for all i and j. For all i we write si = ai/ti
where ai and ti are in A and where the image of ti in Afi

is not a zero divisor.
Then we have that (fifj)

nij (aitj − ajti) = aif
nij

i tjf
nij

j − ajf
nij

j tif
nij

i = 0 in A.
Multiplying ai and ti with a high power of fi, for all i, we may therefore assume
that aitj = ajti in A, for all i and j.

Let
I = {a ∈ A|aai ∈ (ti) in Afi

for all i}.

then we have that t1, . . . , tn are all in I because tjai = tiaj , for all i and j.
If aI = 0 for some a ∈ A we have that ati = 0 for all i. However, the image of the

element ti in Afi
is not a zero divisor. Consequently we can find a non negative

integer m such that fmi a = 0 in A, for all i. However we have that the sets
SpecAfi

= SpecAfm
i

cover U . Consequently we have that the ideal (fm1 , . . . , f
m
n )

is all of A and consequently that a = 0.
We have proved that if aI = 0 then a = 0. Consequently it follows from Lemma

(?) that I contains a non zero divisor t. We have that tai ∈ (ti) in Afi
for all→

i. Hence we have that tai = tici/f
p
i in Afi

, for some non negative integer p and
elements c1, . . . , cn in A, for i = 1, . . . , n. Then tai/ti = ci/f

p
i in Afi

considered as
a subring of R(Afi

). However we have that ai/ti and aj/tj are equal considered
as elements in R(Afifj

). Consequently we have that ci/f
p
i and cj/f

p
j are equal in

the subring Afifj
. Therefore there is an element b in A such that tai/ti = b in

R(Afi
), for all i. We have that the element b/t is in R(A) and it maps to ai/ti in

R(Afi
) for i = 1, . . . , n. Consequently we have that b/t maps to s in RX(U).
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(3.3.11) Example. For all open affine subsets U = SpecA of a scheme X there
is an isomorphism RX(U) ∼= R(A). It follows therefore, from the definition of RX

that, when X is integral, we have that RX is the constant sheaf associated to the
field RX(X) = OX,ξ, where ξ is the generic point of X. In particular we have that
RX is quasi coherent when X is integral.

To give an example of a non integral scheme where the sheaf RX is not neces-
sarily quasi coherent we let A be the localization of the ring k[x, y, z]/(x2, xy, xz)
in the maximal ideal (x, y, z)/(x2, xy, xz), where x, y and z are independent vari-
ables over k. Then we have that A = R(A), and if b is the class of y in A, we have
that Ab =

(
k[y, z](y,z)

)
y
. Let X = SpecA. It follows from Proposition (3.3.10)→

that RX(Xb) = R(Ab) = k(y, z). However, the ring RX(X)b = R(A)b is different
from k(y, z) because (z) is a maximal ideal in ⊆

(
k[y, z](y,z)

)
y

with residue field

k(y). Consequently we have that RX is different from R̃(A), and RX is not quasi
coherent.
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3.4. Normalization.

(3.4.1) Setup. Given a scheme X. For every open subset U of X we let

O′
X(U) = {s ∈ RX(U)|for all x ∈ U there is a neighbourhood V of x

in U such that s|V is integral over the subring OX(V ) of RX(V )}

It follows from the definition that O′
X is a subsheaf of RX that contains OX and

that O′
X is a subalgebra of RX via the inclusions OX ⊆ O′

X ⊆ RX . For every
point x in X we have inclusions

OX,x ⊆ O′
X,x ⊆ RX,x.

(3.4.2) Remark. We have that

O′
X(U) = {s ∈ RX(U)|the image sx of s in the fiber RX,x is integral over OX,x

for all x ∈ U}.

Indeed, if s|V is integral over OX(V ) we clearly have that sx is integral over OX,x

for all x in V .
Conversely, if sx ∈ RX,x is integral over OX,x we have that snx+a1,xs

n−1
x + · · ·+

an,x = 0, for some elements a1, . . . , an of OX(V ), where V is a neighbourhood of
x. However, then we have that (s|W )n + (a1|W )(s|W )n−1 + · · ·+ (an|W ) = 0, for
some neighbourhood W of x contained in V .

We also see that O′
X,x consists of the elements in RX,x that are integral over

OX,x.

(3.4.3) Proposition. If RX is a quasi coherent OX -module we have that O′
X is

a quasi coherent OX -module, and for every open affine subset U of X we have that
O′
X(U) is the integral closure of OX(U) in RX(U).

Proof. We can assume that X = SpecA is affine and that RX(X) = B̃ where

B = R(A). Let A′ be the integral closure of A in B. We must show that Ã′ = O′
X .

It is clear that Ã′ ⊆ O′
X . To show the opposite inclusion we only have to show

that, for every prime ideal P in A the elements in BP that are integral over AP
lie in (A′)P . Hence it suffices to prove the equality (A′)P = (AP )′. To show
the latter equality we first note that we have an inclusion (A′

P ) ⊆ (AP )′. To
show the other inclusion we let b/t ∈ (AP )′, with b ∈ B and t ∈ A \ P . Then
we have that (b/t)n + (an−1/tn−1)(b/t)

n−1 + · · · + (a0/t0) = 0 in BP , for some
elements a0, . . . , an in A and t0, . . . , tn−1 in A \ P . Multiplying the equation by
(tt0 · · · tn−1)

n we see that t0 · · · tn−1b ∈ A′. Consequently we have that b/t =
(t0 · · · tn−1b)/(t0 · · · tn−1t) ∈ (A′)P .
snitt
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(3.4.4) Definition. Given a scheme X and letX ′ = SpecO′
X . We call the scheme

X ′ the integral closure of X. When X is integral we call X ′ the normalization
of X. We say that X is normal if the structure morphism X ′ → X is an

isomorphism.

(3.4.5) Remark. The normalization of an integral scheme is integral.

(3.4.6) Remark. Given a scheme X and let ϕ:X ′ → X be the structure mor-
phism of the integral closure of X. Let U be an open subset of X. Then we have
that the induced morphism ϕ−1(U) → U is the integral closure of U .

(3.4.7) Remark. Given a scheme X and let ϕ:X ′ → X be the structure mor-
phism of the integral closure of X. Then ϕ is affine. When RX = SpecA is
quasi coherent we have, for every open affine subset U = SpecA of X, that
ϕ−1(U) = SpecA′, where A′ is the integral closure of A in R(A).

(3.4.8) Proposition. Given an integral noetherian scheme Y and let ψ:Y ′ → Y
be the normalization. Let ϕ:X → Y be a dominant morphism from a normal
scheme X. Then there is a unique morphism ϕ′:X → Y ′ such that ϕ = ψϕ′.

Proof. The morphism ϕ gives rise to an inclusion RY (Y ) → RX(X), that for every
open affine subset U of Y induces an inclusion OY (U) → OX(ϕ−1(U)). Since X
is normal it follows from Remark (3.4.7) that OX(ϕ−1(U)) is integrally closed→
in RX (X), and since O′

Y (U) consists of elements that are integral over OY (U)
we have that OY (U) ⊆ O′

Y (U) ⊆ OX(ϕ−1(U)) in RX(X). It follows from these
inclusions that there is a unique morphism ϕ′:X → Y ′ such that ϕ = ψϕ′.

(3.4.9) Remark. Given an algebraic variety X. Then the structure morphism
ϕ:X ′ → X of the normalization is a finite morphism. To see this we need, since
ϕ is affine, to show that the integral closure of OX(U) in RX(U) is a finitely
generated OX(U)-module for all affine subsets U of X. However, we have that R
is an integral domain that is a finitely generated algebra over a field. Then the
integral closure of R in its quotient field is a finitely generated R-module [144]
[Z-S, vol. 1, p. 267].
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00.0. 0.

Reserved results

(00.0.1) Lemma. Given a local map A→ B of local zero dimensional rings, such
that B is flat over A. Then we have that

`(B) = `(A)`(B/PB),

where P is the maximal ideal of A.

Proof. Since A is zero dimensional it is of finite length and has a composition
series

A = I0 ⊃ I1 ⊃ · · · ⊃ Ir = 0.

We have that B is flat over A so we obtain a chain

B = I0B ⊃ I1B ⊃ · · · ⊃ IrB = 0

of ideals in B such that Ii−1B/IiB ∼= Ii−1/Ii ⊗A B = A/P ⊗A B = B/PB. From
the additivity of length we obtain that `(B) = r`B(B/PB).

(00.0.8) Proposition. Given a finitely generated field extension K of the field k
and let A be a local noetherian k-algebra with maximal ideal P . Let B = K ⊗k A.
Then we have that:

(1) If [K: k]`(A) < ∞ then

[K: k]`(A) =
∑

Q minimal prime of B
Q∩A=P

[B/Q:A/P ]`(BQ).

(2) If [K: k]`(A) = ∞ then

`(BQ)[B/Q:A/P ] = ∞

for all primes Q in B.

Proof. Assume first that [K: k]`(A) < ∞. Then B is a free A-module of rank
[K: k]. Consequently B has finite length as an A-module and `A(B) = [K: k]`(A).
We filter B by B-modules such that the quotients are of the form B/Q where Q is
a prime ideal in B. Then B/Q has finite length as an A-module and consequently
Q is a maximal ideal by Lemma (lenght). Hence B has finite length. The quotient→
B/Q appears `(BQ) times as a quotient in the filtaration. However B/Q is a finite
field extension of A/P since B is a finitely generated A-module and `A(B/Q) =
snitt
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`A/P (B/Q) = [B/Q:A/P ]. Consequently the length of B as an A-module is also
equal to

∑
[B/Q:A/P ]`(BQ), where the sum is over all minimal primes Q in B

that contracts to P .
Assume secondly that [K: k]`(A) = ∞. If [B/Q:A/P ]`(BQ) < ∞ for some

prime ideal Q in B, it follows from `(BQ) < ∞ that Q is a minimal prime ideal
of B. We have that B is flat over A. Consequently it follows from Proposition
(?) that P is minimal in A. It follows from Proposition (?) that `(A) < ∞ and→→
we must have that [K: k] = ∞. Since K is a finitely generated field extension we
can find an element t in K that is trancendent over k. The image of t in B/Q is
algebraic over A/P since [B/Q:A/P ] < ∞. Consequently we can find elements
a0, . . . , an in A such that

a0t
n + a1t

n−1 + · · · + an ∈ Q

with a0 /∈ P . The field K is flat over k[t] since k[t] is a principal ideal domain
and K is without torsion. It follows that B is flat over the subring A[t]. Hence it
follows from Proposition (?) that Q∩A[t] is a minimal ideal in A[t]. However, the→
ideal Q ∩ A[t] contains the prime ideal P [t] such that Q ∩ A[t] = P [t]. Hence we
have that a0t

n + a1 + · · ·+ an ∈ Q∩A[t] = P [t], which contradict the assumption
that a0 /∈ P . Consequently we must have that [B/Q:A/P ]`(BQ) = ∞ for all
prime ideals Q in B.
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