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1.1. Irreducibility and dimension of topological spaces.

(1.1.1) Setup. [G](EGA 20, 0.14.3) Let X be a topological space. A non-empty
subset is irreducible if it can not be written as a union of two proper closed subset,
or equivalently, if any two open non empty subsets intersect.

(1.1.2) Definition. The combinatorial dimension , denoted dim X , of a topo-
logical space X is the supremum of the length n of chains

XoC Xy C---CX,

of irreducible closed subsets of X.
Given a closed irreducible subset Y of X. The combinatorial codimension ,
denoted codim(Y, X)) , is the supremum of the length n of chains

Y=XoCX;C---CX,
of irreducible closed subsets X; of X.

(1.1.3) Definition. A chain Zy C Z; C --- C Z, of irreducible closed subsets of
a topological space X is saturated if there is no irreducible closed subset Z of X
such that Z; C Z C Z;11 for some ;.

A topological space X is catenary if the codimension codim(Z,Y) is finite for
all pairs Z C Y of closed irreducible subsets and every saturated chain

L =4y CLHC--Clp=Y
of irreducible closed subsets have the same length.

(1.1.4) Proposition. A topological space X is catenary if and only if the codi-
mension codim(Z,Y) is finite for all pairs Z C 'Y of irreducible closed subsets,
and for every irreducible closed subset T of Z we have that

codim(T,Y) = codim(T, Z) 4+ codim(Z,Y).

Proof. It is clear that the formula of the Proposition holds when X is catenary.

Conversely, assume that the formula holds, and that we have two chains between
X and Y with lenghts m and n, and with m < n. If m = 1 we must have
that m = n. We prove the assertion by induction on m and assume that the
Proposition holds for all chains of length m. Assume that m > 1 and m < n.
Let Z =2y C --- C Z,, =Y be a saturated chain of length m. We have that
codim(Zy, Z,,) > n > m and codim(Zy, Z1) = 1. Hence it follows from the formula
of the Proposition that

codim(Zy, Z,,) = codim(Zy, Z,,) — codim(Zy, Z1) > m — 1.
However, it follows from the induction assumption that we have codim(Z1, Z,,,) =
m — 1. Hence we obtain a contradiction to the assumption that m < n, and we
must have that m = n.
0

snitt
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(1.1.5) Definition. A topolgical space X is noetherian if every descending chain
X12X02 -

of closed subsets of X is stationary.

(1.1.6) Remark. Every subspace of a noetherian space is noetherian.

Moreover, every noetherian space X is compact. Indeed, consider the family
of closed subsets of X that are not compact. If this family is not empty it has a
minimal element Y. Given an open covering (U;);c; of Y. For any i such that
U; is non empty we have that Y \ U; is a proper closed subset of Y and thus can
be covered by a finite number of the members of (U;);c;. However, then Y is
covered by these members and U;, and consequently Y is compact, contrary to the
assumption. Hence the family is empty.

(1.1.7) Proposition. FEvery noetherian topological space X can be uniquely writ-
ten as a union X = U X, of irreducible closed subsets X; of X such that
Xi Cizj Xj.
Proof. Consider the family of closed subsets of X that can not be written as a
finite union of closed irreducible subsets. If the family is empty it has a minimal
member Y. Then Y is not irreducible so Y = Y; UY, where Y; and Y5 are proper
closed subsets of Y. However, then Y; and Y5, and thus Y, can be written as a
finite union of closed irreducible subsets, contary to the assumption on Y. The
family is thus empty and we have proved the first part of the Proposition.
For the second part, assume that X = U, X/. For each i we have that X; C
;”ZlXJ’-, and thus X,; C X; for some j. A similar reasoning shows that X; C X,
for some k. Thus 7 = k and we have that X; = X]’-. In this way we see that the
members of the sets {X1,..., X, } and {X{,..., X/, } are pairwise equal and we
have proved the Proposition. a

(1.1.8) Definition. Given a noetherian space X. The irreducible sets X; of X
in Proposition (1.1.7) are called the irreducible components of X.

We say that X has pure dimension if all the components X; have the same
finite dimension.

For each point z in X we denote by dim, X the maximum of the dimensions
of the irreducible components passing by x.

(1.1.9) Remark. We have that
dim X = mEiX dim X;

because every irreducible subset in X is contained in one of the irreducble com-
ponents X;.
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1.2. Constructible sets.

(1.2.1) Setup. [G] [EGA 11, IIIy, 9.1, 9.2, 9.3]
Let X be a topological space.

(1.2.2) Definition. Given a topological space X and two points x and y. We
say that y is a specialization of x or that x specializes to y if y is in the closure
m of x in X. We also say that x is a generization of y. When X = m, that is,
when all points of X are specializations of x, we say that = is a genric point for
X.

(1.2.3) Remark. Given a point z in a topological space X. Then {z} is a closed
irreducible subset of X with generic point z.

(1.2.4) Definition. A subset of a topological space is locally closed if it is the
intersection of a closed and an open subset.

(1.2.5) Definition. Given a noetherian topological space X. A subset is con-
structible if it belongs to the smallest family of subsets of X that contain all
closed subsets and that are closed under finite intersections and passing to the
complement.

(1.2.6) Remark. The constructible sets in a noetherian topological space can
equivalently be defined as the smallest family of subsets of X that contain all open
subsets and is closed under finite unions and passing to the complement.

(1.2.7) Proposition. Given a subset Z of a noetherian topological space X . The
following three assertions are equivalent:

(1) The set Z is constructible.
(2) The set Z is a finite union of locally closed subsets of X .
(3) The set Z is a finite disjoint union of locally closed subsets of X .

Proof. 1t is clear that (3) implies (2) and that (2) implies (1).

We show that (1) implies (2). Since the set of locally closed subsets contains
all open sets it suffices to show that the family of sets that consists of all finite
unions of locally closed sets is closed under finite intersections and passing to the
complement. It is clear that it is closed under finite unions. Write Z as a union
Z =U,(U;NVE) of locally closed sets, where U; and V; are open subsets of X.
Then we have that

m m

Uruv;) = ﬂ ue | Jwi (V).

=1 =1

S
Il
>
S
D
3
Il
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Consequently we have that Z¢ is the disjoint union of the sets

usn---nUEN U, NVi ) N0 (U, NV,

r+1 r+1

where {i1,...,i,} ={1,...,n}.

Next we show that (2) implies (3). Let Z = U™, Z; be the union of locally
closed sets Z;. Then Z is the disjoint union of the sets

Zy NN Zi \(Ziy, U---UZi, = Ziy NN Zi, N (Ziyyy U---U Zi)))

=Zy N NZi NZE, N--NZE,

Tr41

r+1

where {i1,...,in} = {1,...,m}. We saw above that Z¢ is a disjont union of
locally closed subsets. Consequently we have that all the above sets are locally
closed and that (3) holds for Z.

(1.2.8) Lemma. Given a noetherian topological space X. A subset Z of X is
constructible if and only if, for every closed irreducible subset Y of X such that
ZNY is dense in'Y, we have that ZNY contains an open non empty subset of Y.

Proof. Assume that Z is constructible and write Z = U™, (V; N Z;), where V; is
open in X and Z; is closed in X. Let Y be a closed irreducible subset of X such that
ZNY isdense in Y. We have that ZNY = U™, ((V;NY)N(Z;NY)). We obtain that
Y=(ZnY)CU™,(Z;nY). However Y is irreducible so that Y C Z;NY for some
i. It follows that Y = Z;NY. Then we have that V;NY = (V;NY)N(Z;NY) C ZNY.

Conversely, assume that Z N'Y contains an open non empty subset of Y for all
closed irreducible subsets of X such that ZNY is dense in Y. Consider the family
F consisting of closed subsets Y of X such that ZNY is not constructible. If this
family is non empty it has a minimal element. We replace X by this set, and can
assume that Z NY is constructible for all proper closed subsets Y of X.

If we have that X = X; U X5, where X; and X, are proper closed subsets of
X, then we have that Z N X; and Z N X, are constructible and consequently we
have that Z = (Z N X;1) U (Z N X3) is constructible.

On the other hand, if X is irreducible and the closure Z is properly contained
in X we have that Z = Z N Z is constructible. Finally, if X is irreducible and
X = Z then, by assumption, Z contains an open non empty subset U of X. Then
Y = X \ U is a proper closed subset of X and we have that Z =UnN (Y NZ) is
constructible.

In all cases we have that Z = Z N X is constructible. Consequently we have
that F is empty and we have proved the Lemma.

(1.2.9) Proposition. Given a noetherian topological space such that every closed
irreducible subset has a generic point. Let Z be a constructible subset of X and let
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x be a point of Z. Then Z is a neighbourhood of x if and only if every generization
of x is in Z.

Proof. It is clear that if Z is a neighbourhood of x, then every generization of x
is in Z.

Conversely, assume that every generization of x is in Z. Let F be the family of
closed subsets Y of X that contain x and are such that YNZ is not a neighbourhood
of x in Y. If F is not empty it contains a minimal element. We can replace this
subset with X and assume that ZNY is a neighbourhood of x for all proper closed
subsets Y of X.

Assume that X = X; U X, where X; and X, are proper closed subsets. If
x € X, there is an open subset U; of X; such that x € U; C Z N X;. On the other
hand, if ¢ X; then we let U; = (. Let Y; = X; \ U; and let Y = Y; UY5. Then
Y is closed in X and U = X \ Y is a neighbourhood of z. Moreover we have that
U CU,UU; C Z, and consequently we have that Z is a neighbourhood of =x.

If X is irreducible with generic point 2/, then 2’ is in Z. Consequently we have
that X is the closure of Z, and it follows from Lemma (1.2.8) that there is an open
subset U of X contained in Z. If z is in U we have that Z is a neighbourhood of
x. If not we have that Y = X \ U is a proper closed subset of X that contains z.
Consequently Z NY is a neighbourhood of z in Y. Let F' be the closure of X \ Z
in X. Then we have that F' is the closure of X \ Z in X \ U =Y. Consequently
we have that x is not in F. Consequently we have that X \ F' is a neighbourhood
of x which is contained in Z.

In both the cases we have that Z is a neighbourhood of z in X. This contradicts
the assumption on X. Consequently the family F is empty and we have proved
the Proposition.

(1.2.10) Proposition. Given a noetherian topological space where all closed ir-
reducible subsets have a generic point. A subset U is open if and only if, for
every point x in U, every generization of x is contained in U, and U N m S a
neighbourhood of x in m

Proof. 1t is clear that every open subset satisfies the conditions of the Proposition.
Conversely, assume that the conditions are satisfied. It follows from Lemma
(1.2.8) that U is constructible and from Proposition (1.2.9) that U is open.

(1.2.11) Lemma. Given an integral domain B and a subring A of B such that
B is a finitely generated A-algebra. Then there is a non zero element a in A such
that Spec A, is contained in the image of the map Spec B — Spec A.

Proof. Write B = Alz1,...,x,]. Denote by K and L the quotient field of A re-
spectively B. If necessary, renumber the generators x1, ..., x, such that z1,..., =,
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is a transcendence basis for L over K. We have relations
bioz;® + - bin, =0 fori=r+1,...,n

with the by; in Alxy,...,z,]. Let a in Afxy,...,z,] be one of the non zero coeffi-
cients of the polynomial b = [T:_ | bio.

Let P be a prime ideal of A such that a ¢ P. Let Q = Plzq,...,2,]. Then
@ is a prime ideal in A[xq,...,z,| and we have that b ¢ @) and consequently we
have that Bg is integral over A[zq,...,z,]g. We obtain that there is a prime
ideal R in Bg which contracts to QA[z1,...,z,]g. Then the contraction of R to
Alzq,...,x,] is @ and the contraction of R to A is consequently A. Hence the
contraction of R ot B contracts to P in A. Consequently P is in the image of

Spec B and we have proved the Lemma.

(1.2.12) Proposition. (Chevalley) Given a morphism of finite type f: X — Y
of noetherian schemes. For each constructible subset Z of X the subset f(Z) of Y
18 constructible.

Proof. Write Z = U}, Z; where each Z; is locally closed. We give each Z; the
reduced structure. The immersion of Z; in X is of finite type since X is noetherian.
It follows that we can replace X by the disjoint union of the Z; and consequently
can assume that X = Z and that X is reduced.

Given a closed irreducible subset T of Y such that 7'N f(X) is dense in 7. It
follows from Lemma (1.2.8) that it suffices to show that 7T'N f(X) contains an
open subset of T'. Since T'N f(X) = ff~Y(T) we can replace Y by T and X by
f~YT), both with their reduced structure. Consequently we can assume that X
is reduced that Y is integral, and that f(X) is dense in Y.

We shall prove that f(X) contains an open non empty subset of Y, and can
assume that X and Y are affine. Write X = U2, X; as a union of irreducible
sets X;. Since Y is irreducible we have that at least one of the f(X;) is dense in
Y. Consequently we can assume that X is affine and integral. Let X = Spec B
and Y = Spec A. Then A and B are integral domains and A is contained in B.
Since f is of finite type the same is true for the A-algebra B. Consequently the
Proposition follows from Lemma (1.2.11).
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1.3. Constructible functions.

(1.3.1) Setup. [2] [EGA 11, IIIj, 9.3] Given a noetherian topological space X.

(1.3.2) Definition. A map h: X — T from a noetherian topological space X to
a set T is constructible if h=1(t) is a constructible subset of X for all ¢ in T and
h=1(t) is empty except for a finite number of elements t of 7.

(1.3.3) Proposition. Given a map h: X — T from a noetherian toplogical space
X to a set T. Then h is constructible if and only if, for every closed irreducible
subset Y of X, there is an open non empty subset U of Y, such that h is constant
on U.

Proof. Assume that h is constructible and let Y be a closed irreducible subset.
Then we have that h=1(¢) is empty for all but a finite number ¢4, ...,t, of points
in T', and Y is the union of the closures of Y Nh~1(¢;) for i = 1,...,n. Since Y is
irreducible we have that Y is contained in the closure of Y N h~1(¢;) for some i.
Consequently Y is the closure of the constructible subset Y N h=1(¢;). It follows
from Lemma (?) that Y N h~1(#;) contains an open non empty subset U of Y.
Moreover, we have that h takes the value ¢; on U.

In order to show the converse statement we consider the family F of closed
subsets Y of X such that h|Y is not constructible. If F is non empty it has a
miminal element Y.

Assume that Y = U" ,Y; is a union of proper closed subsets Y;. Then h|Y; is
constructible for ¢ = 1,...,n. Consequently we have that h|Y is constructible,
contrary to the assumption that Y is in F.

If Y is irreducible it follows from the assumption of the Proposition that there is
an open non empty subset U of Y where h is constant. However, then h|(Y \U) is
constructible because Y is minimal in F. Since constructible subsets of Y\ U are
constructible in Y it follows that h|Y is constructible, contrary to the assumption
that Y is in F.

It follows that F is empty and that the Proposition holds.

(1.3.4) Corollary. Given a noetherian topological space X where every closed
irreducible subset has a generic point. A map h: X — T into a set T is constructible
if h=1(t) is constructible for all t in T.

Proof. Given an irreducible closed subset Y of X and let y be the generic point
of Y. Then Y N h~!h(y) is constructible in Y and contains y. In particular we
have that Y N h~1h(y) is dense in Y. It follows from Lemma (?) that there is an
open non empty subset U of Y contained in Y N h~'h(y). However h(t) = h(y)
for t € U. It follows from the Proposition that h is constructible.

snitt
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(1.3.5) Definition. A map h: X — T from a topological space X to an ordered
set T is upper semi continous if the set {z: h(z) <t} isopenin X forallt e T.

(1.3.6) Proposition. Given a noetherian topological space X where all the closed
irreducible subsets have a generic point. Let h: X — T be a constructible function
from X to an ordered set T. Then h is upper semi continous if and only if we
have, for every point x of X and every generization z’ of x that h(x") < h(x).

Proof. The function h has only a finite number of values since it is constructible.
Consequently A is upper semi contiuous if and only if the set

Z,={x' € X: h(z) < h(z)}

is a neighbourhood of x for all z in X. We have that Z, is constructible because
it is a finite union of constuctible sets. It follows from Proposition (?) that Z,
is a neighbourhood of z if and only if we have, for every irreducible closed subset
Y of X that contains z, that the generic point y of Y lies in Z,. However an
irreducible closed subset Y contains z if and only if the generic point of Y is a
generization of x. Consequently we have that Z, is a neighbourhood of z if and
only if every generization of x lies in Z,. Consequently the Proposition follows
from Proposition (7).
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1.4. The ring of constructible functions.

(1.4.1) Definition. We let X be a noetherian scheme. For every subset Y of
X we denote by yy the characteristic function on Y. The set of all constructible
functions h: X — Z we denote by C'(X). Sending an integer to the constant fuction
with the ineteger as value denines an injective map Z — C'(X).

(1.4.2) Remark. We have that C'(X) is a Z-algebra. Indeed, let f and g be in
C(X). Then fg and f + g only take a finite number of values. Moreover the sets

Xe=A{z:(f +9)(z) =1t}
and
Y = {z: (fg)(z) =t}

are constructible because X; is the disjoint union of the constructible sets

{o: f(2) = u} N {a: gla)t - u),

for a finite number of u € Z, and Y; is the disjoint union of the constructible sets

{z:g(x) = up N{z:g(x) = t/u},

for a finite number of u € Z when ¢t # 0 and Yy = {z: f(z) = 0} U {z: g(x) = 0}.

(1.4.3) Remark. For every constructible set Z C X we have a direct sum
decomposition

C(X)=C(Z)®C(X\ 2)

given by
f=Ixz+({1—x2)f

(1.4.3) Proposition. As a Z-module C(X) is free. A basis is given by the char-
acteristic functions of the closed irreducible subsets of X.

Proof. The characteristic functions of constructible closed subsets of X generate
the Z-module C'(X) because, if h is constructible we have that

h=>Y h(t)xx,,

teZ

where X; = {x: h(x) = t}. It follows from Proposition (7) that the constructible
sets are disjoint unions of locally closed sets. Consequently we have that C'(X)
is generated as a Z-module, by the characteristic function of locally closed sets.
snitt
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Given a locally closed set U N Z, where U is open and Z is closed in X. Then we
have that

Xunz = Xz — XUenZz-

Hence the characteristic functions of closed sets generate C'(X) as a Z-module. We
shall show, by noetherian induction, that che characteristic functions of closed sets
can be written as sums, with integer coefficients, of the characteristic functions of
closed irreducible sets. Let F be the family of all non empty closed subsets of X
whose characteristic function is not in the group generated by the characteristic
functions of closed irreducible sets. If F is non empty it contains a smallest member
Y. Then Y can not be irreducible.
If Y =Y, UY; is a union of two proper closed subsets we have that

Xy = Xy; T XY, — XYinYs-

However the sets Y7, Yo and Y7 NY5 are all in the family F. It follows that Y is
also in the family, contrary to the assumption. Consequently the set F is empty
and we have shown that the characteristic functions of closed irreducible subsets
generate C'(X).

Finally we have to show that the characteristic functions of closed irreducible
subsets are linearly independent over Z. Assume that

m
Z nixx, =0
i=1

where X1,...,X,, are different closed irreducible sets and where nq,...,n,, are
non zero integers. Let X; be a maximal element among the sets Xq,..., X,,. We
can not have that X; C U;-; X, because then the irreducibility of X; would imply
that X; C X, for some j # ¢ which contradicts the maximality of X;. We can
therefore choose an point x € X; \ Ujx;X;. We obtain that

0= ZniXXi (x) = n;,
i=1

which contradicts the assumption that all the n; are non zero. Consequently we
have no relation of the form 2111 n;Xx, = 0, unless all the n; are zero.
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1.5. The mapping cone.

(1.5.1) Setup. The objects that we shall treat will be modules over a fixed ring,
or more generally, Ox-modules on a fixed scheme X.
We shall write a complex of modules (F,d) on the form

—1 d! d°
s Fl L 0 4

)

where F* sits in degree i. The homology module in degree i of the complex we
denote by H*(F).

(1.5.2) Definition. Given an integer i. The complex (F[i],d[i]) translated i
times is defined by

Flif) = F*  and d[i}! = (—1)'d"".

A map p: F — G of complexes is a quasi isomorphism if it induces an isomorphism
Hi(p): H(F) — H*(G) of homology groups for all i.

Given two complexes (F,dx) and (G,dg). We denote by (F @ G,dr @ dg) the
complex given by

i i i i d}
(Fog)i=Fag, and (dr®dg) = ( gdzi).
(1.5.3) Definition. Given a map ¢: F — G of complexes. The mapping cone
(K(p),d(e)) of ¢ is the complex defined by

. . . . i1
K(e))=F*t &g, and d(p)' = ( Jfﬂ ;> .

In other words, if (f,g) are local sections of F**! @ G* then we have that
d(¢)'(f.9) = (=d" ' "™ f + d'g).
(1.5.4) Remark. Given an Ox-module M we associate to M the complex
s 0 M0

where M sists in degree 0. Given a map of Ox-modules M — N. We obtain a
map ¢: F — G of the corresponding complexes. Then the mapping cone K(y) is
the complex

where M sits in degree —1 and N in degree 0.
snitt
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(1.5.5) Remark. Given a complex F of Ox-modules and let ¢:0 — F be the
map from the zero complex. Then K(p) = F.

(1.5.6) Lemma. There is an exact sequence of complezes
<O)
1
—_—

In particular we have a long exact sequence

(10)
—_—

0—G K(p) F1] — 0.

5i+1

o HYE) S HY(G) — HI(K () — HH(F) 2

Proof. 1t is easy to check that the maps in the short sequence are maps of com-
plexes. For the right map it is important that d[1]7 = —d?. It is clear that we
obtain a short exact sequence.

(1.5.6) Proposition. In the long exact sequence of Lemma (1.5.5) we have that
5 = H'(p).
In particular, the map ¢ is a quasi isomorphism if and only if KC(p) is acyclic.

Proof. Tt suffices to check the Proposition locally. Take an element f in F[1]T1 =
F* such that —d'f = d[1]*"1f = 0. The element f is the image of the element
(f,0) in Ki=1(p) = F* @ G'~! and the image of (f,0) by the differential in K(y)
is (—d'f, o' f +d'=10) = (0, ¢*(f)). Consequently the image of the class of f by &°
is equal to the class of ©'(f) in H*(G). Hence we have proved the first part of the
Proposition. The second part follows immediately from the first part.

(1.5.8) Proposition. Given a commutative diagram

0 F —— F —— F" 0
d el
0 g g g 0

of complexes of Ox-modules, where the horizontal sequences are exact. Then we
have an exact sequence of complexes
a” 0
(% )

o 0
0 g

Proof. The proof is an easy computation.

0— K(¢') K(e) K(¢") — 0.
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(1.5.9) Lemma. Given maps of complexes p: F — G and ¢¥:G — H. We obtain
a map of complexes

1=(5):FoG-gan

Moreover, we obtain an exact sequence of complexes

10
00
01 0100
00 <0 00 1)
0— K(p) K(n) K() — 0.
Proof. 1t is clear that 7 is a map of complexes. Moreover, it is clear that the short
10
) . 00 0000
sequence is exact in each degree. To check that = | ;; | and 6 = (0 00 1)
00
) ) .. ~do
are maps of complexes it suffices to verify from the equalities Ao = « ( o d) and
—-d 0 00
-do 0 —100
ﬁAz(wd)WhereA: o —100
0 ¢ 0d

(1.5.10) Lemma. Given maps of compleres p:F — G and ¥:G — H of Ox-
modules, and let n = <“g _wl> F®G — G H be the resulting maps. Then we
obtain an exact sequence

0 0
-1 0
0 1 1000
0 —v (001/)1)
0 — K(idg) ————— K(n) ———— K(¢p) — 0.

Proof. 1t is easy to check, locally, that the sequence is exact in each degree. To

0 o0
-1 0 1000
show that a = | , ; | and B = <0 0 % 1) are maps of complexes we only have
0 -y
~d 0 00
~d 0 ~d 0 0 —d0o
to check thatoz( 1 d) = Aa and A = <¢¢d>ﬂwhereA: o —1d0
0 ¢ 0d

(1.5.11) Proposition. Given maps of complezes p:F — G and 1»:G — H of

Ox-modules, and let n = (}f :;) :F@® G — G®H be the resulting maps. Then
there is a long exact sequence

o BTN () 2 HI(K(p)) — HY (K (b)) — H (K (1)) — -
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Proof. 1t follows from Lemma (1.5.8) that we have a long exact sequence

o HTYK () 5 HA(K(p)) — H(K(n) — H(K@W)) — -,

From Lemma, (1.5.6) it follows that H*(K(idg)) = 0. Consequently it follows from
Lemma (1.5.8) that H*(K(n)) = H'(K(v)), for all i.
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1.5. Additive functions on complexes.

(1.5.1) Setup. The objects that we shall treat in this sections are O x-modules
over a fixed scheme X. We give a class C’ of Ox modules and an additive function
N:C'— A

into an abelian group A. That is, for every exact sequence
0O-M -M->M"-0
of modules in C' we have that
AN (M) = N (M) + N (M").
We denote by C the class consisting of all complexes (F,d), where the coho-
mology modules H*(F) are all in C’ and where all except a finite number of the
H'(F) are zero. The family C’ will, as usual, be considered as a subfamily of C, by

identification of a module M with the complex --- -0 — M — 0 — ---, where
M sits in degree zero. We can extend A to a function

XC — A,
by

oo

AF) = (1) AH(F)).
i=0
It follows from the cohomology sequence associated to a short exact sequence of
members of C that A is additive . That is, given a short exact sequence
0—F —F— CalF" —0
of sequences in C, then we have that
MF) = MF) + XF").

More generally, given a homomorphism ¢: F — G of complexes such that the
mapping cone K(p) is in C, we write

Alp) = A(K(p))-
(1.5.2) Remark. Given a homomorphism ¢: M — N of Ox-modules. We
consider the modules as complexes. It follows from Remark (?7) that the mapping

cone K(g) of the resulting map of complexes is the complex --- — 0 — M %
N — 0 — -, with / in degree —1 and M in degree 0. Consequently we have
that IC(¢) is in C if and only if ker ¢ and coker ¢ are in C. When this is true we
have that

M) = A(coker ) — A(ker ).

In this case A(yp) is often called the Herbrand quotient of .
snitt
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(1.5.3) Remark. Given a complex F and let ¢:0 — F be the map from the null
complex. The we have that IC(¢) = F, and if F is in C we have that A\(p) = A(F).

(1.5.4) Proposition. Given a map ¢:F — G of complexes that are in C and
such that KC(p) is in C. Then we have that

Proof. The Proposition immediately follows from the exact sequence of Lemma
(7).

(1.5.5) Proposition. Given a commutative diagram

0 F F F! 0
Al vl
0 g’ g g’ 0

of complexes, where the horizontal sequences are exact. If the sequences K(¢'),
K(p) and K(¢") are all in C, we have that

Alp) = M) + A(e").

Proof. The Proposition is an immediate consequence of Proposition (7).

(1.5.6) Proposition. Given maps p: F — G and ¥:G — H of complezes such
that KK(¢), K(¢) and K(v¢) are in C. Then we have that

A(hp) = M) + A9).

Proof. The Proposition is an immediate consequence of Proposition (7).
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2.1. The dimension of algebras.

(2.1.1) Setup. The Krull dimension , denoted dim A , of a ring is the combi-
natorial dimension of Spec A [33] [A-M Ch. 8|. The height , denoted ht A | of a
prime ideal P of A is the dimension dim Ap of the localization of A in P.

A chain Py C P C --- C P, of prime ideals in A are saturated if the corre-
sponding chain of irreducible sets in Spec A is saturated.

(2.1.2) Remark. For all prime ideals P in A we have that ht P = dim Ap =
codim(Spec A/ P, Spec A). When A is noetherian we have that ht P = dim Ap is
finite [33] [A-M 11.14].

(2.1.3) Definition. A ring A is catenary if Spec A is catenary, and A is univer-
sally catenary if every finitely generated A-algebra is catenary.

(2.1.4) Remark. If A is catenary, every residue is catenary. Hence A is univer-
sally catenary if and only if polynomial rings Alzq,...,x,| over A are catenary.
Moreover, if A is catenary then the quotient of A in any multiplicatively closed
system is catenary.

It follows from Proposition (top, 1.4) that a noetherian domain A is catenary
if and only if, for every pair of prime ideals P C () we have that

@ =htP+htQ/P
or, for every pair of primes P C @ in A such that ht Q/P = 1 we have that
htQ =ht P+ 1.

(2.1.5) Theorem. (Noethers normalization lemma). Given an algebra A of finite
type over a field k and let
IlgIQQQIp

be a chain of ideals in A with I, # A. Then there are algebraically independent

elements x1,...,x, of A such that:

(1) The ring A is integral over klx1,...,z,]. [33] [A-M Ch. 5 p. 60].
(2) There are integers h(1) < h(2) < --- < h(p) such that

IiNk[zy, ... zn] = (21,.. ., Tpy), fori=1,...,p.
Proof. 1t suffices to prove the Theorem when A is a quotient of a ring of polyno-

mials k[y1, . .., ym] over k. Indeed, writing A = k[y1, ..., ym]/I), the inverse image
of the chain of ideals of the theorem by the residue map gives a chain

](’)g[{g...g];)
snitt
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of ideals in the polynomial ring k[y1, . . ., Ym]. If the Theorem holds for the polyno-
mial ring k[y1, . . ., Ym| there are algebraically independent elements z7, ..., 2/, and
a sequence of integers h'(0), ..., h'(p) that satisfy (1) and (2) for k[y1, ..., ym] and
the chain Iy C - -+ C I}, of ideals. We have that IoNk[2}, ..., 25| = (21, ..., 2} (),
and consequently the map k[yi,...,ym] — A induces an isomorphism between
k:[x’h,(o)ﬂ, ... xh,] and k[xy,...,2,], where x; is the image of ‘/L‘;L’(O)—i—i and n =
n’ = h/(0). Hence the Theorem holds for A with x1,...,x, and h(i) = h'(i)—h'(0)
fori=1,...,p.

We first assume that p = 1 and that [; is a principal ideal generated by an
element 1 ¢ k. Then we have that

=D Ym) = Y QiYL Y

(215-ytm)

for some elements a;,, . ;.) € k. Choose positive integers ra,...,r, and let
x; =y — Yy, for i =2,...,m. We have that y; satisfies the polynomial equation

Z a(il,...,im)yil (2 + y?)% c (T + y{m)im —z1 =0

(21 5--ytm)

with coefficients in k[x1, ..., zy]. Let f(i1, ..., im) = @1 +72i2 4+ -+ 7rpin,. We see
that, choosing r; = [ where [ is greater than the total degree of p, we can obtain
that the degree f(i1,...,%m) of the highest power of y; in each of the summands
above, are all different. With such a choise of the r; we have that y; is integral over
klx1,...,xm]. It follows from the transitivity of integral dependence [33] [A-M 5.4]

that y1,...,yn are all integral over k[zq,...,x,,]. Consequently we have that A
in integral over k[z1,...,zy] [33] [A-M 5.3].

We have that I; N k[zy,...,z,] = x1k[z1,...,2,] because every element in
LiNk[xy,...,zy] can be written as a = x4’ with a in k[z1, ..., z,,]. Consequently
we have that o’ is in A N k(x1,...,2z,). However, we have that k[zq,...,xm]
is algebraically closed in k(z1,...,z,) ([AM?]), and consequently that a’ is in
klx1,...,x,|. Hence we have that a € x1k[x1,...,z,,]. We have finished the case

p =1 and I; principal.

Next assume that p = 1 and [; arbitrary. We prove this case by induction on
m. If m = 1 the Theorem is trivally true. We can assume that I; # 0. Let x1 € I;
be a non zero element. Then z; ¢ k. By the case when I] is principal we can
find algebraically independent elements z1,ts,...,t,, in A such that A is integral
over k[z1,to,...,tm] and z1A N Kk[x1,ta, ... tn] = x1k[T1,t2,.. ., t1]. It follows
from the induction assumption that there are algebraically independent elements
X9y ..., Ty in klta, ..., t,] and an integer h’(1) such that the Theorem holds for
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the ring klto, ..., t,,] and the ideal Iy N k[to, ..., t,]. We have that zq, 29, ..., 2,
are algebraically independent, and, since x1 € I;, we have that

LNk[xy,...,¢n) =xik[zy, .. xm] + 1 0 k[T, ..y 2]

It follows that the elements x1,...,z,, and the integer h(1) = h’(1) 4+ 1 have the
required properties with respect to k[z1,...,x,] and the ideal I;. Hence we have
proved the Theorem for p = 1.

To prove the Theorem for arbitrary p we use induction on p. Assume that the
Theorem holds for p — 1. Then there are elements ¢4, ..., t,, and integers h(1) <
.-+ < h(p—1) that satisfy the Theorem for the chain Iy C Iy C--- C I, 4. Let r =
h(p —1). It follows from the case p = 1 applied to the algebra k[t,11,...,t,] and

the ideal I,Nk[t, 41, ..., 1] that there are elements z, 41, ..., 2y, in klt,41, ..., tn)]
and an integer h’(1) that satisfy the Theorem for the ring k[t,11,- - ,t;] and the
ideal I,Nk[t;41,...,tm]. Let z; =¢; fori =1,...,r. Then the elements z1,...,zy,
and the integers h(1) < --- < h(p—1) < h(p) = r + h'(1) satisfy the assertions of
the Theorem because the elements x1,...,xz, are in I,, and thus
I,NEklxy,...,zn] = (z1,.. . x0)k[xr, . o] + L OV E[@eg, 0 T
0

(2.1.6) Proposition. Given an integral domain A which is a finitely generated
algebra over the field k. Then the following three assertions hold:

(1) For every saturated chain of prime ideals Py C Py C --- C P, in A we
have that r = td. deg.,, A.

(2) dim A = td. deg.;, A.

(3) For every prime ideal P in A we have that

dim A =dim Ap + dim A/ P.

Proof. We have that (1) implies (2). Moreover, from (1) applied to chains that
contain P we see that (1) implies (3),.

In order to prove (1) we take algebraically independent elements 1, ..., z, in
A such that A is integral over k[zq,...,x,] and such that P; N k[xy,...,z,] =
(71, ..., Tp(;)) for some integers 0 < h(0) < h(1) < --- < h(r) < n. Then n =
td. deg.,, A and we must have that » < n and h(0) = 0. Since the chain Py C P, C
-+ C P, is saturated we must have that r = n. Indeed, if h(i +1) > h(i) + 1
we can extend the ideal (z1,...,2p(;)41) to a prime ideal P such that P; C P C
P, 1, using going down [33] [A-M, 5.16] on the algebra A/P; and the subalgebra
Elzi,...,zn]/klz1, ..., 20] NPy = K[Zpi)41,- -0 Tnl. i
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(2.1.7) Corollary. The field k is universally catenary.

Proof. 1t suffices to show that the polynomial ring A = k[z1,...,x,] is catenary.
Let P C @ be prime ideals in A. It follows from assertion (3) of the Proposition
that

ht P=n—dim A/P

and
htQ =n —dim A/Q.

Using the same assertion on A/P we obtain that
htQ/P +dimA/Q = dim A/P.
From the above three equations we obtain that
ht Q/P =htQ — ht P.

Using the last equation for the chain P C (Q C R of prime ideals we obtain the
equation

hR/P=htR/Q+htQ/P.

We have seen in Remark (2.1.4) that the last equation implies that A is catenary.
0
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2.2. Associated ideals.

(2.2.1) Setup. Most of the material from [44] [L X.2, X.3]

(2.2.2) Definition. Given a ring A and an A-module M. The annihilator ,
denoted ann x , of an element = of M is the ideal {a € A:ax = 0} in A. The ideal
Nzen ann z is denoted by ann M and called the annihilator of M.

A prime ideal P of A is associated to M if it is the annihilator of a non zero
element of M. We denote the set of associated primes of M by ass M = ass4 M.

An element a in A i called locally nilpotent if there, for every element x in M,
is a non negative integer n, such that a"*x = 0.

The prime ideals P such that Mp # 0 we call the support of M. We denote
the support of M by supp M .

(2.2.3) Lemma. Given A-module M, and let x be an element in M. For each
prime ideal P in A we have that (Ax)p # 0 if and only if annz C P.

Proof. Assume that (Ax)p # 0. Then tz # 0 for all t ¢ P. Consequently we have
that annxz C P.

Conversely, assume that (Az)p = 0. Then there is a t ¢ P such that tx = 0.
Consequently we have that annz ¢ P.

(2.2.4) Proposition. Given an A-module M and an element a in A. The fol-
lowing assertions are equivalent:

(1) The element a is locally nilpotent.
(2) The element a is contained in every prime ideal P such that Mp # 0.

Proof. Assume that a is locally nilpotent and let P be a prime ideal such that
Mp # 0. Then there is an element x € M such that tx # 0 for all ¢t ¢ P, and an
n such that a”x = 0. It follows that a™ € P and thus a € P

Conversely, assume that a is not locally nilpotent. Then there is an element
x € M such that a”z # 0 for all n > 0. Choose an ideal P which is maximal
among the ideals that contain annz and are disjoint from {1,a,a?,...}. Then P
is a prime ideal and (Az)p # 0. Consequently we have that Mp # 0.

(2.2.5) Proposition. Given a non zero A-module M, and let P be an ideal that
is maximal among the annihilators annx of elements x in M. Then P is a prime
1deal.

Proof. Let P = annx, and let ab € P with a ¢ P. Then azx # 0 and ann(az) 2
bA + P. It follows from the maximality of P that b € P.
snitt
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(2.2.6) Corollary. Given a noetherian ring A and an A-module M. Then M
has an associated ideal.
When M is finitely generated there is a chain

M=My>M, D---DM, =0

of submodules such that M;_1/M; is isomorphic to A/P;, where P; is a prime
associated to M .

Proof. Since A is noetherian there is a maximal element among the annihilators
to elements in M. It follows from the Proposition that such a maximal element is
associated to M. Hence we have proved the first part of the Corollary.

To prove the second part we let N be a maximal element among the submodules
of M for which the Corollary holds. If N # M we have that M /N # 0. Conse-
quently, there is an associated prime of M/N. Let P = anny for some y € M/N,
and denote by z an element of M that maps to y. We have that Ay 2 A/P C M /N
and N 4+ Ax/N = A/P. This contradicts the maximality of N. Consequently we
must have that N = M. a

(2.2.7) Proposition. Given a noetherian ring A and an A-module M. Let a be
an element in A. Then ax = 0 for some non zero element x in M, if and only if
a lies in a prime which is associated to M.

Proof. 1t is clear that if a is contained in some associated ideal then az = 0, for
some z in M.

Conversely, assume that az = 0 for some x # 0. It follows from Prop (2.2.5)
that Az has an associated prime ideal P. It is clear that a € P. However, P is
also associated to M. a

(2.2.8) Proposition. Given a noetherian ring and an A-module M. Let a be an
element in A. The following assertions are equivalent:

(1) The element a is locally nilpotent.
(2) The element a is contained in all associated primes of M.
(3) The element a lies in all the prime ideals P such that Mp # 0.

If P is a prime ideal such that Mp # 0 then P contains a prime which is
associated to M.
Conversely, if P is prime ideal which contains an associated prime of M, then

Mp # 0.

Proof. We have already seen in Proposition (2.2.4) that (1) and (3) are equivalent.
Moreover it is clear that (1) implies (2).

To show that (2) implies (3) it suffices to prove that if Mp # 0 for some prime
ideal P, then P contains an associated prime. When Mp # 0 we have an element
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x € M such that (Az)p # 0. Consequently there is an element y/t # 0 in (Azx)p,
with y € Az and t ¢ P, with annihilator a prime ideal ). Then we have that
Q@ C P because, otherwise there would be a b € @\ P such that by/t = 0 in (Az)p,
which contradicts that y/t # 0. Let by, ..., b, be generators for (). Then there are
elements sq, ..., s, in A\ P such that s;b;y = 0. We have that A is the annihilator
of the element s; - - - s,y because, it is contained in the annihilator of this element,
and, if asy - -+ s,y = 0 we have that ay = 0 in (Ax)p, and consequently a € (). 1

(2.2.9) Corollary. Given a noetherian ring A and an A-module M. The follow-
ing assertions are equivalent:

(1) There is exactly one associated prime ideal for M.
(2) We have that M # 0 and for every element a in A we have that a is locally
nilpotent or ax = 0 holds only for the element x = 0.

When the assertions hold the associated ideal consists of the locally nilpotent
elements.

Proof. Tt follows from Proposition (2.2.7) that ax = 0 only for x = 0 if and only
if a is not contained in an associated prime.

If there is only one associated prime ideal it follows from the Proposition that
all the elements in the associated prime are locally nilpotent.

Conversely, if (2) holds, the locally nilpotent elements will be those that are
contained in some associated prime ideal. Hence it follows from the Proposition

that the union of the associated prime ideals will be equal to their intersection. It
follows that (1) holds. 0

(2.2.10) Remark. It follows from Proposition (2.2.8) that when A is noetherian
and M is finitely generated we have that

radlamnM)= (| P= (] P

Pesupp M Passociated

Moreover, it follows that
supp M = {P € Spec A:ann M C M}.

Indeed, we just say that each prime belonging to supp M contains ann M. Con-
versely, if Mp = 0 we choose generators mi,...m, of M and obtain ¢{,...,t,
such that t;m; = 0, for « = 1,...,n. Then t;---t, is contained in ann M, and
consequently ann M € P.

(2.2.11) Proposition. Given an A-module M. Let N be a submodule of M.
Every prime associated to N is associated to M. The associated primes of M are
associated to N or to M/N.
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Proof. The first assertion is clear.

Let P be associated to M. Then P = annx for some x € M. If AzNN =0 we
have that P is associated to M/N. If Ax N N # 0 we choose an non zero element
y = ax with a € A. Then P = anny because P C anny, and if by = 0 for some
b € A we have that ba € P, and since a ¢ P we have that b € P. i

(2.2.12) Proposition. Given a finitely generated module M over a noetherian
ring A. The every submodule N can be written as an intersection N = N1N---NN,
of submodules N; such that each M/N; only has one associated prime ideal.

Proof. Consider the set of submodules of M for which the Proposition does not
hold. If this set is non empty there is a maximal element N. Then M /N can not
have only one associated prime. It follows from Corollary (2.2.9) that there is an
element a € A such that the homomorphism ¢: M/N — M/N given by ¢(z) = az
is neither injective nor nilpotent. We therefore obtain a sequence

kergogkergo2 cC...

of proper submodules of M. This sequence must stop. Assume that ker " =
ker o"t! = ... and let ¥ = ¢". We have that ker+ and Imt/ are proper submod-
ules of M and we have that ker ¢) = ker 12, and consequently that ker )NIm v = 0.
Let N7 and N> be the inverse images of ker ¢ respectively Im ¢ in M. Then N
and Ny contain N properly and N = N; N No. By the maximality of N we have
that the Proposition holds for N7 and N;. Consequently the Proposition holds for
N, which contradicts the assumption on N. It follows that the set of submodules
of M, for which the Proposition does not hold, is empty. a

(2.2.13) Corollary. Let M be a finitely generated module over a noetherian ring
A. Then the associated prime primes of M coincide with the associated prime
ideals of M/N; for any minimal decomposition 0 = N1 N ---N N,, in modules N;
such that M /N; has only one associated prime ideal.

Proof. 1t follows from the Proposition that we can write 0 = Ny N ---N N,, where
M /N; has only one associated prime ideal. We obtain an injection

M—>M/N1@~-~€a~-~M/Nn.

It follows from Proposition (2.2.11) that the associated ideals of M are among the
associated primes of M /Ny, ..., M/N,.

Conversely, assume that n is minimal and let N = Non---NN,,. Then N #£ 0
because the intersection is assumed to be minimal. Then N = N/N N N; &
N + Ny /Ny € M/N;. Consequently the module N has only one associated prime,
the prime associated to M/N;. It follows that this prime is also associated to
M. 0
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(2.2.14) Proposition. Let A be a noetherian ring. If A is reduced the associated
primes are the minimal prime ideals.

Proof. Every prime ideal contains an associated prime so every minimal prime is
associated.

Conversely, let P;,---, P, be the minimal associated prime ideals. If P is an
associated prime ideal and t € P\ Py U---U P, there is a non zero a in A such that
aP = 0, and consequently ta = 0. However, then a € PyN---N P, and hence a = 0
because A is an integral domain. This contradicts the assumption that a # 0 so
we must have that P C Py U---U P,,. Hence, [41] [A-M 1.11], we have that P is
equal to one of the P, ..., P,, and we have proved that all associated primes are
minimal. 0

(2.2.15) Lemma. Let I be an ideal in a noetherian ring A such that al = 0
implies that a = 0. Then I contains a non zero divisor in A.

Proof. 1t follows from Proposition (2.2.7) that the zero divisors in A are the union
of the associated prime ideals and it follows from Proposition (2.2.13) that there
are only a finite number of associated primes. Hence, if I consists entirely of zero
divisors it follows from [41] [A-M 1.11] that I is contained in an associated prime.
However, then there is a non zero element a in A such that al = 0.
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2.3. Length.

(2.3.1) Setup.
(2.3.2) Definition. ([A-M p. 76]) Given a ring A and an A-module M. A

sequence
0=M,CM, 1C---CMy=M

of modules is called a chain of length n . The chain is a composition series for M
it there is no submodule N of M such that M;,; C N C M; for some 1.

(2.3.3) Proposition. ([A-M, 6.7]) Given an A-module M that has a composition
series of length n. Then every composition series has length n and every chain
can be extended to a composition series.

Proof. Let M = My D My D My D --- D M, = 0 be a composition series for
M of shortest possible length. Given a submodule N of M. We obtain a chain
N = NO 2 N1 2 2 Nn = 0, where Nz = MlﬁN We have that Ni—l/Ni Q
M;_1/M;, and consequently that either N;,_;/N; = M;_1/M; or N;_1/N,. Hence
we obtain a composition series for N. This series has length n if and only if
N;_1/N; = M;_1/M;, for all i. By induction on n we see that N has length n if
and only if M = N. Thus a proper submodule of M has length strictly less than
n.

Denote by ¢/(N) the length of a shortest composition series for N. We have
that ¢/(M) = n, by assumption. Given a chain M = My > M{ D --- D M; =0
of lenght h in M. We then have that n = ¢/(M) > ¢(/(M’) > --- > V/(M]) = 0,
and thus that h < n. In other words, every chain has length at most n. When the
chain is not a composition series we have that at least one quotient M/ _,/M/ has
a proper submodule. Consequently we can find a stricly longer chain by inserting
a module M/ ; D N D M!. Consequently we either have h = n, and then
M} D> M| D --- D M] is a composition series, or h < n and the chain can be
refined to a chain of length h 4+ 1. We can continue to refine the chain until we
obtain a chain of length n, which is then a composition series.

(2.3.3) Definition. ([A-M, p. 77])We say that an A-module M has finite length if
it has a composition series. The common length ¢(M) = £ (M) of the composition
series is called the length of the module.

(2.3.4) Lemma. ([A-M, 6.9])Let
0—-M —-M-—-M"—0

be a short exact sequence of A-modules. Then M has finite length, if and only if
M’ and M" have finite length. When the lengths are finite we have that

O(M)=0(M"+e(M").
snitt
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Proof. Given a composition series for M. The intersections of the modules in the
chain with M’ and the images in M" of the modules give chains that clearly give
rise to composition series in M’ and M".

Conversely, a composition series in M’ together with the pull back to M of a
composition series of M”, give a composition series in M.

(2.3.4) Lemma. Let A — B be a homomorphism of a ring A into a integral
domain B. If B has finite length as an A-module, then B is a field.

Proof. Let b # 0 in B. We have a sequence (b) D (b?) D --- of ideals in B. This
is, in particular, a sequence of A-modules and must stop since B has finite length

as an A-module, and consequently (b") = (b"T1) = ... for some r. Hence we have
that c¢b™+! = b" for some ¢ in B. Since B is an integral domain we must have that
bc = 1. Consequently b has an iverse and B is a field. a

(2.3.5) Proposition. Let A be a noetherian ring and M a finitely generated
A-module. Given a chain

M=MyD>DM, D---DM,=0

of A-modules such that M;_1/M; = A/P;, fori = 1,...,r, where P; is a prime
ideal in A. Then M has finite length if and only if all primes P; are mazximal.
When M has finite length we have that

(M)= > La,(Mp).

PeSpec A

Proof. When M is of finite length if follows by induction on ¢ that each of the
rings A/P; have finite length. Thus it follows from Lemma (2.3.4) that the ideals
P; are maximal.
Conversely, if all the P; are maximal, we have that the rings A/P; have finite
length. By descending induction on ¢ we obtain that M has finite length.
Assume that M has finite length. Then the chain My D --- D M, is a compo-
sition series. We see from the series that the localization of M in a prime P is non
zero if and only if P = P; for some 4. It is clear that Mp, has a composition series
where all the quotients are of the form A/P; and that each such quotient appears in
the composition series for M p, as many times as it appears in the composition series
for M. We therefore obtain that £4(M) = 377 La(A/P;) = 3 pcgpec a Lar (Mp).
0

(2.3.6) Corollary. Given a noetherian ring a finitely generated A-module A and
M. Then M has finite length if and only if the support, supp M, consists of
maximal ideals. The support is then finite.
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(2.3.7) Proposition. Given a local homomorphism A — B of local rings A and
B with mazimal ideals P respectively Q). Denote by d = [B/Q: A/ P] the degree of
the residue field extension. A non zero B-module M has finite length over A if
and only if d < oo and M has finite length over B.

When M has finite length over A we have that

Ca(M) = dlp(M).

Proof. If M is of finite length over A or B it is a finitely generated B-module.
Since the length is additive we can therefore assume that M = B/Q’, where Q'
is a prime ideal in B. It follows from Lemma (2.3.4) that if M has finite length,
either as an A-module, or as a B-module,we have that Q' = Q.

If B/@Q has finite length over A it is a finitely generated A-module and thus
[B/Q: A/P] < o0, and B/Q has finite length as a B-module because ) is maximal.
We then have that £4(B/Q) = {4/p(B/Q) = d = dlp(B/Q), and we have proved
the Lemma. a



12 January 2006 Chp 2.4 Herbrand indices 1

2.4. Herbrand indices.

(2.4.1) Setup. Given a ring A. For every A-module M of finite length we
denote the length by £4(M). Given a map ¢: F — G of A-modules such that the
cohomology groups H*(K(i)) of the mapping cone of ¢ have finite length for all 4
and are zero except for a finite number of i’s we obtain, as i Section (1.6) used on
the associated scheme X = Spec A and O x-module M, a length 04(p). We say
that under the given condition the length is defined .

(2.4.2) Remark. Given a map ¢: M — N of A-modules whose kernel and
cokernel have finite length. Then it follows from Remark (7) that

Calp) = La(N) —La(M),

which is the usual Herbrand quotient of ¢.

(2.4.3) Remark. Assume that A is noetherian and that F is a complex consisting
of finite generated A-modules such that H(F) = 0 for all but a finite number of
i’s. Then all the H'(F) are of finite length if and only if, for all prime ideals P of
A, the localized complex Fp given by

—1 dp ! o dp
= Fp FY Fpl — -

is acyclic, except possibly when P is maximal. Then there is only a finite number
of maximal ideals such that Fp is not acyclic.

(2.4.4) Proposition. Given a map ¢: F — G of complexes of A-modules such
that L a(p) is defined. Then the length €4, (pp) is defined for all prime ideals P
of A and we have that

@ = S Laler).

PeSpec A

Proof. By definition we have that £4(¢) = £4(K(p)), where K(p) is the mapping
cone of ¢. It follows from Lemma (?7) that we have

CA(H(K(9)) = > Lap(H (K(9))p)

PeSpec A

for all i. However, localization is exact so that H'(K(¢))p = H*(K(pp)). Conse-
quently we have that

LaK(@) = > lap((@p)= > Lap(Klep)= > Llaylep)

PeSpec A PeESpec A PeSpec A

snitt
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(2.4.5) Proposition. Given a map ¢: F — G of finite complexes of A-modules
of finite length. Then we have that

Calp) =La(G) — La(F).

Proof. The Proposition is an immediate consequence of Proposition (7).

(2.4.6) Proposition. Given a commutative diagram

0 F F F 0
Al vl
0 g’ g g’ 0

of complezes of A-modules. If two of the lengths La(p'), La(p) and Lao(@") are
defined, then the third is, and we have that

Ca(p) = La(e") +Lale”).

Proof. That the third length is defined when the two others are is an immediate
consequence of the properties of length of modules. The rest of the Proposition
follows immediately from Proposition (7).

(2.4.7) Proposition. Given maps p: F — G and 1»:G — H of complezxes of A-
modules. It two of the lengths £ (), £a(V) and L4(1hp) are defined, then the third

18, and we have that

Ca(pp) = La(p) +La(V).

Proof. That the third length is defined when the two others are follows from the
properties of the length of modules. The remaining part follows from Proposition

(7).
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2.5. Noetherian rings.

(2.5.1) Lemma. (Artin-Rees) Given a noetherian ring A and an ideal I. Let M
be a finitely generated A-module and N a submodule. Then there exists a positive
integer m such that

I"MNONN=I"""TI"MnNN)
for allm > m.

Proof. 1t is clear that we have an inclusion I"™™(I™M N N) C I"M N N. In

order to prove the opposite inclusion we choose generators ai,...,a, for I and
mi,...,mg for M. Let Alxq,...,x.| be the ring of polynomials in the variables
r1,...,2, with coefficients in A., and let

In ={(f1,- -, fs)|fi € Alz1, ..., x| homogeneous of degree n
and Z filay,...,a.)m; € N}.
i=1

Denote by P the A[zy,...,z,]-submodule of A[zq,...,z,]® generated by U2, .J,.
Since A[z1,...,x,] is noetherian we can find a finite number og generators

(p1,17 s 7p1,s)7 . '7(pt,17 e 7pt,s>

for P. We can choose the p; such that the p; ; have the same degree d; for
i=1,...,s. Let m be the maximum of di,...,d;.

Given an element [ € I"M N N. We can write [ = Y7, fi(a1,...,a,)m;, with
(f1,.--,[s) € Jn. consequently we get

t

(f1,- f) =D _gi(@r, . 2)(Pins- - Djs)

=1

with g; € Alx1,...,2,]. On the left hand side we have homogeneious polynomials
of degree n. Consequently, we may, after possibly removing terms on the right
hand side, assume that degg; +d; =nfor j=1,...,tandi=1,...,s. Then we
have that

s t s
l = Zfi(al,...,ar)mi = Zgj(al, . ..,aT)Zpiyj(al, ey Q)Y
i=1 j=1 i=1

where Y7 pij(ar,...,a.)m; € IfM NN, since (pj1,...,pjs) € Jg;- forn >m
we have that gs(ai,...,a,) € I""% = ["~™[m=di  Consequently we have that
le Z§:1 m=mpm=di(J5 M AN) C I"™m(I™M N N).

snitt
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(2.5.2) Theorem. (Krull) Given a noetherian ring A and an ideal I in A. Let
M be a finitely generated A-module and let N = N2, I"M. Then there is an
element a € A such that (1 +a)N = 0.

In particular, when I C rad A we have that N2, 1" M = 0.

Proof. Tt follows from the Artin—Rees Lemma (2.5.1) that we have an inclusion
I"MNON C " ™({I™MNN) CIN for big n. However we have that N € I" M for
all n. Thus we have that N C I"M NN C IN, and thus that IN = N. It follows
from Nakayamas Lemma that there is an element a € I such that (14 a)N = 0.
When I C rad A we have that 14 a is a unit in A and consequently that n = 0.
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2.6. Flatness.

Definert i [73][A-M, Ch.2 p. 29]. Se [76][L, XVI, §3]

(2.6.1) Setup. Given a ring A and a prime ideal P. We shall write x(P) =
Ap/PAp . Moreover, given an A-algebra B and a prime ideal @) in B. We denote
by QN A the contraction of Q to A, that is QN A = ¢~ 1(Q), where p: A — B is
the map defining the algebra structure.

(2.6.2) Definition. Given an A-module M. The module M is flat over A if
every short exact sequence

0—-N —-N-—-N'"—-0
gives rise to a short exact sequence
0 -MRAN - MuN—- My N —D0.

(2.6.3) Remark.

(1) (Long exact sequences ) We can break long exact sequences into short exact
sequences. Hence M is flat over A if and only if every exact sequence

.._)N,_)N_)N”_)...
of A-modules gives rise to an exact sequence
o> M@AN - NRIUN—-MxsgN'— ...

(2) (Left exactness ) Since the tensor product is right exact (73) [A-M, 2.18]
we have that M is flat over A if every injective map N’ — N of A-modules
gives rise to an injective map M ® 4 N' — M ®4 N”.

(3) (Localization )Let S be a multiplicatively closed subset of A. It follows
from the definition of localization S~'A of A in S that S~'A is a flat
A-module.

(4) (Base change ) Given a flat A-module N, and let B be an A-algebra.
Then B ®4 N is a flat B-module. Indeed, for every B-module P we have
an isomorphism P ®p (B®a N) = P ®4 N.

(5) (Direct sums ) For every set (N;);e; of A-modules and every A-module P
we have that F @4 (BierN;) = Bicr(P @4 N;). We have that @;erN; is
exact in (N;);er if and only if it is exact in every factor N;. Consequently
@ic1N; is flat over A if and only if each summand N; is flat over A. It
follows in particular that every free A-module is flat. Moreover, projective
A-modules are flat because they are direct summands of free modules.

snitt
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(2.6.4) Lemma. Given an exact sequence
0—-M-—-N-—-F—0
of A-modules, where F is flat. Then the sequence
0—-PRAM —->PRUN—-PRsF—0

is exact for all A-modules P.

Proof. Write P as a quotient of a free A-module L,
0—-K—>L—P-—0.

We obtain a commutative diagram

0

|

K®AM—>K®AN—>K®AF

J

0 —— L®4M —— L®AN —— LRy F

P®AM —— P®AN

0 0

Flatness 2

where the upper right vertical map is injective because F' is flat, and the middle
left horizontal map is injective because L is free. A diagram chase gives that

P®ga M — P®a N is injective.

(2.6.5) Proposition. Given an exact sequence
0—-F —-F—F'"—0

of A-modules with F" flat. Then F is flat if and only if F' is flat.
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Proof. Given an injective map M’ — M. We obtain a commutative diagram

0

l

0 —— M QUuF —— M QQUF —— M @4 F' —— 0.

l l l

0 —— MR F —— M F —— MR, F' — 0

The rows are exact to the left by Proposition (2.6.4), and we have injectivity of
top vertical map since F" is flat. The Proposition follows from a diagram chase.

(2.6.6) Lemma. Given an A-module M such that the map
Il XA M — IM

is an isomorphism for all ideals I in A. For every free A-module F and every
injective map K — F of A-modules we have that

KagM—>F®a M
18 1njective.
Proof. Since every element in K ® 4 M is mapped into F/ ® 4 M where F' is a
finitely generated free submodule of F' we can assume that F' is finitely generated.
When the rank of F'is 1 the Lemma follows from the assumption. We prove the
Lemma by induction on the rank r of F. We have an exact sequence 0 — F; —

F — A — 0, where F} is a free rank r — 1 module. Let K; = K N F; and let Ko
be the image of K in A. We obtain a diagram

0 0

| |

KioaM — Ka M — Ko®@a M — 0.

l l l

0 —— @M —— FRaM —— A®aM

where the right and left vertical maps are injective by the induction assumption
and it follows from Lemma (2.6.6) that the lower left map is injective because A
is free. A diagram chase proves that the middle vertical map is injective.
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(2.6.7) Proposition. An A-module M is flat if and only if the map
I XA M — IM

is an isomorphism for all ideals finitely generated ideals I of A.

Proof. If M is flat the tensor product I ® 4 M — M of the map I — A is injective
so I ®x M — IM is an isomorphism.

Conversely, we can assume that I ® 4 M — I M is an isomorphism for all ideals
I of A. Indeed, every element of I ® 4 M is contained in J ® 4 M, where J is a
finitely generated ideal, and if J ® 4 M — M is injective and the element is not
zero then it is not mapped to zero by the map I ® 4 M — M.

Let N’ — N be an injective map and write N as a quotient 0 — K — F —
N — 0 of a free A-module F'. Let F’ be the inverse image of N’ in F. Then we
have an exact sequence 0 — K — F’ — N’ — 0 and we obtain a commutative
diagram

0

l

KeoaM —— FF@aM —— N @M —— 0,

! l !

K®AM—> F®AM ——— N®AM

where it follows from Lemma (2.6.6) that the middle vertical map is injective. A
diagram chase shows that the right vertical map is injective. Consequently M is
flat over A.

(2.6.8) Remark. It follows from Proposition (2.6.7) that a module over a prin-
cipal ideal domain is flat if and only if it does not have torsion.

(2.6.9) Lemma. Given a ring A and an A-module M. The following two asser-
tions are equivalent:

(1) The module M is flat over A.

(2) For every A module homomorphism u: F — M from a finitely generated
free module F', and for every element e in the kernel of u, there is a fac-
torization of u via an A-module homomorphism f:F — G into a finitely
generated free A-module G such that f(e) = 0, and an A-module homo-
morphism v: G — M.
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Proof. Assume that M is flat over A and that we have a homomorphism u: F — M
such that u(e) = 0 for some element e in F. Let f1,..., f,, be a basis for F' and
write e = > " a;fi and x; = u(f;). Then u(e) =", a;x; = 0.

We define an A-module homomorphism a: FF — A by a(f;) =a;fori=1,...,m
and we denote the kernel of a by E. From the exact sequence 0 — F - F %

A — 0 we obtain an exact sequentce 0 — E @4 M =5 M™ 22, M — 0.
We have that an(z1,...,2m) = >ivqya;z; = 0. Consequently (z1,...,%m) =
i (3o @i fi®ys) = (3521 1,5Yjs - - - 25—y Gm,5Yy) for elements 370, a; 5 f; in
F and yj in M, for j =1,...,n. We have that 0 = a(}>_."  a; jfi) = Divy @i ja;
for 7 = 1,...,m. Let G be the free A-module with basis ¢1,...,g, and define
A-module homomorphisms f:F — G and v:G — M by f(fi) = >25_; aijg;
for i = 1,...,m respectively v(g;) = y; for j = 1,...,n. We then have that
of (fi) = v(Xjoy aijgs) = 2000 aijy; = @ = u(f;) for i =1,...,m and f(e) =
O™ aifi) = >0, Z?:1 a;a; ;jg; = 2221(21‘11 a;a;;)g; = 0. Consequently
assertion (2) holds.

Conversely, assume that assertion (2) holds. We shall show that M is flat
over A by showing that the map I ® 4 M — M is injective for all ideals I in
A. Assume that we have an element Z:il a; @ x; in I ®4 M that maps to zero
in M, that is >_7", a;x; = 0. We shall show that > ,_, a; ® z; = 0. Let F be
a free A—module with basis fi,..., fi, and define an A-module homomorphism
u: F'— M by u(f;) = x; for i = 1,...,m. Then we have that e = Y /", a;f} is in
the kernel of u. By assumption there is a factorization of u via homomorphisms
f:F — G and v:G — M, where G is free with a basis ¢g1,...,9, and f(e) = 0.
Write f(fi) = 327 aijg; for i =1,...,m and v(g;) = y; for j = 1,...,n. Then
we have that 0 = f(e) = f(3;1, aifi) = D210, >oj—; aiai g5, and consequently
that >0, a;a;; = 0 for j = 1,...,n. We have that z; = u(f;) = vf(fi) =
U(Z?Zl a;jg;) = Z?Zl a;jy;, for i =1,...,n. Hence we have that Y. a;,®x; =
Doy D @ ® @igy; = D0 > ey @ y; = 0 =300 (300 aiai) ® yj.
We have proved that I ® 4 M — M is injective and consequently that M is flat
over A.

(2.6.10) Lemma. Given a map p: A — B of rings and let F' be a B-module.
Then F' is flat over A if and only if Fq is flat over Ap for all prime ideals P in
A and Q in B such that ¢=1(Q) = P.

Proof. Assume that F' is flat over A. Since Bg is flat over B the functor that
sends an Ap-module N to Bo ®p (N ®4 F) is exact. However Bo ®p (F®4 N) =
Fo®a N =Fg®a, N. Consequently the functor that sends NV to Fg ®4, N is
exact, that is, the Ap-module F{ is flat.

Conversely, assume that Fg is a flat Ap module for all prime ideals ) in B
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with P = o~ 1(Q). The functor that sends an A-module N ot the Ap-module Np
is exact. Consequently the functor that sends N to Fg ® 4, Np is exact. However,
we have that Fo ®4, Np = Fg ®a, (Ap ®4 N) = Fg ®4 N. Hence the functor
that sends an A-module N to Fip ®4 N is exact. However, the functor that sends
an A-module N to the B—module F' ®4 N is exact if and oly if the functor that
sends the A-module N to the Bg-module Fg ®4 N is exact for all prime ideal @
of B. We thus have that F' is a flat A—module.

(2.6.11) Proposition. Given a local homomorphism A — B of local rings, such
that B is flat over A. Then the resulting map Spec B — Spec A is surjective.

Proof. Given a prime ideal P in A. Since B/PB is flat over A/P we have that
B/PB # 0 and since B is flat over A we have that the image S in B/PB of the
non zero elements in A/P consists of non zero divisors in B/PB. Let () be an
ideal which is maximal among the ideals in B/PB that are disjoint from S. Then
@ is a prime ideal and Q@ N A/P = 0. The inverse image R of @) by the residue
map B — B/PB consequently satisfies ¢ ~1(Q) = P.

(2.6.12) Corollary. Given a homomorphism @: A — B of rings, such that B is
flat over A. Let P be a prime ideal in A, and Q) a prime ideal in B containing P.
Then there is a prime ideal R in B such that R C Q and o~ *(R) = P.

Proof. 1t follows from Proposition (2.6.9) that the map A,-1(g) — Bg is flat. The
Proposition asserts that there is a prime ideal R’ in Bg such that the contraction
of R' to A,-1(q) is equal to PA,-1(q). Then we have that the contraction R of R’

to B is contained in @ and that ¢! (R) is equal to the contraction P of PA,-1(q)
to A.

(2.6.13) Remark. The Corollary has many interesting reformulations and vari-
ations.

(1) The property of the Corollary can be restated by saying that flat maps
satisfy the going down property .

(2) The property of the Corollary can be stated geometrically as:

Let f:Spec B — Spec A be the map corresponding to the map A — B.

Given a point x in Spec X and assume that f(z) is a specialization of a
point 7 in SpecY. Then there is a point £ in Spec X such that f(£) =n
and z is a specialization of £.

(3) Tt follows from the Corollary that the contraction ¢ ~!(Q) of a minimal
prime (Q in B to A is a minimal prime in A.

(4) A flat morphism of finite type to a noetherian scheme is open. Indeed,
it follows from Theorem (1.2.10) that f(Spec B) is constructible. Thus it
follows from Proposition (7) that f(Spec B) is open.



12 January 2006 Chp 2.6 Flatness 7

(2.6.14) Proposition. Given a regular (73) [A-M, 11.22] one dimensional ring
A and a homomorphism ¢: A — B into a noetherian ring B. Then B is flat over
A if and only if o=1(Q) = 0 for all associated prime ideals Q in B.

In particular we have that if B is reduced then B is flat over A if and only if
0 1(Q) =0 for all minimal primes Q of B.

Proof. Assume that B is flat over A and let  be a prime ideal in B. If P = ¢~ 1(Q)
is maximal we have that Ap is a discrete valutation ring ([73] 9.2 and 11.23). Let
t € PAp be a generator for the maximal ideal. Since ¢ is not a zero divisor in
Ap and Bg is a flat Ap module it follows that ¢ is not a zero divisor in Bg.
Consequently () is not an associated prime in B.

Coversely, assume that ¢=1(Q) is zero for all associated primes Q of B. It
follows from Proposition (?) that we must prove that Bg is flat over A,-1(p)
for all prime ideals R in B. If ¢~ !'(R) = 0 we have that A,-1(p) is a field and
consequently that B is flat. On the other hand, if P = ¢ ~!(R) is a maximal ideal
we choose a t € ¢ 1(R) that generates the ideal PAp. Since Ap is a principal
ideal domain it follows from Remark (?) that it suffices to show that Bp is a
torsion free Ap-module. Since all elements of Ap can be written as a power of
t times a unit, this means that it suffices to prove that ¢ is not a zero divisor
in Br. However, if t were a zero divisor in Bp it follows from Proposition (ass)
that it is contained in an associated prime ideal () of B. However, by assumption
¢~ 1(Q) = 0. This is impossible because t # 0. Hence t is not zero divisor and we
have proved the Proposition.
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2.7. Flatness and associated primes.

(2.7.15") Lemma. Given a homomorphism A — B of noetherian rings and a B-

module G which is flat over A. Let P be a prime ideal in A such that G/PG # 0.
Then we have that:

(1) assp(G/PG) = assp(G ®4 Ap/PAp).
(2) {P} =assa(G/PG) =assa(G®a Ap/PAp).
(3) The contraction of the ideals in assp(G/PG) to A is {P}.

Proof. (1) Since G is flat over A we have that G p is flat over Ap. Consequently
G/PG =G ®4 A/P and G ®4 Ap/PAp = G®4 A/P ®4 Ap is flat over A/P.
Since the ring A/ P is a domain it follows that the non zero element in A/P are non
zero divisors in G/PG and G ®4 Ap/PAp. It follows that {P} = assa(G/PG) =
assA(G®4 Ap/PAp).

(2) Since the elements in A \ P are not zero divisors in G/PG we obtain an
injection G/ PG — G/PG® 4 Ap and consequently assp(G/PG) C assp(G/PG® 4
Ap) = assp(G ®4 Ap/PAp). Conversely, if Q = ann(z/t) is in assp(G ®4
Ap/PAp) with a € G/PG and t € A/P we have that () = assz because ¢ is
invertible in Ap. Consequently we have that @ € assp(G/PGQG).

(3) If Q € assp(G/PGQG) there is an element x € G/PG such that Q = annx
in B. Then we have that the contraction of @ to A is the annihilator of x in A.
Consequently we have that the contraction of @ to A is in asss(G/PG) = {P},
and thus equal to P.

il

A more general result than the following can be found in the written notes.
References are (82), (85), (86) [Ma, Ch 3, §9], [Mb, Ch. 8, §23] [EGA IV,, 24,
3.3.1].

(2.7.16*) Proposition. Given a flat A-algebra B. Then we have that

ass B = Upeassa assp(B/PB) = Upcass a assg(B®4 Ap/PAp).

Proof. When P is in ass A we have an injection A/P — A. Since B is flat over A
we obtain an injection A/P — A. It follows that assp(B/PB) C ass(B).

Conversely, let () € ass B and let P be the contraction of @ to A.

We first show that P € ass(A). Choose, as in Proposition (?), a minimal
decomposition 0 = NiN- - -NN,. of zero in A, such that A/N; has only one associated
prime P;. Then it follows from Proposition (7) that the primes P, ..., P, are the
associated primes of A. We have an injective homomorphism A — &7_; A/N;
and, since B is flat over A, we get an injective homomorphism B — &!_, B/N;B.
Consequently we have that Q € ass B/N;B for some i. However, we have that
snitt
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P C N;, and thus P"B/N;B = 0 for some integer n. In particular we have
that the elements of P; are nilpotent for the module B/N;B, and consequently it
follows from Proposition (?7) that P; C P. On the other hand, the elements in
A\ P; are not zero divisors in A/N;, and, since B is flat over A, they are not zero
divisors in B/N;B = A/N; ® 4 B. Hence A\ P; is disjoint from P. It follows that
P, = P, and thus that P € ass A.

Next we show that Q) € assg(B/PB). It follows from Proposition (?) that there
is a chain of ideals A=1y DI D--- D I; =0 in A such that I;,_,/I; =2 A/P; for
a prime ideal P; in A. Since B is flat over A we obtain a chain B = Iy D [1B D
-+- D I;B =0, such that I,_1B/I;B = B/P;B. It follows that Q € assg(B/P;B)
for some i. However, it follows from Lemma (7) that the contraction of @ to A
is P;. Consequently we have that P; = P and @ € assg(B/PB). We have proved
the first equality of the Proposition.

The last equality of the Proposition follows from Lemma (2.7.16).

(2.7.17*) Proposition. Given A-algebras B and C' and assume that C is flat
over A. Then we have that

ass(B®y C) = U U asspe . (K(Q) ®w(p) K(R))

Qcass B R'cass(k(P)®aC)

where R is the contraction of R’ by the map C — Cp and the contraction of Q
and R to A is P.
Proof. Proposition (2.7.16) applied to the flat B-algebra B ® 4 C' yields

ass(BoaC)= | asspe,c(Bo/QBq® (B®aC)).
Q€cass B

On the other hand the same Proposition applied to the flat x(P) ® 4 C-algebra
k(Q) ®a C gives the formula

asspg .0 (K(Q) ®a C)
= U ass((k(Q) ®a O) @u(pygsc (K(P) ®a C)r /R (k(P) ®4 C)).
R’/ cass(k(P)®aC)

It follows from Lemma (2.7.15) that the contraction of R’ to A is P, and hence
the contraction of R to A is also P.
There is a canonical isomorphism

K(Q)®a C = K(Q) @4 C ®ppygac (K(P)®a 0),
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where the ideal £(Q) ® 4 R corresponds to k(Q) ®4 C ®,(p)g,c R'. It follows that
we have an isomorphism

K(Q) @4 K(R) — (K(Q) ®4 C) ®n(pywac (K(P) ® @aC) rr /R (k(P) ®4 C)pr.
Finally we notice that we have a canonical isomorphism
K(Q) ®a K(R) — K(Q) @y (p) K(R),

and we have proved the Proposition.
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2.8. Local criteria of flatness.

(2.8.1) Theorem. (Local criterion of flatness). Given a ring A, an ideal I in A,
and an A-module M. Consider the following assertions

(1) The module M s flat over A.
(2) The module M /IM is flat over A/I and the homomorphism I @ 4 M — M

18 1njective.

(3) The module M/IM is flat over A/I and the homomorphism I™/I"1 @ 4
M — I"M/I" M is bijective for all n.

(4) The module M /1" M is flat over A/I™ for all n.

Then we have that (1) implies (2), that implies (3), and that implies (4).

If A is noetherian, B is a finitely generated A-algebra such that I C rad(B),
and M is a finitely generated B-module. Then we have that (4) implies (1).

Proof. We proved in (7) that (1) implies (2).
To prove that (2) implies (3) we first show that when (2) holds it follows that

when 0 - N/ — N — N” — 0 is an exact sequence of A-modules with IN” = 0,
that is the A-module structure on N’ induces an A/I-module structure on N”.
then 0 - N @4 M — N®4 M — N"®@4 M — 0 is exact. To prove this we
choose surjective maps a: F/ — N’ and 3: F — N of A-modules with F’ fnad F”

free. Consider the natural commutative diagram

0O —— FF®IF —— FF®F —— F/IF —— 0

(08117 | (ia5) | |

o——» N —— N —— N' —yp

with exact rows. Let 0 — G’ — G — G” — 0 be the exact sequence of A-modules
induced on the kernels of the three vertical maps of the diagram. We obtain a

snitt
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commutative diagram

0

l

G @a M E— G®a M — G"Qu M

l l !

0 —— (FF&IF)@sM —— (FF&F)@2 M —— F/IF®4 M

l l l

N @4 M E— N®@a M —— N'@s M

l !

0 0

with exact rows and columns. The right vertical column is exact since Q ® 4 M =
Q ®a/r M/IM for all A/I-modules () because M/IM is flat over A/I, and the
middle horizontal row is exact since I ® 4 M — M is injective. It follows from the
diagram that N' ®4 M — N ®4 M is injective as we wanted to prove.

To prove that (2) implies (3) we consider the commutative diagram

0 —— I"' @M —— I"Qa M —— ["/["" '@, M —— 0

o] - .|

0O — I"M —un I"™M — I"M/I""'M —— 0

with exact rows. The top row is exact by the observation made immediately above.
We have that a; is injective by assumption. consequently it follows by induction
on n that «, is injective, and thus bijective, for n = 1,2,.... Consequently we
have a bijection I" /"' @4 M = (I" @4 M)/(I"" @4 M) — I"M/I" ' M, and
we have proved that assertion (3) holds.

To prove that (3) implies (4) we fix n > 0. We shall show that M/I™M is flat
over A/I™. For 0 <i<n—1 we have a commutative diagram

I @u M —— I /I"@a M —— I TH @, M —— 0

- .| g

0 —— IM/I"M ——— I'M/I"M ——— I'M/I'"'M ——— 0.
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with exact rows. It follows from the assumptions that ~; is an isomorphism for
1 =20,1,.... By descending induction on i, starting with «,, = 0, it follows that
«; is an isomorphism for ¢ = 0,...,n. In particular we have that

a1/ @4 M =1/I" @/ M/T"M — IM/I"M

is an isomorphism. It follows that (2) holds for the A/I™-module M/I" M, and
the ideal I/I™. The proof that (2) implies (3) used for the A/I"™-module M /I" M
shows that given an exact sequence 0 — N’ — N — N” — 0 of A/I"™-modules,
with IN” = 0 we obtain an injection

N/®A/InM/ITLM:N/(@AM_)N@AM:N@A/[WLM/InM

Consequently we have that M/I™M is flat over A/I™.

To prove that assertion (4) implies assertion (1) under the conditions of the last
part of the Theorem, we shall show that j: J®4 M — M is injective for all finitely
generated ideals J of A. Since B is a noetherian A-albebra and M is a finitely
generated B-module we have that J® 4 M is a finitely generated B-module. Since
IB C rad(B) by assumption it follows from (2.5.2) that N2 I™(J ®4 M) = 0.
Consequently it suffices to show that the kernel of j is contained in I"(J®4 M) for
all n. For fixed n it follows from the Artin-Rees Lemma (2.5.2) that I*N.J C I™.J
for big k. We have maps

J@aM L /(1" nJ)@a ML (J/T") @4 M = (J @4 M)/T"(J @4 M).
Since M/I*M is a flat A/I*-module we have that the map
J/IFNT)@a M =J/(I"NJT) @, M/IFM — M/I*M
is injective. It follows from the diagram

JoaM —I— J/I*nJ)oa M

1| J

M ——  M/I*M

that ker(j) C ker(f) C ker(gf) = I"™(J ®4 M), which is the inclusion that we
wanted to prove.
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(2.8.4) Lemma. Given a local homomorphism A — B of local noetherian rings,
and let P be the maximal ideal in A. Let u:M — N be a homomorphism of
finitely generated B-modules where N is flat over A. The following two assertions
are equivalent:

(1) The homomorphism u: M — N is injective and the cokernel is flat.
2) The homomorphism id g/ p @au: A/P @4 M — A/P ®4 N is injective.
/

Proof. We have seen in (2.6.4) that (1) implies (2). To show that (2) implies (1)
we denote by C' the cokernel of u. We have a commutative diagram

0

PRauM) —— PN —— PRuC —— 0

J J

u(M) — N — C

0 —— A/P@AU(M) e A/P@AN

of A-modules with exact rows and columns, where the middle vertical sequence
is exact because N is flat over A, and the bottom left map is injective by the
assumption that id 4/ p ® su is injective. It follows from the diagram that P& 4C —
C' is injective. Since C/PC' is flat over the field A/P it follows from the local
criterion of flatness that C' is flat over A. Hence it follows from (2.6.5) that the
kernel u(M) of the map N — C' is flat over A. Denote by K the kernel of the
map M — u(M). We obtain an exact sequence 0 - A/P®s K — A/P®4 M —
A/P®su(M) — 0. However, we have that A/P@a M — A/P® gu(M) is injective
by the assumptions of the Lemma. Consequently we have that A/P ® 4 K = 0,
that is K = PK, and hence K = QK where () is the maximal ideal of B. It
follows from Nakayamas Lemma that K = 0.
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2.9. Generic flatness.

(2.9.14) Lemma. Given an integral domain A and an A-algebra B of finite type.
Moreover, given a finitely generated B-module N. Then there is an element f € A
such that Ny is free over Ay.

Proof. Write B = Aluq,...,up]. We shall prove the Lemma by induction on h.
When h = 0 we have that A = B. It follows from Lemma (2.6) that we can
choose a filtration N = N, D N,_1 D --- D Ny = 0 by A-modules such that
N;/N;—1 = A/P;, where P; is a prime ideal in A. Since A is an integral domain
we have that the intersection of the non zero primes P; is not zero. Choose a non
zero f € A in this intersection if there is one non zero prime P; and let f = 1
otherwise. Then (N;/N;_1) is zero if P; is a non zero prime and isomorphic to
Ay when P; = 0. Consequently we have that Ny is a free Ay—module.

Assume that A~ > 0 and that the Lemma holds for h — 1. Choose generators
ni,...,ns for the B-module N and write B’ = Afuy,...,up—1]. Then B = B'[uy].
Moreover, let N' = B'ny + --- B'ng. We have that N’ is a finitely generated B’-
module such that BN’ = N. It follows from the induction assumption used to
the A-algebra B’ and the B’-module N’ that we can find an element f’ € A such
that N JQ, is a free Ap-module. It therefore remains to prove that we can find an
element f” € A such that (N/N’)s» is a free Agr-module. To this end we write

N/ =N'4+up,N' +---+ul N’

and ‘
Py ={n¢€ N":ul'n e N/}.

Clearly N/ is a B’-submodule of N and P; a B’-submodule of N’. We obtain a
filtration
N{/N' C Ny/N' C -~ C N/N'

of N/N' by B’-modules N//N’ such that U;N//N’ = N/N’. The B’-linear homo-
morphism N’ — N/,; which sends n to u}'n defines an isomorphism N'/P; —
Nj,,/Nj for all i. Since B’ is noetherian, the sequence Py € P, C --- C N’
must stabilize. That is, among the quotients N/, /N; there appears only a finite
number of B’-modules. It follows from the induction assumption that we can find
an element f” € A such that all the modules (N, /N;) s~ are free Ays-modules.
Hence (N/N')¢» is a free A¢v-module, as we wanted to prove. i
We shall give another proof of the algebraic Lemma of generic flatness.

(2.9.14") Lemma. Let A be an integral domain and B an A-algebra of finite
type. Moreover, let N be a finitely generated B-module. Then there is an element
[ € A such that Ny is free over Ay.

snitt
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Proof. Let K be the quotient field of A. Then B ® 4 K is a K-algebra of finite
type and N ®4 K is a B ®4 K-module of finite type.

Let s = dimsupp(N ® 4 K) be the Krull dimension of the support of N ® 4 K
in Spec(B ®4 K). We shall prove the Lemma by induction on s. When s < 0
we have that N ® 4 K = 0. Since K is flat over A we have that N ® 4 K = 0
implies that each element in NV has A torsion, and since N is a finitely generated
B-module there is an element f € A such that fN = 0.

Fix an s > 0 and assume that the Lemma holds for all modules with support of
lower dimension than s. Since s > 0 there is a sequence N = Ny D Ny D --- D N;
of B-modules such that N;/N;y; = B/P;, for some prime ideal P; in B. It suffices
to prove the Lemma for the quotients N;/N; 1, because if N;/N;11 and N;; are
free then, N; is free, and we can conclude that N is free by descending induction
on i. Hence we can assume that N = B/P, where P is a prime ideal in B. If
PNA#0 we can take f € PN A and get Ny = 0. Hence we can also assume
that PN A = 0. We have that the support of B/P ®4 K in Spec(B ®4 K) is the
same as the support in the closed subset Spec(B/P ®4 K). Hence it suffices to
prove the Lemma for B/P. Hence we can assume that B is an integral domain
that contains A.

It follows from the Noether normalization Lemma that there are elements
ri,...,2s in B ®4 K that are algebraically independent over K and such that

B ®4 K is integral over Klzi,...,x]. Let ¢ € A be a common multiple of
all the denominators that appear in the integral relatons, with coefficients in
K[zq,...,xs], for the generators of B as an A-algebra. Then B, is integral over

C = A,[z1,...,x5] and B, is a finitely generated C-module. We can therefore find
a C-submodule of B isomorphic to C®* for some t such that all the elements in
the quotient module N’ have C-torsion. We have that s = dimsupp(N ®4 K) =
tr.degy (B ®4 K) = tr.degr(C ®4 K), and since N’ has C-torsion we have
that dimsupp(N' ®4 K) < tr.degx(C ®4 K). It follows from the induction
hypothesis that we can find an element h € A, such that N; is free over Ag,.
However C}, is a free Agp-module. Hence, it follows from the exact sequence
0— C’,?t — By — Nj, — 0 that By, is a free Agp-module, and we have proved
the Lemma.

(2.9.3) Theorem. Given a noetherian ring A, a finitely generated A—algebra B,
and a finitely generated B—module M. The the set

U = {Q € Spec B|Mg, flat over A}
s open in Spec B.
Proof. 1t follows from (Proposition .7) that it suffices to prove that every gener-

alization of a point in U is contained in U, and that U N {z} is a neighbourhood
of z in {x}.
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to prove the first condition we observe that if R O () are prime ideals of B then
we have that N ®4 Mg = (N ®4 M) ®p Bg = (N ®4 M) ®p Gr ®p, Bg =
(N ®4 Mpg) ®p,, Bg. Consequently we have that Mg is a flat A-module when
MR is.

To prove the second condition we take a prime ideal @) of B such that Mg is
flat over A. Let P be the trace of Q in A. For every prime ideal R in B that
contains () we have that PBr C rad Bg. It follows from the local criterion for
flatness (?) that Mp is flat over A if and only if Mr/PMp is glat over A/P and
P ®4 Mr — Mpg is injective.

We have an exact sequence

0—-K—>PRaM-—->M-—>A/PR4M—0

of B—modules, that defines K. Since B is noetherian and M is finitely generated
over B we have that K is a finitely generated B-module. Since M, is flat over A
we obtain, localizing the sequence at ), that Ko = 0. Consequently there is an
b € B such that Kr = 0 for all primes R in B that do not contain b.

By generic flatness (7) there is an element a € A\? such that Mq/PMg
is free over Ag/PAg. For eacn prime R of B not containing a we then have
that Mpr/PMp is flat over A/P. Consequently we have that the open subset
{R € Spec B|ab ¢ ab} is contained in U. Thus the second condition holds and we
have proved that U is open.
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2.10. The dimension of rings.

(2.10.1) Setup. Given aring A and a prime ideal P. We write x(P) = Ap/PAp.

(2.10.2) Theorem. Given a homomorphism ¢: A — B of noetherian rings and
Q a prime ideal in B. Let P = ¢~ 1(Q) be the contraction of Q to A. Then we
have that:

(1) th < htP+ dimBQ/PBQ.
(2) If going down holds between A and B we have equality in (1).

Proof. (1) We can replace A and B with Ap and Bg and consequently assume
that ¢ is a local homomorphism between local rings. Then we can write (1) as

dim B < dim A + dim B/PB.

Let aq,...,a, be a system of parameters in A (?) [97] [A-M, Ch. 11, p. 122]
and choose by,...,bs in B such that the image of these elements in B/PB for
a parameter system for B/PB. Then we have, for some integers m and n, that
Q" CPB+ Y] _b;Band P™ C > _ a;A. Consequently we have that Q™" C
Soi_ya;A+ >0 b;B. Thus we have that dim B < r + s = dim A + dim B/PB.

(2) Let dimB/PB =sand let Q = Qo D Q1 D --- D Qs 2 PB be a chain of
prime ideals in B. We haver that ¢=1(Q;) = P, fori =0,..., s, since ¢~ 1(Q) = P.
Let dimA =randlet P =Fy D P; D --- D P, be a chain of prime ideals in A.
Since we assume that going down holds between A and B there is a descending
chain

QSDQS—I—ID"'DQS—H"

of prime ideals in B such that ¢~ '(Qsy;) = P;. Consequently we have that
dmB > r+ s = dimA + dim B/PB. Together with formula (1) we obtain
assertion (2).

(2.10.3) Theorem. ( The dimension formula) [EGA 24, IV, 5.58|, [Ma, Ch. 5,
14.C], [Mb, Ch. 5, 15.5] Given a noetherian ring A and let B be an integral domain
that contains A. Let QQ be a prime ideal in B, and let P = Q N A. Then we have
that

ht @ + td. deg.,.(py £(Q) < ht P + td. deg. 4 B,

where td.deg. 4, B is the transcendence degree of the quotient field of B over the
quotient field of A.

When B is a polynomial ring over A, or when A is universally caternary, we
have equality in the formula.

Proof. We can assume that B is a finitely generated A algebra. Indeed, if the right
hand side is finite and m and t are non negative integers such that m < ht () and
snitt
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t < td. deg.,,(p) £(Q), then we have a chain of prime ideals Q = Qo D Q1+ D Qum,
in B and elements and let ¢y, ..., ¢ in B whose images in B/ are algebraically
independent over A/P. Pick an element a; € Q;—1 \ Q;, for i = 1,...,m. Let
C = Alay,...,am,C1,...,c¢). If the Theorem holds for C' we have that

m+t <ht(QNC)+td. deg.,,py K(QNC) < ht P+td. deg. , C < ht P+td. deg. 4 B.

Consequently the Theorem holds for B.

Assume that B is finitely generated as a A-algebra. We use induction on the
number of generators. Assume that B is generated by one element. If B = Alz] is
a polynomial ring over A we can replace A with the localization Ap and B with
the localization Bp = Ap[z], and therefore assume that A is local with maximal
ideal P. Since B is flat over A, and consequently going down holds between A and
B by Remark (7). It follows from Theorem (2.10.2) that we have

ht @ = ht P + ht(Q/PB).

Since B/PB = k(P)[z] is a polynomial ring in one variable over x(P) we have
that Q = PB or ht(Q/PB) = 1. If Q = PB we have that

ht @ + td. deg.,.(py k(Q) = ht P+ ht(Q/PB) + 1 =ht P + 1,
and if ht(Q/PB) = 1 we obtain that
ht @ + td. deg., . (py k(Q) = ht P+ ht(Q/PB) +0=ht P + 1.

Consequently the formula holds with equality in both cases.

Next assume that B is generated by one element x over A, but that it is not
a polynomial ring. We can then write B = A[x]/I, where I is a non zero prime
ideal in A[z]. We have that td.deg., B = 0. Since A C B we have that I N
A = 0. Consequently, if we denote by K the quotient field of A we have that
ht I = ht IK[t] = 1. Let Q" be the inverse image of @) by the canonical surjection
Alz] — B. Then we have that Q = Q'/I and k(Q) = k(Q"). We obtain, using the
case when B is a polynomial ring over A, that

htQ <htQ —htI=htQ —1=htP+1+td.deg. . pr(Q) — 1.

If A is universally catenary it follows from Remark (7) that ht Q@ = ht Q" — ht ]
and we obtain equality.

We have proved the case when B is generated by one element over A. However,
if A C C C B and the formula of the Theorem holds bestween A and C' and C
and B, it clearly holds between A and B. Consequently the Theorem follows by
induction.
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(2.10.4) Definition. When two rings A and B satisfy the conditions of the
Theorem and the formula of the Theorem holds with equality we say that the
dimesion formula holds between A and B.

(2.10.5) Theorem. A noetherian ring A is universally catenary if and only if
the dimension theorem holds between A/P and B for all prime ideals P of A and
all integral domains B containing A/P, such that B is finitely generated as an
A-algebra.

Proof. Assume that A is universally catenary. Then A/P is universally catenary
so we can assume that A is an integral domain and that B contains A. We have

that B = Alxy,...,z,]/I where Alzq,...,z,] is a polynomial ring over A and
I a prime ideal in A[zy,...,2,]. Let @ be a prime ideal in B. Then we have
that @ = R/I, where R is a prime ideal in Alxq,...,z,]. However the ring
Alzq,...,x,] is catenary, and consequently it follows from Proposition (?) that

we have ht Q = ht R — ht I. Since we have equality in the formula of Theorem
(2.10.4) for polynomial rings we have that

ht R + td. deg.,,(py £(R) = ht P + td. deg. 4 A[z1,. .., 2]

and
ht I +td. deg.,, (o) (1) = ht 0 + td. deg. 4 A[z1,. .., ;).

Consequently we have that
ht Q@ =ht R —ht I = ht P + td. deg.,,) £(I) — td. deg., py K(R).

However, we have that td.deg., ) x(I) = td.deg., B and td.deg., p)K(R) =
td. deg.,,(p) £(Q), and thus we obtain equality in the formula of Theorem (2.10.3).

Conversely, assume that the dimension formula holds between A/P and B for
all prime ideals P in A, and all integral domains B that are finitely generated over
A/P. In order to show that A is universally catenary it sufficies to show that all

finitely generated A-algebras that are integral domains, are catenary. Given prime
ideals @ C @' in B. We must show that

dim BQ//QBQ/ + dim Bg = dim Bgr.

Denote by P and P’ the contraction of @) respectively Q' to A, and denote by K the
kernel of the homomorphism Ap: — Bg/. The image of Ap: in B is isomorphic
to Ap//K and we have that the dimension formula holds between Ap//K and B .
Hence we obtain that
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On the other hand, the kernel of the homomorphism Ap — Bg is equal to KAp
since B&? — Bg is injective. The dimenasion formula holds between Ap/KAp
and Bg so that we obtain

dimAp/KAp + td. deg'Ap/KAP(BQ) = dlmBQ + td. deg.,{(P) K(Q)

Finally, we use that B/(@ is an integral domain that is finitely generated over A,
that the contraction of Q'/Q to A is P’, and that the kernel of the homomorphism
Apr — B/ /QBg is PAp/. Thus the dimension formula holds between Ap//PAp/
and Bg'/QBg' and we obtain that

dim Ap//PAp/ + td. deg.AP//PAP/ (BQ//QBQ/>

= dim BQ//QBQ/ + td. deg.ﬁ(P,) K(Q,).
We add the last two formuas and use that x(P) and x(Q) are the fraction fields
of Ap//PAp: respectively Bg//QBg, that Ap/KAp and Ap//K ave the same
fraction field, and that By and B¢ ave the same fraction field. We obtain the
formula

dlmAp/KAp + dimAp//PAp/ + td. deg'AP//K(BQ’)

Since A is catenary we have that Ap,/K is catenary and from the chain P’Ap/ D
PAp/ /K we get the formula

dim Ap/ /PAp +dim Ap/KAp = dim Ap/ /K.
Consequently we have that
dim Ap//K +td.deg. 4,k (Bgq) = dim Bg +dim Bg/ /QBgq: +td. deg. . pr) k(Q").
From the first formula we proved we thus obtain that
dim By = dim Bg + dim Bg/ /QBgr,

which is the formula we wanted to prove.

(2.10.6) Remark. We saw in Proposition (dim.alg.) that fields are univer-
sally catenary. Consequently, it follows from Proposition (2.10.5) that the ring of
integers Z is universally catenary.
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2.11. Regular sequences.

(2.11.1) Lemma. Given a ring A and a noetherian algebra B. Let M be a finitely
generated B-module, and J an ideal in B that is contained in the Jacobsson radical
of B.

If M/J"M is a flat A-module for all n > 0, we have that M is flat over A.

In particular, if b is an element in the Jacobsson radical of B which is reqular

for M, and such that M /bM is flat over A. Then M is flat over A.

Proof. Let I C A be a finitely generated ideal in A. It follows from Lemma (?)
that it suffices to show that the map u: I ® 4 M — M is injective.
For n > 1 we have that

IRAM)/J"IRaM)=(IR4 M)®p B/J"=1®4 M/J"M

and [ @4 M/J"M — M/J™M is injective since M/J" M is flat over A. It follows

from the commutative diagram

IT®a M SN M

l l

(I®a M)/ JV @4 M) —— M/J"M

that the kernel of u is contained in J™ (I ® 4 M ). We have that I ® 4 M is a finitely
generated B-module. Since B is noetherian it follows that N5 J"(I ®4 M) =0,
and consequently we have that the kernel of u is 0.

Given b as in the Lemma. Since b is regular for M we have an exact sequence

0— M/b'M 2 M/bHIM — M/bM — 0.

It follows by induction on 4, starting with i = 1, that M/b'M is flat for all i.
Hence, it follows from the first part of the Lemma that M is flat.

(2.11.2) Lemma. Given a ring A and an ideal I. Let M be an A-module. If an
element x € A is reqular for I'M/T*T*M for i = 0,1,..., then x is regular for
M/I'M fori=1,2,....

Moreover, if x is reqular for M/I'M for i = 1,2,... and N2, I'M = 0, we
have that x is reqular for M.

Proof. We show the first assertion by induction on i. For ¢ = 1 the assertion holds
by assumption. Assume that z is regular for M/I*M and that there is an m € M
such that am € I'T'M. Since z is regular for M /I*M, , we have that m € I'M,
snitt
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and since x is regular for I*M/I**1 M we obtain that m € I'T1 M, as we wanted
to show.

To prove the second assertion we take an m € M. If m # 0 we can, since
N, I'M = 0, choose an i such that m € I'M \ I'T'M. If zm € I'"' M we must
have that m € I'""1M. Consequently we have that xm ¢ I'"!, and we conclude
that x is regular for M.

(2.11.3) Proposition. ([G] 0, 10, 15.1.1.6) Given noetherian local rings A and
B, and a local homomorphism A — B. Let P be the mazximal ideal of A and let M
be a finitely generated B-module. Given elements f1,..., fn in the maximal ideal
of B. The following assertions are equivalent:

(1) The sequence f1, ..., fn is M-regular and we have that the residue modules
M; = M/(375—, f;M) are flat A modules for j =1,2,...,n.
(2) The sequence f1,..., fn is M-reqular, and we hae that the module M,, =

M/(375_, fiM) is flat over A.

(3) The module M is flat over A and the images g1,...,gn in B/PB of the
elements f1,..., fn are A/P ® s M-regular.

(4) The module M is flat over A, and for every homomorphism p: A — A’ the
sequence 1 @4 f1,-++,1®4 fn in A’ @4 B is A’ @4 M -regular.

Proof. 1t is clear that (1) implies (2) and that (4) implies (3).

We prove first that (2) implies (4). Note that M, 1 = M;/fi+1M;. In order to
prove that M is flat over A it therefore suffices, by induction on i, starting with
My = M, to prove that for b regular in B and M /bM flat over A, we have that
M is flat over A. However, this follows by Lemma (7). Since M is flat over A
it follows by induction on ¢ that every regular sequence fi,..., f, for M gives a
regular sequence 1 ®4 f1,...,1®4 f, for A’ @4 M.

To prove that (3) implies (1) we note that it follows from Lemma (7) that the

multiplication M M is injective and that the cokernel M/ f1M is flat over A.

We show by induction on ¢ that the multiplication M, 4 ELN M;_4 is injective and
that M; is flat over A. The case ¢ = 1 we just proved. Assume that the assertion

holds for ¢ — 1. Since A/P & M;_4 EiN A/P ®4 M;_; is injective it follows from
Lemma (7) that f; is injective and that M;_1/f;M;_1 = M; is flat over A.

(2.11.5) Lemma. Given a ring A and an A-module M. Let x be an element of
A and J and ideal in A. Write I = J+ xA. If z is reqular for Y .o g J*M/J" "M
the map

0: Y JM)TTM @4 (AJzA)t] - Y I'M/TH'M
§=0 §=0
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that sends t to x is an isomorphism. In other words, the maps

i > JIM/JTM @4 (AJzA)t7 — I'M/TH' M

=0

induced by the injection J C I is an isomorphism fori=20,1,....
Conversely, if we have that NS oI (M/JM) = 0 and ¢ is an isomorphism,
then x is M /JM -regular.

Proof. 1t is clear that ¢ is surjective. Fix a non-negative number h. Let

h
P=> J/I* @4 (AJzA)t" and Q = I"M/I" ' M.

j=0
We have that the A module P is filtered by the modules

h
Pi=Y JIM/JTM @4 (A/xA)"

j=i

and @Q by Q; = ¢(P;), for i = 0,...,h. In order to prove that ¢; is injective, it
suffices, since Py = P and P41 = 0, to show that the induced maps

Pi/Piy = J'M/J' Mz + JM — Qi/Qit1

is injective, where Q;y; is the image of R = JH1 Mah—i=1 4 Jit2pfph—i=2 4
w4+ JEM in I"M/I" M. Hence we must show that if y € J'M and 2"~y €
R+ I"M1M, we have that y € o J'M + JH1M

Since x is regular for J'M/J*T1M for all i it follows from Lemma (?) that
x is regular for M/J'M for all i. We have that ="'y € J*1M + I"1M C
JHIM + 2"~ 1) . Consequently there is an z € M such that y — zz € J*T1M.
Since y € J'M and thus zz € J'M we have that z € J*M. Consequently we have
that y € J'M + J*T1 M, as we wanted to show.

To prove the converse it follows from Lemma (?) that it suffices to prove that
x is regular for I*(M/JM) /I (M/JM) = I*M + JM/I*"*M + JM for all i. To
this end, let m € I'M = z*M + JM. We must show that if xm € I't2M + JM?,
the we have that m € I't'M +JM. Write m = z'm +p with p € JM and assume
that xm = 2*T2?my + ¢ with ¢ € M. Then we have that 2*T'm; — z'2m; € JM.
However we have that M/JM @4 (A/x Attt — I'"MIM/T*F2M is injective and
m1 ®4 t*T! maps to zero. Thus we have that m; € M + JM. However, then
we have that m € z'*'M + JM = I'*! + JM and we have proved the converse
assertion.
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(2.11.6) Theorem. Given a ring A and an A-module M. Let z1,...,z, be an
M -regular sequence and write I = (x1,...,x,). Then the following assertions hold:

(1) We have that the homomorphism

Ur: M/IM @4 Alty, ... t,] — Y I'M/I""'M
=0

that sends t; to x; is an A-module isomorphism.
(2) If Ygr is an A-module isomorphism and we have that

ﬂ?iolj(M/(a:l,...,a:i)M):Ofori:1,...,7"

we have that x+,...,x, s an M-reqular sequence.

Proof. Write Jg; = (z1,...,25). We show by induction on s that the map

et M) JM @4 Alty, ...t — Y JIM/ T M,
=0

is an isomorphism. For s = 1, with J = 0, we obtain from Lemma (7) that ¢ is
an isomorphism Assume that 1, with s < p is an isomorphism. We have that x4
is regular for M/J,_; M and consequently regular for S°°° J!_ M /J!T1 M. From
Lemma (7) we conclude that the map

0: Y T MJTEIM @4 (Afa A)ft] — Y JIM/T M
=0 1=0

is an isomorphism. However, it is clear that ¢, = p(¥s_1 ® id(a /2, 4),)- Thus
s is an isomorphism and (1) holds.

To prove (2) we shall show that if 14 is an isomorphism and the condition
of the converse holds for i = 1,...,s, then we have that zi,...,zs is an M-
regular sequence. The assertion holds for s = 1 by Lemma (?) with J = 0.
Assume that 11 is an isomorphism and that (2) holds for i = 1,...,s — 1. By
assumption we have that z1,...,z5_1 is an M-regular sequence. We have seen
that ¥s = (V51 ®a1d(a/z, a)e.)). Since ¥,_1 is surjective we have that if 1, is
an isomorphism, then ¢ is an isomorphism. It follows from Lemma (?) used on
M/Js_1 M that x4 is M/Js_1 M-regular, and we have proved the Theorem.
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(2.11.7) Proposition. Given a local homomorphism A — B of local noetherian
rings, and let M be a finitely generated B-module. Let x1,...,x, be an A-reqular
sequence and write [ = (x1,...,x,). Then M is flat over A if and only if M /IM
is flat over A/I, and x4, ...,x, is M-reqular.

Proof. Tt is clear that if M is flat over A then M/IM is flat over A/I, and it
follows by induction on ¢ that x1,...,x; is M regular for i =1,...,r.

Conversely, assume that M/IM is flat over A/I and that zq,...,z, is M-
regular. It follows from the local criterion of flatness (?) that it suffices to prove

that I' /It @4 M — I'M/I*T*M is an isomorphism for i = 0,1,.... Since the
sequence Iy, ...,x, is M-regular it follows from Theorem (?) that we have an
isomorphism

(M/IM)®a Alty, ..., t,] = Y I'M/T'' M
=0

and since the sequence z1,...,z, is A regular we have an isomorphism
o
(AJTA) @4 Alty, ...t — > I'/TH
i=0

Consequently we have isomorphisms
M/IM @4 F — I'M/T""'M and A/JI @4 F — I'/I"!

where F' is the free A-module generated by the monomials of degree i in t1,...,t,.
We tensor the last isomorphism by M over A and obtain an isomorphism

M/IM @4 F — I'/T"™ @4 M.
However, the inverse of the latter map composed with the above isomorphism

M/IM @4 F — I'M/I**1M is the map I*/I*T' @4 M — I'M/I**'M and we
have proved the Proposition.
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2.12. Reduction to noetherian rings.

(2.12.1) Lemma. ([G] IV, 28, 11.2.4) Given a ring A and an ideal I of A. Let
A’ be an A-algebra and M an A-module. We write M’ = A’ @4 M. Then there
1s a commutative diagram with exact rows

0 K T@s M M M/IM —— 0
0 K’ TA' @4 M’ M M'JIM' — 0

that defines the A—module K and the A’-module K'. If the A/I-module M /IM
is flat, we have that the left vertical map defines a surjection A’ @4 K — K' of
A’-modules.

Proof. We first note that K and K’ are A/I, respectively A’/IA’-modules. Con-
sequently we have that K = A/I®4 K and K’ = A’/TA'® 4 K'. Consequently we
have that A’®4 K — K' is surjective if and only if the map A'/IA'® 4,1 K — K’
is surjective.

Let L1 — Ly — M — 0 be an exact sequence with L1 and Lg free A-modules.
Write L, = A’ ®4 L; for i = 0,1. Then we have an exact sequence L] — L{ —
M’ — 0 is an exact sequence of A’-modules. We obtain a commuative diagram

0
T
I®a Ly L, AJT@aL; — 0
|
0 —— I®alLg Lo AT ®4 Lo
| |
0 K I®a M M AT @ M

snitt
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of A-modules, where the right vertical column defines 7. Similarly we obtain a
commutative diagram

0
T/
TA @4 L) L AJIA @4 L) —— 0
0 —— IA QL) L A JTA @ L
0 K’ TA a0 M’ M’ A JTA @ M’

0

of A’-modules where the right vertical column defines 7”.

It follows from the two above diagrams that we have a surjection T" — K of A-
modules, respectively a surjection 77 — K’ of A’-modules. We have a commutative
diagram

0 — T — A/I@ALl — A/I@ALO — A/I@AM — 0

J J J |

0 — T — AJIA @4 L, — A'JIA @4 L)y — A'JIA @4 M' — 0

with exact rows, where the upper row consists of A/I-modules and the bottom
of A’/IA/-modules, and the vertical maps are maps of A-modules. To prove the
Lemma it suffices to show that the map A’/IA’ ®4,; T — T’ obtained from the
left vertical map of the latter diagram is surjective. We break the upper horizontal
sequence into two exact sequences

0—-Q—A/I®sLy— A/I®s M —0

and
0—=T—A/I®aL1 —Q—0
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of A/I-modules. Tensorize the last two sequences with A’/TA" over A/I. We
obtain two exact sequences
0— A" /JTA ®a/1 Q — A'JTA' @4 Lo — A'JTA" ©4 M — 0
and
A//IA/ ®A/I T — A//IA, ®a Ll — A,/IA, ®aQ —0
of A’/IA’-modules, where ethe first is exact since M/IM is a flat A/I-module by
assumption. Consequently we obtain a commutative diagram
B®uy/yT —— B®ali —— B®aLy — B®aM —— 0

l l l l

0 — T’ —— By L) — B®uy L, —— By M' —— 0

of B = A’/IA’-modules, where the three right vertical maps are isomorphisms.
Consequently the left vertical map is surjective.

(2.12.2) Lemma. ([G] IV, 28, 2.5) Given a ring A and an ideal I of A. Let B
be an A-algebra, and M a B-module. Moreover, let A’ be a noetherian A-algebra.
Write B = A’ @4 B and M' = A’ @4 M = B’ @ M. We assume that B’ is a
finitely generated A’-algebra and that M’ is a finitely generated B'-module. Given
a prime ideal Q' in B’ that contains IB’. We have a commutative diagram

0—— K —— I®s2M —— M —— M/IM —— 0

l l l l

0O —— K — A®a M ——5 M — M/IM'" — 0

! ! ! l

0 —— Ko —— [A®@a Mg, ——— Mg, ——— Mg, /IMg ——— 0
with exact rows and columns, and where the two first rows define the A-module K

respectively the A'-module K'. If M/IM is a flat A/I-module, and the composite
map K — K' — Kb, of the diagram s zero, we have that Mé), is a flat A’-module.

Proof. 1t follows from the assumptions of the Lemma that the A" /TA" = A’/®@ 4, A/I-
module M'/IM' = A’ ® 4 M/IM is flat. Consequently we have that the A’/TA’-
module M, /I Mg, is flat. It follows from the local criteron of flatness (?) that it
suffices to prove that K, = 0.

It follows from Lemma (7) that the map A’ ®4 K — K’ is surjective. Since
the composite map K — K' — Ky, is zero by assumption it follows that the
map K' — K, is zero. Since B’ is noetherian, and M’ is a finitely generated B'-
module by assumption we have that K’ is a finitely generated B’-module. Hence,
since the map K" — Ky, is zero, we have that K¢, = 0.
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(2.12.3) Lemma. Given a ring A. Let B be a finitely presented A-algebra and M
a finitely presented B-module. Then there is a finitely generated Z-subalgebra Ag of
A, a finitely generated Ag-algebra By, and a finitely generated Bo-module My, with
canonical maps By — B and My — M of Ag-algebras, respectively Bg-modules,
such that the resulting maps A®a, Bo — B and B®@p, My = A®a, Mo — M are
1somorphisms.

Proof. Write B = Alzy,...,x,]/I as the residue ring of the polynomial ring in
r variables z1,...,z, over A , by the finitely generated ideal I = (f1,..., fn),
and let B™ (b—J)> B™ — M — 0 be a presentation of the B-module M. Choose
polynomials g; j in A[z1,...,x,| whose classes in B are b; ;.

We define Ag to be the Z-algebra generated by the coefficients of the polynomials
fi,..., fnand g11,...,9mn. Moreover let By = Aglx1,...,z,]/(f1,..., fn) and
let My be the cokernel of the map

gy i), g

The inclusion of Ag|z1,...,z,| in Alzy,...,x,| induces a homomorphism By — B
and we have an isomorphism

A®A0 BO:A®A0 AO[xlw"7xT]/(f17-"7f7’L) :A[x].w"axT']/(flw"?fn) = B.

Moreover, we have a commutative diagram

(bi,5)

By By M, 0
pm i), pn M 0

where the upper row is an exact sequence of By-modules and the vertical maps are
By-module homomorphisms. Since the map A ® 4, B — B’ is an isomorphism
for ¢ = m, n it follows that we get a canonical isomorphism A ® 4, By — M.

(2.12.4) Remark. Given A, B and M as in Lemma (7), and let Ay, By and My
satisfy the conditions of the conclusions of the Lemma. It is clear that we can find
finitely generated Z-algebras A, with A in some totally ordered index set I with
first element 0, such that Ay € A, whenever A < 1, and with A = UycrAx. We
write By = A) ®4, Bo and My = A\ ®4, My. Then we have that B) is a finitely
generated Ajy-algebra, and M) is a finitely generated B)-module.

We obtain natural maps By — B, and M) — M, when A < pu such that
B, =A,®4, Byand M,, = A,®a, M. Moreover we have natural maps By — B
and M) — M that induce isomorphisms A ® 4, By — B and A ®4, M) =
B ®p, My — M, for all indices A, and these maps are compatible with the maps
A®a, By — A®a, B, and A®a, My — A®a, M, when A < p.
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Since A is the union of the rings A we have that B is the union of the images
of the rings B) and that M is the union of the images of the modules M.

(2.12.5) Theorem. Given a ring A, and let B be a finitely presented A-algebra
and M a finitely presented B-module which is flat over A. Then there is a finitely
generated Z-subalgebra Ay of A, a finitely generated Ag-algebra By, and a finitely
generated By-module My which is flat over Ag, together with canonical maps By —
B and My — M of Ag-algebras respectively Bo-modules, such that the resulting
maps A®a, Bo — B and B®p, My =A R4, M — M are isomorphisms.

Proof. 1t follows from Lemma (?) that we can find a finitely generated Z-sub-
algebra Ay of A, a finitely generated Ag-algebra By and a finitely generated By-
module M together with canonical maps By — B and My — M such that the
resulting maps A®4, By — B and A®4, My = B&p, My — M are isomorphisms.
We define Ay, By and M, for X\ in some totally ordered index set as in Remark
(7). In order to prove the Theorem it suffices to prove that for every prime ideal
(@ in B there is a A\, dependent on @, such that if @) is the trace of ) in B), we
have that (My)q, is a flat Ay-module. Indeed, then it follows from (?7) ([M] 24.3,
[G] 28, 11.1.1) that there is an open subset Uy of Spec By such that (My)g, is a
flat Ay-module for all Ry € Uy, and by our assumptions we have that if V) is the
inverse image of Uy by the map Spec B — Spec B) coming frm the canonical map
B) — B, we have that Spec B is the union of the V)’s. Moreover we have that
Vx €V, whenever A < p, because if M) is a flat Ay-module, and Ry C B) comes
from a prime R C B, we have that (M,)r, = (A4, ®a, M))r, is a flat A,-module
for every prime ideal R:L in B, that restricts to Ry and thus, in particular, to R,,.
Consequently we have that R is in V,.

We have seen that {Vy}, is a family of stricly open subsets of Spec B whose
union is Spec B. Since Spec B is compact we have that Spec B = V), for some A.
Consequently it suffices to fix a prime ideal ) in B and show that there is an index
A such that (My)g, is a flat Ayx-module, where Q)5 is the trace of Q) in By. Let P
be the trace of ) in Ay. By basis extension we can clearly replace Ay with Ap,,
and thus assume that Ag is local with maximal ideal Py, which is the trace of Q.

We have a commutative diagram

O———>K0———> PO®A0M0 ———>M0———> A()/P0®AM ———>O

l ! ! l

0 — Ky, — P()A)\ XA, M, — M, — A)\/P()A,\ N M, — 0

l | | l

0 — K — PA®sM — M — A/PPARAM — 0
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with exact rows. By assumption we have that Kg = 0. Since By is noetherian and
My is a finitely generated By-module, we have that K| is a finitely generated Bg-
module. Choose generators kY, ... kO for K, and let k7,..., k), and ky,..., k,
be the image of these generators in K respectively K. The map PyAy®a, My —
PyA ®4 M of the diagram is the same as the map PyAy ®4, Mo — PhA®a, M.
Since PyA is the union of the modules PyAj, it follows from the definition of a
tensor product that , if an element h) € K lies in the kernel of K — K, then
there is an index pu > X such that hy lies in the kernel of K\ — K,,. We conclude
that, since K¢ = 0, there is an element ¢ € B\ @ such that tk; =0fori=1,...,n.
However, the ring B is the union of the images of By — B. Hence there is an
index X such that ¢ is the image of ty € By \ Q. Consequently we have that ¢k
is in the kernel of K — K. Thus there is an index pu > A such that tﬂkf =0
for i = 1,...,n, where ¢, is the image ¢y by the map By, — B,. In particular
we have that ¢, € B, \ Q.. Consequently we have that (K,)qg, = 0. It follows
from Lemma (?) applied to Ag, I = Py, By, Mo, and A" = A, that (M,)q, is a
flat A,-module. The condition that M,/PyM is flat over Ay/ Py, is automatically
fulfilled because P, is a maximal ideal.
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2.13. Fitting ideals.

(2.13.1) Setup. Let M be a finitely generated A-module, and fix a non-negative
integer . Choose generators my, ..., mg for M and let

N:{(CL1,.,.,CLS) e A":aymy + -+ agmy :0}

Moreover, choose generators {n, = (aq,1,---,0a,s) taecz for the A-module N. We
denote by I, the ideal in A generated by the (s — r)-minors of the (#Z X s)-
matrix A = (aa,1,---;0a,5)acz. When r < 0 we let I, = (0) and when r is at

least equal to s or the number of elements in Z we let I, = A. We have that
0=I1CI(C---Cly=A=14y1="---.

(2.13.2) Note. Given an element n = (aq,...,as) in N. Let J be the ideal in A
generated by the s — r minors of the ((#Z + 1) x s)-matrix B obtained from A by
adding (aq,...,as) as the first row. Then J = I,.. Indeed, it is clear that I, C J
because the matrix A is formed from the rows 2,3, ... of B.

To prove the opposite inclusion we only have to show that the s — r-minors
containing the first row of B are contained in I,.. However, we have that n =
bina, + - bsng,, for some b; in A, and «; in Z. Hence, the first row of B is a sum
of rows a; +1, - -+ , s+ 1 multiplied with by, ..., bs respectively. Hence the (s—r)-
minors containing the first row can be expanded as a sum of the (s — r)-minors
containing rows a1 + 1, ..., as + 1 multiplied by bq,...,bs. We consequently have
that J C I,.

By (transfinite, if necessary) induction, we obtain that the ideal in A obtained
from the (s — r)-minors of the matrix obtained by adding to A rows coming from
any set of elements of NV, is equal to I,.. In particular we obtain that the ideal I,
is independent of the choise of generators n,. Indeed, if we chose another set of
generators for M, we have that the ideal obtained from the union of the two sets
of generators is equal to the ideal obtained from each set.

(2.13.3) Note. Let m be an element of M. Moreover, let

P:{(a7a17-.-7as) €A8+1:am—l—a1m1+...+asms :0}

Then, if we write m = —bymi+- - -+bsmy, with b; in A, we have that P contains the
element p = (1,b1,...,bs), and that P is generated by the element p and elements
{ra = (0,a0,1,-.-,00,s) tacz, Where {(an1,...,0q,s)}acz are generators for N.

Let J be the ideal in A generated by the (s—r+1)-minors of the ((#Z+41) x (s+1))-
matrix whose first row is the element p and whose (a + 1)’st row is the elements
Do It follows from Note (2.13.2) that J is independent of the choise of generators
of P. It is clear that we have an equality J = I,.. By induction on ¢ we obtain that
snitt
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the ideal in A generated by the (s — r + t)-minors of the (#I +t) X (s + t)-matrix
obtained from my, ..., ms and ¢ additional elements, is equal to I,..

In particular we have that the ideal I,. is independent of the choise of generators
mq,...,msof A. Indeed, if we had another set of generators we have that the ideal
obtained from the union of the two sets of generators is equal to the ideal obtained
from each set.

(2.13.4) Definition. Let M be a finitely generated A-module and r a non-

negative integer. In Setup (2.13.1) we chose generators my,...,ms of M and
defined I, to be the ideal generated by the (s — r)-minors of the matrix whose
rows are generators for the A-module N = {(a1,...,as) € A*:> ;_,a;m; =0}. In

Note (2.13.2) we proved that I, is independent of the choise of generators for NV,

and in Note (2.13.3) we showed that it is independent of the choise of generators
of M. The ideal therefore depends on M only. We denote it by F,.(M) and call
it the r-th Fitting ideal of the module M .

(2.13.5) Remark. We have an inclusion F,_;(M) C F,.(M).

(2.13.6) Note. Given generators myq, ..., ms for the A-module M. We obtain a
surjection

A — N

and it is clear that N of Setup (2.13.1) is the kernel to this map. The choise of
generators {nq }acz for N gives an exact sequence

A®T — B% M —0

of A-modules. It follows from Definition (2.13.4) that F,.(M) is the ideal of A
generated by the (s — r)-minors to the (#Z) x s-matrix A®Z — A%s,

(2.13.7) Lemma. Let B be an A-algebra and let M be a finitely generated A-
module. Then we have an equality

F.(M)B = F.(M®a B)
of ideals in B.
Proof. 1t follows from Remark (2.13.5) that we have a presentation
APT 25 A% 5 M —0
of M. We obtain a presentation
A®T @, B = BOT 2818, 4@ B=B* - M®,B—0

of M ®4 B. It follows from Remark (2.13.5) that F,.(M) and F.(M ®4 B) are
generated by the (s — r)-minors of « respectively a ® idg.
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(2.13.8) Proposition. Assume that A is a local noetherian ring and M a finitely
generated module. Then M is free of rank r if and only if F.(M) = A and
F._1(M)=0.

Proof. When M is free of rank r» we have a presentation 0 — A" — M — 0 and
we obtain that F._1(M) = 0 and that F,. (M) = A by definition.

Conversely assume that F.(M) = A and that F,._;(M) = 0. Choose a presen-
tation A* % A% — M — 0. If F,.(M) = A there is an (s — r)-minor of the matrix
a which is invertible. We can reorder the basis vectors for A* and A such that
this minor is the one of the upper left corner of a. The (s —r) X (s — r)-matrix in
the upper left corner then defines an isomorphism between the A-modules spanned
by the first (s — r) basis vectors in A® respectively A!. By choosing new bases for
these A-modules we may assume that the (s — r) X (s — r) matrix in the upper
left corner is the identity matrix. We can now use row and column operatins on «
to put « in a form where the lower left r x (s — r) corner, respectively the upper
right (s —r) X (t — s + r) corners are equal to zero. Since we have assumed that
F._1(M) = 0 we have that the left » x (¢t — s + r) corner also is zero. If follows
immediately from the form of the matrix « that M is free of rank 7.
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2.14. Formal smoothness.

(2.14.1) Definition. ([G] 20, 0.19.9.1) Given a ring k and a k-algebra A. Let
B be an A-algebra. We say that B is formally smooth over A relative to k , if,
for every A-algebra C, for every nilpotent ideal I in C, and for every A-algebra
homomorphism uo: B — C/I that factors via C' as B — C' =% C/I, where u is a
k-algebra homomorphism and ¢ is the residue map, we also have a factorization
BLc% ¢ /I, where v is an A-algebra homomorphism. When A = k we say
that B is formally smooth over A if, for every A-algebra C, for every nilpotent
ideal I in C, and for every A-algebra homomorphism ug: B — C/I, we have a

factorization BQ > v >> C % C/I, where w is an A-algebra homomorphism.
When the latter factorization is unique we say that B is étale over A.

(2.14.2) Remark. It suffices to assume in Definition (?) that every homo-
morphism ug: B — C/I that factors via B - C' % C/I, also factors via B

C % /I for all ideals I in C such that I? = 0. Indeed we can sucessively lift
A — B/I'"! to A — B/I%, and reason by induction.

(2.14.3) Lemma. We have that an A-algebra B is formally étale over A if and
only if B is formally smooth over A and QIB/A = 0.

Proof. 1If Q7 /A = 0 we can not have two A-algebra homomorphism w,v: B —
C which give the same map under composition with ¢:C' — B. Indeed, then
u — v: B — C would be a non-trivial A-derivation when we consider C' as a B-
algebra via ¢ or 1.

Conversely, if B is formally étale we have that the isomorphism B — B®4 B/I
factors via B — B ®4 B/I? in a unique way, where I is the ideal in B ®4 B
that defines the diagonal. However, then the two A-algebra homomorphisms that
send an element to the first, respectively the second, factor give factorizations.
Consequently they are equal, and thus 1 ®4 b —b®4 1 is in I? for all b in B. In
others words we have that I = I?, and consequently that Q}B A= 0.

(2.14.4) Proposition. Given a ring k. Then:

(1) The ring k is a formally smooth k-algebra.

(2) Given a formally smooth k-algebra, and a formally smooth A algebra B.
Then B is a formally smooth k-algebra.

(3) Given a formally smooth k-algebra A, and a k-algebra k'. Then we have
that k' @y, A is a formally smooth k' -algebra.

(4) Given a formally smooth k-algebra A, and S and T multiplicatively closed
subsets of k respectively A, such that the image of S in A is contained in
T. Then we have that T~'A is a formally smooth S~'k-algebra.

snitt
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(5) Given k-algebras A; for i = 1,...,n. Then we have that [[;_, A; is a
formally smooth k-algebra if and only if all the A; are formally smooth
k-algebras.

Proof. All the properties are easy to check.

(2.14.5) Proposition. Given a formally smooth k-algebra A and let I be an ideal
in A. Then we have that
Oy, @ ASL

is a projective A/I-module.

Proof. Given a surjection u: L — M of A/I-modules. It suffices to prove that the

map

Hom(idg1 ,u)
Alk

Hom 4 (2} /3, L)

is surjective. In other words it suffices to prove that the map

Dery,(A, L) Deriidaw),

Dery (A, M)
is surjective. Let D: B — M be a k-derivation. Consider the homomorphism of

k-algebras
vA— A/ leM

defined by v(a) = (u(a), Da), where u: A — A/I is the residue map, and where we
consider A/I & M as an A/I-algebra by (0,m)(0,m’) = (0,0), for all m and m’ in
M. Since A is formally smooth over k we have a lifting

wA— A/ IS L

of A/T® L 1da Ou, A/I & M. The map w gives a k-derivation F: A — L defined
by w(a) = (u(a), E(a)) and, since (id4 ®u)w = v, we have that uF(a) = D(a).
Consequently D’ is a lifting of D.

(2.14.6) Theorem. Given a separable field extension L of a field K. Then L is
K-étale. If k is a subfield of K we have that QlL/k = Q}(//@ Rk L.

Proof. Let C be a K-algebra and I and ideal in C such that I? = 0. Moreover
given a map ¢: L — C/I of K-algebras. Given a field L’ between K and L which
is finitely generated over K. Then we have that L' = K («) where o has a minimal
polynomial f(z) such that f'(a) # 0. We want to lift p|L’ to C. To this end we
have to find an element ¢ of C' such that f(c) = 0 and ¢ = ¢(a) (mod I). Choose
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a ¢ in C that maps to ¢(«) by the residue map C — C/I. Then we have that
f() = o(f(a)) =0 (mod I). We have that I? = 0 for each d € I. Consequently

[l +d) = f(c) + f(c)d

in C. However, we have that f’(«) is a unit in L. Consequently o(f'(«)) = f'(c)
(mod I) is a unit in C/I, and thus f’(c) is a unit in C. With d = —f(¢')/f'(¢)
we have that f(¢/ +d) = 0. We choose ¢ = ¢’ + d and the K-algebra map
L' = K(a) — C which sends « to ¢ becomes a lifting. We see that this lifting is
unique. Consequently we can lift the map to the whole of L.

The second assertion of the Theorem follows from the first part and from the
equality QlL/K = 0 of Lemma (7).

(2.14.7) Theorem. ([G] 20, 0.22.6.1) Given a formally smooth k-algebra A and
an ideal I in A. The following two assertions are equivalent:

(1) The algebra A/I is formally smooth over k.
(2) The canonical map

0: /17 — Qy )y, @4 A/,
which sends the class of an element a in I to da ® 4 1, is left invertible.

Proof. To prove that (1) implies (2) we note that ¢ is left invertible if and only
if Dery(A, M) — Hompu,;(I/I?,M), which sends a derivation D:A — N to
the induced A/I-homomorphism I/I? — M is surjective for all A/I-modules
M. We fix an A/I-module homomorphism w:I/I? — M. Let C = A/I?> ®
M/{(a,m)|a is the class of an element in I and u(a) = m}. Then C is an A/I-
algebra when the multiplication is defined by (0, m)(0,m’) = (0,0) for all m and
m’ in M. We have a canonical exact sequence

0—-M—C% A/l —0.

The identity on A/I factors via a map v: A/I — C such that cvp = ¢, where
p: A — A/I is the residue map. Moreover, we have a canonical homomorphism
: A — AJ/I? — C such that o1) = p. We obtain a map ¢ — vp: A — C such that
o(1) —vp) = 0. Consequently we have that the image of ¥ — vy is in M and thus
Y — vy induces a k-derivation w: A — M, and thus an A/I-linear map w: I/I? —
M. Ifain I/1? is the image of a in I we have that w(@)y(a)—ve(a) = ¥ (a) = u(a),
where the last inequality holds since ¢ (a) = (@,0) = (0,u(a)) considered as a
subset of C for all a € I.

To prove that (2) implies (1) we note that it follows from assertion (2) that the
map Dery, (A, M) — Homy 7 (I/1%, M) is surjective for all A/I-modules M. Given
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a k-algebra B and an ideal J in B such that J? = 0. Assume that we have a map
u: A/I — B/J of k-algebras. Since A is formally smooth over k£ we have that the
composite map A — A/I % B/J lifts to a map v: A — B of k-algebras. We
have that ¥v = up where ¢: B — B/J is the residue map. If a € I we have that
v(a) € J. The map v induces a map w:I/I? — B since J?> = 0 and the image
of w is in J. We consequently have a k-derivation D: A — B which induces w.
Since D has image in J it follows that D(a) = v(a) for all a € I. We therefore
obtain a k-algebra homomorphism v — D: A — B which factors via A/I, and for
a € A we have that ¢(v — D)(a) = ¢Yv(a) — ¥ D(a) = Yv(a) = up(a). Thus the
map A/I — B induced by v — D lifts u: A/I — B/J.

(2.14.8) Corollary. Assume that A and A/I are formally smooth over k. Then
we have that I/1?% is a projective A/I-module.

Proof. We have that I/I? is a direct summand of the module 2} /x ®x A/, which

is projective by Lemma (7).

(2.14.9) Theorem. ([G] 20, 0.20.5.7, [M] 28.4) Given a k-algebra A and let
u: A — B be a map of k-algebras. The following two assertions are equivalent:

(1) The algebra B is formally smooth over A relative a k.
(2) The B-module homomorphism

Qpjp ®a B — Qg
18 left invertible.

Proof. We first prove that (1) implies (2). To show that the map in (2) is left
invertible we must prove that the map Dery (B, M) — Dery(A, M) is surjective for
all B-modules M. Fix a k-derivation D: A — M. Consider the A-algebra B & M,
where M is an ideal in B @ M with M? = 0, and where the A-algebra structure
is given by ¢: A — B @& M, where p(a) = (u(a), D(a)). The identity map on B
factors via the k algebra homomorphism B — B @& M, which sends B to the first
factor. Since B is formally smooth over A relative to k the identity on B factors
via an A-algebra homomorphism v: B — B & M. The map E: B — M into the
second factor is a k-derivation, and since w is an A-algebra homomorphism we
obtain that E(u(a)b) = E(ab) = bD(a) + u(a)E(b), which for b = 1 gives that
D = FEu. Consequently we can lift D to E.

To show that (2) implies (1) we let C' be an A-algebra via the homomorphism
: A — C, and let I C C be an ideal with I? = 0.

Given an A-algebra homomorphism vg: B — C/I that factors via a k-algebra
homomorphism v: B — C/I. Then the A-algebra structure gives that vou = @1
and the lifting gives that v = wvy. Since we have that p(¢ — vu)(a) = Y —
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pvu(a) = vou — vou(a) = 0, for all @ € A, we obtain a k-derivation D: A — I
defined by D(a) = ¢ (a) — vu(a), for all a € A.

We can consider I as a B-module via v, and for ¢ € I and a € A we have that
vu(a)e = (vu—1p)(a)c+1p(a)e = ¥ (a)e, such that this B-module structure induces
an A-module structure that coincides with that induced by 1. It follows from (2)
that D can be lifted to a k-derivation E: B — I, that is Fu = Dy. We define
the homomorphism w: B — C by w(b) = v(b) + E(b) for b € B. Since we have
that E(b) € I and I? = 0 this is a k-algebra homomorphism. Moreover we have
that w(u(a)b) = w(u(a))w(b) = (vu(a) + Fu(a))w(b) = (¢(a) — Da + Da)w(b) =
P (a)w(b). Consequently w is an A-algebra homomorphism.

Finally we note that pw(b) = pv(b) + ¢E(b) = puv(b) = v(b) since E(b) € I.
Consequently we have that w lifts vg.

(2.14.10) Theorem. ([G] 20, 0.19.5.4) Given a formally smooth k-algebra A and
an ideal I C A such that A/I is smooth over k. The following two assertions are
equivalent:

(1) The k-algebra A is formally smooth.
(2) The A/I-module I/I? is projective and the canonical homomorphism

©: SymA/I(I/I2) — Zli/IH’l
i=0

18 bijective.

Proof. We first show that (1) implies (2). It follows from Proposition (?) that
I/I? is a projective A/I-module. Let

E, = A/I""" and F,, = Sym ,,;(I/1%)/I"" Sym (1 /1?).

We have that the ideal I/I™*! is nilpotent in E,. Consequently the identity

of A/I factors as A/l 1B, — A/I, where f is a k-algebra homomorphism.
We have seen that I/I? is a projective A/I-module. Consequently the identity
on I/I? factors as I/I> 2 I/I"t' — I/I?, where g is A/I-linear. From the
homomorphisms f and g we obtain a homomorphism Sym 4 ,;(I/] ) - B, of
A/I-algebras, where E,, is an A/I-algebra via f. It follows from the definition of g
that the homomorphism is zero on 1™ ! Sym , (/1 2). Thus we obtain a k-algebra
homomorphism v: F};, — E,, The latter map is surjective since f(a) —a € I/I""!,
for all a € I, and g(a) —a € I?/I™""! for all a € I. From the definition of v if also
follows that gr®«v and grl v are the identities on A/I respectively I/I%. We first
conclude that the kernel N of v lies in IF),, and consequently is nilpotent, and
then that griv = ¢ for i < n.
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Since A is formally smooth over k the canonical map p,: A — E, = A/I"H!
factors via A — F,, = FE,,, where w is a k-algebra homomorphism. Since p,, is an
A-algebra homomorphism and gr® v is the identity, we have that w(I) C IF,, and

consequently that w(I™+') = 0. Thus w factors as A 2% A/I"*t! = E, -, F,,

where the composite map E, =, F, = E, is the identity, since vw = p,.
Consequently we have that gr’(w’) and gr!(w’) are the identity on A/T respectively
I/I?. However we have that gr(E,) is generated by I/I? as an A/I-algebra. We
obtain that the composite map

ot (F,) 25 ar' (E,) 20, ori(F)

is the identity for ¢+ < n. In particular we have that ¢; is injective for i < n.
(2) = (1). Her ma vi sannsynligvis bruke at Grothendiecks reduksjon fra ikke
noetherske til noetherske, som er gjort i eget kapittel.

(2.14.1) Lemma. Given a ring A and a finitely generated A-module M. More-
over, let ' be a projective A-module and let o: M — F be an A-linear map. Given
a prime ideal P in A. The following three assertions are equivalent:

(1) The map pp: Mp — Fp is left invertible.

(2) There are elements x1,..., Ty in M and vy, ..., vy in Homa(F, A) such
that Mp =" | Apx; and det(v;(p(x;)) ¢ P.

(3) There is an element f € A\ P such that @y: My — Fy is left invertible.

The set of prime ideals P in Spec A that satisfy the conditions of the Lemma is
open.

Proof. We have that F' is a direct summand of a free A-module. Since M is finitely
generated we have that ¢ (M) is contained in a fintely generated free module. The
conditions (1), (2), (3) become the same if we replace F' with the free submodule
containing M. Consequently we may assume that F' is free and finitely generated.

We first prove that (1) implies (2). It follows from (1) that Mp is a free Ap-
module. Choose x1,...,x, in M that give a basis of Mp. Then we have that
op(z1),...,op(xy) is part of a basis of Fp. Consequently there are linear maps
vi: Mp — Ap such that v)(pp(x;)) = 0; ;. Since Fp is a free finitely generated
A-module we can write v} = s; 'v for some s; € A\ P, where v; € Hom(F, A).
It is clear that det(v;(p(z;)) € P.

We next show that (2) implies (3). Since M is a finitely generated A-module and
Mp =", Apz; there is an element g € A\ P such that M, =" A,xz;. Let
d = det(v;(¢(z;)) and f = gd. Then we have that My = >""" | Asx; and that d is a
unit in A¢. The maps v; give a map B: Fiy — A", Since we have that det(v;(¢(7;))
is invertible in Ay we can find a matrix B’ = (b; ;) such that B'B = id4,. Then
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B': A7 — Fy is a map that sends (ay,...,am) to (372, axbl ;5. D000 agbm i)

We obtain that the composite map My LR 't B, A;” — My, where the right
hand map sends the vector (0,...,0,a,0,...,0) with the 1 in the i’th coordinate,
to x;, is the identity. We have thus found a left inverse to ¢y.

It is clear that (3) implies (1).

Finally we notice that the prime ideals that satisfy (3) is open.

(2.14.12) Lemma. Given a ring A and a finitely generated A-module M. Then
every surjective A-linear homomorphism f: M — M is an automorphism.

Proof. We consider M as an A[t]-module via the action tm = a(m) of t on M. By
assumption we have that M = tM. It follows from Nakayama’s Lemma that there
is an element ¢(t) € At] such that (1+tp(t))M = 0. However, then we have that
tm = 0, for some m € M, implies that m = 0. Hence f is injective.

(2.14.13) Lemma. Given a ring A and an ideal I in A. Moreover, let o: M — F
be an A-linear homomorphism between A-modules, where F' is projective. Assume
that one of the following conditions hold:

(1) The ideal I is nilpotent.
(2) The A-module M 1is finitely generated and I C rad(A).

Then the map ¢ is left invertible if and only if the induced map
Y:M/IM — F/IF,

of A/I-modules, is left invertible.

Proof. 1t is clear that if ¢ is left invertible, then 1) is, even without the conditions
of the Lemma.
Assume conversely that 1 is left invertible with inverse &: F/IF — M/IM.

Since F' is projective we can lift £ to ¢: F — M. We obtain amap a: M 2 F S M.
Then we have that M = «(M) + IM since a induces the identity modulo I. It
follows from Nakayama’s Lemma that M = a(M). Consequently it follows from
Lemma (?) that « is an isomorphism. Hence a~1( is a left inverse to ¢.

(2.14.14) Theorem. ([M], 29.E, Theorem 64) Given a formally smooth k-algebra
A and an ideal I of A. Let R be a prime ideal in A/I and Q the inverse image of
R in A. Denote by P the restriction of Q to k and k(Q) the residue field of Ag,
or equivalently of (A/I)g. The following assertions are equivalent:

(1) The ring (A/I)R is formally smooth over k, or kp.
(2) The map
(I/1?) @as1 K(Q) = D/, ®a K(Q)
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is left invertible
(3) The map
(I/1%) @ayr AJT g — Uy, ©a (A/1)R
is left invertible.
(4) There are elements Fy, ..., F,. in I and Dy, ..., D, in Dery(A, A/I) such
that IAg = Y i_, AgF; and det(D,;F;) ¢ R.
(5) There is an element f € (A/I)\ R such that (A/I) is formally smooth

over k.
When the above conditions hold the set

{R € Spec(A/I): (A/I)R is smooth over k},

is open in Spec(A/I).
Proof. We first prove that (1) implies (3). We know that Ag is formally smooth
over k, and we have that (4/I)gr = Ag/IAg, and Q}4@/k = Q) ), ®a Aq. Hence
it follows from Theorem (?7) that (1) implies (3).

It is clear that (3) implies (2).

It follows from Proposition (?) that Qh/k ®a (A/I)g is a projective (A/I)g-
module. Consequently the it follows from Lemma (?) that (2) implies (3).

That (3) implies (4) follows from Lemma (?) applied to the A/I-linear map
I/1? - QY @4 AL

We next prove that (4) implies (5). It follows from Lemma (7) applied to the
A/I-linear map I/I?> — Qh/k ®4 A/I that there is an element f € (A/I)\ R
such that I/1?®4,; (A/T); — Q) ), ®a (A/I)f is left invertible. Consequently it
follows from Theorem (?) that (A/I); is formally smooth over A.

It is clear that (5) implies (1).
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3.1. Products of algebraic schemes.

(3.1.1) Setup. We fix a field k.

(3.1.2) Lemma. [EGA 24, 1V, 4.2.1] Given a finitely generated field extension K
of k and a field extension L of k. Then all the associated prime ideals in K ®j L
are minimal.
Denote by E be the residue field in an associated prime ideal of K Qi L. Then
we have that
td. deg.; (F) = td. deg.;, K.

Proof. Note that the ring K ®j; L is noetherian because K is the quotient field
to the residue ring of a polynomial ring k[z1, ..., x,|, and consequently K ®j L is
the quotient ring, in a multiplicative system, of a residue ring of the polynomial
ring L[xq, ..., z,).

Since K is a finitely generated field extension of k we have that K is a finitely
generated field extension of the quotient field of a polynomial ring k[z1,..., z,].
The ring k[z1, ..., 2,|®kL = L[x1,...,z,] is an integral domain. Consequently the
ring k(z1, ..., T,)® L is an integral domain. The quotient field of k(x1, ..., z,)®k
Lis L(zy,...,2p).

The ring k(x1,...,2z,) ®% L is a subring of K ®j L, since k(x1,...,z,) is a
subring of K. Moreover, we have that K is flat over k(xq,...,x,), and thus
K ®y L is flat over k(x1,...,2z,) ®% L. Hence the associated primes in K ®j L
intersect the subring k(x1,...,2,) ®% L in (0) because the non zero elements of
k(z1,...,x,) ® L are not zero divisors in K &, L.

We have that K ®; L is an integral extension of k(z1,...,x,) ®% L since K is
an algebraic extension of k(x1,...,z,). Consequently (113) [A-M, Cor. 5.9] the
associated prime ideals in K ®j; L are minimal. We have proved the first part of
the Lemma.

To prove the last part we note that the residue field E of K ® L in an associated
prime is algebraic over the residue field L(z1,...,x,) of k(z1,...,z,) @ L in the
zero ideal. Consequently we have that td. deg.; F = td.deg.;, L(x1,...,2,) =n =
td. deg.), K.

(3.1.3) Lemma. Given a morphism f: X — Y of schemes X and Y where Y
s irreducible. Denote by n the generic point of Y. Then there is a bijection
between the irreducible components of the fiber f=1(n) and the components of X
that dominate Y .

In particular, when X 1is irreducible with generic point &, there is a bijection be-
tween the components of X XY and the components of k(&) @y k(n) that dominate
both factors.
snitt
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Proof. Let Z be a component of X X, Y that dominates Y and denote by ( the
generic point of Z. Then f(¢) = n and consequently ¢ € f~!(n). The closure of
¢ in f~1(n) is a component of f~1(n), because otherwise it would be a subset of
a component whose generic point would be a generic point for a component of X
that strictly contains Z.

Conversely, let ¢ be the generic point for a compoent of f~!(n). Let Z be the
closure of ( in Z. Then Z will dominate Y, and Z is a component of X, beacuse
otherwise it would be contained in a component whose generic point would be in
f~1(n) and the closure of this generic point in f~!(n) will be an irreducible set
that strictly contains the given component of f~1(n).

The components of X x; Y that dominate the second factor correspond, as we
have seen, to the components of X xj k(7). Such a component Z will dominate
the first factor if and only if the generic point ¢ of Z is in k(§) X, k(n). The second
part therefore follows using the first part to the morphism X ®j x(n) — X.

(3.1.4) Lemma. Let A be a ring and S a multiplicatively closed system of A. Let
Q be a prime ideal in S~' and P the contraction of Q to A. Then the canonical
map Ap — (S71A)q is an isomprhism.

Proof. We have a map S™'A4 — Ap since PN S = ). The elemnts in S™1A\ Q
can be written in the form a/s with a € A\ P and s € S. Then s ¢ P and the
element a/s in S™'A '\ Q maps to the element a/s in Ap \ PAp. It follows that
the above map induces a map (S7'A)g — Ap. It is clear that this map is the
inverse of the map of the Lemma.

(3.1.5) Proposition. [EGA 24, IV,, 4.2.4] Given a variety X and an integral
noetherian scheme Y over the field k. Then the followsing three assertions hold:

(1) The irreducible components of X XY correspond bijectively to the minimal
prime ideals in R(X) @, R(Y).

(2) The local ring Oxx,v,c to X X, Y in a generic point ¢ of an irreducible
component of X XY is isomorphic to the fraction ring of R(X) @k R(Y)
i the corresponding minimal prime.

(3) Let E be the residue field of X X Y in the generic point (. Then we have
that

In particular, if Y is a variety all the components of X XY have dimension
dim X 4+ dimY.

Proof. Note that since X is a variety and Y is noetherian we have that X x; Y is
noetherian.

(1) Let & and 1 be the generic points for X respectively Y. Then we have that
R(X) = k(§) and R(Y) = k(n). Since the projections to the factors are flat it
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follows from Remark (7) that the components Z of X XY dominate X and Y. It
follows from Lemma (3.1.3) that the irreducible components of X XY correspond
to the components of k(§) X k(n), and these correspond to the minimal primes
of k(§) Xk k(n) by Lemma (3.1.2).

(2) It suffices to show that (2) holds when X and Y are affine. Let X = Spec A
and Y = Spec B. It follows from assertion (1) that each minimal prime P in
A ®y B is the contraction of a minimal prime ideal @ in R(X) ®j R(Y). However,
R(X) and R(Y) are the localizations of A respectively B in the sets consisting of
the non zero elements. Consequently we have that R(X) ®j R(Y) is the fraction
ring of A ®; B in a multiplicative set. Hence assertion (2) follows from Lemma
(3.1.4).

(3) It follows from assertions (1) and (2) that the dimension of every irreducible
component Z of X X Y is equal to the transcendece degree of the residue field of
R(X)®,R(Y) in a prime ideal that corresponds to the generic point for Z. It follws
from Lemma (3.1.2) that td.deg. gy E = td.deg., R(X) = dim X. When Y is
a variety we get, reasoning the same way, that td. deg. g x) E' = td.deg.,, R(Y) =
dim Y. Hence the dimension of each irreducible component is

td. deg., & = td. deg.,, R(X) + td. deg. p(x) £ = dim X + dimY"

(3.1.6) Remark. It follows from Proposition (7) that in assertion (1) above we
have that ass(X X Y) = ass(k(§) ® k(n)) = ass(R(X) @k R(Y)), where £ and
n are the generic point of X regaspectively Y. It follows from Lemma (?7) that
X X Y does not have imbedded components.

(3.1.7) Proposition. [EGA 24, IV,, 4.2.6] Given an algebraic scheme X and a
scheme Y that is noetherian and defined over the field k. The irreducible com-
ponents of X X Y are exactly the irreducible components of the closed subsets
X' %, Y’ where X" and Y’ are irreducible components in X respectively Y, given

their reduced structure. Moreover, the irreducible components of X' x,Y'" dominate
both factors.

Proof. Let X’ and Y’ be irreducible compoents in X respectively Y and let Z’ be
an irreducible component of X’ x, Y’. Then Z’ is contained in a component Z
of X x Y. However, it follows from assertion (2) of Proposition (3.1.5) that Z’
dominates X’ and Y’. Consequently we have that Z maps into X’ and Y’ by the
two projections. Consequently we have that Z C X’ x; Y’. Thus we must have
that Z = Z'.

Conversely, let Z be a component of X x;Y. The images of Z in X and Y by the
two projections are irreducible and therefore contained in irreducible components
X’ and Y’. Consequently we have that Z C X’ x, Y’ and Z must be an irreducible
component of X’ x, Y'.
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(3.1.8) Proposition. [EGA 24, IV,, 4.2.8] Given an algebraic scheme X and a
field extension K of k. Then the components of X and X X K have the same
dimensions.

Proof. Given a component Z of X x; K. It follows from Proposition (3.1.7) that
Z is a components X’ x; K for some irreducible component X’ of X. Moreover
it follows from Proposition (3.1.5) that if E is the residue field in a generic point
of Z we have that dim Z = td. deg.; £ = dim X’.
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3.2. Relative dimension.

(3.2.1) Setup. A morphism f: X — Y of schemes is flat if the ring Ox , is a
flat Oy, ¢(,)-module, via the homomorphism induced by f, for all points x of X.
It follows from Proposition (?) that f is flat if and only if we have that Ox (U) is

flat over Oy (V'), via the homomorphism induced by f, for all affine open subsets
U of X and V of Y such that f(U) C V.

(3.2.2) Definition. A morphism f: X — Y of noetherian schemes has relative
dimension n if, for all integral closed subschemes Z of Y we have that all compo-
nents of f~!(Z) dominate Z, and f~!f(z) is equidimensional of dimension n for
all points = in X.

(3.2.3) Proposition. [123] [H, 9.6] Given a flat morphism f: X — Y of finite
type between algebraic schemes X and Y, where Y is irreducible. The following
three assertions are equivalent:

(1) The morphism f has relative dimension n.
(2) Ewvery irreducible component of X has dimension dimY + n.
(3) We have that f=1f(x) has pure dimension n for all points x in X.

Proof. The induced morphism f~'Z — Z is flat. Hence it follows from Remark
(?) that every component of f~1(Z) dominates Z, for every closed subvariety Z
of Y. Consequently we have that assertions (1) and (3) are equivalent.

We will show that assertion (2) implies assertion (3). Given a point y in f(X)
and let Z be an irreducible components of f~1(y). Choose a closed point z in Z
which is not in any other component of f~!(y). Then we have that dim Q-1 , =
dim Oy ;. Since going down holds for flat morphisms it follows from Remark (?)
and Proposition (?7) that

dim Ox,, = dim Oy, + dim Ox ; X0y, k().

We have that Ox , X0, , k(7)) = Of-1(),. Moreover, since z is closed in Z we
have that dim Oz , = dim Z. We have proved that

dim Ox ; — dim Oy, = dim Z.

Since Y is irreducible and X is equidimensional it follows from Proposition (?)
that L
dimOx , +dim{z} = dim X

and o
dim Oy, + dim {y} = dimY.
snitt
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However, we have that x is closed in f~!(y). If follows from the Hilbert Nullstellen-
satz that x(x) is algebraic over x(y). Consequently we have that dim {z} = dim {y}
and we have proved that

n=dmX —dimY = dim Z.

Finally we prove that assertion (3) implies assertion (2). Let Z be an irreducible
component of X and let x be a closed point of Z which is not in any other com-
ponent of X. Then we have that dimOx , = dim Oz, = dim Z. Since z is closed
in Z we have that z is closed in f~!(y), and consequently that dim Q-1 ., = n,
where y = f(x). Moreover we have that y = f(x) is closed in Y because k(x), and
consequently x(y) C x(x) are algebraic over k. We obtain that dim Oy, = dimY".
Finally, since f is flat we have, as we observed above the formula

dim OX@ = dim Oy’y + dim Of—l(y)’x.

This prove that dim Z = dimY + n and we have proved the Proposition.

(3.2.4) Proposition. Given a flat morphism f: X — Y of noetherian schemes
of relative dimension n. For every morphism ¢g:Y' — Y we have that the base
extension f': X' = X xy Y — Y’ is of relative dimension n.

Proof. Since f is flat, and consequently the induced morphism f~'2' — Z’ is
flat for all subschemes Z’ of Y” it suffices to check that the fiber f/~'(3) has pure
dimension n for all points y’ of Z’. However we have that f'~' (/) = X xy &(y') =
X xy k(9(Y')) Xw(g(yy) xK(y'). Since f is of relative dimension n we have that
that X xy k(y) is of pure dimension n. Consequently it follows from Proposition
(?7) that X xy k(y’) is of pure dimension n.

(3.2.5) Lemma. Given a dominating morphism f: X — Y of finite type between
irreducible noetherian schemes. Let £ be the generic point of X and let n = f(&).
For every point x of X the irreducible components of f~=1f(x) have dimension at
least dim f=1(n).

Proof. Assume first that Oy () is universally catenary for all points x of X. Let
x be a generic point for an irreducible component Z of f~1(y). It follows from the
dimension formula that we have
dim Ox ; = dim Oy, + td. deg.,,(,) k(&) — td. deg..(y) K(z)
= dim Oy, + dim f~*(n) — dim Z.

On the other hand, it follows from Proposition (?) that dimOx , < dim Oy, +
dim Ox,; ®o,., k(y). Since z is a generic point of f~!(y) and Ox , ®o,., K(y) is
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the local ring of f~!(y) in  we obtain that dim Ox , < dim Oy . It follows that
dim Z > dim f~1(n) as we wanted to show.

We shall reduce the general case to the situation when Oy, (. is catenary for
all x in X.

It is clear that the assertion of the Lemma is local on Y and thus local on X.
We can also replace X and Y by their reduced subschemes. Consequently we can
assume that X = Spec A and Y = Spec B, where A and B are ingegral domains,
and A is a subring of B in such a way that B becomes a finitely generated A-
algebra. We can write B as a residue ring B = Alzq,...,x,]/I of the polynomial
ring k[z1,...,x,] by the prime ideal I. Let Ag C A be a finitely generated Z-
algebra that contains all the coefficients of a set of generators f1,..., fi, of I. Let
By = Aplz1, ..., x0]/(f1s- -+, fm). We have that the natural map By ®4, A — B
is an isomorphism. Moreover we have that Ag is a subring of By because A is a
subring of B. Denote by P the kernel of the map By — B. Then P is a prime
ideal and P N Ap = 0 because P is the inverse image of (0) by By — B. We
consequently obtain a factorization

B0®AOA—>BO/P®AOA—>B

of the map By® 4,4 — B. We can thus assume that we have an integral domain By
that contains Ag, such that By is a finitely generate algebra over Ay and such that
By®a, A — B is an isomorphism. It follows from Remark (7) that Z is universally
catenary, and consequently that Ay is universally catenary. Let X, = Spec By
and Yy = Spec Ag, and let fy: Xo — Y be the morphism corresponding to the
inclusion of Ay in By. Moreover, let g: Y — Y, be the morphism corresponding
to the inclusion of Ay in A. Denote by 1 the generic point of Y. Then ny = g(n)
is the generic point of Yy. It follows from Proposition (?7) that for every point z
of X we have that the dimensions of the components of f; Ygf(z) are the same
as the dimension of the components of f~!f(z). It follows from the universally
catenary case that the dimensions of the components of f~!f(z) are at least equal
to dim f; ' (no). However, again using Proposition (?), we have that dim f~!(n) =
dim f; *(n0), and we have proved the Lemma.

(3.2.6) Lemma. Given a morphism f: X — 'Y of finite type between noetherian
schemes, where Y s irreducible. Let Z be an irreducible component of X that
dominates Y and denote by  the generic point of Z. Moreover, let z be a point
i Z such that

dim Ox,, = dim Oy, + dim Ox , ®o,., £(Y),
with y = f(x). Then we have that
dim, =1 f(x) < dim(f~'(n) N Z) + dim Ox , — dim Oz .
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Proof. Tt follows from the dimension formula (?) applied to the morphism g: Z —
Y induced by f that we have

dim Oz, < dim Oy, — td. deg.,(,y k(z) + td. deg. () K(C),
where n = f({). Moreover, it follows from Remark (?) that

dim, f~! f(z) = dim Op-1(y) , + td. deg.,.(y) (),

and from the same Remark we we obtain that
dim g~ *(n) = td. deg. ., £(C)-
Hence we obtain the formula
dim Oz, < dim Oy, + dim Oy-1(y) , — dim f " f(z) + dim g~ (Z).

However, we have Of-1,), = Ox.» Qoy., k(y) and g~'(n) = f~'(n) N Z, and
consequently,

dim, f~' f(z) < dim(f~'(n) N Z) dim Oy, + dim Ox,; ®o,., £(y) — dim Oy .

The Lemma thus follows from the assumptions.

(3.2.7) Proposition. Given a dominant morphism f: X — Y of finite type be-
tween integral noetherian schemes. Denote by & the generic point of X, and let x
be a point of X. Let n = f(§) and y = f(z). Assume that the formula

dim Ox,, = dim Oy, + dim Ox ; ®o,., k(Y)

holds. Then all the components of f~f(x) have dimension dim f=1(n).

Proof. Tt follows from Lemma (3.2.5) that all the irreducible components of the
fiber f~!f(x) have dimension at least dim f~!(n), and it follows from Lemma
(3.2.6), with X = Z that all the components of f~!f(x) has dimension at most
dim f~1(n).

(3.2.8) Proposition. Given a flat morphism f: X — Y of finite type beween
noetherian schemes, where Y is irreducible. Assume that Ox , is equidimensional
for all x in X and that f=1(n) is equidimensional. Then we have that f~1f(x) is
equidimentional of dimension dim f~1(n) for all x in X.

Proof. Since f is flat it follows from Remark (?) that the assumption of Lemma
(3.2.6) holds for all irreducible components Z of X and all z in Z. Moreover, since
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Ox 4 is equidimensional we have that dim Ox , = dim Oz .. We therefore obtain
that
dim, " f(z) < dim(f~'(n) N 2).

Since f~1(n) is equidimensional it follows from Remark (?) that dim(f~1(n)NZ) =
dim f~(n). All the components of f~! f(z) therefore have dimension at most equal
to dim f~1(n). Denote by g: Z — Y the morphism induced by f. It follows from
Lemma (3.2.5) that all the components of g~ 'g(z) have dimensions that are at
least equal to dim(f~1(n)NZ) = dim f~1(n). However, we have that g 1g(z) is a
closed subscheme of f~!f(z),. thus the dimensions of the components of f~!f(x)
that contain a component of g~1g(z) is at least equal to dim f~1(n). Since f~1f(z)
is the union of Z N f~1f(z) = g 'g(x) for the irreducible components Z of X we
have that all the components of f~!f(x) have dimension at least equal to f~1(n).

(3.2.9) Theorem. (Chevalley) Given a morphism f: X — Y of finite type to a
noetherian scheme Y. For every integer n the set F,(X) consisting of the points
x in X such that dim, f~1f(x) > n is closed.

Proof. We can assume that X and Y are reduced. Let F be the family consisting
of closed subschemes of X for which the Theorem does not hold. It F is not empty
it contains a minimal element Y’. We can clearly assume that Y = Y’ and thus
assume that the Theorem holds for all proper closed subshcemes of Y but not for
Y.

Let X1,..., X, be the irreducible components of X with their reduced structure.
We have that F,,(X) = U™, F},(X;) because every irreducible component of f~*(y)
is contained in an X; N f~1(y) and therefore in an irreducible component of X; N
f~(y), and conversely every irreducible component of X; N f~1(y) is contained in
a component of f~1(y) and, by the preceeding argument, equal to that component.
We can therefore assume that X is irreducible.

Denote by Z the integral subscheme of Y that has TX) as underlying set. The
morphism X — Z induced by f is of finite type and the fibers are the same as the
fibers of f. We can therefore assume that Z =Y, and thus that Y is integral and
f dominating.

Let 1 be the generic point of Y. It follows from Lemma (3.2.5) that for n <
dim f~(n) we have that F},(X) = X.

Assume that n > dim f~1(n). It follows from the Lemma (?) of generic flatness
that there is an open non empty subset U of Y such that the morphism f~1(U) —
U induced by f, is flat. From Lemma (?) and Proposition (3.2.77) we obtain,
since going down holds for f, that dim, f~!f(x) = dim f~(n) for all x € f=Y(U).
Consequently we have that F,(X) C f~1(Y \ U). By the assumption that the
Theorem holds for all proper irreducible subsets of Y we have that the Theorem
holds for Y \ U. Consequently F, (X) is closed in Y \ U, and hence in Y. This
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contradicts the assumption that the Theorem holds for Y. Consequently the family
F is empty, and the Theorem holds.
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3.3. Total quotients.

(3.3.1) Setup. Given a ring A. We denote by R(A) the total quotien ring of
A, that is the localization of A in the multiplicatively closed set consisting of non
zero divisors in A.

(3.3.2) Remark. The natural map A — R(A) is injective.

(3.3.3) Lemma. Given a ring A. An element of A is not a zero divisor in A
if and only if the image of the element in Ap is not a zero divisor in Ap for all
primes P of A.

Proof. Let a be an element in A which is not a zero divisor. Then for any prime
P of A the image of a in Ap is is not a zero divisor in Ap because, if ab/s = 0 in
Ap we have that tab = 0 for some b in A and ¢ in A\ P. However, then we have
that tb = 0 in A and consequently b/s =0 in Ap.

Conversely, if the image of a in Ap is not a zero divisor in Ap for all primes P
in A we have that the annihilator of a can not be contained in any prime ideal of
A. Consequently the annihilator contains 1 and we must have that a = 0.

(3.3.4) Remark. Given a scheme X. For every open subset U of X we have an
injective map Ox (U) — [[,cy Ox,z- It follows from Lemma (3.3.3) that, when U
is affine, the non zero divisors in Ox (U) are exactly those elements that map to
non zero divisors in Ox , for all points x in U. In particular we obtain an injective
map

R(Ox(U)) — H R(Ox ),

zeU

and, for every open affine subset V' of U, we obtain a natural map
R(Ox(U)) = R(Ox(V)).

(3.3.5) Lemma. Given a ring A and a prime ideal P in A. Let ¢ be an element
in the kernel of R(A) — R(Ap). Then there is an element s in A\ P such that c
is in the kernel of R(A) — R(As).

Proof. Write ¢ = a/u with a and w in A, and where u is a non zero divisor. Then
a is in the kernel of the composite map A — R(A) — R(Ap), and consequently
in the kernel of A — Ap — R(Ap). Since the map Ap — R(Ap) is injective we
obtain that a is in the kernel of A — Ap. Consequently there is an s € A\ P such
that a is in the kernel of A — A,. However, then we have that ¢ = a/u is in the
kernel of R(A) — R(As).

snitt
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(3.3.6) Lemma. Given a noetherian ring A, a prime ideal P in A, and an ele-
ment a in A whose image in Ap is not a zero divisor. Then there is an element s
in A\ P such that the image of a in Ay is not a zero divisor.

Proof. If a is not a zero divisor in A we can take s = 1.

Assume that a is a zero divisor and let aq,...,a, be the generators for the
annihilator of a in A. Since a is not a zero divisor in Ap there are elements
S1y...,8, in A\ P such that s;a; = 0fori=1,...,n. Let s = s1---s,. Then
we have that a is not a zero divisor in As. Indeed, if ab/s™ = 0 for some b € A
and some non negative integer m we have that sPba = 0 in A, for some non
negative integer p. In other words we have that sPb is in the annihilator of a and
consequently that sPT1b = 0, or equivalently that b/s™ = 0 in A,.

(3.3.7) Lemma. Given a noetherian ring A, a prime ideal P in A and an element
c in R(Ap). Then there is an element s € A\ P and an element in R(As) that
maps to ¢ by the map R(As) — R(Ap).

Proof. We have that c is the quotient of a/u € Ap by b/v € Ap, with u,vin A\ P,
and a,b in A, and where the image of b in Ap is not a zero divisor. It follows
from Lemma (3.3.6) that there is an element ¢ in A\ P such that the image of b in
A, is not a zero divisor. However, then b/v is not a zero divisor in Ay,, because,
if it were a zero divisor we would have (tuv)™db = 0 in A for some non negative
integer m and an element d in A. Then we have that the image in A; of (uwv)™d
is zero and consequently that (tuv)Pd = 0 in A for some non negative integer p.
Consequently the image of d in Ay, is zero. Let s = tuv. Then we have that
s € A\ P and it is clear that the quotient of a/u by b/v in R(A;) is mapped to ¢
by the map R(A:) — R(Ap).

(3.3.8) Definition. For every open subset U of a scheme X we let
Rx(U) ={(sz) € H R(Ox )| for every x € U there is an affine open neigh-

zelU
bourhood V' of x contained in U, and an element in R(Ox(V)) that

is mapped to s, by the map R(Ox(V)) — R(Ox,,) for every y € V'}.

(3.3.9) Remark. It is clear that Rx defines a sheaf on X. We have an injection

Ox(U) — Rx(U) that sends an element s € Ox(U) to the fiber s, € Ox, C
R(Ox ). This gives an injection of sheaves

OX — Rx.

We consider Rx as an Ox-algebra via this map. For all points x in X and every
neighbourhood U of = there is a natural map

Rx(U) — R(OX,I),
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that sends the element (s;).cy to s,. Consequently there is a natural map
RX@ ad R(OXJ)

It follows from Lemma (3.3.5) that this map is injective. Moreover, it follows
from Lemma (3.3.7) that, when X is noetherian, the map is also surjective, and
consequently an isomorphism.

(3.3.10) Proposition. Given a noetherian scheme X and an open affine subset
U = Spec A. Then the natural map

R(A) = Rx(U)
1s an 1somorphism.

Proof. From the injective map A — [] Pespec A AP We obtain an injective map
R(A) = [1pespec 4 B(Ap). Consequently we have that the map of the Proposition
is injective.

To prove that the map of the Proposition is surjective we take an element s =
(sp)pespect in Rx (U). We can find open affine subsets Spec Ay,, fori =1,...,n,
that cover U and elements s; € R(Ay,) such that the image of s; in Ap is sp for
all prime ideals P in A that do not contain f;. Consequently we have that s; and
s; have the same image in R(Ay,f,) for all i and j. For all i we write s; = a;/t;
where a; and ¢; are in A and where the image of ¢; in Ay, is not a zero divisor.
Then we have that (flfj)n” (CLitj — ajti) = aif?ijtjf;ij - ajf;ijtif?ij = 0in A.
Multiplying a; and t; with a high power of f;, for all 7, we may therefore assume
that a;t; = a;t; in A, for all 7 and j.

Let

I = {a € Alaa; € (t;) in Ay, for all i}.
then we have that ¢q,...,%, are all in I because t;a; = t;a;, for all ¢ and j.

If al = 0 for some a € A we have that at; = 0 for all . However, the image of the
element t; in Ay, is not a zero divisor. Consequently we can find a non negative
integer m such that f™a = 0 in A, for all . However we have that the sets
Spec Ay, = Spec Agm cover U. Consequently we have that the ideal (f{",..., ;")
is all of A and consequently that a = 0.

We have proved that if al = 0 then a = 0. Consequently it follows from Lemma
(?) that I contains a non zero divisor ¢t. We have that ta; € (¢;) in Ay, for all
i. Hence we have that ta;, = t;c;/f’ in Ay,, for some non negative integer p and
elements c1,...,¢, in A, fori = 1,...,n. Then ta;/t; = ¢;/fF in Ay, considered as
a subring of R(Ay,). However we have that a;/t; and a;/t; are equal considered
as elements in R(Ay,y,). Consequently we have that ¢;/f; and ¢;/ ff are equal in
the subring Ay,;,. Therefore there is an element b in A such that ta;/t; = b in
R(Ay,), for all i. We have that the element b/t is in R(A) and it maps to a;/t; in
R(Ay,) for i =1,...,n. Consequently we have that b/t maps to s in Rx (U).
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(3.3.11) Example. For all open affine subsets U = Spec A of a scheme X there
is an isomorphism Rx (U) = R(A). It follows therefore, from the definition of R x
that, when X is integral, we have that R x is the constant sheaf associated to the
field Rx (X) = Ox ¢, where ¢ is the generic point of X. In particular we have that
Rx is quasi coherent when X is integral.

To give an example of a non integral scheme where the sheaf R x is not neces-
sarily quasi coherent we let A be the localization of the ring k[z, vy, z]/(2?, zy, x2)
in the maximal ideal (z,y, 2)/(2?, xy, xz), where z, y and z are independent vari-
ables over k. Then we have that A = R(A), and if b is the class of y in A, we have
that A, = (k[y7z](y7z))y. Let X = Spec A. It follows from Proposition (3.3.10)
that Rx (Xp) = R(Ap) = k(y, z). However, the ring Rx (X), = R(A) is different
from k(y,z) because (2) is a maximal ideal in C (kly, z](y,z))y with residue field

k(y). Consequently we have that R x is different from R(A), and R x is not quasi
coherent.
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3.4. Normalization.

(3.4.1) Setup. Given a scheme X. For every open subset U of X we let

O (U) = {s € Rx(U)|for all x € U there is a neighbourhood V of x
in U such that s|V is integral over the subring Ox (V') of Rx(V)}

It follows from the definition that O is a subsheaf of Rx that contains Ox and
that O’ is a subalgebra of Ry via the inclusions Ox C O% C Rx. For every
point x in X we have inclusions

OX,w g O/)(’x g RX,w-
(3.4.2) Remark. We have that

O% (U) = {s € Rx(U)|the image s, of s in the fiber Rx , is integral over Ox ,
for all z € U}.

Indeed, if s|V is integral over Ox (V') we clearly have that s, is integral over Ox ,
for all z in V.

Conversely, if s, € Rx , is integral over Ox , we have that s, +a1,x32_1 44
an, . = 0, for some elements aq,...,a, of Ox(V), where V is a neighbourhood of
x. However, then we have that (s|W)" + (a1|W)(s|W)"~t 4.+ (a,|W) = 0, for
some neighbourhood W of x contained in V.

We also see that O’X@ consists of the elements in Rx , that are integral over

Ox z-

(3.4.3) Proposition. If Rx is a quasi coherent Ox-module we have that O is
a quasi coherent O x -module, and for every open affine subset U of X we have that
O (U) is the integral closure of Ox(U) in Rx(U).

Proof. We can assume that X = Spec A is affine and that Rx(X) = B where
B = R(A). Let A’ be the integral closure of A in B. We must show that A’ = 0.

It is clear that A’ C O'%. To show the opposite inclusion we only have to show
that, for every prime ideal P in A the elements in Bp that are integral over Ap
lie in (A’)p. Hence it suffices to prove the equality (A")p = (Ap)’. To show
the latter equality we first note that we have an inclusion (A%) C (Ap)’. To
show the other inclusion we let b/t € (Ap)’, with b € B and t € A\ P. Then
we have that (b/t)" + (an_1/tn_1)(b/t)" "1 + -+ + (ag/to) = 0 in Bp, for some
elements ag,...,a, in A and tg,...,t,—1 in A\ P. Multiplying the equation by
(ttg---tn—1)™ we see that tg---t,—1b € A’. Consequently we have that b/t =
(to oo tn_lb)/(to oo tn_lt) S (A’)p.

snitt
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(3.4.4) Definition. Given ascheme X and let X’ = Spec O% . We call the scheme
X' the integral closure of X. When X is integral we call X’ the normalization
of X. We say that X is normal if the structure morphism X’ — X is an
isomorphism.

(3.4.5) Remark. The normalization of an integral scheme is integral.

(3.4.6) Remark. Given a scheme X and let ¢: X’ — X be the structure mor-
phism of the integral closure of X. Let U be an open subset of X. Then we have
that the induced morphism ¢ ~1(U) — U is the integral closure of U.

(3.4.7) Remark. Given a scheme X and let ¢: X’ — X be the structure mor-
phism of the integral closure of X. Then ¢ is affine. When Rx = Spec A is

quasi coherent we have, for every open affine subset U = Spec A of X, that
o H(U) = Spec A’, where A’ is the integral closure of A in R(A).

(3.4.8) Proposition. Given an integral noetherian scheme Y and let :Y' —Y
be the normalization. Let ¢o: X — Y be a dominant morphism from a normal
scheme X. Then there is a unique morphism ¢': X — Y’ such that ¢ = y’.

Proof. The morphism ¢ gives rise to an inclusion Ry (Y') — Rx (X), that for every
open affine subset U of Y induces an inclusion Oy (U) — Ox (¢~ 1(U)). Since X
is normal it follows from Remark (3.4.7) that Ox(p~1(U)) is integrally closed
in Rx(X), and since Oy (U) consists of elements that are integral over Oy (U)
we have that Oy (U) C O4(U) C Ox (¢ 1 (U)) in Rx(X). It follows from these
inclusions that there is a unique morphism ¢’: X — Y’ such that ¢ = 9.

(3.4.9) Remark. Given an algebraic variety X. Then the structure morphism
©: X’ — X of the normalization is a finite morphism. To see this we need, since
¢ is affine, to show that the integral closure of Ox(U) in Rx(U) is a finitely
generated Ox (U)-module for all affine subsets U of X. However, we have that R
is an integral domain that is a finitely generated algebra over a field. Then the
integral closure of R in its quotient field is a finitely generated R-module [144]
[Z-S, vol. 1, p. 267].
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00.0. 0.

Reserved results

(00.0.1) Lemma. Given a local map A — B of local zero dimensional rings, such
that B is flat over A. Then we have that

U(B) = ((A)¢(B/PB),

where P is the maximal ideal of A.

Proof. Since A is zero dimensional it is of finite length and has a composition
series
A=1y>D>---DI1.=0.

We have that B is flat over A so we obtain a chain
B=IyB>DL1B>---2>1,B=0

of ideals in B such that I,_1B/I;B =1, 1/1; ®4 B=A/P®4 B = B/PB. From
the additivity of length we obtain that ¢(B) = r{p(B/PB).

(00.0.8) Proposition. Given a finitely generated field extension K of the field k
and let A be a local noetherian k-algebra with maximal ideal P. Let B = K ®j A.
Then we have that:

(1) If [K:EJ¢(A) < oo then

(K K)e(A) = S [B/Q:A/P)(BY).
@ minimal prime of B
QNA=P

(2) If [K:kJe(A) = oo then
U(Bq)[B/Q: A/ P] = o0
for all primes Q in B.

Proof. Assume first that [K:k]¢(A) < oo. Then B is a free A-module of rank
[K: k]. Consequently B has finite length as an A-module and £4(B) = [K: k[((A).
We filter B by B-modules such that the quotients are of the form B/@Q where @ is
a prime ideal in B. Then B/Q@ has finite length as an A-module and consequently
@ is a maximal ideal by Lemma (lenght). Hence B has finite length. The quotient
B/Q appears {(Bg) times as a quotient in the filtaration. However B/( is a finite
field extension of A/P since B is a finitely generated A-module and £4(B/Q) =
snitt
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la/p(B/Q) = [B/Q: A/P]. Consequently the length of B as an A-module is also
equal to ) [B/Q: A/PJ{(Bg), where the sum is over all minimal primes @ in B
that contracts to P.

Assume secondly that [K:k]¢(A) = co. If [B/Q:A/PJ{(Bg) < oo for some
prime ideal @ in B, it follows from ¢(Bg) < oo that @ is a minimal prime ideal
of B. We have that B is flat over A. Consequently it follows from Proposition
(?7) that P is minimal in A. It follows from Proposition (?) that ¢(A) < oo and
we must have that [K: k] = co. Since K is a finitely generated field extension we
can find an element ¢ in K that is trancendent over k. The image of ¢t in B/Q is
algebraic over A/P since [B/Q: A/P] < co. Consequently we can find elements
aop, . ..,an, in A such that

aot" +at" 1+ 4a, €Q

with ag ¢ P. The field K is flat over k[t] since k[t] is a principal ideal domain
and K is without torsion. It follows that B is flat over the subring A[t]. Hence it
follows from Proposition (7) that @ N A[t] is a minimal ideal in A[t]. However, the
ideal @ N Alt] contains the prime ideal P[t] such that @ N A[t] = P[t]. Hence we
have that apt™ + a1 + - - -+ a, € QN A[t] = PJt], which contradict the assumption
that ap ¢ P. Consequently we must have that [B/Q: A/P]¢(Bg) = oo for all
prime ideals @) in B.
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137.

138.

139.

140.

141.

142.

143.

144.

snitt

REFERENCES

M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Ad-
dison-Wesley publishing company, 1969.

A. Grothendieck, Elements de géométrie algébrique I, II, 1Vy, 1Vs, IV,
Publications mathématiques 4, 8, 20, 24, 28, Institut des hautes études
scientifiques, Bures-sur-Yvette, 1966, Rédigés avec la collaboration de J.
Dieudonné.

R. Hartshorne, Algebraic geometry, Springer Verlag, New York, 1977, ISBN
0-387-90244-9.

S. Lang, Algebra, Third edition, Addison-Wesley publishing company, Read-
ing, Mass., 1993, ISBN 0-201-55540-9.

H. Matsumura, Commutative algebra, Second edition, Benjamin publishing,
Reading, Mass., 1969, ISBN 0-8053-7026-9.

H. Matsumura, Commutative ring theory, Cabridge studies in advanced
mathematics 8, Cambridge University Press, 1989, ISBN 0-521-36764-6.

A. Thorup, Rational equivalence theory on arbitrary noetherian schemes,
Lecture notes in mathematics 1436, Springer Verlag, New York, 1987.

O. Zariski and P. Samuel, Commutative algebra, vol. 1, D. Van Nostrand
Company, Inc., New Jersey, 1962.



