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1. Cohomology of sheaves on schemes.

(1.1) Setup. Given a noetherian scheme S and a f :X → S separated morphism
of finite type. Moreover, given a quasi–coherent OX–module F . Let g:T → S
be a morphism from a scheme T . We write XT = T ×S X and the maps of the
resulting cartesian diagram we denote as follows:

XT
gX

−−−−→ X

fT

y
yf

T −−−−→
g

S.

Moreover, we write FT = g∗XF .
We choose an affine open covering U = {U0, . . . , Ur} of X.

(1.2) Definition. Assume that S = SpecA is affine. We have a sequence of
A–modules

FU : 0 →
⊕

0≤i0≤r

F(Ui0)
d0

−→
⊕

0≤i0<i1≤r

F(Ui0 ∩ Ui1)
d1

−→

· · ·
dr−1

−−−→
⊕

0≤i0<···<ir+1≤r

F(U0 ∩ · · · ∩ Ur) → 0,

where the A–linear maps di are given by

dp(f)i0...ip+1
=

p+1∑

q=0

(−1)qf
i0...îq...ip+1

|Ui0 ∩ · · · ∩ Uip+1
,

where îq means that iq has been deleted. It is easy to check that the sequence
FU is a complex. The cohomology of the sequence is independent of the choice
of the covering U0, . . . , Ur, and thus also of r ([H], (III, §4, Theorem 4.5)). We→
denote the i’th cohomology group of the complex by H i(X,F) , and call it the
i’th cohomolgy group of F .

(1.3) Note. It follows from Definition (1.2) that H i(X,F) = 0 for i > r and→
i < 0.

(1.4) Note. Assume that S = SpecA. The map which sends a quasi–coherent
OX–module F to the A–module H i(X,F) is a covariant functor from quasi–
coherent OX–modules to A–modules. Indeed, given a homomorphism F → G
of quasi–coherent OX–modules. We obtain a map

F(Ui0 ∩ · · · ∩ Uip
) → G(Ui0 ∩ · · · ∩ Uip

),
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for each i0, . . . , ip, and consequently a map

FU → GU

of complexes of A–modules. Thus there is an A–linear map

Hi(X,F) → Hi(X,G)

of cohomology modules, for each i. It is clear from the construction of the latter
map that the map from quasi–coherent OX–modules to A–modules that sends F
to Hi(X,F) is a functor.

(1.5) Note. Assume that S = SpecA. From a short exact sequence

0 → F ′ → F → F ′′ → 0

of quasi–coherent OX–modules, we obtain a long exact sequence

· · · → Hi(X,F ′) → Hi(X,F) → Hi(X,F ′′) → Hi+1(X,F ′) → · · · .

Indeed, we have an exact sequence

0 → F ′(Ui0 ∩ · · · ∩ Uip
) → F(Ui0 ∩ · · · ∩ Uip

) → F ′′(Ui0 ∩ · · · ∩ Uip
) → 0,

for each 0 ≤ i0 < · · · < ip ≤ r. Hence we obtain a short exact sequence

0 → F ′
U → FU → F ′′

U → 0

of complexes that gives rise to the long exact sequence.

(1.6) Note. Assume that S = SpecA. Let ι:Y ⊆ X be a closed immersion
of schemes, and let G be a quasi–coherent OY –module. The map i induces an
equality

Hi(Y,G) = Hi(X, ι∗G)

of A–modules. Indeed, let Vi = Ui ∩ Y = i−1(Ui). Then V = {V0, . . . , Vr} is an
affine open covering of Y and we have that (i∗G)(Ui0∩· · ·∩Uip

) = G(Vi0∩· · ·∩Vip
).

Consequently (i∗G)U = GV and we obtain the equality.

(1.7) Definition. Given a morphism g:T → S from a noetherian scheme T .
Given an open affine subset SpecA of S and let U = {U0, . . . , Ur} be an affine
open affine covering of f−1(SpecA). Moreover, let SpecB be an open affine subset
of T that maps to SpecA. For every open affine subset U of X that maps into
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SpecA we have that V = XSpec B ∩ g−1
X U = SpecB ×Spec A U is an affine open

subset of XSpec B and we have that

B ⊗A F(U) = (F ⊗OSpec A
OSpec B)(V ) = g∗XF(V ) = FSpec B(V ).

Hence, if we let Vi = XSpec B ∩ g−1
X Ui, we obtain an open affine covering V =

{V0, . . . , Vr} of XSpec B , and we have an isomorphism

B ⊗A F(Ui0 ∩ · · · ∩ Uip
) → FSpec B(Vi0 ∩ · · · ∩ Vip

)

for each 0 ≤ i0 < · · · < ip ≤ r of B–modules. Consequently we obtain an
isomorphism

B ⊗A FU → (FSpec B)V (1.7.1)

of complexes of B–modules. Thus we obtain an A–B–linear map

FU → B ⊗A FU → (FSpec B)V (1.7.2)

where the left map sends f to 1 ⊗A f .
We obtain a restriction map

Hi(XSpec A,FSpec A) → Hi(XSpec B,FSpec B) (1.7.3)

of H0(XSpec A,OXSpec A
)–H0(SpecB,OSpec B)–modules.

In particular, when we associate to each open affine subscheme SpecA of S
the A–module H i(XSpec A,FSpec A), we obtain a pre–sheaf of OS–modules. The
associated OS–module we denote by Rif∗F . We have that

Rif∗F| SpecA = ˜Hi(XSpec A,FSpec A), (1.7.4)

for all open affine subsets SpecA of S ([H], (III §8, Proposition 8.6)).→

(1.8) Note. From (1.7.4) it follows that the sheaves Rif∗F are quasi–coherent→
OS–modules. Moreover, it follows from the Notes (1.3)–(1.6), applied to an affine
open covering of S, that:

(1) We have Rif∗F = 0 for i > r and i < 0, when X, and thus all affine open
subsets of X, can be covered by r + 1 open affine subsets.

(2) The correspondence that sends a quasi–coherent OX–module F to the
quasi–coherent OX–module Rif∗F is functorial in F .

(3) Given a short exact sequence 0 → F ′ → F → F ′′ → 0 of quasi–coherent
OX–modules, we obtain a long exact sequence

· · · → Rif∗F
′ → Rif∗F → Rif∗F

′′ → Ri+1f∗F → · · ·

of OS–modules.
(4) Given a closed immersion ι:Y ⊆ X and a quasi–coherent sheaf G on Y we

have that (Rif∗)ι∗G = Ri(f∗ι∗)G = Ri((fι)∗)G.
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(1.9) Definition. Given a complex

F : 0 → F 0 d0

−→ F 1 d1

−→ · · ·
dr−1

−−−→ F r → 0

of A–modules. We write Zi = Zi(F ) = Ker di and Bi = Bi(F ) = Im di−1. Then
Hi(F ) = Zi(F )/Bi(F ) is the cohomology of the sequence F . There are exact
sequences

0 → Zi(F ) → F i → Bi+1(F ) → 0, (1.9.1)

and
0 → Bi(F ) → Zi(F ) → Hi(F ) → 0 (1.9.2)

of A–modules for i = 0, . . . , r.
Given an A–algebra B. We obtain a complex

B ⊗A F : 0 → B ⊗A F
0 idB ⊗Ad0

−−−−−−→ B ⊗A F 1 id⊗Ad1

−−−−−→ · · ·
id⊗Adr−1

−−−−−−→ B ⊗A F r → 0

of B–modules, and a map of complexes

F → B ⊗A F,

which sends an element m in F i to 1 ⊗A m in B ⊗A F i. For each i we get a
map Hi(F ) → Hi(B ⊗A F ) of cohomology, which is a map of A–B–modules. We
extend this map to a map

B ⊗A H
i(F ) → Hi(B ⊗A F ) (1.9.3)

of B–modules which is called the map obtained by changing the base from A to B
, or simply the base change map .

(1.10) Note. The natural map B ⊗A Bi(F ) → Bi(B ⊗A F ) of B–modules is
a surjection because B ⊗A F i = F i(B ⊗A F ) for all i, and di

B⊗AF (b ⊗A m) =

b⊗A di
F (m) where b ∈ B and m ∈ F i−1.

(1.11) Definition. Given a morphism g:T → S from a noetherian scheme T .
Let SpecA of S be an affine subscheme and SpecB an open affine subscheme of T
which maps to SpecA. We obtain from the maps (1.7.1) and (1.9.3) a base change→→
map B ⊗A Hi(FU) → Hi(B ⊗A FU ) = Hi((FSpec B)V), that is, a B–linear (base
change map)→

B ⊗A Hi(XSpec A,FSpec A) → Hi(XSpec B,FXSpec B
). (1.11.1)

We apply this map to each member Si of an affine open cover of S, and to each
member of an affine open cover of g−1(Si). It follows from the Definitions of (1.7)→
that we obtain a base change map

OT ⊗OS
Rif∗F = g∗Rif∗F → RifT∗(g

∗
XF) = RifT∗FT . (1.11.2)

When S = SpecA we obtain a (base change) map→

OT ⊗OSpec A
˜Hi(X,F) → RifT∗FT . (1.11.3)



12 January 2006 2. Cohomology of sheaves on projective spaces projc 2.1

2. Cohomology of sheaves on projective spaces.

(2.1) Setup. Given a noetherian ring A and a free A–module E of rank r + 1.
We choose an A–basis e0, e1, . . . , er of E. Denote by R = SymA(E) the symmetric
algebra of E over A and write P(E) = Proj(R) for the r–dimensional projective
space over SpecA . The choice of basis e0, . . . , er defines an isomorphism between
R and the polynomial ring A[x0, x1, . . . , xr] in the variables x0, . . . , xr with coef-
ficients in the ring A. In this way we obtain an isomorphism P(E) ∼= Pr

A. The
r + 1 open affine sets D+(ei) cover P(E).

Denote by p:P(E) → SpecA the structure map of the projective space, and by
OP(E)(1) the tautological invertible sheaf on P(E). There is a canonical surjection
p∗E → OP(E)(1) of OP(E)–modules.

A standard calculation ([H], (III, Theorem 5.1)) gives:→

(1) The canonical map Rm → H0(P(E),OP(E)(m)) is an isomorphism.

(2) We have that H i(P(E),OP(E)(m)) = 0 for i > 0 and m ≥ 0.

Given an ideal I in R. Let X = Proj(R/I), and let ι:X → P(E) be the
corresponding closed immersion. The r+1 open affine sets Ui = X ∩D+(ei) cover
X.

Given a coherent OX–module F on X. For each integer n we write F(n) =
F ⊗OX

i∗OP(E)(n). Then we have that i∗(F(n)) = i∗(F ⊗OX
i∗OP(E)(n)) =

(i∗F)(n), and i∗i∗F(n) → F(n) is an isomorphism for all n.
Write K =

⊕
m∈Z Γ(X,F(m)). Then we have a canonical isomorphism ([H],

(II §5, Proposition 5.15))→

β: K̃ → F .

Hence F is the sheaf associated to a graded R/I–module K. We can take this
R/I–module to be finitely generated. Indeed, we can choose a finite number of
homogeneous elements m of K of degree d such that the elements m/yd

i , where
yi is the class of ei in R/I, generate F(Ui), for i = 0, . . . , r. The submodule of
K generated by these elements for i = 0, 1, . . . , r defines F . We choose a finitely

generated R/I–module MF such that F = M̃F .

(2.2) Theorem. (Serre) There is an m0 such that for m ≥ m0 we have:

(1) The canonical map

(MF)m → H0(X,F(m))

is an isomorphism.
(2) There is an equality H i(X,F(m)) = 0 for i > 0

(3) The canonical map OX ⊗OSpec A
˜H0(X,F(m)) = f∗f∗F(m) → F(m) of

OX–modules is surjective.
\hilball.tex
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Proof. To simplify the notation we first show that it suffices to prove the Theorem
when X = P(E). It follows from Note (1.6) and the equality i∗(F(m)) = (i∗F)(m)→

of Setup (2.1) that H i(X,F(m)) = H i(P(E), (ι∗F)(m)). Let MF be the R/I–→

submodule of ⊕m∈ZH
i(X,F(m)) chosen in Setup (2.1). Denote by M the module→

MF considered as a R–submodule of ⊕m∈ZH
i(P(E), (ι∗F)(m)). Since (̃MF ) = F

on X, we obtain that (̃M) = i∗F on P(E). Hence we can choose the module M
for the module Mi∗F of Setup (2.1). It follows that it suffices to prove assertions→
(1) and (2) of the Theorem in the case when X = P(E). Since i∗i∗F → F is an
isomorphism it also follows that it suffices to prove assertion (3) in this case.

When M = R(d) is R with gradind translated by d we have that F = OP(E)(d),

and, as we noted in (2.1), we have→

Mm = Rd+m
∼= H0(P(E),OP(E)(d+m)), and H i(P(E),OP(E)(d+m)) = 0

for i > 0 and d+m ≥ 0. Hence assertions (1) and (2) of the Theorem hold for the
modules OP(E)(d).

In general, choose a short exact sequence of graded R–modules

0 → K → L→M → 0, (2.2.1)

where L is the direct sum of finitely many modules of the form R(d). Since A
is noetherian we have that K is a finitely generated A–module. We shall prove,
by descending induction on i, that the second assertion of the Theorem holds.
Since P(E) can be covered by r+1 open affines it follows from Note (1.3) that the→
assertion holds for i > r. Assume that we have proved thatH i+1(P(E),F(m)) = 0
for all coherent OP(E)–modules F for sufficiently big m depending on F . From

the short exact sequence sequence (2.2.1) we obtain a long exact sequence→

· · · → Hi(P(E), K̃(m)) → Hi(P(E), L̃(m)) →

Hi(P(E),F(m)) → H i+1(P(E), K̃(m)) → · · · .

As we already observed assertion (2) of the Theorem holds for L̃ by Note (2.1),→

and by the induction assumption H i+1(P(E), K̃(m)) = 0 for big m. Consequently
we have that H i(P(E),F(m)) = 0 for big m. Hence we have proved the second

part of the Theorem. In particular we have that H1(P(E), K̃(m)) = 0 Thus the

map H0(P(E), L̃(m)) → H0(P(E),F(m)) is surjective when m is sufficiently big.
We obtain a commutative diagram of A–modules

0 −→ Km −→ Lm −→ Mm −→ 0
y

y
y

0 −→ H0(P(E), K̃(m)) −→ H0(P(E), L̃(m)) −→ H0(P(E),F(m)) −→ 0,
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with exact rows, where the middle vertical map is an isomorphism since we ob-
served that assertion (1) of the Theorem holds for L. Consequently the right
vertical map is surjective for big m. Since this holds for all finitely generated R–
modules the left vertical map is also surjective for big m. Consequently we have
that the right vertical map is an isomorphism for big m, and we have proved the
first part of the Theorem.

The third part of the Theorem holds for the modules OP(E)(d) because of the

surjection f∗Sm+d(E) = Sm+d(E) ⊗A OP(E) → OP(E)(m + d), and the isomor-

phism Sm+d(E) → Rm+d → H0(P(E),OP(E)(m + d)). Hence the left vertical
map of the commutative diagram

OP(E) ⊗OSpec A
H0(P(E), L̃(m)) −→ OP(E) ⊗OSpec A

H0(P(E),F(m))
y

y

L̃(m) −→ F(m) −→ 0

is surjective for big m. It follows that the right vertical map is surjective, and we
have proved the third part of the Theorem.

(2.3) Note. There is an m0 such that for each m ≥ m0 there is a surjection

On
X → F(m)

of OX–modules, where n depends on m. Indeed, it follows from the first part of
Theorem (2.2) that we can find a surjection An → H0(X,F(m)), for fixed big m,→

and from the third part of Theorem (2.2) that we have a surjection OX ⊗Spec A→

˜H0(X,F(m)) → F(m) for big m.

(2.4) Note. For every integer m we have a map

βm: f∗F(m) ⊗OSpec A
f∗OX(1) → f∗F(m+ 1) (2.4.1)

of OSpec A–modules induced by the isomorphism F(m) ⊗OX
OX(1) → F(m + 1).

Equivalently we have a map

βm(SpecA):H0(X,F(m))⊗A H0(X,OX(1)) → H0(X,F(m+ 1)), (2.4.2)

of A–modules. There is an m0 such that for m ≥ m0 this map is surjective. This
can be seen from the commutative diagram

(MF )m ⊗A (R/I)1 −−−−→ (MF )m+1y
y

H0(X,F(m))⊗A H
0(X,OX(1)) −−−−→ H0(X,F(m+ 1)),
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where the upper row is multiplication. Since MF is a finitely generated (R/I)–
module the multiplication map is surjective for big m. It follows from Theorem
(2.2) that the right vertical map is an isomorphism for big m. Thus there is an→
m0 such that the bottom row is surjective for m ≥ m0. That is, the map βm is
surjective for big m.

We also note that if (2.4.1) is surjective for m ≥ m0, then→

αm: f∗f∗F(m) → F(m)

is surjective. To see this we note that from the maps βm we obtain maps

βm,d: f∗F(m) ⊗OA
f∗OX(d) → f∗F(m+ d)

for each integer d. If βm is surjective for n ≥ m we have that βm,d is surjective.
We obtain a commutative diagram

f∗f∗F(m) ⊗OSpec A
f∗f∗OX(d)

f∗βm,d
−−−−→ f∗f∗F(m+ d)

αm⊗γd

y
y

F(m) ⊗OSpec A
OX(d) −−−−→ F(m+ d)

for each d, where f∗βm,d is surjective. It follows from Theorem (2.2) that the right→
vertical map is surjective for d sufficiently big. Since the bottom horizontal map
is an isomorphism we have that αm ⊗ γd is surjective for big d. However we have
that γd: f

∗f∗OX(d) = f∗ Symd(E) → OX (d) is surjective for d ≥ 0. Hence αm is
surjective, as asserted.

(2.5) Definition. Let A be a noetherian ring. A graded A–algebra S = ⊕∞
i=0Si

is called standard if S0 = A and S is generated, as an A–algebra, by the elements
S1 of degree 1.

(2.6) Lemma. Let S be a standard A–algebra and N a finitely generated graded
S–module such that Nm 6= 0 for big m. Then N has a filtration 0 = N0 ⊂
N1 ⊂ · · · ⊂ Nn = N by graded submodules such that Ni/Ni−1 is isomorphic to
(S/Pi)(mi), where Pi is a prime ideal of S, and mi is an integer. In particular

the support of Ñ on Proj(S) consists of the homogeneous prime ideals in S that
contain one of the ideals Pi.

Proof. See [H] (I §7 Proposition 7.4).→
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(2.7) Theorem. The A–module H i(X,F) is finitely generated for all i.

Proof. To simplify the notation we note that from the equality H0(X,F) =
H0(P(E), ι∗F) it follows that we only have to prove the Theorem when X = P(E).

We shall prove the Theorem when X = P(E) by induction on the dimension

s of the support SuppF of F = M̃ . When s < 0 we have that F = 0 and the
statement is true. Assume that s ≥ 0. It follows from Lemma (2.6) that M has→
a finite filtration whose quotients are isomorphic to (R/P )(d), where P is a prime
ideal in R. Since s ≥ 0 we have that P does not contain the ideal (e0, . . . , er),
and the support of F is the union of the irreducible varieties Z(P ) in P(E).
Consequently we can assume that F is the sheaf associated to L = (R/P )(d).
Choose a homogeneous element f of degree m in R not contained in P . We have
an exact sequence

0 → L
f
−→ L(m) → N → 0. (2.7.1)

The dimension of SuppN is strictly less than s because SuppF = Z(P ) and f is
an isomorphism at the generic point of Z(P ). It follows from Theorem (2.2) that→
we can choose m so big that H0(P(E),F(m)) is a finitely generated A–module,
and Hi(P(E),F(m)) = 0 for i > 0. From the short exact sequence (2.7.1) we→
obtain a long exact sequence,

· · · → Hi−1(P(E), Ñ) → Hi(P(E),F) →

Hi(P(E),F(m)) → H i(P(E), Ñ) → · · · .

Since the A–module H i(P(E), Ñ) is finitely generated for all i, by the induction
assumption, it follows that H i(P(E),F) is a finitely generated A–module.
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3. Flat maps.

(3.1) Setup. Given a ring A and an A–module M . For each prime ideal P of A
we write κ(P ) = AP /PAP . Let E be a free A–module of rank r+1 and e0, . . . , er

a basis of E. Denote by R = SymA(E) the symmetric algebra of E over A and
write P(E) = Proj(R) for the r–dimensional projective space over SpecA.

The particular quotient A[x]/(x2) we denote by A[ε] where ε is the class of the
variable x over A. Moreover we let M [ε] = A[ε] ⊗A M .

(3.2) Definition. Given an A–module M . The module M is flat over A if every
short exact sequence

0 → N ′ → N → N ′′ → 0

gives rise to a short exact sequence

0 →M ⊗A N
′ →M ⊗A N →M ⊗A N ′′ → 0.

(3.3) Definition. Given a morphism f :X → S of schemes and an OX–module
F . We say that F is flat over S if, for every point x of X, we have that Fx is a flat
OS,f(x)–module, where the module structure comes from the map f−1OS,f(x) →
OX,x, or equivalently from the composite map OS,f(x) → (f∗OX)f(x) → OX,x.
The morphism f is flat if OX is flat over S.

When f is the identity we say that F is a flat OS–module .

(3.4) Remark. Flatness has the following fundamental properties:

(1) (Long exact sequences ) We can break long exact sequences into short exact
sequences. Hence M is flat over A if and only if every exact sequence

· · · → N ′ → N → N ′′ → · · ·

of A–modules gives rise to an exact sequence

· · · →M ⊗A N
′ → N ⊗A N →M ⊗A N ′′ → · · · .

(2) (Left exactness ) Since the tensor product is right exact ([A-M], (2.18)) we→
have that M is flat over A if every injective map N ′ → N of A–modules
gives rise to an injective map M ⊗A N

′ →M ⊗A N
′′.

(3) (Localization ) Let S be a multiplicatively closed subset of A. It follows
from the definition of localization that the localization S−1A of A in S,
that S−1A is a flat A–module.

(4) (Base change ) Given a flat A–module N , and let B be an A–algebra.
Then B ⊗A N is a flat B–module. Indeed, for every B–module P we have
an isomorphism P ⊗B (B ⊗A N) ∼= P ⊗A N .

\hilball.tex
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(5) (Direct sums ) For every set (Ni)i∈I of A–modules and every A–module P
we have an isomorphism P ⊗A (⊕i∈INi) ∼= ⊕i∈I(P ⊗A Ni). Hence ⊕i∈INi

is exact if and only if it is exact in every factor Ni. We conclude that
⊕i∈INi is flat over A if and only if each summand Ni is flat over A. It
follows in particular that every free A–module is flat. Moreover, projective
A–modules are flat because they are direct summands of free modules.

(3.5) Lemma. Given an exact sequence

0 →M → N → F → 0

of A–modules, where F is flat. Then the sequence

0 → P ⊗A M → P ⊗A N → P ⊗A F → 0

is exact for all A–modules P .

Proof. Write P as a quotient of a free A–module L,

0 → K → L→ P → 0.

We obtain a commutative diagram

0
y

K ⊗A M −−−−→ K ⊗A N −−−−→ K ⊗A F
y

y
y

0 −−−−→ L⊗A M −−−−→ L⊗A N −−−−→ L⊗A F
y

y

P ⊗A M −−−−→ P ⊗A N
y

0

where the upper right vertical map is injective because F is flat, and the middle
left horizontal map is injective because L is free. A diagram chase gives that
P ⊗A M → P ⊗A N is injective.



12 January 2006 3. Flat maps flatness 3.3

(3.6) Proposition. Given an exact sequence

0 → F ′ → F → F ′′ → 0

of A–modules with F ′′ flat. Then F is flat if and only if F ′ is flat.

Proof. Given an injective map M ′ →M . We obtain a commutative diagram

0
y

0 −−−−→ M ′ ⊗A F
′ −−−−→ M ′ ⊗A F −−−−→ M ′ ⊗A F

′′ −−−−→ 0
y

y
y

0 −−−−→ M ⊗A F
′ −−−−→ M ⊗A F −−−−→ M ⊗A F

′′ −−−−→ 0

.

The rows are exact to the left by Lemma (3.5), and we have injectivity of the top→
vertical map since F ′′ is flat. The Proposition follows from a diagram chase.

(3.7) Lemma. Given an A–module M such that the map

I ⊗A M → IM

is an isomorphism for all ideals I in A. For every free A–module F and every
injective map K → F of A–modules we have that

K ⊗A M → F ⊗A M

is injective.

Proof. Since every element in K ⊗A M is mapped into F ′ ⊗A M where F ′ is a
finitely generated free submodule of F we can assume that F is finitely generated.

When the rank of F is 1 the Lemma follows from the assumption. We prove the
Lemma by induction on the rank r of F . We have an exact sequence 0 → F1 →
F → A → 0, where F1 is a free rank r − 1 module. Let K1 = K ∩ F1 and let K2

be the image of K in A. We obtain a diagram

0 0
y

y

K1 ⊗A M −−−−→ K ⊗A M −−−−→ K2 ⊗A M −−−−→ 0
y

y
y

0 −−−−→ F1 ⊗A M −−−−→ F ⊗A M −−−−→ A⊗A M

.

where the right and left top vertical maps are injective by the induction assumption
and it follows from Lemma (3.5) that the lower left map is injective because A is→
free. A diagram chase proves that the middle vertical map is injective.
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(3.8) Proposition. An A–module M is flat if and only if the map

I ⊗A M → IM

is an isomorphism for all finitely generated ideals I of A.

Proof. If M is flat the tensor product I⊗AM →M of the map I → A is injective
so I ⊗A M → IM is an isomorphism.

Conversely, we can assume that I ⊗A M → IM is an isomorphism for all ideals
I of A. Indeed, every element of I ⊗A M is contained in J ⊗A M , where J is a
finitely generated ideal, and if J ⊗A M → M is injective and the element is not
zero then it is not mapped to zero by I ⊗A M →M .

Let N ′ → N be an injective map and write N as a quotient 0 → K → F →
N → 0 of a free A–module F . Let F ′ be the inverse image of N ′ in F . Then we
have an exact sequence 0 → K → F ′ → N ′ → 0, and we obtain a commutative
diagram

0
y

K ⊗A M −−−−→ F ′ ⊗A M −−−−→ N ′ ⊗A M −−−−→ 0
y

y
y

K ⊗A M −−−−→ F ⊗A M −−−−→ N ⊗A M

.

It follows from Lemma (3.7) that the top vertical map is injective. A diagram→
chase shows that the right vertical map is injective. Consequently M is flat over
A.

(3.9) Remark. It follows from Proposition (3.8) that a module over a principal→
ideal domain is flat if and only if it does not have torsion.

(3.10) Lemma. Given a map ϕ:A→ B of rings and let N be a B–module. Then
N is flat over A if and only if NQ is flat over AP for all prime ideals P in A and
Q in B such that ϕ−1(Q) = P .

Proof. Assume that N is flat over A. Since BQ is flat over B the functor that
sends an AP –module F to BQ⊗B (N ⊗AF ) is exact. However BQ⊗B (N ⊗AF ) =
NQ ⊗A F = NQ ⊗AP

F . Consequently the functor that sends the AP –module F
to the AP –module NQ ⊗AP

F is exact, that is, the AP –module NQ is flat.
Conversely, assume that NQ is a flat AP module for all prime ideals Q in B

with P = ϕ−1(Q). The functor that sends an A–module F to the AP –module FP
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is exact by Note (3.4(3)). Consequently the functor that sends the A–module F→
to the BQ–module NQ ⊗AP

FP is exact. However, we have that NQ ⊗AP
FP =

NQ ⊗AP
(AP ⊗A F ) = NQ ⊗A F . Hence the functor that sends an A–module F

to NQ ⊗A F is exact. However, the functor that sends an A–module F to the
B–module N ⊗A F is exact if and only if the functor that sends the A–module F
to the BQ–module NQ ⊗A F is exact for all prime ideal Q of B. We thus have
that N is a flat A–module.

(3.11) Note. Given a morphism f :X → S of schemes and a quasi–coherent
OX–module F . It follows from Lemma (3.10) that F is flat over SpecA if and→
only if F(U) is a flat A–module for all open affine subsets U of X.

In particular, if F is flat over SpecA, and U0, . . . , Ur is an open affine covering
of X, the module F(Ui0 ∩ · · · ∩ Uip

) is flat over A for all 0 ≤ i0 < · · · < ip ≤ r,
and FU is a complex of flat A–modules.

(3.12) Lemma. Given a regular ([A-M], (Theorem 11.22)) one dimensional ring→
A and a homomorphism ϕ:A→ B into a noetherian ring B. Then B is flat over
A if and only if ϕ−1(Q) = 0 for all associated prime ideals Q in B.

In particular, when B is reduced, we have that B is flat over A if and only if
ϕ−1(Q) = 0 for all minimal primes Q of B.

Proof. Assume that B is flat over A and letQ be a prime ideal in B. If P = ϕ−1(Q)
is maximal we have that AP is a discrete valutation ring ([A-M] (Proposition 9.2
and Lemma 11.23)). Let t ∈ PAP be a generator for the maximal ideal. Since t→
is not a zero divisor in AP and BQ is a flat AP –module it follows that t is not a
zero divisor in BQ. Consequently Q is not an associated prime in B.

Conversely, assume that ϕ−1(Q) is zero for all associated primes Q of B. It
follows from Lemma (3.10) that we must prove that BR is flat over Aϕ−1(R) for→
all prime ideals R in B. If ϕ−1(R) = 0 we have that Aϕ−1(R) is a field and

consequently that BR is flat. On the other hand, if P = ϕ−1(R) is a maximal
ideal we choose a t ∈ ϕ−1(R) that generates the ideal PAP . Since AP is a principal
ideal domain it follows from Remark (3.9) that it suffices to show that BR is a→
torsion free AP –module. Since all elements of AP can be written as a power of
t times a unit, this means that it suffices to prove that t is not a zero divisor in
BR. However, if t were a zero divisor in BR it would be contained in an associated
prime ideal Q of B since B is noetherian. This is impossible because t 6= 0 and,
by assumption, ϕ−1(Q) = 0. Hence t is not zero divisor and we have proved the
first part of the Proposition.

The last part of the Proposition follows since in a reduced ring the associated
primes are the minimal primes. Indeed, on the one hand every prime ideal contains
an associated prime so that the minimal primes are associated. Conversely, let Q
be an associated prime and Q1, . . . , Qn be the minimal primes. Choose a non
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zero element a such that aQ = 0. We have that Q ⊆ Q1 ∪ · · · ∪ Qn because if
b ∈ Q \ Q1 ∪ · · · ∪ Qn then ab = 0 and thus a ∈ Q1 ∩ · · · ∩ Qn = 0, contrary to
the assumption that a is not zero. Hence Q ⊆ Q1 ∪ · · · ∪Qn and thus Q ⊆ Qi for
some i ([A-M] (Proposition 1.11)). Hence Q ⊆ Qi and Q is minimal.→

(3.13) Proposition. Assume that A is a regular ring of dimension one. Given
a morphism f :X → SpecA from a noetherian scheme X. Then f is flat if and
only if the associated points of X are mapped to the generic point of SpecA.

In particular, if X is reduced we have that f is flat if and only if the components
of X all dominate SpecA.

Proof. The Proposition is an immediate consequence of Lemma (3.12).→

(3.14) Lemma. Assume that A is noetherian and that M is a finitely generated
A–module. Then M is flat if and only if MP is a free AP –module for all prime
ideals P of A.

Proof. It follows from Lemma (3.12) that M is flat over A if and only if MP is flat→
over AP for all primes P of A. Since MP is flat over AP if MP is free over AP it
follows that when MP is a free AP –module for all prime ideals P of A, we have
that M is a flat A–module.

Coversely, assume that M is a flat A–module. Given a prime ideal P of A. The
MP is a flat AP –module. Since M is finitely generated it follows from Nakayama’s
Lemma that we can choose a surjection An

P →MP such that (κ(P ))n → κ(P )⊗AP

MP is an isomorphism of κ(P )–vectorspaces. Denote by L the kernel of An
P →MP .

Since A is noetherian we have that L a is finitely generated A–module. However,
since M is flat, we have that κ(P ) ⊗AP

L = 0. It follows by Nakayamas Lemma
that L = 0. Consequently we have that the map An

P → MP is an isomorphism,
and that MP is a free AP –module.

(3.15) Lemma. With the notation of Definition (1.9), assume that the A–modules→
F 0, F 1, . . . of the complex F are flat and that H i(F ) is a flat A–module for i ≥ p.
Then the A–modules Bi(F ) and Zi−1(F ) are flat for i ≥ p.

Proof. We prove the Lemma by descending induction on p. The Lemma holds for
p > r since Zr = F r. Assume that the Lemma holds for p+ 1. By the induction
assumption we have that Bp+1 and Zp are flat. From the sequence (1.9.2) with→

i = p and Proposition (3.6) it follows that Bp is flat. Then, from the sequence→

(1.9.1) with i = p− 1 and Proposition (3.6) it follows that Zp−1 is flat.→→

(3.16) Theorem. Given a noetherian scheme S and a morphism f :X → S which
is separated of finite type. Let F be a (kvasi?) coherent OX–module. Then:

(1) Assume that F is flat over S and that Rif∗F = 0 for i > 0. Then f∗F is
a flat OS–module.
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In particular, if f∗F is coherent, we have that f∗F is locally free.
(2) Assume that S = SpecA and that X is a closed subscheme of P(E). If

there is an m0 such that f∗F(m) is locally free for m ≥ m0, we have that
F is flat over SpecA.

Proof. Both assertions are local on S. Hence we can assume that S = SpecA in

both cases. Then it follows from the equality (1.7.4) that f∗F = ˜H0(X,F). Hence→
f∗F is a flat OS–module if and only if H0(X,F) is flat over A. The last part of
(1) consequently follows from the first part of Lemma (3.14).→

If F is flat over SpecA it follows from Note (3.11) that F(Ui0 ∩ · · · ∩ Uip
) is→

flat over A, and thus that the complex FU consists of flat modules. From the
assumption of the Theorem we have that H i(FU ) = Hi(X,F) = 0 for i > 0. It
follows from Lemma (3.15) with p = 1 that Z0(FU ) = H0(X,F) is flat, and we→
have proved the first assertion.

By Assumption we have that H0(X,F(m)) = f∗F(m)(SpecA) is flat for m ≥
m0. Let N = ⊕m≥m0

H0(X,F(m)). Then it follows from Setup (2.1) that N is→

an R/I–module such that F = Ñ , where I ⊆ R is an ideal defining X in P(E).

We have, with the notation of Setup (2.1) that F(Ui) = Ñ(Ui) = Ñ(yi), where yi→
is the class of ei in R/I. It therefore suffices to prove that N(yi) is flat over A.
However, the module N is a direct sum of flat A–modules, and thus flat over A.
Hence the functor which sends an A–module L to the A–module N ⊗A L is exact.
We consider N⊗AL as an R/I–module, via the action of R/I on N . Since (R/I)yi

is flat over R/I for all i we have that the functor that sends an A–module L to
the A–module (R/I)yi

⊗(R/I)N ⊗AL is exact. Hence (R/I)yi
⊗(R/I)N = Nyi

is a
flat A–module. The same is therefore true for the direct summand N(yi) of degree
zero.

(3.17) Lemma. Given a noetherian integral domain A and an A–algebra B of
finite type. Moreover, given a finitely generated B–module N . Then there is a
non–zero element f ∈ A such that Nf is free over Af .

Proof. Write B = A[u1, . . . , uh]. We shall prove the Lemma by induction on h.
When h = 0 we have that A = B. It follows from Lemma (2.6) in the non graded→
case that we can choose a filtration N = Nn ⊃ Nn−1 ⊃ · · · ⊃ N0 = 0 by A–
modules such that Ni/Ni−1 = A/Pi, where Pi is a prime ideal in A. Since A
is an integral domain we have that the intersection of the non zero primes Pi is
not zero. Choose a non zero f ∈ A in this intersection if there is one non zero
prime Pi and let f = 1 otherwise. Then (Ni/Ni−1)f is zero if Pi is a non zero
prime and isomorphic to Af when Pi = 0. Consequently we have that Nf is a free
Af–module.

Assume that h > 0 and that the Lemma holds for h − 1. Choose generators
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n1, . . . , ns for the B–module N and write B′ = A[u1, . . . , uh−1]. Then B = B′[uh].
Moreover, let N ′ = B′n1 + · · ·B′ns. We have that N ′ is a finitely generated B′–
module such that BN ′ = N . It follows from the induction assumption used to
the A–algebra B′ and the B′–module N ′ that we can find an element f ′ ∈ A such
that N ′

f ′ is a free Af ′–module. It therefore remains to prove that we can find an

element f ′′ ∈ A such that (N/N ′)f ′′ is a free Af ′′–module. To this end we write

N ′
i = N ′ + uhN

′ + · · · + ui
hN

′

and
Pi = {n ∈ N ′:ui+1

h n ∈ N ′
i}.

Clearly N ′
i is a B′–submodule of N and Pi a B′–submodule of N ′. We obtain a

filtration
N ′

1/N
′ ⊆ N ′

2/N
′ ⊆ · · · ⊆ N/N ′

of N/N ′ by B′–modules N ′
i/N

′ such that ∪iN
′
i/N

′ = N/N ′. The B′–linear homo-

morphism N ′ → N ′
i+1 which sends n to ui+1

h n defines an isomorphism N ′/Pi →
N ′

i+1/N
′
i for all i. Since B′ is noetherian, the sequence P0 ⊆ P1 ⊆ · · · ⊆ N ′

must stabilize. That is, among the quotients N ′
i+1/N

′
i there appears only a finite

number of B′–modules. It follows from the induction assumption that we can find
an element f ′′ ∈ A such that all the modules (N ′

i+1/N
′
i)f ′′ are free Af ′′–modules.

Hence (N/N ′)f ′′ is a free Af ′′–module, as we wanted to prove.

(3.18) Proposition. (Generic flatness) Given a morphism f :X → S of finite
type to a noetherian integral scheme S, and let F be a coherent OX–module. Then
there is an open dense subset U of S such that FU is flat over U .

Proof. We clearly can assume that S is affine. Since f is of finite type we can cover
X with a finite number of open affine subschemes Xi. It follows from Lemma (3.17)→
that, for each i, there is an open dense affine subset Ui of S such that (F|Xi)Ui

is
flat over Ui. We can take U to be the intersection of the sets Ui.

(3.19) Proposition. Given a morphism f :X → S finite type to a noetherian
scheme S and let F be a coherent OX–module. Then S is a finite set theoretic
union of locally closed reduced and disjoint subschemes Si such that FSi

is flat
over Si.

Proof. Assume that the Proposition does not hold. Since S is noetherian there
is a closed subscheme T of X which is minimal among the closed subschemes for
which the Proposition does not hold. Let T ′ be an irreducible component of T
with the reduced scheme structure and let V ′ be an open subset of T ′ that does
not intersect the other components of T . Then V ′ is also open in T . It follows
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from Proposition (3.18) that there is an open non–empty subset V of V ′ such that→
FV is flat over V . By the induction assumption the complement of V in T has a
stratification, and together with V this gives a stratification of T . This contradicts
the assumption that T has no stratification and we have proved the Proposition.

(3.20) Proposition. Assume that A is a regular ring of dimension one. Let x be
a closed point in SpecA and Y a closed subscheme of p−1(SpecA \ {x}) which is
flat over SpecA\x and Y the scheme theoretic closure of Y in P(E) Then Y is the
unique closed subscheme of P(E) which is flat over SpecA and whose restriction
to p−1(SpecA \ x) is equal to Y .

Proof. Let P be the prime ideal in A corresponding to the point x of SpecA. It
clearly suffices to prove the Proposition for an open affine subset SpecC of P(E).
Let ϕ:A→ C be the homomorphism induced by the projection of P(E).

We have that SpecA \ x = SpecAt where t in P is the generator of PAP . We
have that SpecC ∩ f−1(SpecA \ {x}) = SpecCϕ(t). Let Cϕ(t) → B define the
closed subscheme Y ∩ SpecCϕ(t) of SpecCϕ(t). The closure of Y ∩ SpecCϕ(t) in
SpecC is defined by the kernel I of the composite map C → Cϕ(t) → B.

Since A is a principal ideal domain and B is flat, we have that B has no torsion
over A. Hence the submodule C/I of B has no torsion, and thus C/I is flat over
A. We have proved that the scheme theoretic closure Y of Y is flat over SpecA.
Hence Cϕ(t)/ICϕ(t) is flat over At(?).

To prove that Y is unique with the given properties we let J be an ideal in
C that defines a closed subset which is flat over SpecA and whose restriction to
SpecCϕ(t) is Y . That is, the ring C/J is flat over A and has the same image in
Cϕ(t) as I. Then J ⊆ I. It remains to show that I ⊆ J . Let c ∈ I. Since I and J
have the same image in Cϕ(t) we have that tnc ∈ J for some n. Since C/J is flat
over A we have that C/J has no A–torsion. Hence c ∈ J and we have that I = J .

(3.21) Lemma. Let A → B be an A-algebra and F a B-module. Moreover let
H ⊆ F be a sumodule such that F/H is flat over A. For every homomorphism of
B-modules

u : H → F/H

we define
Hu = {x+ εy ∈ F [ε] : x ∈ H and u(x) = uF/H(y)}.

Then:

(1) The group Hu is a B[ε]-submodule of F [ε] with image by the canonical map
uF [ε]/εF [ε] : F [ε] → F equal to H, and where F [ε]/Hu a flat A[ε]-module.

(2) The correspondence that sends the homomorphism u to Hu gives a bijection
between HomB(H,F/H) and B[ε]-submodules H ′ of F [ε] with image by
uF [ε]/εF [ε] equal to H, and where F [ε]/H ′ is flat over A[ε].
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Proof. It is clear that Hu is a B[ε]-module of F [ε] and that the image by uF [ε]/εF [ε]

is H. In order to verify that F [ε]/Hu is flat over A[ε] it suffices by Proposition
(3.8) to verify that the map→

F [ε]/Hu ⊗A[ε] (ε) → F [ε]/Hu (3.21.1)

is injective. Let x+ εy ∈ F [ε] be an elements such that uF [ε]/Hu
(x+ εy)⊗A[ε] ε is

in the kernel of the map (3.21.1). Then we have that xε ∈ Hu and consequently→
that uF/H(x) = 0. Hence we have that x ∈ H. Choose an element y′ ∈ F such
that u(x) = uF/H(y′). Then we have that x + εy′ ∈ Hu and consequently that
uF [ε]/Hu

(x+ εy)⊗A[ε] ε = uF [ε]/Hu
(x)⊗A[ε] ε = uF [ε]/Hu

(x+ εy′)A[ε]ε = 0. Hence

we have proved that (3.21.1) is injective.→
Conversely let H ′ ∈ F [ε] be a B[ε]-submodule with image H by uF [ε]/εF [ε] and

where F [ε]/H ′ is flat over A[ε]. It follows from lemma (3.5) that the sequence→

0 → H ′ ⊗A[ε] A→ F [ε] ⊗A[ε] A→ F [ε]/H ′ ⊗A[ε] A→ 0 (3.21.2)

is exact. The image of H ′ ⊗A[ε] A in F [ε] ⊗A[ε] A = F by (3.21.2) is H by→

assumption. The mid right map in (3.21.2) consequently induced an isomorphism→

F/H → F [ε]/H ′ ⊗A[ε] A. (3.21.3)

Tensor the exact sequence

0 → A
ε
−→ A[ε] → A→ 0

with F [ε]/H ′ over A[ε]. We obtain an exact sequence

0 → F [ε]/H ′ ⊗A[ε] A→ F [ε]/H ′ ⊗A[ε] A[ε] → F [ε]/H ′ ⊗A[ε] A→ 0. (3.21.3)

From the sequence (3.21.3) we obtain an exact sequence→

0 → F/H
δ
−→ F [ε]/H ′ η

−→ F/H → 0. (3.21.4)

We have that η(uF [ε]/H′|F ) = uF/H and δuF/H = ε(uF [ε]/H′|F ). For x ∈ H we

have that ηuF [ε]/H′(x) = uF/H(x) = 0. Consequently it follows from (3.21.4) that→
there is a unique element uF/H(y) in F/H such that δuF/H(y) = uF [ε]/H′(x).
Write u(x) = uF/H(y). In this way we define a B-module homomorphism

u : H → F/H.



12 January 2006 3. Flat maps flatness 3.11

It remains to prove that H ′ = Hu.
Let x−εy ∈ H ′ ⊆ F [ε]. Then we have that x ∈ H because uF [ε]/εF [ε](H

′) = H.
We obtain that 0 = uF [ε]/H′(x−εy) = uF [ε]/H′(x)−εuF [ε]/H′(y) and consequently
we have that uF [ε]/H′(x) = εuF [ε]/H′(y) = δuF/H(y). We obtain from the defini-
tion of u that u(x) = uF/H(y), and consequently that x− εy ∈ Hu.

Conversely let x− εy ∈ Hu with x ∈ H and u(x) = uF/H(y). By the definition
of u we then have that uF [ε]/H′(x) = δuF/H(y). We obtain that uF [ε]/H′(x−εy) =
uF [ε]/H′(x) − εuF [ε]/H′(y) = δuF/H(y) − εuF/H(y) = 0. Hence we have proved
that H ′ = Hu.

(3.21’) Lemma. (Generalisering av Lemma (3.21)) La ϕ : A → B be an A-→
algebra and let I be an ideal in A such that I2 = 0. For each B-module H we let
H0 = H ⊗A A0 = H/IH where H is considered as an A-module by restriction of
scalars. For every B-module F and submodule H we let uF/H : F → F/H be the
canonical residue map.

Let F be a B-module and H a submodule such that the module G = F/H is a
flat A-module. We have an exact sequence of A0-modules

0 → H ⊗A A0 → F ⊗A A0 → F/H ⊗A A0 → 0,

that is the exact sequence of A0-modules

0 → H0 → F0 → (F/H)0 → 0.

In particular we have a canonical isomorphism F0/H0 → (F/H)0. We also have
an exact sequence of B-modules

0 → F/H ⊗A I → F/H ⊗A A→ F/H ⊗A A0 → 0,

that is the exact sequence of B-modules

0 → F0/H0 ⊗A0
I → F/H → F0/H0 → 0.

We shall identify the B-module F0/H0 ⊗A0
I with its image I(F/H) in F/H.

Let
u : H0 → F0/H0 ⊗A0

I

be a B0-module homomorphism, that we with the above identification consider as
a B-module homomorphism

u : H0 → F/H

with image in the kernel I(F/H) of the map F/H → F0/H0. Let

Hu = {x+ y : x ∈ H, y ∈ IF, u(uH/IH(x)) = uF/H(y)}.
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Then we have that:

(1) The group Hu is a B-module such that the image of Hu by the map uF/IF :
F → F0 is H0 and F/Hu is a flat A-module.

(2) The correspondence that sends u to Hu defines an operation of the module
HomB0

(H0, F0/H0 ⊗A0
I) on the set Q of all B-submodules H ′ of F such

that the image of H ′ by the map uF/IF : F → F0 is H0 and F/H ′ is a flat
A-module. This action makes Q into a principal homogeneous space under
HomB0

(H0, F0/H0 ⊗A0
I).

Proof. We have that Hu is a B-module since uH/IH , uF/H and u are B-module
homomorphisms. Moreover the image of Hu by the homomorphism uF/IF : F →
F0 is H0. It is clear that the image contains H0. Conversely, when x0 ∈ H0 we
choose x ∈ H such that uH/IH (x) = x0. We have that u(uH/IH(x)) = u(x0) lies
in the kernel I(F/H) of F/H → F0/H0. Consequently we can find y ∈ IF such
that uF/H(y) = u(uH/IH(x)). It follows that x+ y ∈ Hu, and thus that x0 lies in
the image of Hu by the homomorphism uF/IF : F → F0.

We notice that H and Hu have the same image H0 by the map uF/IF : F → F0

if and only if H ⊆ Hu + IF and Hu ⊆ H + IF .
Next we shall show that F/Hu is flat over A. It follows from the Local Criterion

of Flatness (3.?) that when A is noetherian it is necessary and sufficient that the→
homomorphism

F/Hu ⊗A I → F/Hu

is injective. Let
∑

α∈J uF/Hu
(xα) ⊗A iα with xα ∈ F and iα ∈ I be in the

kernel. That is, we have
∑

α∈J iαxα ∈ Hu. Since
∑

α∈J iαxα ∈ IF it follows
from the definition of Hu that we have 0 = u(uH/IH(0)) = uF/H(

∑
α∈J iαxα).

Consequently we have that
∑

α∈J iαxα ∈ H. Then
∑

α∈J uF/H(xα) ⊗A iα is in
the kernel of F/H ⊗A I → F/H, and since F/H is flat over A by assumption we
have that

∑
α∈J uF/H(xα) ⊗A iα = 0 in F/H ⊗A I.

We have a B-linear map F/H ⊗A I → F/Hu ⊗A I that is uniquely determined
by mapping uF/H(x)⊗A i with x ∈ F and i ∈ I to uF/Hu

(x)⊗A i. This map is well
defined because from the equality uF/H(x1) = uF/H(x) we obtain that x1−x ∈ H
so we can find elements x′ ∈ Hu and y ∈ IF such that x1 − x = x′ + y. Then we
have that uF/Hu

(x1) ⊗A i = uF/Hu
(x) ⊗A i + uF/Hu

(x′) ⊗A i + uF/Hu
(y) ⊗A i =

uF/Hu
(x)⊗A i. In particular we have that 0 =

∑
α∈J uF/H(xα)⊗A iα in F/H⊗A I

maps to 0 =
∑

α∈J uF/Hu
(xα)⊗A iα in F/Hu⊗A I, and we have proved that F/Hu

is flat over A.
It remains to prove that every submodule H ′ of F such that the image of H ′

by the homomorphism F → F0 is H0 and such that F/H ′ is flat over A is on the
form Hu for exactly one map u : H0 → F0/H0 ⊗A0

I. We construct the map

u : H0 → F0/H0 ⊗A0
I
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as follows:
For every x0 ∈ H ′ we choose an element x′ ∈ H ′ such that uH′/IH′(x′) = x0

and we let u(x0 = uF/H(x′).
We have that uF/H(x′) lies in the kernel of the homomorphism F/H → F0/H0

because H ′ ⊆ H+IF with x′ = x+y with x ∈ I and y ∈ IF and thus uF/H(x′) =
uF/H(x) + uF/H(y) = uF/H(y) ∈ I(F/H). Moreover we have that uF/H(x′) is
independent of the choise of x′ because if uH′/IH′(x′) = uH′/IH′(x′′) for some
x′′ ∈ H ′ then we have that x′ − x′′ ∈ IH ′. However IH ′ ⊆ IH + IIF = IH and
IH ⊆ IH ′ so that uF/H(x′) = uF/H(x′ − x′′) + uF/H(x′′) = uF/H(x′′). We have
thus proved that u is well defined and has image in the kernel I(F/H) of the map
F/H → F0/H0.

It is clear that H ′ ⊆ Hu because if x′ ∈ H ′ we have that x′ = x + y with
x ∈ H and y ∈ IF and we have that uF/IF (x′) = uF/IF (x). Hence we have that
u(uH/IH (x)) = u(uH′/IH′(x′)). Moreover we have that uuH′/IH′(x′) = uF/H(x′)
by the definition of u. Hence we have that u(uH/IH(x′)) = uF/H(x′) = uF/H(x+
y) = uF/H(y) and thus x+ y ∈ Hu.

The inclusion of H ′ in Hu gives a commutative diagram

H ′ ⊗A I −−−−→ H ′ ⊗A A −−−−→ H ′ ⊗A A0 −−−−→ 0
y

y
y

Hu ⊗A I −−−−→ Hu ⊗A A −−−−→ Hu ⊗A A0 −−−−→ 0

where the right and left vertical maps are isomorphisms as we have seen above.
Consequently the middle vertical map is a surjection. That is we have H ′ = Hu.
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4. Base change.

(4.1) Setup. Given a noetherian ring A and a free A–module E of rank r+1. Let
R = SymA(E) and let P(E) = Proj(R)). Moreover, given a noetherian scheme S
and a morphism f :X → S which is separated of finite type. Let F be a quasi–
coherent OX–module. For each point x of X we denote by κ(x) the residue class
of the local ring OX,x at x modulo the maximal ideal.

(4.2) Remark. Let g:T → S be a morphism from a noetherian scheme T . We
saw in (1.11.2) that there is a base change map→

OT ⊗OS
˜Hi(X,F) = g∗Rif∗F → RifT∗FT .

and this map is an isomorphism if and only if the base change map

B ⊗A Hi(XSpec A,FSpec A) → Hi(XSpec B,FSpec B)

of (1.9.3) is an isomorphism for all affine open subsets SpecA of S and SpecB→

of T such that SpecB maps to SpecA. With the notation of Definition (1.7) we→

have the isomorphism B ⊗A FU → (FSpec B)V of B–modules of (1.7.1) and thus→

an isomorphism H i(B ⊗A FU ) → Hi(XSpec B,FSpec B) of B–modules. Hence the
base change map is an isomorphism if and only if the base change map

B ⊗A H
i(FU ) → Hi(B ⊗A FU)

is an isomorphism for all open affine subset SpecA of S and SpecB of T such that
SpecB maps to SpecA.

(4.3) Lemma. With the notation of (1.9) we have that the base change map→

B ⊗A H
i(F ) → Hi(B ⊗A F )

of (1.9.3) is an isomorphism if:→

(1) The map B ⊗A B
i+1(F ) → B ⊗A F

i+1 is injective.
(2) The map B ⊗A Z

i(F ) → B ⊗A F
i is injective.

Proof. Assume that the conditions (1) and (2) hold. From the sequence (1.9.1)→
for the complexes F and B⊗A F we obtain the following commutative diagram of
B–modules:

B ⊗A Z
i(F ) −−−−→ B ⊗A F

i −−−−→ B ⊗A Bi+1(F )
y

∥∥∥
y

0 −−−−→ Zi(B ⊗A F ) −−−−→ F i(B ⊗A F ) −−−−→ Bi+1(B ⊗A F ).
\hilball.tex
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with exact rows. Since the right vertical map is injective by assumption the left
vertical map is surjective, and since B ⊗A Zi(F ) → B ⊗A F i is injective by as-
sumption, the left vertical map is an isomorphism.

From (1.9.2), for the modules F and B⊗AF , we obtain a commutative diagram→
of B–modules

B ⊗A Bi(F ) −−−−→ B ⊗A Zi(F ) −−−−→ B ⊗A H
i(F ) −−−−→ 0

y
y

y

Bi(B ⊗A F ) −−−−→ Zi(B ⊗A F ) −−−−→ H i(B ⊗A F ) −−−−→ 0.

with exact rows. We Noted in (1.10) that the left vertical map is surjective, and→
we just proved that the middle vertical map is an isomorphism. It follows that the
right vertical map is an isomorphism.

(4.4) Theorem. (Flat base change) Given a flat morphism g:T → S from a
noetherian scheme T . Then the base change map

g∗Rif∗F → RifT∗FT

of Definition (1.11) is an isomorphism for all i.→

Proof. The assertion is local on S and T . Hence we may assume that S = SpecA
and T = SpecB for an A–algebra B. Then B is flat over A and consequently
B ⊗A Bi(FU) → B ⊗A (FU)i and B ⊗A Zi(FU) → B ⊗A (FU)i are injective for
all i. It follows from Lemma (4.3) that the base change map B ⊗A Hi(FU ) →→
Hi(B ⊗A FU ) is an isomorphism for all i. The Theorem therefore follows from
Remark (4.2).→

(4.5) Note. Given a field K and a morphism SpecK → S. Denote by s the
image point. We have a field extension κ(s) → K. It follows from Theorem (4.4)→
that we have an isomorphism

K ⊗κ(s) H
i(XSpec κ(s),FSpec κ(s)) → Hi(XSpec K ,FSpec K)

of K–vectorspaces, for all i. In particular, if g:T → S is a morphism and t a point
in T we obtain an isomorphism

κ(t) ⊗κ(g(t)) H
i(XSpec κ(g(t)),FSpec κ(g(t))) → Hi(XSpec κ(t),FSpec κ(t)). (4.5.1)



12 January 2006 4. Base change basechange 4.3

(4.6) Proposition. With the notation of Definition (1.9), assume that the A–→
modules F 0, F 1, . . . of the complex F are flat and that H i(F ) is a flat A–module
for i ≥ p+ 1. Then, for every A–algebra B, the base change map

B ⊗A H
i(F ) → Hi(B ⊗A F ) (4.6.1)

is an isomorphism for i ≥ p.
In particular, when H i(F ) = 0 for i > 0 then:

(1) The base change map B ⊗A H
0(F ) → H0(B ⊗A F ) is an isomorphism.

(2) We have that H i(B ⊗A F ) = 0 for i > 0.

Proof. Since H i(F ) is flat for i ≥ p+1, it follows from sequence (1.9.2) and Lemma→

(3.5) that B ⊗A Bi(F ) → B ⊗A Zi(F ) is injective for i ≥ p + 1. It follows from→

Lemma (3.15) that Bi(F ) is flat for i ≥ p+ 1. Hence it follows from the sequence→

(1.9.1) and Lemma (3.5) that B ⊗A Zi(F ) → B ⊗A F i is injective for i ≥ p.→→

Conditions (1) and (2) of Lemma (4.3) are therefore satisfied. The Proposition is→

therefore a consequence of Lemma (4.3).→

(4.7) Theorem. Assume that F is flat over S and that Rif∗F = 0 for i > 0.
Given a morphism g:T → S from a noetherian scheme T . Then:

(1) The OT –module fT∗FT is flat.
(2) We have that RifT∗FT = 0 for i > 0.
(3) The base change map

g∗f∗F → fT∗FT

is an isomorphism.

Proof. The assertions are local on S and T so we may assume that S = SpecA
and that T = SpecB where B is an A–algebra.

With the notation of Definition (1.7) we have the isomorphism B ⊗A FU →→

(FSpec B)V of (1.7.1). When F is flat we noted in (3.11) that the complex FU→→
consists of flat A–modules and since H i(FU ) = Hi(X,F) = 0 for i > 0 by as-
sumption, it follows from Proposition (4.6) with p = 0 that H i(XSpec B ,FSpec B) =→
Hi((FSpec B)V) = Hi(B ⊗A FU ) = 0 for i > 0 and that the base change map

B ⊗A H
0(X,F) = B ⊗A H

0(FU) →

H0(B ⊗A FU ) = H0((FSpec B)V) = H0(XSpec B,FSpec B)

is an isomorphism. We have proved assertions (2) and (3). Assertion (1) follows
from (2) and Theorem (3.16)(1).→
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(4.8) Lemma. Assume that A is local and let k be the residue field. With the
notation of (1.9) assume that the A–modules F 0, F 1, . . . of the complex F are flat→
and that H i(F ) is a finitely generated A–module for all i. Moreover, assume that
Hi(k ⊗A F ) = 0 for i > 0. Then we have that

Hi(F ) = 0

for i > 0.

Proof. We shall prove, by descending induction on p, that for p > 0 we have
that Hp(F ) = 0, that Zp(F ) is flat, and that k ⊗A Zp(F ) → Zp(k ⊗A F ) is an
isomorphism. These assertions hold for p > r. Assume that they hold for p + 1.
Then Bp+1(F ) = Zp+1(F ). By the assumption we have that Hp+1(k ⊗A F ) = 0
and thus Bp+1(k⊗A F ) = Zp+1(k⊗A F ). Since Bp+1(F ) = Zp+1(F ) is flat by the
induction assumption it follows from the sequence (1.9.1) with i = p and Lemma→

(3.18) that Zp(F ) is flat.→

From the sequence (1.9.1) for F and k⊗A F we obtain a commutative diagram→

0 −−−−→ k ⊗A Z
p(F ) −−−−→ k ⊗A F p −−−−→ k ⊗A Zp+1(F )

y
∥∥∥

y

0 −−−−→ Zp(k ⊗A F ) −−−−→ F p(k ⊗A F ) −−−−→ Zp+1(k ⊗A F )

and it follows from Lemma (3.5) that the top row is exact. Hence the left vertical→
map is injective. Since the right vertical map is injective, by the induction as-
sumption, we obtain that the left vertical map is surjective. The sequence (1.9.2)→
for i = p applied to F and k ⊗A F gives a commutative diagram

k ⊗A B
p(F ) −−−−→ k ⊗A Z

p(F ) −−−−→ k ⊗A H
p(F ) −−−−→ 0

y
y

y

Bp(k ⊗A F ) −−−−→ Zp(k ⊗A F ) −−−−→ Hp(k ⊗A F ) −−−−→ 0

with exact rows. We have proved that the middle map is an isomorphism and noted
in (1.10) that the left vertical map is surjective. Hence the right vertical map is an→
isomorphism. Since Hp(F ⊗A k) = 0 for p > 0 it follows from Nakayama’s Lemma
that Hp(F ) = 0 for p > 0.

(4.9) Theorem. Assume that F is flat over S and that Rif∗F is coherent for all
i. Let s be a point of S be such that H i(XSpec κ(s),FSpec κ(s)) = 0 for i > 0. Then

(Rif∗F)s = 0 for i > 0.
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In particular, when H i(XSpec κ(s),FSpec κ(s)) = 0 for i > 0 and all s in S, we

have that Rif∗F = 0 for i > 0.

Proof. We can clearly assume that S is affine. Let S = SpecA and let P be the
prime ideal in A corresponding to the point s. It follows from (1.7.4) that the→

assertion of the Theorem is equivalent to (Rif∗F)s = AP ⊗A Hi(X,F) = 0 for
i > 0.

Theorem (4.4) for the flat map A → AP states that we have an isomorphism→
AP⊗AH

i(X,F) → Hi(XSpec AP
,FSpec AP

). Hence it suffices to prove the Theorem
when S = SpecAP . That is, we can assume that A is local.

With the notation of Definition (1.7) with B = κ(P ) we have the isomorphism→

κ(P )⊗A FU → (FSpec κ(P ))V of (1.7.1). Consequently it follows from the assump-→
tion that Hi(κ(P ) ⊗A FU) = Hi(XSpec κ(P ),FSpec κ(P )) = 0 for i > 0. When F is

flat over S we Noted in (3.11) that the complex FU consists of flat modules and→
we have that H i(FU) = Hi(X,F) is finitely generated for all i by assumption. It
follows from Lemma (4.10) that H i(X,F) = Hi(FU) = 0 for i > 0, as we wanted→
to prove.

(4.10) Proposition. Assume that S = SpecA, that X is a closed subscheme of
P(E), and that F is coherent. Given a morphism g:T → S from a noetherian
scheme T . Then there is an m0 such that the base change map

OT ⊗OSpec A
˜H0(X,F(m)) = g∗f∗F(m) → fT∗FT (m)

is an isomorphism for m ≥ m0.

Proof. The base change map is local in T . Hence it suffices to prove that the base
change map

B ⊗A H0(X,F(m)) → H0(XSpec B,FSpec B(m))

is an isomorphism for m sufficiently big for every open affine subset SpecB of T .

With the notation of Setup (2.1) we have that F = M̃F for a graded (R/I)–→
module MF , where I is an ideal in R defining X in P(E). Then we have that

OSpec B ⊗OSpec A
F = ˜B ⊗A MF . We obtain a commutative diagram

(MF )m −−−−→ H0(X,F(m))
y

y

(B ⊗A MF )m −−−−→ H0(XSpec B,FSpec B(m))

(4.8.1)

where the left vertical map sends m ∈ (MF )m to 1 ⊗m ∈ (B ⊗A MF )m and the
right vertical map is the map H0(X,F(m)) → H0(XSpec B ,FSpec B(m)) of (1.7.3).→
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In diagram (4.8.1) we can extend the scalars of the modules in the top row from→
A to B. We obtain a commutative diagram

B ⊗A (MF)m −−−−→ B ⊗A H0(X,F(m))
∥∥∥

y

(B ⊗A MF)m −−−−→ H0(XSpec B,FSpec B(m))

. (4.8.2)

where the right vertical map is the base change map of (1.11.1). It follows from→

Theorem (2.2)(1) that the horizontal maps of diagram (4.8.1) and thus of diagram→→

(4.8.2) are isomorphisms for big m. Consequently the right vertical base change→

map of (4.8.2) is an isomorphism for big m.→

(4.11) Lemma. Assume that S = SpecA, that X is a closed subscheme of P(E),
and that F is coherent. There is an m0 such that for all m ≥ m0 and for all points
s ∈ SpecA the following two assertions hold:

(1) We have that H i(XSpec κ(s),FSpec κ(s)(m)) = 0 for i > 0.
(2) The base change map

κ(s) ⊗A H
0(X,F(m)) → H0(XSpec κ(s),FSpec κ(s)(m))

is an isomorphism.

Proof. It follows from Proposition (3.18) that we can find a finite number of locally→
closed reduced subschemes of SpecA that cover SpecA and such that F is flat over
each of the subschemes. If necessary, covering each of these reduced subschemes
with a finite number of open affine sets, we can cover SpecA with a finite number
of locally closed reduced affine subschemes Sj = SpecBj such that FSj

is flat over
Sj .

From Theorem (2.2)(2) it follows that we can find an m1 such that we have→

Hi(Sj,FSj
(m)) = 0 for m ≥ m1 for all j and all i > 0. Hence it follows from

Theorem (4.7) applied to the flat OSj
–module FSj

that for m ≥ m1 and all j, and→
for all points s ∈ Sj , we have that H i(XSpec κ(s),FSpec κ(s)(m)) = 0 for i > 0 and
that the base change map

κ(s) ⊗Bj
H0(XSj

,FSj
(m)) → H0(XSpec κ(s),FSpec κ(s)(m)) (4.11.1)

is an isomorphism. In particular we have proved assertion (1).
It follows from Proposition (4.10) that we can choose an m2 such that the base→

change map
Bj ⊗A H

0(X,F(m)) → H0(Sj,FSj
(m)) (4.11.2)
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is an isomorphism for m ≥ m2, and for all j. Let m ≥ m0 = max(m1,m2)
and let s ∈ S. Choose an Sj that contains s and let Sj = SpecBj. We obtain
isomorphisms

κ(s) ⊗A H
0(X,F(m)) = κ(s) ⊗Bj

(Bj ⊗A H0(X,F(m))

→ κ(s) ⊗Bj
H0(Sj ,FSj

(m)) → H0(XSpec κ(s),FSpec κ(s)(m))

where the left map is obtained from (4.11.2) and the right is given by (4.11.1).→→
Clearly the composite map is the base change map for the point s of A and we
have proved assertion (2).

We sum up the main results about projective spaces in this Section in the
following result:

(4.12) Theorem. Assume that S = SpecA, that X is a closed subscheme of
P(E), and that the OX–module F is coherent and flat over S. Then there is an
m0 such that for all m ≥ m0 we have that given morphisms T → SpecA and
g:U → T of noetherian schemes then:

(1) The OT –module fT ∗F(m) is locally free.
(2) There is an equality RifT ∗F(m) = 0 for each i > 0.
(3) The base change map

g∗fT ∗FT (m) → fU∗FU

is an isomorphism.

Proof. It follows from Lemma (4.11) that there is an m0 such that for all m ≥ m0→

and for all points s of S we have that H i(XSpec κ(s),FSpec κ(s)(m)) = 0 for i > 0.

Consequently it follows from (4.5.1) that for all m ≥ m0 and all points t of T we→

have that H i(XSpec κ(t),FSpec κ(t)(m)) = 0 for i > 0. It follows from Theorem (2.7)→

that RifT ∗F(m) is coherent for all i and m, and thus it follows from Theorem (4.9)→
that RifT ∗FT (m) = 0 for m ≥ m0 and i > 0. Hence we have proved assertion (2).
It follows from Theorem (4.7) that assertion (3) is a consequence of assertion (2).→

Assertion (1) is a consequence of (2) and Theorem (3.16)(1).→
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5. Hilbert polynomials.

(5.1) Setup. Given a noetherian ring A and a free A–module E of rang r+1. We
choose a basis e0, . . . , er of E. Denote by R = SymA(E) the symmetric algebra of
E over A and write P(E) = Proj(R).

Let X be a closed subscheme of P(E) with inclusion ι:X → P(E), and F a
coherent OX–module.

(5.2) Definition. Denote by Q[t] the polynomial ring in the variable t over the
rational numbers. For each positive integer d we define a polynomial

(
t
d

)
in Q[t]

by (
t

d

)
=
t(t− 1)(t− 2) · · · (t− d+ 1)

d!
= td/d! + cd−1t

d−1 + · · ·+ c0

and we let
(

t
0

)
= 1.

(5.3) Note. For each positive integer e we define an operator ∆e on all functions
f :Z → Z by

∆ef(m) = f(m+ e) − f(m).

We let ∆ = ∆1. Then ∆
(

t
d

)
=

(
t

d−1

)
.

For each non–negative integer d we have that
(

t
d

)
defines a function Z → Z and

we have that

∆e

(
t

d

)
=

(
t+ e

d

)
−

(
t

d

)
= e

td−1

(d− 1)!
+ bd−2t

d−2 + · · · + b0.

Thus the polynomials ∆e

(
t
1

)
,∆e

(
t
2

)
, . . . form a Q–basis for Q[t]. In particular

every polynomial Q ∈ Q[t] of degree d − 1 can be written in the form ∆eP = Q
for a polynomial P (t) of degree d.

(5.4) Lemma. Given a polynomial P (t) ∈ Q[t] of degree d.

(1) There is an m0 such that P (m) ∈ Z, for m ≥ m0, there exist integers
c0, . . . , cd such that

P (t) = cd

(
t

d

)
+ cd−1

(
t

d− 1

)
+ · · ·+ c0.

(2) Given a function f :Z → Z and a polynomial Q(t) ∈ Q[t] of degree d − 1
such that

∆ef(m) = f(m+ e) − f(m) = Q(m),

for all m. Then there is a polynomial P (t) ∈ Q[t] of degree d such that

f(em) = P (em)

for all m. The polynomial P (t) satisfies ∆eP = Q.
\hilball.tex
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Proof. Write P (t) = cd
(

t
d

)
+ cd−1

(
t

d−1

)
+ · · ·+ c0 with c0, . . . , cd in Q.

We prove assertion (1) by induction on d. The assertion holds trivially for d = 0.
By the induction assumption the assertion holds for the polynomial ∆P (t) =
cd

(
t

d−1

)
+ · · ·+ c1 of degree d− 1. We conclude that c1, . . . , cd are integers. Then

P (m) − cd
(
m
d

)
− · · · − c1

(
m
1

)
= c0 is an integer for m ≥ m0. We have proved the

first assertion.
To prove the second assertion we use the first assertion to write Q(t) in the

form Q(t) = bd−1

(
t

d−1

)
+ · · ·+ b0 where b0, . . . , bd−1 are integers. We saw in Note

(5.3) that there is a polynomial P1(t) = cd
(

t
d

)
+ · · · + c1

(
t
1

)
in Q[t] of degree→

d such that ∆eP1 = Q. Then ∆e(f − P1) = 0. Consequently we obtain that
(f − P1)(em) = (f − P1)(e(m− 1)) = · · · = (f − P1)(0). Write b0 = (f − P1)(0).
Then f(em) = (P1 +b0)(em) for all m and thus f(em) = P (em) with P = P1 +b0.
We have proved the first assertion of (2). The second assertion of the Lemma
follows from the equality ∆e(P ) = ∆eP1 = Q.

(5.5) Theorem. Assume that A is an artinian ring. Then

χF (m) =
r∑

i=0

(−1)ilA
(
Hi(X,F(m))

)

is a polynomial in m of degree dim SuppF , and the coefficient of the term of
highest degree is positive.

Proof. To simplify the notation we observe that it follows from the equalities
Hi(X,F(m)) = H i(P(E), ι∗(F(m))) = H i(P(E), (ι∗F)(m)) of Note (1.6) and→

Setup (2.1) that it suffices to prove the Theorem when X = P(E).→
We shall prove the Theorem by induction on the dimension s of the support

SuppF of F = M̃ , where M = MF is the finitely generated R–module of Setup
(2.1). When s < 0 we have that F = 0 and the statement is true. Assume that→

s ≥ 0. It follows from Lemma (2.6) that M has a finite filtration whose quotients→
are isomorphic to (R/P )[d], where P is a prime ideal in R. The support of F is
the union of the irreducible varieties Z(P ) in P(E). Since lA and χF are additive
it suffices to prove that the Theorem holds when F is the sheaf associated to

the R–module L = (R/P )[d]. We have that L̃ = 0 when P contains the ideal
(e0, . . . , er). Hence we can assume that the ideal P does not contain (e0, . . . , er).
Since we assumed that s ≥ 0 there exists such an ideal P .

Let P = P0 ⊂ P1 ⊂ · · · ⊂ Ps be a maximal sequence of homogeneous prime
ideals in R such that (e0, . . . , er) is not contained in Ps. Choose a homogeneous
element f ∈ P1 \ P of degree d. (M̊a gjøre s = 0. Ta ei /∈ P = P0) We obtain an
exact sequence

0 → L
f
−→ L[d] → N → 0. (5.5.1)
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The dimension of Supp Ñ is s−1 because f defines an isomorphism at the generic

point P of Z(P ) and P1 is contained in Supp Ñ . From the long exact sequence of

cohomology corresponding to the seqence 0 → F
f
−→ F(d) → Ñ → 0 associated to

(5.5.1) we obtain that→

∆dχF (m) = χF (m+ d) − χF (m) = χ
Ñ

(m).

It follows from the induction assumption that χ
Ñ

(m) is a polynomial of degree
s − 1 whose coefficient of the term of degree s − 1 is positive. We obtain from
Lemma (5.4)(2) that there is a polynomial P (t) ∈ Q[t] of degree s whose coefficient→
of the term of degree s is positive and such that χF (dm) = P (dm) for all m.

Since (e0, . . . , er) is not in P1 we can choose an ei /∈ P1. Then eif ∈ P1 \ P .
The same reasoning as above shows that χF (m+ d+ 1)− χF (m) is a polynomial
in m. Consequently we have that

∆χF (m+ d) = χF (m+ d+ 1) − χF (m) + χF (m) − χF (m+ d)

is a polynomial in m. It follows from Lemma (5.4)(2) with e = 1 that there is a→
polynomial P1(t) ∈ Q[t] such that χF (m) = P1(m). Then P (md) = χF (md) =
P1(md) and thus P (t) = P1(t). Consequently χF (m) = P (m) and we have proved
that χF is a polynomial of degree s whose term of degree s has positive coefficient.

(5.6) Corollary. With the assumptions of the Theorem there is an m0 such that
lA((MF)m) is a polynomial in m for m ≥ m0, where MF is the module of Setup

(2.1) such that F = M̃F .→

Proof. The proof follows from the Theorem and Theorem (2.2)(1).→

(5.7) Definition. The polynomial χF of Theorem (5.5) is called the Hilbert→

polynomial of F , and the polynomial of Corollary (5.6) that gives lA((MF)m) for→
big m is called the Hilbert polynomial of the R/I–module M . For any ring A we
write

χF,s(m) = χF,P (m) =
r∑

i=0

(−1)i dimκ(s)H
i(XSpec κ(s),FSpec κ(s)(m)).

for each point s of SpecA with corresponding prime ideal P .

(5.8) Note. Let K be a field and SpecK → SpecA a morphism. Denote by s the
image point of the map. It follows from Note (4.5) that we have χF,s = χFSpec K ,(o).→
In particular, given a morphism g:T → SpecA, we obtain, for each point t of T
that χF,g(t) = χFT ,t.
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Moreover, it follows from Proposition (4.10) and Theorem (2.2) that there is→→
an m0 depending on s such that H i(XSpec K ,FSpec K(m)) = 0 for i > 0 and such
that the base change map

K ⊗A H0(X,F(m)) → H0(XSpec K ,FSpec K(m))

is an isomorphism for m ≥ m0. We obtain that

χF,s(m) = dimK(K ⊗A H0(X,F(m)))

for m ≥ m0 where m0 depends on s.

(5.9) Lemma. Given a local noetherian integral domain A and let k and K be
the residue field, respectively the fraction field of A. Let F be a finitely generated
A–module. If

d = dimk(k ⊗A F ) = dimK(K ⊗A F )

we have that F is a free A–module of rank d.

Proof. By assumption we have that d = dimk(k⊗AF ). It follows from Nakayama’s
Lemma that we have a surjective map Ad → F of A–modules. Let L be the kernel
of this map. Since K is A–flat we obtain an exact sequence

0 → K ⊗A L→ K ⊗A Ad → K ⊗A F → 0.

of vectorspaces over K. Since d = dimK(K ⊗A F ) by assumption the surjection
K ⊗A Ad → K ⊗A F must be an isomorphism. Hence K ⊗A L = 0. However
the map L → K ⊗A L which sends l to 1 ⊗ l is injective because it is induced by
the composite L → Ad → K ⊗A Ad of two injections. Hence L = 0, and F is
isomorphic to Ad.

(5.10) Theorem. Assume that SpecA is connected.

(1) If F is flat over SpecA then the polynomial χF,s is independent of s ∈
SpecA.

(2) If A is integral and χF,s is independent of s ∈ SpecA, then F is flat over
SpecA.

Proof. Assume that F is flat over SpecA. It follows from Theorem (2.2) that→

Hi(X,F(m)) = 0 for i > 0 and for big m. Moreover it follows from Theorem (2.7)→

that f∗F(m) is coherent for all m. Consequently it follows from Theorem (3.16)(1)→
that f∗F(m) is locally free. Since SpecA is connected we have that f∗F(m)

has constant rank r(m) on SpecA. It follows from the equality ˜H0(X,F(m)) =
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f∗F(m) of (1.7.4) that AP ⊗AH
0(X,F(m)) is a free AP –module of rank r(m) for→

all prime ideals P in A. Consequently we have that

r(m) = dimκ(P )

(
κ(P ) ⊗AP

AP ⊗A H0(X,F(m))
)

= dimκ(P )

(
κ(P ) ⊗A H0(X,F(m))

)
.

From Proposition (4.10) it follows that the base change map→

κ(P ) ⊗A H0(X,F(m)) → H0(XSpec κ(P ),FSpec κ(P )(m))

is an isomorphism for big m. Consequently we have that

r(m) = dimκ(P )

(
H0(XSpec κ(P ),FSpec κ(P )(m))

)
= χF,P (m)

for big m. Hence χF,P is independent of P .
Conversely, assume that A is integral and that χF,P is independent of the prime

ideal P of A. Denote by s the point corresponding to the prime ideal P . Let K be
the fraction field of A. It follows from Proposition (4.10) applied to SpecAP and→
the points s respectively (0) of SpecAP that we, for big m, have isomorphisms

κ(P ) ⊗AP
H0(XSpec AP

,FSpec AP
(m)) → H0(XSpec κ(P ),FSpec κ(P )(m)), (5.9.1)

respectively

K ⊗AP
H0(XSpec AP

,FSpec AP
(m)) → H0(XSpec K ,FSpec K(m)). (5.9.2)

Since χF,P (m) = χF,(0)(m) for all m, by assumption, and we have that both

H0(XSpec κ(P ),FSpec κ(P )(m)) and H0(XSpec K ,FSpec K(m)) are zero for big m by

Theorem (2.2) we have that the right hand sides, and therefore the left hand sides,→

of (5.9.1) respectively (5.9.2) have the same dimension over κ(P ) respectively over→→

K. It follows from Lemma (5.9) that H0(XSpec AP
,FSpec AP

(m)) is a free AP –→

module. Since SpecAP → SpecA is flat, it follows from Theorem (4.4) that we,→
for each m, have an isomorphism

AP ⊗A H
0(X,F(m)) → H0(XSpec AP

,FSpec AP
(m)).

Consequently we have that AP ⊗A H0(X,F(m)) is free for big m. Since the A–
module H0(X,F(m)) is finitely generated by Theorem (2.7) we have that f∗F(m)→

is a locally free OSpec A–module for big m. It follows from Theorem (3.16)(2) that→
F is flat over SpecA.

(5.11) Proposition. There is only a finite set of polynomials {Pj}j∈J such that
Pj(n) = χF,s(n) for some s ∈ SpecA.

Proof. It follows from Proposition (3.19) that we can find a finite number of locally→
closed reduced subschemes S1, . . . , Sm of SpecA that cover SpecA and such that
FSi

is flat over Si. It follows from (5.10(1)) that χF,s is independent of s ∈ Si→
and we have proved the Proposition.
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6. Castelnuovo–Mumford regularity.

(6.1) Setup. Assume that k = A is a field and E a vector space of dimension
r+ 1. We choose a basis e0, . . . , er of E. Denote by R = SymA(E) the symmetric
algebra of E over A and write P(E) = Proj(R).

Let ι:X → P(E) be a closed immersion of a scheme X into P(E) and let F
be a coherent OX–module. Given a closed immersion j:H → X we shall write
F|H = j∗F .

(6.2) Definition. We say that F is m–regular if

Hi(X,F(m− i)) = 0, for i > 0.

(6.3) Remark. It follows from Theorem (2.2) there is an m0(F) such that F is→
m–regular for m ≥ m0(F).

(6.4) Note. For every field extension k ⊆ K, we have:

(1) The OX–module F is m–regular if and only if FSpec K is m–regular.
(2) The map (2.4.2) for k = A→

βm(SpecA):H0(X,F(m))⊗k H
0(X,OX(1)) → H0(X,F(m+ 1)) (6.4.1)

is surjective if and only if the map (2.4.1) for K→

βm(SpecK):H0(XSpec K ,FSpec K(m)) ⊗K H0(XSpec K ,OXK
(1))

→ H0(XSpec K ,FSpec K(m+ 1))

is surjective.

These assertions follow from Note (4.5).→

(6.5) Lemma. Assume that k = A is an infinite field. Given a non–zero coherent
sheaf G on P(E). For h ∈ E we let H = Z(h) = P(E/Ah) be the corresponding
hyperplane in P(E) and j:H → P(E) the corresponding closed immersion. Then,
for a general choice of h we have that the sequence

0 → G(−1)
h
−→ G → j∗(G|H) → 0 (6.5.1)

is exact, where the map G(−1)
h
−→ G is obtained from multiplication by the element

h ∈ E. Moreover we have that dim Supp j∗(G|H) < dim Supp G.

Proof. We check the exactness on the open subsets Ui = D+(ei) of X. The Lemma

assert that for a general linear form h ∈ E we have that the map M(ei)
h/ei
−−−→M(ei)

\hilball.tex
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is injective for i = 0, . . . , r, where M = MG is the R–module of Setup (2.1)→

such that G = M̃ . When M(ei) = 0 we can choose any h. Otherwise we must
choose h such that h/ei is not contained in any associated prime of M(ei) in
A[e0/ei, . . . , er/ei]. For every associated prime P , the subspace EP of E consisting
of the elements h such that h/ei is in P is a proper subspace, since ei/ei = 1 is not
in EP . Since k = A is infinite E can not be the union of the vector spaces consisting
subspaces EP for the finite set of associated primes and all i = 0, 1, . . . , r. Any h
outside of the union of these spaces will give a hyperplane satisfying the assertions
of the Lemma.

(6.6) Note. Assume that k = A is an infinite field. If follows from Lemma (6.5)→
that, for a general hyperplane j:H ⊆ P(E), we have an exact sequence

0 → G(−1)
h
−→ G → j∗(G|H) → 0.

Consequently we obtain a commutative diagram

H0(P(E),G(m)) ⊗k H
0(P(E),OP(E)(1))

βm
−−−−→ H0(P(E),G(m+ 1))

ρm⊗γ

y
yρm+1

H0(H, (G|H)(m))⊗k H
0(H,OH(1)) −−−−→ H0(H, (G|H)(m+ 1)).

(6.6.1)

Here γ is surjective because H1(P(E),OX(1)) = 0.

(6.7) Definition. We say that F is generated by global sections if the map

f∗f∗F → F

is surjective.

(6.8) Proposition. Assume that F is m–regular. Then

(1) F is (m+ 1)–regular.
(2) The map

H0(X,F(m))⊗k H
0(X,OX(1)) → H0(X,F(m+ 1))

is surjective.
(3) F(m) is generated by global sections.

Proof. To simplify the proof of the Proposition we observe that it follows from the
equalities H i(X,F(m)) = H i(P(E), ι∗(F(m))) = H i(P(E), (ι∗F)(m)) and the
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isomorphism ι∗ι∗F → F of Note (1.6) and Setup (2.1) that it suffices to prove the→→
Theorem when X = P(E).

We observed in Note (2.4) that (3) is a consequence of (2). To prove the two first→

assertions it follows from Note (6.4) that we may assume that k = A is infinite.→
We prove the Proposition by induction on the dimension r of X = P(E). The
case r = 0 is clear. When r > 0 we choose a hyperplane j:H → P(E) of P(E) as
in Lemma (6.5). From the short exact sequence (6.5.1) tensored by OP(E)(m− i)→→
we obtain the piece

· · · → Hi(P(E),F(m− i)) →

Hi(P(E), j∗(F|H)(m− i)) → H i+1(P(E),F(m− i− 1)) → · · ·

of the corresponding long exact sequence. Since F is m–regular it follows that
F|H is m–regular.

From the short exact sequence (6.5.1), with F = G tensored by OP(E)(m + 1)→
we obtain an exact sequence

Hi(P(E),F(m− i)) → H i(F(m+ 1 − i)) → H i(H, (F|H)(m+ 1 − i))

The left hand term is 0 by the m–regularity of F and the right hand term is 0 be-
cause F|H is (m+1)–regular by the induction assumption. HenceH i(P(E),F(m+
1 − i)) = 0, and we have proved the first assertion of the Proposition.

To prove the second assertion of the Proposition we note that, by the induction
assumption, we have that the bottom map of diagram (6.6.1) is surjective. Since F→
is m–regular we have that ρm:H0(P(E),F(m)) → H0(H,F|H(m)) is surjective,
the cokernel being H1(P(E),F(m−1)). Hence the map ρm⊗γ of diagram (6.6.1)→
is surjective. To prove that βm is surjective it therefore suffices to check that
Ker ρm+1 ⊆ Im βm. However, we have that Ker ρm+1 = hH0(P(E),F(m)) =
βm(H0(P(E),F(m))⊗ 〈h〉), where h ∈ E is the linear form that defines H.

(6.9) Lemma. Given a non–zero coherent OP(E)–module G. Let j:H ⊆ P(E) be
a hyperplane such that the sequence

0 → G(−1)
h
−→ G → j∗(G|H) → 0 (6.9.1)

of (6.5.1) is exact. Assume that G|H is m1–regular. Then:→

(1) We have that dimk H
1(P(E),G(m)) ≤ dimk H

1(P(E),G(m− 1)), for m ≥
m1

(2) If m ≥ m1 and H1(P(E),G(m− 1)) 6= 0, then

dimk H
1(P(E),G(m)) < dimk H

1(P(E),G(m− 1)).
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In particular, if dimk H
1(P(E),G(m− 1)) = d+ 1 we have that H1(P(E),G(m+

d)) = 0.

Proof. It follows from the long exact sequence associated to (6.9.1) tensored by→
OP(E)(m) that we have an exact sequence

H0(P(E),G(m))
ρm−−→ H0(P(E), j∗(G|H)(m)) →

H1(P(E),G(m− 1)) → H1(P(E),G(m)) → 0 (6.9.2)

for m ≥ m1. In (6.9.2) we have 0 to the right because H1(P(E), j∗(G|H)(m)) =→
H1(H, (G|H)(m)) = 0, which follows from the assumption that G|H is m1–regular
and thus, by Proposition (6.8), is m–regular for all m ≥ m1. In particular we→
have that dimk H

1(P(E),G(m)) ≤ dimk H
1(P(E),G(m − 1)), which is the first

assertion of the Lemma.
The second part of the Lemma asserts that when m ≥ m1 and H1(P(E),G(m−

1)) 6= 0, then ρm is not surjective. Assume, to the contrary, that H1(P(E),G(m−
1)) 6= 0 and that ρm is surjective. We shall prove by induction on n that ρn is sur-
jective for n ≥ m. Assume that ρn is surjective. Since G|H is m1–regular it follows
from Proposition (6.8)(2) that the bottom line of diagram (6.6.1) with m = n is→→

surjective. Since ρn surjective implies that the left vertical map of diagram (6.6.1)→
is surjective form = n, we conclude that ρn+1 is surjective. Since ρm, ρm+1, . . . are
surjective it follows from (6.9.2) that H1(P(E),G(m − 1)) = H1(P(E),G(m)) =→

· · · = 0, and it follows from Theorem (2.2) that H1(P(E),G(n)) = 0 for big n→
and we obtain a contradiction to the assumption that H1(P(E),G(m − 1)) 6= 0.
Hence, ρm is not surjective and we have proved the second part of the Lemma.

The last assertion follows from the inequalties dimk H
1(P(E),G(m1 − 1)) ≥

dimk H
1(P(E),G(m1)) ≥ · · · ≥ dimk H

1(P(E),G(m1 + d)), where we have that
dimk H

1(P(E),G(n− 1)) > dimk H
1(P(E),G(n)) if H1(P(E),G(n− 1)) 6= 0.

(6.10) Theorem. Let P ∈ Q[t] be a polynomial. Then there is an integer m0(P )
such the kernel of every surjection F → G to a coherent OX–module G with Hilbert
polynomial P is m0(P )–regular.

Proof. It follows from Note (6.4) that we can assume that the field k = A is→
infinite. We can also assume that X = P(E). Indeed the quotients F → G on X
with kernel K give quotients ι∗F → ι∗G on P(E) with kernel i∗K. and we have
that HiX,K(m)) = Hi(P(E), ι∗K(m)) by Note (1.6) and Setup (2.1).→→

We shall prove the Theorem by induction on the dimension r of X = P(E).
The case r = 0 is clear. Assume that r > 0 and that the Theorem holds for r− 1.
Fix a quotient F → G with kernel K. It follows from Lemma (6.5) that we can→
choose a hyperplane j:H ⊆ P(E) such that the sequences

0 → G(−1)
h
−→ G → j∗(G|H) → 0 (6.10.1)
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and

0 → F(−1)
h
−→ F → j∗(F|H) → 0

are exact. Hence we obtain a surjection F|H → G|H with kernel K|H, and an
exact sequence

0 → K(−1)
h
−→ K → j∗(K|H) → 0. (6.10.2)

From Sequence (6.10.1) we obtain that→

χG(m) − χG(m− 1) = χG|H(m).

Hence the Hilbert polynomial Q of G|H is given by P (m) − P (m − 1) = Q(m),
that depends on P only. It follows from the induction assumption that there is a
number m0(Q) = m1(P ) ≥ 0 such that the kernel of all surjective maps F|H → H,
where H has Hilbert polynomial Q, have an m0(Q)–regular kernel. In particular
we have that K|H is m0(Q)–regular. We choose m0(Q) > 0 so big that F is
m–regular for all m ≥ m0(Q). This is possible, as noted in (6.3). From Sequence→

(6.10.2) tensored by OP(E)(m+1− i) and Note (1.6) we obtain the exact sequence→→

Hi−1(H, j∗(K|H)(m+ 1 − i)) → H i(P(E),K(m− i))

→ Hi(P(E),K(m+ 1 − i)) → H i(H, j∗(K|H)(m+ 1 − i)).

Since K|H is m0(Q)–regular, and thus m–regular for m ≥ m0(Q) by Proposition
(6.8)(1), we have that the left and right hand terms are zero for m ≥ m0(Q).→
Hence we obtain that H i(P(E),K(m − i)) = H i(P(E),K(m + 1 − i)), and thus
Hi(P(E),K(m − i)) = H i(P(E),K(m − i + 1)) = · · · for m ≥ m0(Q) and i ≥ 2.
It follows from Theorem (2.2) that H i(P(E),K(m − i)) = 0 for i ≥ 2. From the→
short exact sequence 0 → K → F → G → 0 tensored by OP(E)(m − i) we obtain
the exact sequence

Hi(P(E),F(m− i)) → H i(P(E),G(m− i)) → H i+1(P(E),K(m− i)).

We have chosen m0(Q) so big that F is m0(Q)–regular. Hence we have that
Hi(P(E),K(m − i)) = 0 for i ≥ 2 and m ≥ m0(Q) we get that H i(P(E),G(m−
i)) = 0 for i ≥ 1 and m ≥ m0(Q). Consequently we have that G is m0(Q)–
regular. We obtain from Proposition (6.8)(1) that H i(P(E),G(m0(Q) − 1)) = 0→
for i ≥ 1. Hence we have that dimk H

0(P(E),G(m0(Q)− 1)) = χG(m0(Q) − 1) =
P (m0(Q) − 1) = d0(P ), depends only on P . We have a surjection

H0(P(E),G(m0(Q) − 1)) → H1(P(E),K(m0(Q) − 1))
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because H1(P(E),F(m0(Q) − 1)) = 0. Hence we have that

dimk H
1(P(E),K(m0(Q) − 1) ≤ d0(P ).

From Lemma (6.9) it follows that→

H1(P(E),K(m0(Q) + d0(P ) − 1)) = 0.

Together with the equalities H i(P(E),K(m − i)) = 0 for i ≥ 2 and m ≥ m0(Q)
we see that if we choose

m0(P ) = m0(Q) + d0(P ) = m1(P ) + d0(P )

we have that K is m0(P )–regular.

(6.11) Note. Let K be the kernel of a surjection F → G of coherent OP(E)–

modules. We obtain that χK(m) + χG(m) = χF (m). It follows from Note (6.3)→
that there is an integer m0(F) such that F is m–regular for all m ≥ m0(F). From
the exact sequence

Hi−1(P(E),F(m− i)) → H i−1(P(E),G(m− i)) →

Hi(P(E),K(m− i)) → H i(P(E),F(m− i))

and Proposition (6.8)(1) we see that, for m ≥ m0(F) + r − 1, we have that K is→
m regular if and only if G is m − 1 regular and the map H0(P(E),F(m− i)) →
H0(P(E),G(m− i)) is surjective.
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7. Fitting ideals.

(7.1) Setup. Given a ring A and a finitely generated A–module M . Fix a
non–negative integer r. Choose generators m1, . . . ,ms for M and let

N = {(a1, . . . , as) ∈ An: a1m1 + · · ·+ asms = 0}.

Moreover, choose generators {nα = (aα,1, . . . , aα,s)}α∈I for the A–module N . We
denote by Ir the ideal in A generated by the (s−r)–minors of the (#I×s)–matrix
B = (aα,1, . . . , aα,s)α∈I . When (s − r) > min(#I, s) we let Ir = (0) and when
(s−r) ≤ 0 we let Ir = B. We have that 0 = I−1 ⊆ I0 ⊆ · · · ⊆ Is = B = Is+1 = · · · .

(7.2) Note. Given an element n = (a1, . . . , as) in N . Let J be the ideal in A
generated by the s− r minors of the ((#I +1)× s)–matrix C obtained from B by
adding (a1, . . . , as) as the first row. Then J = Ir.

It is clear that Ir ⊆ J because the matrix B is formed from the rows 2, 3, . . .
of C.

To prove the opposite inclusion we only have to show that the s − r–minors
containing the first row of C are contained in Ir. However, we have that n =
b1nα1

+ · · · bsnαt
, for some bi in B, and αi in I. Hence, the first row of C is a sum

of rows α1+1, · · · , αt+1 multiplied with b1, . . . , bt respectively. Hence the (s−r)–
minors containing the first row can be expanded as a sum of the (s − r)–minors
containing rows α1 + 1, . . . , αt + 1 multiplied by b1, . . . , bt. We consequently have
that J ⊆ Ir.

By (transfinite, if necessary) induction, we obtain that the ideal in A obtained
from the (s− r)–minors of the matrix obtained by adding to B rows coming from
any set of elements of N , is equal to Ir. In particular we obtain that the ideal Ir

is independent of the choice of generators nα of N . Indeed, if we chose another
set of generators for N , we have that the ideal obtained from the union of the two
sets of generators is equal to the ideal obtained from each set.

(7.3) Note. Let m be an element of M . Moreover, let

P = {(a, a1, . . . , as) ∈ As+1: am+ a1m1 + · · ·+ asms = 0}.

Then, if we writem = −b1m1−· · ·−bsms, with bi in A, we have that P contains the
element p = (1, b1, . . . , bs), and that the A–module P is generated by the element p
and elements {pα = (0, aα,1, . . . , aα,s)}α∈I, where nα = {(aα,1, . . . , aα,s)}α∈I are
generators for N . Let J be the ideal in A generated by the (s−r+1)–minors of the
((#I+1)×(s+1))–matrix whose first row is the the element p and whose (α+1)’st
row consists of the coordinates of pα. It is clear that we have an equality J = Ir

and it follows from Note (7.2) that J is independent of the choice of generators→
\hilball.tex
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of P . We have shown that Ir is the ideal defined by the (s + 1 − r)–minors of
the matrix obtained from s + 1 generators m1, . . . ,ms,m of M and any set of
generators of P . By induction on t we obtain that Ir is the ideal obtained from
the (s+ t− r)–minors of the (#I + t, s+ t)–matrix obtained from s+ t elements
m1, . . . ,ms, n1, . . . , nt, and any set of generators of the A–module

{(a1, . . . , as, b1, . . . , bt)|a1m1 + · · · + asms + b1m1 + · · ·+ btmt = 0}.

In particular we have that the ideal Ir is independent of the choice of generators
m1, . . . ,ms of M . Indeed, if we had another set of generators we have that the
ideal obtained from the union of the two sets of generators is equal to the ideal
obtained from each set.

(7.4) Definition. Let M be a finitely generated A–module and r a non–negative
integer. We saw in Notes (7.2) and (7.3) that the ideal in A generated by the→→
(s − r)–minors of the matrix obtained from a set of generators m1, . . . ,ms of M
by taking as rows the set of generators for the A–module N = {(a1, . . . , as) ∈
As|

∑s
i=1 aimi = 0} is independent of s, of the choice of generators of both of M ,

and of the corresponding N . Thus the ideal depends only on M and r. We denote
the ideal by Fr(M) and we call it the r’th Fitting ideal of the A–module M .

(7.5) Remark. We have inclusions 0 = F−1(M) ⊆ F0(M) ⊆ · · · ⊆ Fr−1(M) ⊆
Fr(M). If M can be generated by s elements we have that A = Fs(M) =
Fs+1(M) = · · · .

(7.6) Note. Given generators m1, . . . ,ms for the A–module M . We obtain a
surjection

As →M

and it is clear that N of Setup (7.1) is the kernel to this map. The choice of→
generators {nα}α∈I for N gives an exact sequence

A⊕I → B⊕s →M → 0

of A–modules. It follows from Definition (7.4) that Fr(M) is the ideal of A gener-→

ated by the (s− r)–minors of the ((#I) × s)–matrix A⊕I → A⊕s.

(7.7) Lemma. Let B be an A–algebra and let M be a finitely generated A–module.
Then we have an equality

Fr(M)B = Fr(B ⊗A M)

of ideals in B.
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Proof. It follows from Remark (7.5) that we have a presentation→

A⊕I β
−→ A⊗s →M → 0

of M . We obtain a presentation

B ⊗A A⊕I = B⊕I β⊗idB−−−−→ B ⊗A A⊕s = Bs −→ B ⊗A M → 0

of B ⊗A M . It follows from Remark (7.6) that Fr(M) and Fr(B ⊗A M) are→
generated by the (s − r)–minors of β respectively β ⊗ idB . The Lemma follows
since the images of the entires of β in B are the same as the entries of β ⊗A idB.

(7.8) Proposition. Given a noetherian ring A and a finitely generated A–module
M . Let P be a prime ideal of A. Then r is the minimal number of generators for
the AP –module MP if and only if Fr−1(M) ⊆ P and Fr(M) 6⊆ P .

We have that MP is free AP –module of rank r if and only if Fr−1(M)AP = 0
and Fr(M) 6⊆ P .

Proof. When the minimal number of generators for MP is r it follows from the
definition of Fitting ideals and Lemma (7.7) that Fr(M)AP = Fr(MP ) = AP .→
Thus we have that Fr(M) 6⊆ P . It follows from Nakayamas Lemma that we

have a presentation At
P

β
−→ Ar

P → MP → 0 which induces an isomorphism
(AP /PAP )r → MP /PMP . Hence all the elements of the matrix β:At

P → Ar
P

are in PAP . Since Fr−1(M)AP is generated by these elements it follows that
Fr−1(M)AP 6= 0. Multiplying, if necessary, with a unit in AP we may assume that
the matrix β is the image of a matrix with coefficients in A. Then Fr−1(M) ⊆ P .

When MP is free we can choose t = 0 and thus obtain that Fr−1(M) = 0.
Conversely, assume that Fr(M)AP = AP that Fr(M)AP ⊆ PAP . Choose

a presentation At
P

β
−→ As

P → MP . If necessay, we may multiply the β with a
unit in AP such that the coefficients of β are images of elements in A. Since
Fr(M)AP = AP there is an (s − r)–minor of the matrix β which is invertible.
Reordering, if necessary, the bases for As

P and At
P we can assume that this minor

is the determinant of the matrix in the upper left corner of β.
Reordering the first s − r rows and coluns, if necessary, and using row and

column operations, we can make the upper left (s − r) × (s − r)–matrix in the
upper left corner the unit matrix. We can then use row and column operations
on β to put β in a form where the r × (s − r)–matrix in the lower left corner
and the (s − r) × (t − s + r)–matrix in the upper right corner are zero. Since
we have assumed that Fr−1(M)AP ⊆ PAP we have that the coordinates of the
r × (t − s + r)–matrix in the lower right corner are in PAP . It follows that the
surjection (AP /PAP )s →MP /PMP induces an isomorphism between MP /PMP
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and the vector subspace of (AP /PAP )s generated by the r last basis vectors.
Hence the minimal number of generators for M is r.

When Fr−1(M)AP = 0 we have that the r× (t− s+ r)–matrix in the lower left
corner is zero and thus that As

P → MP induces an isomorphism between M and
the submodule of As

P generated by the last r basis vectors. Hence MP is free of
rank n.

(7.9) Definition. Let S be a scheme and G a coherent OS–module. It follows
from Lemma (7.7) that the ideals Fr(G(SpecA)) for all open affine subschemes→
SpecA of S define a quasi–coherent ideal Fr(G) of OS such that Fr(G)(SpecA) =
Fr(G(SpecA)). We call this ideal the r’th Fitting ideal of G in S .

(7.10) Remark. Corresponding to the inclusion 0 = Fr−1(M) ⊆ F0(M) ⊆
F1(M) ⊆ · · · ⊆ Fr−1(M) ⊆ Fr(M) of Remark (7.5) we obtain inclusions 0 =→
F−1(G) ⊆ F0(G) ⊆ F1(G) ⊆ · · · ⊆ Fr−1(G) ⊆ Fr(G).

(7.11) Proposition. Let g:T → S be a morphism and G a coherent OS–module.
We have that

Fr(g
∗G) = g∗(Fr(G))OT .

Proof. Let SpecA be an open subset of S and SpecB an open affine subset of
T mapping to SpecA by g. Moreover, let M = G(SpecA). By definition of the

Fitting ideals of G we have that Fr(g
∗G) = Fr( ˜B ⊗A M) and g∗(Fr(G))OSpec B =

˜Fr(M)B. Hence the Proposition follows from Lemma (7.7).→

(7.12) Proposition. Given a noetherian scheme S, a coherent OS–module G and
a point s of S. Then r is the minimal number of generators for the OS,s–module
Gs if and only if s ∈ Z(Fr−1(G)) \ Z(Fr(G)).

We have that Gs is a free OS,s–module of rank r if and only if Fr−1(G)s = 0
and Fr(G)s = OS,s.

Proof. Let SpecA be an open subset of S containing s and let P be the prime
ideal in A corresponding to the point s. Moreover, let M = G(Spec(A)). Then
Gs = MP and s ∈ Z(Fr−1(G)) if and only if P ⊇ Z(Fr−1(M). The Proposition
therefore follows from Proposition (7.8).→
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8. Flattening stratifications.

(8.1) Setup. Given a noetherian ring A and a free A–module E of rank r+1. Let
S be a noetherian scheme and f :X → S a morphism from a scheme X. Moreover,
let F be a coherent OX–module.

(8.2) Definition. A flattening stratification of F over S is a finite collection
{Si}i∈I of disjoint locally closed subschemes of S such that S is the set theoretic
union of the Si, and such that, for each morphism g:T → S, we have that FT is
flat over T if and only if g−1Si is open and closed in T .

In other words, given a morphism g:T → S from a connected scheme T , then
FT is flat over T if and only if g factors via one of the Si.

(8.3) Proposition. Let G be a coherent OS–module. For each non–negative in-
teger r there is a locally closed subscheme Sr of S such that a morphism g:T → S
factors via Sr if and only if g∗G is locally free of rank r, and Sr is empty ex-
cept for a finite number of integers. That is, the OS–module G has a flatttening
stratification over S.

Proof. We shall show that the locally closed subschemes

Sr = Z(Fr−1(G)) \ Z(Fr(G))

of S form a flattening stratification for G. It follows from Proposition (7.12)→
that g∗G is locally free of rank r if and only if Fr(g

∗G) = OT and Fr−1(g
∗G) =

0. However, it follows from Proposition (7.11) that g∗Fr(G)OT = Fr(g
∗G) and→

g∗Fr−1(G)OT = Fr−1(g
∗G). Hence g∗G is locally free if and only if we have that

the map g∗Fr(G) → OT is surjective and the map g∗Fr−1(G) → OT is zero. The
condition that the first map is surjective is equivalent to the condition that g
factors via S \Z(Fr(G)), and the condition that the second is zero is equivalent to
the condition that g factors via Z(Fr−1(G)).

The rank of G is limited by the maximum of the dimensions dimκ(s) Gs⊗OS,s
κ(s)

for s ∈ S, and the dimension is upper semi–continuous and therefore limited since
S is noetherian. Hence there is only a finite number of different schemes Sr.

(8.4) Lemma. (alt nedenfor gjøres for fast m?) Assume that X is a closed
subscheme of P(E) with structure map f . Given a morphism g:T → SpecA.
Assume that m0 is such that

Hi(XSpec κ(s),FSpec κ(s)(m)) = 0

for i > 0 and m ≥ m0. Then FT is flat over T if and only if f∗F(m)T is locally
free for m ≥ m0.
\hilball.tex
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When FT is flat we have that the base change map f∗FT (m) → fT∗FT (m) is
an isomorphism for m ≥ m0.

Proof. Assume that FT is flat over T . It follows from Proposition (4.9) that→
RifT∗FT (m) = 0 for i > 0 and m ≥ m0. Consequently it follows from Theorem
(4.7) that f∗F(m)T = fT∗FT (m) for m ≥ m0. Moreover it follows from Theorem→

(3.16)(1) applied to FT over T that fT∗FT (m) is locally free for m ≥ m0. Hence→
f∗F(m)T is locally free for m ≥ m0. We also proved the last assertion of the
Lemma.

Conversely, assume that f∗F(m)T is locally free for m ≥ m0. It follows from
Proposition (4.10) that f∗F(m)T = fT∗FT (m) for big m. Thus fT∗FT (m) is→

locally free for big m. It follows from Theorem (3.16)(2) that FT is flat over T .→

(8.5) Theorem. Assume that X is a closed subscheme of P(E). There is a
flattening stratification {SP }P∈Q[t] of F over SpecA such that for every morphism
g:T → SpecA we have that g factors via SP if and only if FT is flat over T with
Hilbert polynomial P .

Proof. It follows from Lemma (4.11) that we can choose an m0 such→

Hi(XSpec κ(s),FSpec κ(s)(m)) = 0 (8.5.1)

for i > 0 and

κ(s) ⊗A H
0(X,F(m)) → H0(XSpec κ(s),FSpec κ(s)(m))

is an isomorphism for m ≥ m0 and all points s ∈ SpecA. For m ≥ m0 choose a

stratification {Si(m)}i∈I(m) for f∗F(m) = ˜H0(X,F(m)) as in Proposition (8.3)→
such that f∗F(m)Si(m) is locally free of rank i. Since Si(m) is locally closed we
have an equality on fibers κ(s) ⊗OSi,s

(f∗F(m)Si(m))s = κ(s) ⊗OSpec A,s
f∗F(m)s.

The latter fiber is equal to κ(s) ⊗AP
H0(X,F(m))P = κ(P ) ⊗A H0(X,F(m)),

where P is the prime ideal in A corresponding to the point s. We obtain that the
rank of f∗F(m)Si(m) is equal to

dimκ(s)H
0(XSpec κ(s),FSpec κ(s)(m)) = χF,s(m)

for m ≥ m0. Hence the underlying set of Si(m) is

{s ∈ SpecA:χF,s(m) = i}.

Denote by {Tj(n)}j∈J (n) the stratification of Proposition (8.3) for the OSpec A–→
module Nn = ⊕n

i=0f∗F(m0+i). Since the sum Nn is locally free if and only if each
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summand is locally free we have, for a given j ∈ J (n), that Tj(n) is the disjoint
union of the sets

Si0(m0) ∩ · · · ∩ Sin
(m0 + n)

where j = i0 + · · ·+ in. We obtain that the underlying set of Tj(n) is the disjoint
union of the sets

{s ∈ SpecA:χF,s(m0 + h) = ih, for h = 0, . . . , n}. (8.5.2)

with j = i0 + · · ·+ in.
It follows from Theorem (5.5) that χF,s has degree at most r. When n ≥ r we→

therefore have that χF,s is defined by its values on m0, . . . ,m0 + r. In particular
the values ir+1, ir+2, . . . are determined by i0, . . . , ir. It follows that the χF,s are
the same for s ∈ S(m0) ∩ · · · ∩ S(m0 + r) and that for n ≥ r we have that the
underlying set of Tj(n) is the disjoint union of the sets

{s ∈ SpecA:χF,s(m0 + h) = ih for h = 0, . . . , r}

where j =
∑n

h=0 χF,s(m0 + h). We thus have a sequence Tj(r) ⊇ Tj(r + 1) ⊇ · · ·
of locally closed subschemes of SpecA with the same underlying set. It follows
that there is an n0 ≥ r such that Tj(n0) = Tj(n0 + 1) = · · · . Since there is only
a finite number of j’s, by the definition of a stratification we can choose n0 such
that the equality Tj(n0) = Tj(n0 + 1) = · · · holds for all indices j.

We have proved that a morphism g:T → SpecA factors via Tj(n0) if and only
if f∗F(m0 + i)Tj(n0) is locally free of rank Pj(m0 + i) for i = 0, 1, . . . . It follows

from (8.5.1) and Lemma (8.4) that g factors via Tj(n0) if and only if FTj(n0) is→→
flat over Tj(n0). It also follows that the rank of fTj(n0)∗FTj(n0)(m) is Pj(m) for
big m. In particular the Hilbert polynomial of FTj(n0) is Pj. We have proved that
the finite collection of sets {Tj(n0)}j∈J gives the asserted flattening stratification
for F over SpecA.

(8.6) Note. It follows from the definition of a stratification that there is only a
finite number of strata in Theorem (8.4). Moreover the strata are unique because→
if {S′

P } is another stratum, then each S ′
P must factor via SP , and conversely.

However, both are subschemes of SpecA and must therefore be equal.
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9. Representation of functors.

(9.1) Setup. Given a scheme S and a contravariant functor F from schemes over
S to sets. All schemes and morphisms will be taken over S. Given a scheme X over
S, we denote by hX the contravariant functor from schemes over S to sets which
sends a scheme T to the set of S–homomorphisms hX(T ) = HomS(T,X) from T
to X, and to a morphism h:U → T associates the map hX(h):hX(T ) → hX(U)
given by hX(h)(g) = gh, for all morphisms g:T → X.

(9.2) Note. There is a natural bijection between elements in F (X) and mor-
phisms of functors H:hX → F .

Given an element ξ ∈ F (X) we define a morphism

Hξ:hX → F

by Hξ(T )(g) = F (g)(ξ) for all S–schemes T and all S–morphisms g:T → X.
In this way we clearly obtain a morphism of functors hX → F . We have that
Hξ(X)(idX) = F (idX)(ξ) = ξ.

Conversely, given a morphism of functors H:hX → F . We obtain an element
ξH = H(X)(idX) in F (X) such that for all morphisms g:T → X we have that

H(T )(g) = H(T )hX(g)(idX) = F (g)H(X)(idX) = F (g)(ξH).

In particular we have that H = HξH
.

Hence we have that the map that sends ξ to Hξ, and the map that sends H to
ξH are inverses of each other.

(9.3) Definition. The functor F is representable , and is represented by a scheme
X if there is an element ξ ∈ F (X) such that the morphism Hξ:hX → F of Note

(9.2) is an isomorphism. We call ξ the universal element .→

(9.4) Note. It follows from the definition of a representable functor that the
scheme X representing the functor F is determined up to isomorphisms.

(9.5) Definition. Given a contravariant functor G from schemes over S to sets.
We say that G is a subfunctor of F if G(T ) ⊆ F (T ) for all schemes T over S
and we have that G(g)(η) = F (g)(η) for all morphisms g:U → T over S and all
η ∈ G(T ).

(9.6) Example. Given a scheme X over S and let i:Y → X be the immersion of a
subscheme Y of X. Two different morphisms g, h:T → Y give different morphisms
ig, ih:T → X. Hence we have that hY is a subfunctor of hX . We have that a
morphism g:T → X lies in hY (T ) if and only if g factors via i : Y → X.
\hilball.tex



12 January 2006 9. Representation of functors repr 9.2

(9.7) Note. Given a subfunctor G of F and let Hξ:hX → F be the morphism of
functors given by an element ξ ∈ F (X). We obtain a subfunctor hX ×F G of hX

which, for every scheme T over S is given by

(hX ×F G)(T ) = hX(T ) ×F (T ) G(T ) = {g ∈ hX (T ):Hξ(T )(g) ∈ G(T )}

and which to a morphism h:U → T associates the map

hX(h) ×F (h) G(h):hX(T ) ×F (T ) G(T ) → hX(U) ×F (U) G(U).

(9.8) Definition. A subfunctor G of F is locally closed if there, for every
morphism Hξ:hX → F of functors, is a subscheme XG,ξ of X such that hXG,ξ

=
hX ×F G, where hXG,ξ

is considered as a subfunctor of hX via the immersion
i:XG,ξ → X.

The subfunctor G is open or closed if the scheme XG,ξ is an open, respectively
closed, subscheme of X.

(9.9) Note. It is immediate from Definition (9.8) that the subfunctor G of F is→
locally closed if and only if there, for every scheme X over S and every element
ξ ∈ F (X), is a subscheme XG,ξ of X such that a morphism g:T → X factors via
XG,ξ if and only if F (g)(ξ) ∈ G(T ).

(9.10) Note. It follows from the Definition of a locally closed subfunctor that
the associated scheme XG,ξ is unique.

(9.11) Note. Given a locally closed subfunctor G of F . Let Hξ:hX → F be
the morphism associated to an element ξ ∈ F (X), and let i:XG,ξ → X be the
corresponding subscheme of X. We have that i is the image of idX by the map

hX (X)
h(i)
−−→ hX(XG,ξ), and of idXG,ξ

by the map hXG,ξ
(XG,ξ) → hX (XG,ξ). It

follows that F (i)(ξ) = Hξ(XG,ξ)(i), and that F (i)(ξ) ∈ G(XG,ξ). We obtain
that the morphism hXG,ξ

→ G induced by Hξ:hX → F is equal to HF (i)(ξ).
In particular, if F is represented by (X, ξ), we have that G is represented by
(XG,ξ, F (i)(ξ)).

(9.12) Definition. A family {Fi}i∈I of open subfunctors of F is an open covering
of F if, for every scheme X over S and every element ξ ∈ F (X), the open
subschemes XFi,ξi

, XFi,ξ of X corresponding to Fi cover X.

(9.13) Definition. A functor F is a Zariski sheaf if, for every scheme T over S
and every open covering {Ti}i∈I of T the sequence

F (T ) →
∏

i∈I

F (Ti)
p1−→
−→
p2

∏

i,j∈I

F (Ti ∩ Tj) (9.13.1)
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is exact. That is, the map p defined by the restrictions F (T ) → Fi(T ) is injective,
and the image of p is the kernel

{(fi)i∈I ∈
∏

i∈I

F (Ti): p1(fi) = p2(fi) for all i ∈ I}

of the projections p1 and p2 induced by the maps F (Ti) → F (Ti∩Tj), respectively
F (Tj) → F (Ti ∩ Tj), for all i, j ∈ I.

(9.14) Example. Given a scheme X over S and let Y be a subscheme of X with
immersion i:Y → X. We have that hY is a locally closed subfunctor and that
Y = XhY ,i. Hence hY is an open or closed subfunctor of hX if and only if Y is an
open respectively closed subscheme of X.

Given an open covering {Xi}i∈I of X. Then the subfunctors {hXi
}i∈I of hX

form an open covering of hX . For an element ξ ∈ hX (Z) corresponding to a
morphism g:Z → X we have that ZhXi,ξ

= g−1(Xi)

We have that the functor hX is a Zariski sheaf. Given an open covering {Ti}i∈I

of the scheme T . The exactness of the sequence (9.13.1) for hX means that a→
morphism g:T → X is determined by the restrictions g|Ti:Ti → X for i ∈ I,
and that morphisms gi:Ti → X such that gi|Ti ∩ Tj = gj |Tj ∩ Ti for all i, j in I
uniquely determine a morphism g:T → X such that g|Ti = gi.

(9.15) Theorem. Given a functor F which is a Zariski sheaf and an open cov-
ering {Fi}i∈I of F by representable functors Fi. Then F is representable.

Proof. For all i ∈ I let the scheme Xi represent the functor Fi. By assumption
we have an open cover {hXi

}i∈I of F . For every i and j in I we have a morphism
hXi

→ F of functors, and an open subfunctor hXj
of F . Hence there is an unique

open subset Xi,j of Xi which represents the functor hXi
×F hXj

= hXi
∩ hXj

. It
follows from the definition of Xi,j that, for all i, j ∈ I, there is a canonical isomor-
phism ρi,j:Xi,j → Xj,i, and this isomorphism sends Xi,j ∩Xi,k isomorphically to
Xj,i ∩ Xj,k for all indices k. Moreover we have that (ρj,k|Xj,k ∩ Xj,i)(ρi,j|Xi,j ∩
Xi,k) = ρi,k|Xi,k ∩Xi,j, and that ρi,i = idXi

.
We can thus use the morphisms ρi,j to glue the schemes {Xi}i∈I into a scheme

X with maps ϕi:Xi → X of Xi onto an open subset of X such that ϕi|Xi,j =
(ϕj |Xj,i)ρi,j.

Given a morphism g:T → X. Let Ti = g−1(ϕi(Xi)), and let gi:Ti → ϕ(Xi) be
the morphism induced by g. We obtain a unique morphism ψi:Ti → Xi such that
ϕiψi = gi. Denote by σi the image of ψi by the inclusion hXi

(Ti) → F (Ti). The
element (σi)i∈I ∈

∏
i∈I F (Ti) has the same image by p1 and p2 since gi|Ti ∩ Tj =

gj |Tj ∩ Tj . Since F is a Zariski sheaf we obtain a unique element σ ∈ F (T )
that maps to (σi)i∈I by F (T ) →

∏
i∈I F (Ti). We have thus constructed a map
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hX (T ) → F (T ). The map is injective since the map
∏

i∈I hXi
(Ti) →

∏
i∈I F (Ti)

is injective. It is clear that this construction is functorial in T . Hence we obtain
a subfunctor hX → F of F .

It remain to prove that hX(T ) → F (T ) is surjective for all schemes T over
S. Let σ ∈ F (T ). Since F is covered by the functors hXi

= Fi we can cover
T by open subsets Ti = ThXi,σ

such that a homomorphism h:U → T factors

via Ti → T if and only if the image of h by F (T ) → F (U) lies in hXi
(U). In

particular, when h is the inclusion Ti → T , we obtain that the image σi of σ by
the map F (T ) → F (Ti) comes from a morphism ψi:Ti → Xi. When h is the
inclusion Ti ∩ Tj → T or the inclusion Tj ∩ Ti → T we obtain that the morphisms
ϕiψi:Ti → X and ϕjψj :Tj → X are equal on Ti ∩ Tj = Tj ∩ Ti because these
restrictions maps are elements in hX(Ti ∩ Tj) = hX (Tj ∩Ti) that, by the injection
hX (Ti∩Tj) = hX(Tj∩Ti) → F (Ti∩Tj) = F (Tj∩Ti), map to the image of σ. Hence
the maps ϕiψi glue together to a morphism g:T → X such that g|Ti = ϕiψi for all
i ∈ I. We have that g ∈ hX (T ) maps to (ϕiψi)i∈I in

∏
i∈I hX(Ti) and (ϕiψi)i∈I

maps to (σi)i∈I in
∏

i∈I F (Ti). Since the map
∏

i∈I hXi
(Ti) →

∏
i∈I F (Ti) is

injective and since F and hX are Zariski sheaves we have that g maps to σ by the
map hX(T ) → F (T ).

(9.16) Note. Given an open covering {Si}i∈I of S. For every morphism g:T → S
we define

Fi(T ) =

{
F (T ) when g factors via Si

∅ otherwise.

It is clear that Fi is a subfunctor of F . We have that Fi is an open subfunctor.
Indeed, given an S–scheme f :X → S and ξ ∈ F (X). Let Xi,ξ = f−1(Si). Then
an S–morphism h:T → X factors via Xi,ξ if and only if fh factors via Si. Hence
h factors via Xi,ξ if and only if F (h)(ξ) lies in Fi(T ), that is Xi,ξ = XFi,ξ. Since
the Xi cover S we have that the Xi,ξ cover X. Consequently we have that {Fi}i∈I

is an open covering of the functor F .
In particular, it follows from Theorem (9.15) that, if F is a Zariski functor then→

F is representable if and only if all the Fi are representable.

(9.17) Definition. Given a morphism f :X → S of schemes, and an OX–module
F . Two surjections F → G and F → G ′ of OX–modules are equivalent if they
have the same kernel.

Assume that F is quasi coherent.
Given a scheme T over S we let

QuotF (T ) = {equivalence classes of OT –module surjections FT → G

to a quasi coherent OXT
–module G which is flat over T}.
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For each morphism h:U → T we let

QuotF (h):QuotF (T ) → QuotF (U)

be the map sending a surjection α:FT → G to the surjection h∗(α):FU = h∗FT →
h∗G. It is clear that we obtain a contravariant functor QuotF from schemes over
S to sets, called the quotient functor of F .

We call QuotOX
the Hilbert functor and denote it by HilbX/S. Given an S–

scheme T we have that

HilbX/S(T ) =

{closed subschemes of T ×S X such that the projection Z → T is flat}.

When X = S We define, for each S–scheme T

GrassF(T ) = {equivalence classes of OT –module surjections FT → G

to a locally freeOT –module of finite rank.G}.

It is clear that GrassF is a subfunctor of QuotF .
For each non–negative integer r we let Grassr

F be the subfunctor

Grassr
F(T ) = {equivalence classes of surjections FT → G

to a locally free OT –module G of rank r}.

(9.18) Proposition. Given a morphism f :X → S of schemes and a quasi–
coherent OX–module F . The functors QuotF , GrassF and Grassr

F are all Zariski
sheaves.

Proof. Let g:T → S be a morphism and let {Ti}i∈I be an open covering of T .
Consider the sequence

QuotF (T ) →
∏

i∈I

QuotF (Ti)
p1−→
−→
p2

∏

i,j∈I

Quot(Ti ∩ Tj).

Given (fi)i∈I ∈
∏

i∈I QuotF (Ti), where fi is represented by surjections FTi
→ Gi

on XTi
. If p1(fi) = p2(fi) we have that the restriction of FTi

→ Gi to f−1
T (Ti ∩Tj)

is equivalent to the restriction of FTj
→ Gj to f−1

T (Tj ∩ Ti), for all i and j.
Consequently the kernels of the maps FTi

→ Gi, for all i, define a submodule
K ⊆ FT , such that the restriction of the quotient FT → G to f−1

T (Ti) is equivalent
to FTi

→ Gi for all i ∈ I. Hence (fi)i∈I is the image of the equivalence class of
FT → G in QuotF (T ). Clearly FT → G is unique since it is determined by its
restriction to Ti for all i ∈ I.

The above proof shows that GrassF and Grassr
F also are Zariski sheaves.
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(9.19) Note. We have a map of functors QuotF → hS sending each element
of QuotF (U) to the structure morphism U → S. Let g:T → S be the structure
morphism of a scheme T over S. Given a scheme U over S, the elements in
the product QuotF (U) ×hS(U) hT (U) consist of a quotient FU → G and an S–
morphism h:U → T . Thus FU → G is equal to h∗XT

FT → G which is an element
in QuotFT

(U). Clearly we obtain a morphism of functors

QuotF ×hS
hT → QuotFT

.

The morphism is an isomorphism of functors with an inverse

QuotFT
→ QuotF ×hS

hT

which, given a morphism h:U → T , sends the element h∗XT
FT → G in QuotFT

(U)
to the element (gh)∗XF = h∗XT

FT → G in QuotF (U) and to h in hT (U).
In particular, if c:S → Z is the canonical morphism and there is a scheme

X0 over Spec Z and a quasi–coherent OX0
–module F0 such that X = XS and

F = c∗X0
F0, we obtain that there is an isomorphism

QuotF = Quotr+1
F0

×hSpec Z
hS .

Thus, when F is free, S = SpecA and X = P(SymA(E)) for a free A–module E
of rank r + 1 we have that

QuotF = QuotOr+1
Spec Z

×hSpec Z
hS .

(9.20) Proposition. The functor Grassr
F is representable.

When F is locally free we have that the representing scheme has a natural open
covering of the form V(E∗ ⊗Spec A G), where SpecA is an open subset of S over
which F is free, and E is the free OSpec A–submodule spanned by r basis elements
of F| SpecA, and G the module spanned by the remaining basis elements.

Proof. We first reduce to the case when S is affine and F is a free OS–module.
Assume that we have a surjection F ′ → F of quasi–coherent OX–modules. For

every scheme T over S we obtain an injection Grassr
F(T ) → Grassr

F ′(T ) sending a
quotient FT → G to the quotient F ′

T → FT → G. Clearly Grassr
F is a subfunctor

of Grassr
F ′ . It is a closed subfunctor. Indeed, given a morphism g:T → S and

an element ξ ∈ Grassr
F ′(T ) represented by a quotient F ′

T → G. Denote by H the
kernel of the map F ′

T → FT and by I the image of the map H ⊗OT
G∗ → OT

obtained from the composite map H → F ′
T → G. Let Tξ be the closed subscheme

of T defined by the ideal I. Given a morphism h:U → T the quotient F ′
U → h∗G
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belongs to Grassr
F(U) if and only if the composite map h∗HU → F ′

U → g∗G is
zero, or equivalently when the map h∗(H ⊗OT

G∗) → OU is zero. The image of
the latter map is the image of h∗I → OU . Hence the quotient F ′

U → h∗G belongs
to Grassr

F(U) if and only if h factors via Tξ.

It follows from Note (9.16) that in order to represent Grassr
F we can assume→

that S is an affine scheme SpecA. Let M = F(SpecA). Choose a surjection
F → M from a free A–module F . Since we have proved that Grassr

F is a closed
subfunctor of Grassr

F̃
we have that it suffices to represent Grassr

F̃
. We may thus

assume that F is a free OSpec A–module.
When S is affine and F is a free OS–module, we shall cover the functor Grassr

F

with open representable functors. Since we have prowed that Grassr
F is a Zariski

functor it then follows from Proposition (9.15) that Grassr
F is representable.→

Choose a free submodule E of F spanned by r basis vectors. For each scheme
T over S we let

GE(T ) = {FT → G in Grassr
F(T ) such that ET ⊆ FT → G is surjective}.

Clearly we have that GE is a subfunctor of Grassr
F . It is an open subfunctor.

Indeed, given a scheme g:T → S over S and an element ξ ∈ Grassr
F (T ) corre-

sponding to a quotient FT → G. The subset TE,ξ of T where the map ET → F → G
is surjective is open. Given a morphism h:U → T . Then EU → h∗G belongs to
GE (U) if and only if the map EU → FU → h∗G is surjective. Given a point
u ∈ U . The determinant of the map ET,h(u) → Gh(u) of free OT,h(u)–modules pulls
back to the determinant of the map EU,u = h∗(ET,h(u)) → h∗(Gh(u)) = (h∗G)u.
We have that TE,ξ is exactly the open subscheme of T where the determinant of
ET,h(u) → Gh(u) is invertible, and thus where the determinant of EU,u → (h∗G)u is
invertible. The latter determinant is invertible if and only if EU → h∗G is surjective
at u. Hence we have that EU → FU → h∗G is surjective if and only if h:U → T
factors via TE,ξ.

The open subsets TE,ξ for varying E cover T because at every point t of T we can
find a submodule E of F spanned by r basis vectors such that ET,t → FT,t → Gt

is surjective, and thus that ET → FT → G is surjective in a neighbourhood of t.
To obtain such a map we choose a map κ(t) ⊗OT,t

FT,t → κ(t) ⊗OT,t
GT,t that

sends the vector space spanned by the images of vectors e1, . . . , er of a basis of F
surjectively to κ(t)⊗OT,t

GT,t. By Nakayamas Lemma this map can be lifted to a
surjection OTE,ξ

e1 ⊕ · · · ⊕ OTE,ξ
er → G in a neighbourhood TE,ξ of t in T .

It follows that it suffices to represent the functor GE . Write F as a direct sum
F = E ⊕ F ′ where F ′ is the sheaf spanned by the remaining basis vectors. A
surjection ET → G to a locally free sheaf of rank r is an isomorphism. Hence

G must be free and surjections ET
i
−→ FT

ϕ
−→ G are in one to one correspondence
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with homomorphisms FT
ϕ
−→ ET that are the identity on the component ET , via the

homomorphism that send ϕ to (ϕi)−1ϕ. Hence surjections ET
i
−→ FT

ϕ
−→ G are the

same as homomorphisms F ′
T → ET . However, a homomorphism F ′

T → ET is the
same as a homomorphism E∗

T ⊗OT
F ′

T → OT . It follows that GE is representable,
and represented by the affine scheme V(E∗

T ⊗OT
F ′

T ) = Spec(SymA(E(SpecA)∗⊗A

F ′(SpecA))).

We have proved that the functor Grassr
F is representable.

(9.21) Definition. The scheme that represents the functor Grassr
F is denoted

by Grassr(F) and called the grassmannian of r–quotients of F . The univer-
sal element idGrassr(F) ∈ Grassr

F(Grassr(F)) corresponds to a universal quotient
FGrassr(F) → Q on Grassr(E).

We write Grass1(F) = P(F), and we call P(F) the projective space associated
to F . A scheme X over S is projective over S if there is a locally free OS–module
F of finite rank such that X is a closed subscheme of P(F) and the structure
morphism of X is induced by the structure morphism of P(F).

(9.22) Note. We have earlier used the projective r–dimensional space P(E)
over SpecA, where E is a free A–module spanned by vectors e0, . . . , er. When

S = SpecA and F = Ẽ we have that this space is equal to the projective
space P(F) defined in (9.21). Indeed, the latter is covered by affine schemes→
V(E∗

i ⊗OSpec A
G) = Spec(SymOSpec A

Gi), where Ei = OSpec Aei and Gi = OSpec Ae0⊕

· · ·⊕OSpec Aei−1 ⊕OSpec Aei+1 ⊕· · ·⊕OSpec Aer, in exactly the same way as P(E)
is covered by the affine schemes SpecA[x0

xi
, . . . , xr

xi
], where A[x0, . . . , xr] is the

polynomal ring in the variables x0, . . . , xr over A. More precisely we have an iso-
morphism A[x0, . . . , xr] → SymA(E) depending on the choise of basis e0, . . . , er

and for each index i this gives an isomorphism A[ x0

xi
, . . . , xr

xi
] ∼= SymA(E∗

i ⊗A Gi),
where Ei = Aei and Gi = Ae1 ⊕ · · · ⊕ Aei−1 ⊕ ei+1 ⊕ · · · ⊕ Aer. This iso-
morphism sends

xj

xi
to e∗i ⊗ ej for j = 1, . . . , i − 1, i + 1, . . . , r. Finally we have

that SpecOSpec A
(E∗

i ⊗OSpec A
Gi) = ˜SymA(E∗

i ⊗A Gi) = SymOSpec A
(Ẽi ⊗OSpec A

G̃i),

which gives the isomorphism P(E) → P(F) on the affine covering.

(9.23) Note. Let Ui = SpecAi be an open affine covering of S. It follows from
Note (9.16) that Grassr(F) has an open covering of the schemes Grassr(F|Ui). In→
particular P(F) can be covered by projective spaces of the form P(E), where E
is a free A–module and SpecA an open subset of S.

(9.24) Note. Assume that F is locally free of finite rank. The r–th exterior power
∧rFGrassr(F) → ∧rQ gives rise to a morphism π: Grassr(F) → Grass1(∧rF) =
P(∧rF).
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(9.25) Proposition. The morphism π: Grassr(F) → P(∧rF) of Note (9.22) is a→
closed embedding.

Proof. It suffices to show that there is an open cover PE of P(∧rF) such that
f−1(PE) → PE is a closed embedding. It follows from Note (9.16) that we may→
assume that S is affine given by SpecA, and that F is a free OS–module. Let
E be a free submodule of F spanned by r basis elements and let PE be the open
subscheme of P(∧rF) where the map ∧rEP(∧rF) → ∧rFP(∧r(F)) → OP(∧r(F))(1)
is surjective. Write F = E ⊕ G and let GE be the open subscheme of Grassr(F)
over which the composite map EGrassr(E) → FGrassr(F) → Q is surjective. We have
that EGrassr(F) → Q is surjective if and only if ∧rEGrassr(F) → ∧rQ is surjective.
Indeed, the second is the determinant of the first and both are surjective at the
stalks where the determinant is invertible. Hence we have that GF = π−1(PF ).

We shall prove that the induced map πF :GF = V(E∗ ⊗OS
G) → V(∧rE∗ ⊗OX

H) = PF is a closed embedding. Write H = ∧r−1E⊗OS
G⊕· · ·⊕E⊗OS

∧r−1G⊕∧rG.
Then we have that ∧rF = ∧rE ⊕ H. For each i we have a canonical isomorphism
∧r−iE⊗OS

∧rE∗ → ∧iE∗. Hence we have that ∧rE∗⊗OS
H = E∗⊗OS

G⊕∧2E∗⊗OS

∧2G ⊕ · · · ⊕ ∧r−1E∗ ⊗OS
∧r−1G ⊕ ∧rE∗ ⊗OS

∧rG. The morphism πF :V(E∗ ⊗OS

G) → V(∧rE∗ ⊗OS
H) is given on coordinate rings by an algebra homomorphism

λ: SymOS
(E∗ ⊗OS

G ⊕ · · · ⊕ ∧rE∗ ⊗OS
∧rG) → SymOS

(E∗ ⊗OS
G). This map is

determined on the linear part of the source, and given on the factors by the maps

λi:∧
iE∗ ⊗OS

∧iG → Symi
OS

(E∗ ⊗OS
G)

defined by λi(f
∗
1∧· · ·∧f

∗
i ⊗g1∧· · ·∧gi) =

∑
σ∈Si

(−1)signσ(f∗
1⊗gσ(1)) · · · (f

∗
i ⊗gσ(i)),

where Si are the permutations of {1, . . . , i}. Since λ1 is the identity we have that
λ is surjective, and consequently that πF is a closed imbedding.

(9.26) Definition. The morphism π: Grassr(F) → ( ∧r F) is called the Plücker
embedding .
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10. The Quotient functor.

(10.1) Setup. Given a scheme S and a locally free OS–module E of rank r + 1.
We assume that S is locally noetherian, that is, S can be covered by open affine
subschemes SpecA such that A is a noetherian ring. Let P(E) be the r–dimensional
projective space over S associated to E and let X be a closed subscheme of P(E)
and ι:X → P(E) the corresponding closed immersion. Denote by f :X → S the
structure morphism of X. Finally let F be a coherent OX–module.

(10.2) Note. Let F ′ → F be a surjection of coherent OX -modules. For every
morphism g:T → SpecA we get a map

QuotF (T ) → QuotF ′(T )

sending the class of the quotient FT → G to the composite F ′
T → FT → G. It is

clear that this map is injective and defines a map of functors QuotF → QuotF ′ .

(10.3) Proposition. Let F ′ → F be a surjection of coherent OX -modules. Then
the injection of Note (10.2) makes QuotF a closed subfunctor of QuotF ′ .→

Proof. It follows from Note (9.16) that QuotF ′ and QuotF are covered by open→
subfunctors QuotF ′|f−1(Spec A) and QuotF|f−1(Spec A), where SpecA is an open
affine subset of S. We can therefore assume that S = SpecA.

We have to show that for every morphism g:T → SpecA and every element
F ′

T → G in QuotF ′(T ) there is a closed subscheme T0 of T such that a morphism
h:U → T factors via T0 if and only if F ′

U → h∗XT
G factors via FU . Such a scheme

is clearly unique, if it exists. Hence we may assume that T is affine.
Let K be the kernel of F ′ → F . It follows from Theorem (2.2)(2) and (3) that→

we can choose an m0 such that K(m) and G(m) are generated by global sections,
and such that H i(XT ,G(m)) = 0 for i > 0 and for m ≥ m0. Since G is flat over T
it follows from Theorem (4.7) that fU∗h

∗
XT

G(m) is locally free and the base change→
map

h∗fT∗G = OU ⊗OT
˜H0(XT ,G(m)) → fU∗h

∗
XT

G(m) (10.3.1)

is an isomorphism for m ≥ m0.
Since K(m0) is generated by global sections we can, as we saw in Note (2.3)→

choose a surjection On
XT

→ K(m0). We have that the the map F ′
U → h∗XT

G fac-
tors via FU if and only if the composite map On

XU
→ KU (m0) → F ′

U (m0) →
h∗XT

G(m0) is zero. By adjunction there is a bijection between OXU
–module

homomorphisms On
XU

= f∗
UO

n
U → h∗XT

G(m0) and OU–module homomorphisms
On

U → fU∗h
∗
XT

G(m0). Consequently we have that On
XU

→ h∗XT
G(m0) is zero

if and only if On
U → fU∗h

∗
XT

G(m0) is zero. The latter map is the composite
\hilball.tex
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map α:On
U → fU∗f

∗
UO

n
U = fU∗h

∗
XT

On
XT

→ fU∗h
∗
XT

G(m0) obtained from the map

On
XT

→ K(m0) → G(m0). By the base change map (10.3.1) the map α is the same→
as the map On

U = h∗On
T → h∗fXT ∗f

∗
TO

n
T = h∗fT∗On

XT
→ h∗fT∗G(m0). We have

proved that the map On
U → fU∗h

∗
XT

G(m0) is zero if and only if the pull back by
h of the map On

T → fT∗f
∗
TO

n
T = fT∗On

XT
→ fT∗G(m0) is zero.

Since fT∗G(m0) is locally free we can therefore define T0 on each component of T
to be the (rk(fXT ∗G(m0))−1)’st Fitting ideal of the cokernel of On

T → fXT ∗G(m0).

(10.4) Definition. Given a morphism g:T → S and an element FT → G in
QuotF (T ) Let t ∈ T . For each open affine neighbourhood SpecA of t such that
E| SpecA is free we have defined in (5.7) the Hilbert polynomial χG|f−1(Spec A),t→
of G|f−1(SpecA) at t. Clearly we obtain the same Hilbert polynomial indepently
of which connected neighbourhood of t we choose. We can therefore define the
Hilbert polynomial χG,t of G as χG|f−1(Spec A),t for any connected neighbourhood
SpecA of t.

For P ∈ Z[t] we let

QuotPF (T ) = {FT → G in QuotF (T ):χG,t = P for all t ∈ T}.

It follows from Note (5.8) that QuotPF is a subfunctor of QuotF .→

(10.5) Note. We have that QuotPF is an open subfunctor of QuotF . To prove
this we must show that for every morphism T → S and every element FT → G in
QuotF there is an open subset TP of T such that a morphism h:U → T factors
via TP if and only if h∗G has Hilbert polynomial P . However, it follows from
(5.10) that G has constant Hilbert polynomial on every connected component of T .→
Consequently G has Hilbert polynomial P on an open, possibly empty, subscheme
TP of T . It follows from Note (5.8) that TP is the open set we are looking for.→

(10.6) Note. Given an integer n. For every morphism g:T → SpecA we have a
map

QuotF (T ) → QuotF(n)(T )

which sends the class of FT → G to the class of FT (n) → G(n). It is clear that
this gives an isomorphism of functors

QuotF → QuotF(n).

We have that χG(m+ n) = χG(n)(m). Consequently we obtain an isomorphism of
functors

QuotPF → QuotQF(n)

where P and Q are elements in Q[t] related by P (m+ n) = Q(m) for all m.
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(10.7) Note. Given a closed immersion ε:Y → Z of schemes, and let G be an
OY –module. We have an isomorphism of rings (ε∗OY )ε(y) → OY,y for all points
y of Y . Via this isomorphism we have an isomorphism (ε∗G)ε(y) → Gy of OY,y–
modules, and we have that (ε∗G)z = 0 when z ∈ Z \ε(Y ). In particular we have an
isomorphism ε∗ε∗G → G of OY –modules. Moreover we have that given an quotient
G → H of OY –modules, then we obtain a quotient ε∗G → ε∗H of OZ–modules,
via the homomorphism OZ → ε∗OY , and ε∗Hε(y) → Hε(y) is an isomorphism of
OY,y–modules, and that Hz = 0 for z ∈ Z \ ε(Y ).

Given a quotient ε∗G → K of OZ–modules. We obtain a quotient ε∗ε∗G = G →
ε∗K of OY –modules.

It is clear that we in this way obtain a bijection between OY –module quotients
of G and OZ–module quotients of ε∗G. Since the fibers of modules corresponding
to each other by this bijection are either isomorphic or zero we have that the
bijection takes quotients that are flat over a morphism Z → T into quotients that
are flat over the restriction Y → T , and conversely. In particular we see that we
have an isomorphism of functors QuotF → Quoti∗F from the closed immersion
ι:X → P(E).

(10.8) Theorem. For each P ∈ Q[t] we have that the functor QuotPF is repre-
sentable by a quasi projective scheme.

Proof. It follows from Note (9.16) that QuotPF can be covered by open subfunctors→
QuotF|f−1(Spec A) where SpecA is an open affine subset of S. Since QuotF and

thus QuotPF are Zariski functors it follows from Proposition (9.18) that we may→

assume that S = SpecA. It follows from Note (10.6) and Theorem (2.2) that we→→
may assume that F is generated by global sections. We can then, as we saw in
Note (2.3), find a surjection On

X → F . Consequently, it follows from Proposition→

(10.3) that we may assume that F is a free OX–module of finite rank. Finally it→

follows from Note (10.7) that we may assume that X = P(E), where E is a free→
A–module of finite rank. Then we have that F is flat over S.

Let T be a scheme over SpecA. For every exact sequence

0 → K → FT → G → 0

of OXT
-modules, with G flat over T , it follows from Lemma (3.5) that the sequence→

0 → KSpec κ(t) → FSpec κ(t) → GSpec κ(t) → 0

is exact, for all t ∈ T . Since F is free, by assumption, (er dette nødvendig her?)
it follows from Theorem (6.10) that there is an m0 such that, for all schemes T→

over SpecA, for all quotients FT → G in QuotPF (T ), and for all points t ∈ T , we
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have that the kernel (ξK.t = χF,t − ξG,t s̊a kjernene har samme Hilbert polynom.)
KSpec κ(t) of FSpec κ(t) → GSpec κ(t) is an m0-regular OXSpec κ(t)

-module. Hence it

follows from Proposition (6.8) that KSpec κ(t) is m–regular for m ≥ m0. It follows→

from Note (6.11) that GSpec κ(t) is also m-regular for m ≥ m0. Hence we have that→

Hi(XSpec κ(t),KSpec κ(t)(m)) = Hi(XSpec κ(t),GSpec κ(t)(m)) = 0,

for i > 0 and m ≥ m0.
Since G and thus K are flat over T it follows from Theorem (4.9) that→

RifT∗K(m) = 0 = RifT∗G(m) for i > 0 and m ≥ m0,

and thus it follows from Theorem (3.19)(1) that fT∗G(m) is locally free of rank→
dimκ(t)H

0(XSpec κ(t),GSpec κ(t)(m)) = χG,t(m) = P (m) form ≥ m0. It also follows
that we have an exact sequence

0 → fT∗K(m0) → fT∗FT (m0) → fT∗G(m0) → 0 (10.8.1)

of OT -modules.
Since F is assumed to be free and X to be P(E) it follows from Setup (2.1)→

that H0(X,F(m)) is a free A-module and that H i(X,F(m)) = 0 for i > 0 and for
m ≥ 0. Hence it follows from Theorem (4.7) that we have an isomorphism→

OT ⊗OSpec A
˜H0(X,F(m)) → fT∗FT (m)

for m ≥ 0. Let V = H0(X,F(m0)) and V = Ṽ . Then we obtain an exact sequence

0 → fT∗K(m0) → VT → fT∗G(mo) → 0

of OT –modules.
We have thus obtained a map

QuotPF (T ) → GrassP (m0)(V)(T )

which sends the quotient FT → G to the quotient VT → fT∗FT (m0). These maps,
for all S-schemes T define a morphism of functors

QuotPF → GrassP (m0)(V).
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Indeed, given a morphism h:U → T we obtain a commutative diagram

VU = h∗VT −−−−→ h∗fT∗F(m0) −−−−→ h∗fT∗G(m0) −−−−→ 0
y

y
y

VU −−−−→ fU∗h
∗
XT

F(m0) −−−−→ fU∗h
∗
XT

G(m0) −−−−→ 0

(dette kan skrives mye bedre) where the upper row is the composite map VT →
fT∗FT (m0) → fT∗G(m0) pulled back to T , the lower row is the surjection on U
that we obtain by the above construction when we start with FT → G pulled back
to XU by hXT

, and the vertical maps are the base change maps. Since the higher
cohomology of F(m0) and G(m0) vanishes it follows from Proposition (4.7) that→
the base change maps are isomorphisms. It follows that the construction which to
FT → G in QuotF (T ) associates the surjection VT → fT∗G(m0) is functorial, as
we wanted to prove.

The morphism QuotPF → GrassP (m0)(V) is injective. Indeed, given a morphism
g:T → SpecA and an element FT → G in QuotPF . The image of the quotient

in GrassP (m0)(V) is equivalent to fT∗FT (m0) → fT∗G(m0). As we have seen
(spørsm̊alet er om vi bare har vist dette p̊a fibre. Vi m̊a da vise at det følger fra
resultatet p̊a fibre ved basisbytte) it follows from (6.8) that K(m0) is generated by→
global sections. Hence the top map in the commutative diagram

f∗
T fT∗K(m0) −−−−→ K(m0)y

y

f∗
T fT∗F(m0) −−−−→ F(m0)

is surjective. It follows that G(m0) is the cokernel of the composed map

f∗
T fT∗K(m0) → f∗

T fT∗FT (m0) → FT (m0) (10.8.2)

Since the map (10.8.2) has kernel fT∗K(m0) by (10.8.1) we can consequently re-→→
store the quotient FT → G from fT∗FT (m0) → fT∗G(m0) .

Finally we shall prove that the functor QuotPF is a locally closed subfunctor of

GrassP (m0)
V . Since GrassP (m0)

V is represented by a scheme G = GrassP (m0)(V),
with universal quotient

ξ:FVG
∼= fG∗FG(m0) → Q

of OG-modules we must show that there is a locally closed subscheme Gξ of G such
that a morphism h:T → G factors viaGξ if and only if h∗fG∗FG(m0) → h∗Q is the
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image of a quotient FT → G in QuotPF (T ). That is, we have that h∗fG∗FG(m0) →
h∗Q, or fT∗FT (m0) → h∗Q, is equivalent to fT∗FT (m0) → fT∗G(m0). Let
p:G → SpecA be the structure morphism and let R be the kernel of the map
fG∗FG(m0) = fG∗p

∗
XF(m0) → Q (dette er gjort for komplisert) correspond-

ing to the canonical morphism VG = p∗f∗F(m0) → Q via the isomorphism
p∗f∗F → fG∗p

∗
XF . On XG we obtain an exact sequence

0 → f∗
GR → f∗

GfG∗FG(m0) → f∗
GQ → 0

Let H be the OXG
-module such that H(m0) is the cokernel of the map

f∗
GR → f∗

GfG∗FG(m0) → FG(m0).

Moreover, let GP be the locally closed subscheme of G which is the part of the
flattening stratification of H that corresponds to P . The scheme exists by Theorem
(8.5) and is unique by Note (8.6). We shall show that Gξ = GP .→→

Assume first that fT∗FT (m0) → h∗Q is the image of QuotPF (T ). That is,
the quotients fT∗FT (m0) → h∗Q and fT∗FT (m0) → fT∗G(m0) are equivalent for
some quotient FT → G in QuotPF (T ). Then the kernel RT = h∗R of fT∗FT (m0) →
h∗Q is equal to the kernel fT∗K(m0) of fT∗FT (m0) → fT∗G(m0). We obtain a
commutative and exact diagram (tvilsom notasjon bruk h)

f∗
TRT = f∗

T fT∗K(m0) −−−−→ f∗
T fT∗FT (m0) −−−−→ f∗

T fT∗G(m0) −−−−→ 0
y

y

K(m0) −−−−→ FT (m0)

where the left vertical map is surjective, as we have seen above. It follows that
HT (m0) = G(m0), such that HT = G. We have that G is flat over SpecA with
Hilbert polynomial χG,t = P for all t ∈ T . The same therefore holds for HT .
From the definition of GP as the flattening stratification of H corresponding to P
it follows that h:T → G factors via GP .

Conversely, assume that h:T → G factors via GP . We have that HT (m0) is
the cokernel of the map f∗

TRT → f∗
T fT∗FT (m0) → FT (m0) of OXT

-modules. Let
L be the OT -module such that L(m0) is the kernel of FT (m0) → HT (m0). We
obtain an exact commutative diagram of OXT

-modules

0 −−−−→ f∗
TRT −−−−→ f∗

T fT∗FT (m0) −−−−→ f∗
TQT −−−−→ 0

y
y

y

0 −−−−→ L(m0) −−−−→ FT (m0) −−−−→ HT (m0) −−−−→ 0.

(10.8.2)
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By the definition of H the left vertical map is surjective. Since h factors through
GP we have that HT is flat over T and that χHT,t

= P for all t ∈ T . Hence we have

that FT → HT is in QuotPF (T ). It follows from Theorem (6.10) that LSpec κ(t) is→

m0-regular for all points t of T . Hence it follows from Note (6.11) that HSpec κ(t)→

is m0-regular, and from Theorem (4.7) it follows that fT∗HT (m0) is locally free→

of rank P (m0). From diagram (10.8.2) we obtain, using fT∗ an exact diagram of→
OT -modules

0 −−−−→ h∗R −−−−→ fT∗FT (m0) −−−−→ h∗Q −−−−→ 0
y

y
y

0 −−−−→ fT∗L(m0) −−−−→ fT∗FT (m0) −−−−→ fT∗HT (m0) −−−−→ 0.

Since the middle vertical map is the identity the right vertical map is surjective.
Both QT and fT∗HT (m0) are locally free modules of rank P (m0). Consequently
the right vertical map is an isomorphism. We conclude that the map fT∗FT (m0) →
QT = h∗Q is equivalent to fT∗FT (m0) → fT∗HT (m0), which comes from the
quotient FT → HT in QuotPF (T ).

We have proved that QuotPF is a locally closed subfunctor of GrassP (m0)(V ),
and consequently it is represented by the subscheme GP of G.

(10.9) The differential structure.
Let Y be an S-scheme and let y be a point on Y . We let s be the image of y by

the structure map Y → S and let Ys = Y ×S Spec κ(s) be the fiber of Y → S over
s. Let Yy = Ys ×Spec(κ(s)) Spec(κ(y)) = Y ×S Spec(κ(y)) be the extension of Ys →
Spec(κ(s)) to Spec(κ(y)) by the augmentation map Spec(κ(y)) → Spec(κ(s)). The
point y ∈ Y induces a point Spec(κ(y)) → Ys and a section Spec(κ(y)) → Yy of
the structure map Yy → Spec(κ(y)).

We shall determine the tangent space T (Yy)y of Yy at the point y.
Let B = (OYs

)y. The structure map Ys → Spec(κ(s)) gives B the structure
of an κ(s)-algebra, and we have an κ(s)-algebra homomorphism B → κ(y) corre-
sponding to the point y of Ys. We have a multiplication map

ψ : B ⊗κ(s) κ(y) → κ(y)

that is a κ(y)-homomorphism. Let m = (mYs
)y be the kernel of ψ. We have that

(B ⊗κ(s) κ(y))m = (OYy
)y. In particular we have that m/m2 = (mYy

)y/(MYy
)2y as

κ(y)-modules. We have an isomorphism of κ(y)-modules

m/m2 → Ω1
B⊗κ

κ(s)
(y)/κ(y) ⊗B⊗κ(s)κ(y) κ(y)
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that sends the class in m/m2 of g⊗κ(s)1 ∈ m to dB⊗κ(s)κ(y)/κ(y)(g)⊗B⊗κ(s)κ(y)κ(y).

In order to define an inverse we consider the homomorphism of κ(y)-modules

B ⊗κ(s) κ(y) → m/m2

that maps g ⊗κ(s) h to g ⊗κ(s) h− ιψ(g ⊗κ(s) h), where ι : κ(y) → B ⊗κ(s) κ(y) is
defined by ι(h) = 1 ⊗κ(s) h for all h ∈ κ(y). The formula

gg′ ⊗κ(s) hh
′ − ιψ(gg′ ⊗κ(s) hh

′)

= (g ⊗κ(s) h)(g
′ ⊗κ(s) h

′ − ιψ(g′ ⊗κ(s) h
′))

+ (g′ ⊗κ(s) h
′)(g ⊗κ(s) h− ιψ(g ⊗κ(s) h))

− (g ⊗κ(s) h− ιψ(g ⊗κ(s) h))(g
′ ⊗κ(s) h

′ − ιψ(g′ ⊗κ(s) h
′))

shows that D is a κ(y)-derivation. This gives a B⊗κ(s) κ(y)-linear homomorphism

Ω1
B⊗κ(s)κ(y)/κ(y) → m/m2.

We obtain the inverse of the map (?) by extension of the variables by ψ.→
Note that Ω1

B⊗κ(s)κ(y)/κ(y) = Ω1
B/κ(y) ⊗B (B⊗κ(s) κ(y)). Consequently we have

that Ω1
B⊗κ(s)κ(y)/κ(y) ⊗B⊗κ(s)κ(y) κ(y) = Ω1

B/κ(y) ⊗B κ(y). Hence we have an iso-

morphism m/m2 ⊗B⊗κ(s)κ(y) κ(y) → Ω1
B/κ(y) ⊗B κ(y).

By standard equivalences we get bijections Homκ(y)−alg(B⊗κ(s)κ(y), κ(y)[ε]) =

Derκ(y)(B ⊗κ(s) κ(y), κ(y)) = HomB⊗κ(s)κ(y)(Ω
1
B⊗κ(s)κ(y)/κ(y), κ(y)), and as we

have seen all these sets are in bijection with the sets HomB⊗κ(s)κ(y)(m/m
2, κ(y)) =

(TYy
)y.

We have shown that there is a bijection between the tangent space to Yy at y
and all k(y)-algebra homomorphism B ⊗κ(s) κ(y) → κ(y)[ε], or equivalently with
all morphisms Spec(κ(y)[ε]) → Y that gives the point Spec(κ(y)) → Y when
composed with the augmentation morphism Spec(κ(y)) → Spec(κ(y)[ε]).

LetX → S be a scheme and let F be a quasi-coherent OX -module. Assume that
the functor QuotF is representable, and represented by the scheme Q. Let y ∈ Q be
a point. The morphism Spec(κ(y)) → Y be a point of Q. This point corresponds
to a quotient FSpec(κ(y)) → G of OQy

-modules on the fiber Qy = Q×S Spec(κ(y))
to Q→ S over y.

A morphism Spec(κ(y)[ε]) → Q coresponds to a quotient FSpec(κ(y)[ε]) → Gε

of OQ×SSpec(κ(y)[ε])-modules such that Gε is flat over Spec(κ(y)[ε]). That the
morphism Spec(κ(y)[ε]) → Q composed with the augmentation Spec(κ(y)) →
Spec(κ(y)[ε]) gives the point y means that the restriction of FSpec(κ(y)[ε]) → Gε is
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FSpec(κ(y)) → G by the extension Qy → Q×S Spec(κ(y)[ε])) of the augmentation
Spec(κ(y)) → Spec(κ(y)[ε])).

It follows from Lemma (3.21) glabalized that the tangent space to Qy = Q×S→
Spec(κ(y)) at y is bijective to

HomOQy
(H,G)

where H is the kernel of FSpec(κ(s)) → G.
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1. Results that are to be included.

(1.7) Definition. Let

F : 0 → F 0 d0

−→ F 1 d1

−→ · · ·
dr−1

−−−→ F r → 0

be a complex of A-modules. We write Zi = Zi(F ) = Ker di, and Bi = Bi(F ) =
Im di−1. Moreover we let H i(F ) = Zi(F )/Bi(F ). There are exact sequences

0 → Zi(F ) → F i → Bi+1(F ) → 0 (1.7.1)

and
0 → Bi(F ) → Zi(F ) → Hi(F ) → 0. (1.7.2)

for i− 0, . . . , r
Given an A-algebra B. We obtain a complex

F ⊗A B: 0 → F 0 ⊗A B
d0⊗idB−−−−−→ F 1 ⊗A B

d1⊗idB−−−−−→ · · ·
dr−1⊗idB−−−−−−→ F r ⊗A B → 0.

Consider F ⊗A B as an A-module. Then we obtain an A-linear map

F → F ⊗A B (1.7.3)

of complexes, which sends m to m⊗ 1.

(1.8) Lemma. Given an A-algebra B.

(1) The map (1.7.3) induces a natural map→

Hi(F ) ⊗A B → Hi(F ⊗A B)

of B-modules.
(2) Assume that the map Bj(F )⊗A B → F j ⊗A B is injective for j = i, i+ 1,

and that the map Zi(F ) ⊗A B → F i ⊗A B is injective. Then the map of
assertion (1) is an isomorphism.

Proof. The map (1.7.3) induces a map H i(F ) → Hi(F ⊗A B) of A-modules. We→
extend it to the B-module map of assertion (1).

Assume that the assertions of (2) hold. We have that (F ⊗A B)j = F j ⊗A B.
In particular we obtain that the map F j → (F ⊗A B)j induces a surjective map
Bj ⊗AB → Bj(F ⊗AB) and since Bj ⊗AB → F j ⊗AB is injective for j = i, i+1
by assumption we obtain that Bj ⊗A B → Bj(F ⊗A B) is an isomorphism for
j = i, i+ 1.
\hilball.tex



12 January 2006 1. Results that are to be included reserve 1.2

From (1.7.1), for F and F ⊗AB, we obtain the following commutative diagram→
of B-modules:

Zi(F ) ⊗A B −−−−→ F i ⊗A B −−−−→ Bi+1(F ) ⊗A B −−−−→ 0
y

∥∥∥
y

0 −−−−→ Zi(F ⊗A B) −−−−→ F i ⊗A B −−−−→ Bi+1(F ⊗A B) −−−−→ 0.

with exact rows. We have seen that the left and middle vertical maps are isomor-
phisms. Hence the right vertical map is an isomorphism.

From (1.7.2), for the modules F and F ⊗AB, we obtain a commutative diagram→
of B-modules

Bi(F ) ⊗A B −−−−→ Zi(F ) ⊗A B −−−−→ H i(F ) ⊗A B −−−−→ 0
y

y
y

0 −−−−→ Bi(F ⊗A B) −−−−→ Zi(F ⊗A B) −−−−→ H i(F ⊗A B) −−−−→ 0.

with exact rows. When the conditions of part (2) are satisfied we have seen that
the two left vertical maps of the last diagram are isomorphisms. Hence the right
vertical map is also an isomorphism.

(1.9) Lemma. Let

F : 0 → F 0 d0

−→ F 1 d1

−→ · · ·
dr−1

−−−→ F r → 0

be a sequence of flat A-modules. Assume that H i(F ) is a flat A-module for i ≥ p.
Then Bi is flat for i ≥ p and Zi is flat for i ≥ p−1. Moreover, for every A-algebra
B the base change map

Hi(F ) ⊗A B → Hi(F ⊗A B) ((3.9.1))

of Lemma (1.8) is an isomorphism for i ≥ p.→
In particular, when H i(F ) = 0 for i > 0. we have, for every A algebra B, that:

(1) Hi(F ⊗A B) = 0 for i > 0.
(2) H0(F ⊗A B) is a flat B-module.
(3) The base change map

Hi(F ) ⊗A B → Hi(F ⊗A B)

is an isomorphism for all i.
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Proof. We prove the first assertion of the Lemma by descending induction on p.
The Lemma holds for p > r. Assume that it holds for p + 1 and assume that
Hp(F ) is flat. By the induction assumption we have that Bi is flat for i > p and
Zi is flat for i ≥ p. From the sequence (1.7.2) with i = p and Lemma (1.3(2)) we→→

conclude that Bp is flat. Similarly, from the sequence (1.7.1) with i = p − 1 and→

Lemma (1.3(2)) we conclude that Zp−1 is flat over A.→
To prove that the base change map is an isomorphism we note that, since Z i and

Hi(F ) are flat for i = p, p+1, it follows from sequence (1.7.2) and Lemma (3.3(1))→→
that Bi ⊗AB → Zi ⊗AB is injective for i = p, p+1. Moreover, since Bp+1 is flat,
it follows from sequence (1.7.1) and Lemma (3.3(1)) that Zp ⊗A B → F p ⊗A B is→→

injective. The two conditions of Lemma (1.8(2)) with i = p are therefore satisfied→

and consequently formula (1.6.1) holds for i = p.→
The second assertion of the Lemma follows from the first for p = 1. Indeed,

when p = 1 it follows that H0(F ) = Z0 is flat. Consequently B0 is also flat.


