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1. Cohomology of sheaves on schemes.

(1.1) Setup. Given a noetherian scheme S and a f: X — S separated morphism
of finite type. Moreover, given a quasi—coherent Ox—module F. Let ¢:T — S
be a morphism from a scheme T. We write X7 = T xg X and the maps of the
resulting cartesian diagram we denote as follows:

Wl

T —— 8.
g
Moreover, we write Fr = g5 F.
We choose an affine open covering U = {Uy,...,U,} of X.

(1.2) Definition. Assume that S = Spec A is affine. We have a sequence of
A-modules

Fui0— P FU)LS P FU,NU,) S

0<ig<r 0<ig<iy <r

L P FWn--nU) =0,

0<ip< - <tpp1 <1

where the A-linear maps d* are given by

p+1
& (figoigsr = 3 (“VIf, ~ Uy NN,

0-rlge-tpgl
q=0
where z'Aq means that 7, has been deleted. It is easy to check that the sequence
Fu is a complex. The cohomology of the sequence is independent of the choice
of the covering Uy, ..., U,, and thus also of r ([H], (III, §4, Theorem 4.5)). We
denote the i’th cohomology group of the complex by H*(X,F) , and call it the
1’th cohomolgy group of F .

(1.3) Note. It follows from Definition (1.2) that H*(X,F) = 0 for i > r and
1 < 0.

(1.4) Note. Assume that S = Spec A. The map which sends a quasi—coherent
Ox-module F to the A-module H(X,F) is a covariant functor from quasi-

coherent Ox—modules to A-modules. Indeed, given a homomorphism F — G
of quasi—coherent O x—modules. We obtain a map

FUiN---N Uz.p) —-GU;,N---nN Uip),
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12 January 2006 1. Cohomology of sheaves on schemes cohom 1.2
for each 4o, ..., %y, and consequently a map
Fu — Gu
of complexes of A—modules. Thus there is an A-linear map
H'(X,F)— H'(X,G)

of cohomology modules, for each i. It is clear from the construction of the latter
map that the map from quasi—coherent O x—modules to A-modules that sends F
to H'(X, F) is a functor.

(1.5) Note. Assume that S = Spec A. From a short exact sequence
0—-F - F—-F"—=0
of quasi—coherent O x—modules, we obtain a long exact sequence
= H'(X,F') - H'(X,F) - H' (X, ") - H" (X, F') — - .
Indeed, we have an exact sequence

0—F(Uy,n---NU;,) = FU;, N---NU;

ip

)= F' (U, n---NU; ) — 0,
for each 0 <ip < --- < i, <r. Hence we obtain a short exact sequence
0—F —Fu—F;—0

of complexes that gives rise to the long exact sequence.

(1.6) Note. Assume that S = Spec A. Let v:Y C X be a closed immersion
of schemes, and let G be a quasi—coherent Oy—module. The map ¢ induces an
equality ‘

H'(Y,G) = H' (X, 1.9)

of A-modules. Indeed, let V; = U; NY =i~ 1(U;). Then V = {V;,...,V,} is an
affine open covering of Y and we have that (i.G)(U;,N---NU;,) = G(Vi,N---NV,).
Consequently (i.G)yy = Gy and we obtain the equality.

(1.7) Definition. Given a morphism ¢: T — S from a noetherian scheme 7.
Given an open affine subset Spec A of S and let U = {Uyp,...,U,} be an affine
open affine covering of f~1(Spec A). Moreover, let Spec B be an open affine subset
of T" that maps to Spec A. For every open affine subset U of X that maps into
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Spec A we have that V = XgpeeB N g)_(lU = Spec B Xgpec 4 U is an affine open
subset of Xgpec p and we have that

B@a F(U) = (F @0spec 4 Ospec B)(V) = gx F(V) = Fspec 5(V)-

Hence, if we let V; = Xgpec N g;(lUi, we obtain an open affine covering V =
{Vo, ..., V,} of Xgpec B, and we have an isomorphism

B@aFUy,n---NUi,) = FspeeB(Vig N---NVi,)

for each 0 < 39 < --- < 4, < r of B-modules. Consequently we obtain an
isomorphism
B®y Fy — (fSpecB)V (1.7.1)
of complexes of B—modules. Thus we obtain an A—B-linear map
Fu — B®a Fu — (Fspec B)v (1.7.2)

where the left map sends f to 1 ®4 f.
We obtain a restriction map

Hi<XSpecA7fSpecA) - Hi<XSpecBa-7:SpecB) (173)

of H%(Xspec A, Oxgpoe 4 )—H (Spec B, Ogpec p)—modules.

In particular, when we associate to each open affine subscheme Spec A of §
the A-module H*(Xspec 4, Fspeca), We obtain a pre-sheaf of Og-modules. The
associated Og—module we denote by R'f,F . We have that

R'f,F|Spec A = H (Xspec 4, Fspec A); (1.7.4)
for all open affine subsets Spec A of S ([H], (III §8, Proposition 8.6)).

(1.8) Note. From (1.7.4) it follows that the sheaves R’f,F are quasi—coherent
Os—modules. Moreover, it follows from the Notes (1.3)—(1.6), applied to an affine
open covering of S, that:

(1) We have R'f,.F =0 for i > r and i < 0, when X, and thus all affine open
subsets of X, can be covered by r 4+ 1 open affine subsets.

(2) The correspondence that sends a quasi-coherent Ox-—module F to the
quasi—coherent O x-module R’ f,F is functorial in F.

(3) Given a short exact sequence 0 — F' — F — F” — 0 of quasi—coherent
Ox—modules, we obtain a long exact sequence

of Og—modules.
(4) Given a closed immersion ¢: Y C X and a quasi—coherent sheaf G on Y we

have that (R f.)txG = R*(f«1+)G = R'((f1)+)G.



12 January 2006 1. Cohomology of sheaves on schemes cohom 1.4

(1.9) Definition. Given a complex

F:0_>F0d_O>F1d_l>...Lfl>FT_>o

of A-modules. We write Z! = Z*(F) = Kerd' and B = BY(F) = Imd*~!. Then
HY(F) = ZY(F)/B‘(F) is the cohomology of the sequence F. There are exact
sequences

0— ZY(F) - F'— B"(F) — 0, (1.9.1)
and ' ' ‘

0— B'(F)— Z'(F)— H'(F)—0 (1.9.2)
of A—modules for ¢ =0,...,r.

Given an A-algebra B. We obtain a complex

B®AF:0—>B®AFOM>B®AF1 id@ad'  id®ad !

of B—modules, and a map of complexes
F— B®aF,

which sends an element m in F? to 1 ®4 m in B ®4 F'. For each i we get a
map H*(F) — H'(B ®4 F) of cohomology, which is a map of A-B-modules. We
extend this map to a map

B®aHY(F)— H(B®4 F) (1.9.3)
of B-modules which is called the map obtained by changing the base from A to B
, or simply the base change map .
(1.10) Note. The natural map B ® 4 B'(F) — B*(B ®4 F) of B-modules is
a surjection because B ®4 F' = F'(B ®4 F) for all i, and dig (b ®4 m) =
b®4 di(m) where b € B and m € F'~1,

Ba F"—0

(1.11) Definition. Given a morphism ¢:7 — S from a noetherian scheme 7.
Let Spec A of S be an affine subscheme and Spec B an open affine subscheme of T’
which maps to Spec A. We obtain from the maps (1.7.1) and (1.9.3) a base change
map B @4 H (Fy) — H (B ®a Fu) = H'((Fspec B)v), that is, a B-linear (base
change map)

B XA HZ(XSpeCA, fSpecA) — HZ(XSpeCB, ]:XspecB)' (1111)

We apply this map to each member S; of an affine open cover of S, and to each
member of an affine open cover of g~1(S;). It follows from the Definitions of (1.7)
that we obtain a base change map

Or ®os R foF = g*R' f.F — R fr.(g%F) = R fr.Fr. (1.11.2)
When S = Spec A we obtain a (base change) map

Or ®0gyee s HI(X, F) = R' fr.Fr. (1.11.3)
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2. Cohomology of sheaves on projective spaces.

(2.1) Setup. Given a noetherian ring A and a free A-module F of rank r + 1.
We choose an A-basis eg, €1, ..., e, of E. Denote by R = Sym 4 (F) the symmetric
algebra of E over A and write P(E) = Proj(R) for the r—dimensional projective
space over Spec A . The choice of basis eg, ..., e, defines an isomorphism between
R and the polynomial ring A[zg,z1,...,x,| in the variables x, ..., z, with coef-
ficients in the ring A. In this way we obtain an isomorphism P(E) = P7,. The
r + 1 open affine sets D, (e;) cover P(FE).

Denote by p: P(E) — Spec A the structure map of the projective space, and by
Op(g)(1) the tautological invertible sheaf on P(E). There is a canonical surjection
p*E — Op(g)(1) of Op(g)y-modules.

A standard calculation ([H], (III, Theorem 5.1)) gives:

(1) The canonical map R,,, — H°(P(E), Op(g)(m)) is an isomorphism.

(2) We have that H'(P(E), Opg)(m)) =0 for i > 0 and m > 0.

Given an ideal I in R. Let X = Proj(R/I), and let 1: X — P(E) be the
corresponding closed immersion. The r+ 1 open affine sets U; = X N D (e;) cover
X.

Given a coherent Ox—module F on X. For each integer n we write F(n) =
F ®ox 1" Op(g)(n). Then we have that i.(F(n)) = i.(F ®oy "Opr)(n)) =
(ixF)(n), and i*i.F(n) — F(n) is an isomorphism for all n.

Write K = @, (X, F(m)). Then we have a canonical isomorphism ([H],
(IT §5, Proposition 5.15))

G- K— F.

Hence F is the sheaf associated to a graded R/I-module K. We can take this
R/I-module to be finitely generated. Indeed, we can choose a finite number of
homogeneous elements m of K of degree d such that the elements m/y¢, where
y; is the class of e; in R/I, generate F(U;), for i = 0,...,r. The submodule of
K generated by these elements for ¢ = 0,1,...,r defines . We choose a finitely
generated R/I-module Mz such that F = Mg.

(2.2) Theorem. (Serre) There is an mq such that for m > mg we have:

(1) The canonical map
(Mp)m — H(X, F(m))

1s an isomorphism.
(2) There is an equality H (X, F(m)) =0 fori >0

(3) The canonical map Ox ®og, .. HO()/(,\]?(m)) = f*f.F(m) — F(m) of
Ox —modules is surjective.
\hilball.tex
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Proof. To simplify the notation we first show that it suffices to prove the Theorem
when X = P(E). It follows from Note (1.6) and the equality i, (F(m)) = (i.F)(m)
of Setup (2.1) that H*(X, F(m)) = H(P(E), (t.F)(m)). Let Mr be the R/I-
submodule of @,,czH*(X, F(m)) chosen in Setup (2.1). Denote by M the module
Mz considered as a R-submodule of ®,,czH (P(E), (txF)(m)). Since (Mr) = F

on X, we obtain that (M) = i.F on P(FE). Hence we can choose the module M
for the module M;, = of Setup (2.1). It follows that it suffices to prove assertions
(1) and (2) of the Theorem in the case when X = P(F). Since i*i,F — F is an
isomorphism it also follows that it suffices to prove assertion (3) in this case.
When M = R(d) is R with gradind translated by d we have that 7 = Op(g)(d),

and, as we noted in (2.1), we have
M, = Rism = HO(P(E), Opp)(d+m)), and H'(P(E), Op(g)(d+m)) = 0

for i > 0 and d+m > 0. Hence assertions (1) and (2) of the Theorem hold for the
modules Op (g (d).
In general, choose a short exact sequence of graded R—modules

0—-K—=L—M-—D0, (2.2.1)

where L is the direct sum of finitely many modules of the form R(d). Since A
is noetherian we have that K is a finitely generated A-module. We shall prove,
by descending induction on %, that the second assertion of the Theorem holds.
Since P(FE) can be covered by r+1 open affines it follows from Note (1.3) that the
assertion holds for i > r. Assume that we have proved that H**(P(E), F(m)) =0
for all coherent Op(g)-modules F for sufficiently big m depending on F. From
the short exact sequence sequence (2.2.1) we obtain a long exact sequence

(
- — H'(P(E), K(m)) — H'(P(E), L(m)) —
H'(P(E), F(m)) — H (P(E), K(m)) — -

As we already observed assertion (2) of the Theorem holds for L by Note (2.1),

and by the induction assumption H*+1(P(E), K(m)) = 0 for big m. Consequently
we have that H*(P(E), F(m)) = 0 for big m. Hence we have proved the second
part of the Theorem. In particular we have that H'(P(E), K(m)) = 0 Thus the
map HO(P(E), L(m)) — H°(P(E), F(m)) is surjective when m is sufficiently big.
We obtain a commutative diagram of A-modules

0 — K,, — L,, — M, — 0

| ! l

0 — HO(P(E),K(m)) — H°(P(E),L(m)) — H°(P(E),F(m)) — 0,
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with exact rows, where the middle vertical map is an isomorphism since we ob-
served that assertion (1) of the Theorem holds for L. Consequently the right
vertical map is surjective for big m. Since this holds for all finitely generated R—
modules the left vertical map is also surjective for big m. Consequently we have
that the right vertical map is an isomorphism for big m, and we have proved the
first part of the Theorem.

The third part of the Theorem holds for the modules Opg)(d) because of the
surjection f*S™TU(E) = S™THE) ®4 Opry — Op(p)(m + d), and the isomor-
phism S™t4(E) — Rpyq — H(P(E),Op(g)(m + d)). Hence the left vertical
map of the commutative diagram

Op(r) ®0g,. s H'(P(E),L(m)) — Op(p) ®0s,.. » H'(P(E), F(m))

| |
L(m) — F(m) — 0

is surjective for big m. It follows that the right vertical map is surjective, and we
have proved the third part of the Theorem.

(2.3) Note. There is an mg such that for each m > myq there is a surjection
O% — F(m)

of Ox—modules, where n depends on m. Indeed, it follows from the first part of
Theorem (2.2) that we can find a surjection A™ — H°(X, F(m)), for fixed big m,
and from the third part of Theorem (2.2) that we have a surjection Ox ®gpec 4

—~—

HO(X,F(m)) — F(m) for big m.
(2.4) Note. For every integer m we have a map
Bm: [+ F (M) @0g,0c 4 [+Ox (1) — fuF(m 4+ 1) (2.4.1)

of Ogpec aA—modules induced by the isomorphism F(m) ®o, Ox(1) — F(m + 1).
Equivalently we have a map

Bm(Spec A): HO(X, F(m)) @4 H°(X,0x (1)) — H(X, F(m+1)), (2.4.2)

of A—modules. There is an mg such that for m > mg this map is surjective. This
can be seen from the commutative diagram

(Mz)m @a (R/1)1 —  (MF)mn

! !

HY(X,F(m))®s HY(X,0x(1)) —— HY(X, F(m+1)),
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where the upper row is multiplication. Since Mz is a finitely generated (R/I)-
module the multiplication map is surjective for big m. It follows from Theorem
(2.2) that the right vertical map is an isomorphism for big m. Thus there is an
myg such that the bottom row is surjective for m > mgy. That is, the map f3,, is
surjective for big m.

We also note that if (2.4.1) is surjective for m > my, then

am: [T foF(m) — F(m)
is surjective. To see this we note that from the maps [3,, we obtain maps
ﬁm,d: f*]-"(m) Ko f*OX (d) — f*]-"(m + d)

for each integer d. If (3, is surjective for n > m we have that 3, q is surjective.
We obtain a commutative diagram

FRFm) @oo. s [ LOx(d) S22 £, Fm + d)

- |

f(m) ®OSpec A OX (d) - T(m + d)

for each d, where f*[3,, 4 is surjective. It follows from Theorem (2.2) that the right
vertical map is surjective for d sufficiently big. Since the bottom horizontal map
is an isomorphism we have that «,, ® 74 is surjective for big d. However we have
that v¢: f*f.Ox (d) = f*Sym?(E) — Ox(d) is surjective for d > 0. Hence a,y, is
surjective, as asserted.

(2.5) Definition. Let A be a noetherian ring. A graded A-algebra S = &:2,5;
is called standard if Sy = A and S is generated, as an A—algebra, by the elements
S1 of degree 1.

(2.6) Lemma. Let S be a standard A—algebra and N a finitely generated graded
S—-module such that N,, # 0 for big m. Then N has a filtration 0 = Ny C
Ny C -+ C N, = N by graded submodules such that N;/N;_1 is isomorphic to
(S/P;)(m;), where P; is a prime ideal of S, and m; is an integer. In particular
the support of N on Proj(S) consists of the homogeneous prime ideals in S that
contain one of the ideals P;.

Proof. See [H] (I §7 Proposition 7.4).
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(2.7) Theorem. The A-module H (X, F) is finitely generated for all i.

Proof. To simplify the notation we note that from the equality H%(X,F) =
HO(P(E), 1. F) it follows that we only have to prove the Theorem when X = P(E).

We shall prove the Theorem when X = P(FE) by induction on the dimension
s of the support Supp F of F = M. When s < 0 we have that F = 0 and the
statement is true. Assume that s > 0. It follows from Lemma (2.6) that M has
a finite filtration whose quotients are isomorphic to (R/P)(d), where P is a prime
ideal in R. Since s > 0 we have that P does not contain the ideal (eq,...,e;),
and the support of F is the union of the irreducible varieties Z(P) in P(E).
Consequently we can assume that F is the sheaf associated to L = (R/P)(d).
Choose a homogeneous element f of degree m in R not contained in P. We have
an exact sequence

0—=LL Lim)—N—o. (2.7.1)

The dimension of Supp N is strictly less than s because Supp F = Z(P) and f is
an isomorphism at the generic point of Z(P). It follows from Theorem (2.2) that
we can choose m so big that HO(P(E), F(m)) is a finitely generated A-module,
and H'(P(E),F(m)) = 0 for i > 0. From the short exact sequence (2.7.1) we
obtain a long exact sequence,

.o — H'"Y(P(E),N) —» H'(P(E),F) —

HY(P(E),F(m)) — H(P(E),N) — - .

Since the A-module Hi(P(E), N) is finitely generated for all i, by the induction
assumption, it follows that H*(P(E),F) is a finitely generated A—module.
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3. Flat maps.

(3.1) Setup. Given a ring A and an A-module M. For each prime ideal P of A
we write k(P) = Ap/PAp. Let E be a free A-module of rank r+1 and eq, ..., e,
a basis of E. Denote by R = Sym 4(FE) the symmetric algebra of E over A and
write P(E) = Proj(R) for the r—dimensional projective space over Spec A.

The particular quotient A[z]/(z?) we denote by Ale] where ¢ is the class of the
variable x over A. Moreover we let M[e] = Ale] ® 4 M.

(3.2) Definition. Given an A-module M. The module M is flat over A if every
short exact sequence
0N —-N—->N"—=0

gives rise to a short exact sequence
0 -MRIAN - MuN—- My N"—0.

(3.3) Definition. Given a morphism f: X — S of schemes and an Ox—module
F. We say that F is flat over S if, for every point x of X, we have that F, is a flat
Os, f(x)~module, where the module structure comes from the map f 10, fl@) —
Ox,z, or equivalently from the composite map Og ) — (f+Ox)f@) — Ox.a-
The morphism f is flat if Ox is flat over S.

When f is the identity we say that F is a flat Og—module .

(3.4) Remark. Flatness has the following fundamental properties:

(1) (Long exact sequences ) We can break long exact sequences into short exact
sequences. Hence M is flat over A if and only if every exact sequence

N - N—->N"— ...
of A—modules gives rise to an exact sequence
o> MU N - N@AN—->MxsN'"— ..

(2) (Left exactness ) Since the tensor product is right exact ([A-M], (2.18)) we
have that M is flat over A if every injective map N’ — N of A-modules
gives rise to an injective map M @ 4 N' — M ® 4 N".

(3) (Localization ) Let S be a multiplicatively closed subset of A. It follows
from the definition of localization that the localization S~'A of A in S,
that S~1A is a flat A-module.

(4) (Base change ) Given a flat A-module N, and let B be an A-algebra.
Then B®4 N is a flat B-module. Indeed, for every B—-module P we have
an isomorphism P ®p (B®4 N) 2 P ®a N.

\hilball.tex
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(5) (Direct sums ) For every set (N;);e; of A—-modules and every A-module P
we have an isomorphism P ® 4 (®;e1N;) = ®icr(P ®4 N;). Hence @1 N;
is exact if and only if it is exact in every factor N,. We conclude that
@ic1N; is flat over A if and only if each summand N; is flat over A. It
follows in particular that every free A—-module is flat. Moreover, projective
A-modules are flat because they are direct summands of free modules.

(3.5) Lemma. Given an exact sequence
0—-M-—-N-—-F—0
of A—modules, where F' is flat. Then the sequence
0—-PR3IAM—-PRIUuN—-PRs F—0

is exact for all A—modules P.

Proof. Write P as a quotient of a free A—module L,
0—-K—-L—P—Q0.

We obtain a commutative diagram

0

l

K®AM—>K®AN—>K®AF

! ! J

0 —— L®aM —— LRsN —— LRy F

l l

P®AM ——— P®AN

J

0

where the upper right vertical map is injective because F' is flat, and the middle
left horizontal map is injective because L is free. A diagram chase gives that
P®ga M — P®a N is injective.
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(3.6) Proposition. Given an exact sequence
0—-F —-—F—F"—0
of A—modules with F" flat. Then F is flat if and only if F' is flat.

Proof. Given an injective map M’ — M. We obtain a commutative diagram
0

l

0 —— M @QQUF —— M@ F —— M @ F" —— 0.

l ! !

0 —— MUF — MIUF —— MUF' —— 0
The rows are exact to the left by Lemma (3.5), and we have injectivity of the top
vertical map since F"” is flat. The Proposition follows from a diagram chase.
(3.7) Lemma. Given an A-module M such that the map
I®AaM—IM

is an isomorphism for all ideals I in A. For every free A-module F and every
injective map K — F of A-modules we have that

K® A M—-F® A M
18 1njective.
Proof. Since every element in K ® 4 M is mapped into F’ ® 4 M where F’ is a
finitely generated free submodule of F' we can assume that F' is finitely generated.
When the rank of F'is 1 the Lemma follows from the assumption. We prove the
Lemma by induction on the rank r of F'. We have an exact sequence 0 — F; —

F — A — 0, where F} is a free rank r — 1 module. Let K1 = K N F} and let Ko
be the image of K in A. We obtain a diagram

0 0

| |

KiesM — KM —— Ko®@q M — 0.

l J l

0 — s M —— FQsaM —— As M

where the right and left top vertical maps are injective by the induction assumption
and it follows from Lemma (3.5) that the lower left map is injective because A is
free. A diagram chase proves that the middle vertical map is injective.
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(3.8) Proposition. An A-module M is flat if and only if the map
T Qs M—IM

is an isomorphism for all finitely generated ideals I of A.

Proof. If M is flat the tensor product I ® 4 M — M of the map I — A is injective
so I ®4 M — IM is an isomorphism.

Conversely, we can assume that I ® 4 M — I'M is an isomorphism for all ideals
I of A. Indeed, every element of I ® 4 M is contained in J ® 4 M, where J is a
finitely generated ideal, and if J ® 4 M — M is injective and the element is not
zero then it is not mapped to zero by I ® 4 M — M.

Let N’ — N be an injective map and write N as a quotient 0 — K — F —
N — 0 of a free A-module F. Let F’ be the inverse image of N’ in F'. Then we
have an exact sequence 0 — K — F/ — N’ — 0, and we obtain a commutative
diagram

0

|

KoaM —— FFaM —— N s M —— 0.

! l !

KoaM —— FQuM —— NQs M

It follows from Lemma (3.7) that the top vertical map is injective. A diagram
chase shows that the right vertical map is injective. Consequently M is flat over

A.

(3.9) Remark. It follows from Proposition (3.8) that a module over a principal
ideal domain is flat if and only if it does not have torsion.

(3.10) Lemma. Given a map p: A — B of rings and let N be a B-module. Then
N is flat over A if and only if Nq is flat over Ap for all prime ideals P in A and
Q in B such that ¢71(Q) = P.

Proof. Assume that N is flat over A. Since Bg is flat over B the functor that
sends an Ap-module F to Bo®p (N ®4 F') is exact. However B @p (N ®4 F) =
No ®a F = Ng ®a, F. Consequently the functor that sends the Ap-module F
to the Ap-module Ng ® 4, F is exact, that is, the Ap—module Ng is flat.
Conversely, assume that Ng is a flat Ap module for all prime ideals @) in B
with P = ¢~ 1(Q). The functor that sends an A-module F' to the Ap-module Fp
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is exact by Note (3.4(3)). Consequently the functor that sends the A-module F'
to the Bg-module Ng ®4, Fp is exact. However, we have that Ng ®4, Fp =
Ng @4, (Ap ®4 F) = Ng ®4 F. Hence the functor that sends an A-module F
to Ng ®a F' is exact. However, the functor that sends an A-module F' to the
B-module N ® 4 F is exact if and only if the functor that sends the A—module F’
to the Bg-module Ng ®4 F' is exact for all prime ideal @) of B. We thus have
that IV is a flat A—module.

(3.11) Note. Given a morphism f: X — S of schemes and a quasi—coherent
Ox-module F. It follows from Lemma (3.10) that F is flat over Spec A if and
only if F(U) is a flat A—module for all open affine subsets U of X.

In particular, if F is flat over Spec A, and Uy, ..., U, is an open affine covering
of X, the module F(U;, N---NUj;,) is flat over A for all 0 <ig < --- <, <7,
and Fy, is a complex of flat A—modules.

(3.12) Lemma. Given a regular ([A-M], (Theorem 11.22)) one dimensional ring
A and a homomorphism p: A — B into a noetherian ring B. Then B is flat over
A if and only if o=1(Q) = 0 for all associated prime ideals Q in B.

In particular, when B is reduced, we have that B is flat over A if and only if
0 H(Q) = 0 for all minimal primes Q of B.

Proof. Assume that B is flat over A and let Q be a prime ideal in B. If P = ¢~ 1(Q)
is maximal we have that Ap is a discrete valutation ring ([A-M] (Proposition 9.2
and Lemma 11.23)). Let t € PAp be a generator for the maximal ideal. Since ¢
is not a zero divisor in Ap and Bg is a flat Ap—module it follows that ¢ is not a
zero divisor in Bg. Consequently () is not an associated prime in B.

Conversely, assume that ¢~ 1(Q) is zero for all associated primes Q of B. It
follows from Lemma (3.10) that we must prove that Bg is flat over A,-1(g) for
all prime ideals R in B. If ¢~ '(R) = 0 we have that A,-1(p) is a field and
consequently that Bg is flat. On the other hand, if P = ¢71(R) is a maximal
ideal we choose a t € o~ !(R) that generates the ideal PAp. Since Ap is a principal
ideal domain it follows from Remark (3.9) that it suffices to show that By is a
torsion free Ap-module. Since all elements of Ap can be written as a power of
t times a unit, this means that it suffices to prove that ¢ is not a zero divisor in
Bpr. However, if t were a zero divisor in Bp it would be contained in an associated
prime ideal ) of B since B is noetherian. This is impossible because t # 0 and,
by assumption, ¢ ~1(Q) = 0. Hence t is not zero divisor and we have proved the
first part of the Proposition.

The last part of the Proposition follows since in a reduced ring the associated
primes are the minimal primes. Indeed, on the one hand every prime ideal contains
an associated prime so that the minimal primes are associated. Conversely, let )
be an associated prime and Q1,...,Q, be the minimal primes. Choose a non
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zero element a such that a@)Q = 0. We have that Q C QU ---U @Q,, because if
beQQ\Q1U---UQ, then ab =0 and thus a € Q; N---NQ,, = 0, contrary to
the assumption that a is not zero. Hence Q C Q1 U---U @, and thus () C Q); for
some i ([A-M] (Proposition 1.11)). Hence @ C @; and ) is minimal.

(3.13) Proposition. Assume that A is a regular ring of dimension one. Given
a morphism f: X — Spec A from a noetherian scheme X. Then f is flat if and
only if the associated points of X are mapped to the generic point of Spec A.

In particular, if X is reduced we have that f is flat if and only if the components
of X all dominate Spec A.

Proof. The Proposition is an immediate consequence of Lemma (3.12).

(3.14) Lemma. Assume that A is noetherian and that M is a finitely generated
A-module. Then M is flat if and only if Mp is a free Ap—module for all prime
ideals P of A.

Proof. 1t follows from Lemma (3.12) that M is flat over A if and only if Mp is flat
over Ap for all primes P of A. Since Mp is flat over Ap if Mp is free over Ap it
follows that when Mp is a free Ap—module for all prime ideals P of A, we have
that M is a flat A—module.

Coversely, assume that M is a flat A—module. Given a prime ideal P of A. The
Mp is a flat Ap—module. Since M is finitely generated it follows from Nakayama’s
Lemma that we can choose a surjection A% — Mp such that (k(P))" — k(P)®a,
Mp is an isomorphism of k(P)-vectorspaces. Denote by L the kernel of A% — Mp.
Since A is noetherian we have that L a is finitely generated A—module. However,
since M is flat, we have that kK(P) ®4, L = 0. It follows by Nakayamas Lemma
that L = 0. Consequently we have that the map A% — Mp is an isomorphism,
and that Mp is a free Ap—module.

(3.15) Lemma. With the notation of Definition (1.9), assume that the A—modules
FO F' ... of the complex F are flat and that H*(F) is a flat A-module for i > p.
Then the A-modules B'(F) and Z*~Y(F) are flat for i > p.

Proof. We prove the Lemma by descending induction on p. The Lemma holds for
p > r since Z" = F". Assume that the Lemma holds for p 4+ 1. By the induction
assumption we have that BPT! and ZP are flat. From the sequence (1.9.2) with
i = p and Proposition (3.6) it follows that BP is flat. Then, from the sequence
(1.9.1) with 4 = p — 1 and Proposition (3.6) it follows that ZP~! is flat.

(3.16) Theorem. Given a noetherian scheme S and a morphism f: X — S which
is separated of finite type. Let F be a (kvasi?) coherent Ox—module. Then:

(1) Assume that F is flat over S and that R'f.F =0 fori > 0. Then f.F is
a flat Og—module.
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In particular, if f«JF is coherent, we have that f.JF is locally free.

(2) Assume that S = Spec A and that X is a closed subscheme of P(E). If
there is an mg such that f.F(m) is locally free for m > mg, we have that
F is flat over Spec A.

Proof. Both assertions are local on S. Hence we can assume that S = Spec A in

both cases. Then it follows from the equality (1.7.4) that f,F = HO(X,F). Hence
f«F is a flat Og—module if and only if H(X, F) is flat over A. The last part of
(1) consequently follows from the first part of Lemma (3.14).

If F is flat over Spec A it follows from Note (3.11) that F(U;, N---NU;,) is
flat over A, and thus that the complex F;; consists of flat modules. From the
assumption of the Theorem we have that H*(Fy) = H(X,F) =0 for i > 0. It
follows from Lemma (3.15) with p = 1 that Z°(Fy) = H(X, F) is flat, and we
have proved the first assertion.

By Assumption we have that H%(X, F(m)) = f.F(m)(Spec A4) is flat for m >
mo. Let N = @p>mo HO(X, F(m)). Then it follows from Setup (2.1) that N is
an R/I-module such that F = N, where I C R is an ideal defining X in P(E).

We have, with the notation of Setup (2.1) that F(U;) = N(U;) = N,), where y;
is the class of e; in R/I. It therefore suffices to prove that N, is flat over A.
However, the module N is a direct sum of flat A-modules, and thus flat over A.
Hence the functor which sends an A-module L to the A—module N ® 4 L is exact.
We consider N®4 L as an R/I-module, via the action of R/I on N. Since (R/I),,
is flat over R/I for all i we have that the functor that sends an A-module L to
the A-module (R/I),, ®r/r) N ®a L is exact. Hence (R/I),, ® r/ry)N = Ny, isa
flat A-module. The same is therefore true for the direct summand Ny, of degree
Z€ero.

(3.17) Lemma. Given a noetherian integral domain A and an A-algebra B of
finite type. Moreover, given a finitely generated B—module N. Then there is a
non-—zero element f € A such that Ny is free over Ay.

Proof. Write B = Aluq,...,up]. We shall prove the Lemma by induction on h.
When h = 0 we have that A = B. It follows from Lemma (2.6) in the non graded
case that we can choose a filtration N = N,, D N,_1 D --- D Ny = 0 by A-
modules such that N;/N;_1 = A/P;, where P; is a prime ideal in A. Since A
is an integral domain we have that the intersection of the non zero primes P; is
not zero. Choose a non zero f € A in this intersection if there is one non zero
prime P; and let f = 1 otherwise. Then (N;/N;_1) is zero if P; is a non zero
prime and isomorphic to Ay when P; = 0. Consequently we have that Ny is a free
As—module.

Assume that h > 0 and that the Lemma holds for h — 1. Choose generators
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ni,...,ns for the B-module N and write B’ = Afu,...,up_1]. Then B = B'[up].
Moreover, let N’ = B'ny + --- B'ns. We have that N’ is a finitely generated B’—
module such that BN’ = N. It follows from the induction assumption used to
the A—algebra B’ and the B’~module N’ that we can find an element f’ € A such
that NV ]’c, is a free Ay —module. It therefore remains to prove that we can find an
element f” € A such that (N/N’)s is a free Ag»—module. To this end we write

N/ =N +u,N' +-- - +u} N’

and .
P, ={ne N:u"'n € N/}.

Clearly N/ is a B’-submodule of N and P; a B’-submodule of N’. We obtain a
filtration
N{/N' C N}/N' C --- C N/N'

of N/N' by B’-modules N//N' such that U;N//N’ = N/N’. The B’-linear homo-
morphism N’ — N/,; which sends n to u},"'n defines an isomorphism N'/P; —
Nj_,/N; for all i. Since B’ is noetherian, the sequence Py € P, C --- C N’
must stabilize. That is, among the quotients N/, /N; there appears only a finite
number of B’~modules. It follows from the induction assumption that we can find
an element f” € A such that all the modules (N;,;/N)» are free Ag»—modules.

Hence (N/N')¢» is a free Apr—module, as we wanted to prove.

(3.18) Proposition. (Generic flatness) Given a morphism f: X — S of finite
type to a noetherian integral scheme S, and let F be a coherent O x —module. Then
there is an open dense subset U of S such that Fy is flat over U.

Proof. We clearly can assume that S is affine. Since f is of finite type we can cover
X with a finite number of open affine subschemes X;. It follows from Lemma (3.17)
that, for each i, there is an open dense affine subset U; of S such that (F|X;)y, is
flat over U;. We can take U to be the intersection of the sets U;.

(3.19) Proposition. Given a morphism f: X — S finite type to a noetherian
scheme S and let F be a coherent Ox-module. Then S is a finite set theoretic
union of locally closed reduced and disjoint subschemes S; such that Fg, is flat
over S;.

Proof. Assume that the Proposition does not hold. Since S is noetherian there
is a closed subscheme T of X which is minimal among the closed subschemes for
which the Proposition does not hold. Let 77 be an irreducible component of T'
with the reduced scheme structure and let V' be an open subset of T that does
not intersect the other components of T. Then V' is also open in T. It follows
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from Proposition (3.18) that there is an open non—empty subset V' of V'’ such that
Fy is flat over V. By the induction assumption the complement of V' in T" has a
stratification, and together with V' this gives a stratification of T. This contradicts
the assumption that 7" has no stratification and we have proved the Proposition.

(3.20) Proposition. Assume that A is a reqular ring of dimension one. Let x be
a closed point in Spec A and Y a closed subscheme of p~1(Spec A\ {z}) which is
flat over Spec A\x and Y the scheme theoretic closure of Y in P(E) ThenY is the
unique closed subscheme of P(E) which is flat over Spec A and whose restriction
to p~1(Spec A\ x) is equal to Y.

Proof. Let P be the prime ideal in A corresponding to the point x of Spec A. It
clearly suffices to prove the Proposition for an open affine subset Spec C' of P(FE).
Let ¢: A — C be the homomorphism induced by the projection of P(FE).

We have that Spec A \ z = Spec A; where ¢ in P is the generator of PAp. We
have that SpecC' N f~1(Spec A \ {z}) = Spec Coy- Let Cpy — B define the
closed subscheme Y N Spec Cy ;) of Spec Cy ;). The closure of Y N SpecCy ) in
Spec C' is defined by the kernel I of the composite map C' — Cy;) — B.

Since A is a principal ideal domain and B is flat, we have that B has no torsion
over A. Hence the submodule C'/I of B has no torsion, and thus C/I is flat over
A. We have proved that the scheme theoretic closure Y of Y is flat over Spec A.
Hence Cy)/IC, ) is flat over A4(?).

To prove that Y is unique with the given properties we let J be an ideal in
C that defines a closed subset which is flat over Spec A and whose restriction to
Spec Cy(y) is Y. That is, the ring C/J is flat over A and has the same image in
C@(t) as I. Then J C I. It remains to show that I C J. Let ¢ € I. Since [ and J
have the same image in C ;) we have that t"c € J for some n. Since C/.J is flat
over A we have that C/J has no A-torsion. Hence ¢ € J and we have that I = J.

(3.21) Lemma. Let A — B be an A-algebra and F a B-module. Moreover let
H C F be a sumodule such that F//H is flat over A. For every homomorphism of

B-modules
u: H— F/H

we define
H,={zx+ecycFle]:xc H and u(z) = up/u(y)}.
Then:
(1) The group H, is a Ble]-submodule of F'[e] with image by the canonical map
Up)/erle] - Fle] — F equal to H, and where Fe|/H, a flat Ale]-module.
(2) The correspondence that sends the homomorphism u to H,, gives a bijection
between Homp(H, F/H) and Ble]-submodules H' of Fle| with image by
Up[e]/eFle] equal to H, and where Fle]/H' is flat over Ale].
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Proof. It is clear that H, is a Ble]-module of F'[¢] and that the image by wp(c/cp[
is H. In order to verify that Fle|/H, is flat over A[¢] it suffices by Proposition
(3.8) to verify that the map

Fle]/Hy ®ap (€) — Fle]/H, (3.21.1)

is injective. Let z + ey € F¢] be an elements such that upp g, (T +cy) @4 € 18
in the kernel of the map (3.21.1). Then we have that xe € H,, and consequently
that up g (z) = 0. Hence we have that x € H. Choose an element y’ € F' such
that w(z) = up/g(y’). Then we have that x + ey’ € H, and consequently that
Up(e)/ i, (T +€Y) @afe) € = Up(e) 1, (T) @A) € = Up[e)/u, (T +€Y')ajs€ = 0. Hence
we have proved that (3.21.1) is injective.

Conversely let H' € Fle] be a Ble]-submodule with image H by up(c) -] and
where Fe]/H' is flat over Ale]. It follows from lemma (3.5) that the sequence

0— H ®ap) A— Fle] ®ap) A — Fle]/H @41 A— 0 (3.21.2)

is exact. The image of H' ®apq A in Fle] ®a A = F by (3.21.2) is H by
assumption. The mid right map in (3.21.2) consequently induced an isomorphism

F/H — Fle]/H' @ a1 A. (3.21.3)
Tensor the exact sequence
0— A Al - A—0
with Fle]/H’ over Ale]. We obtain an exact sequence
0— Fle|/H @4 A — Flel/H ®4pe) Ale] — Fle]/H' ®a;.) A— 0. (3.21.3)

From the sequence (3.21.3) we obtain an exact sequence

0— F/H Fle|/H' 2 F/H — 0. (3.21.4)

We have that n(upp) p|F) = up/g and dup/g = e(up)/m|F). For x € H we
have that nup g (z) = up g (r) = 0. Consequently it follows from (3.21.4) that
there is a unique element up/g(y) in F/H such that dup/ g(y) = uppe)/m ().
Write u(z) = up, g (y). In this way we define a B-module homomorphism

u:H — F/H.
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It remains to prove that H' = H,,.

Let x —ey € H' C F'[e]. Then we have that 2 € H because up.) /- (H') = H.
We obtain that 0 = g/ m (T —€y) = upe)/m(T) —cup/a (y) and consequently
we have that wppo)/p(z) = cupp)/a(y) = dup/a(y). We obtain from the defini-
tion of u that u(x) = up,(y), and consequently that x — ey € H,.

Conversely let x —ey € H, with 2 € H and u(x) = up/(y). By the definition

of u we then have that up.) g/ (2) = dup/r(y). We obtain that upy, m(z—cy) =
upp) a () — euple/a(y) = 0up/a(y) — eup/a(y) = 0. Hence we have proved
that H' = H,,.
(3.21’) Lemma. (Generalisering av Lemma (3.21)) La ¢ : A — B be an A-
algebra and let I be an ideal in A such that I? = 0. For each B-module H we let
Hy=H ®4 Ay = H/IH where H is considered as an A-module by restriction of
scalars. For every B-module F' and submodule H we let up g : F' — F/H be the
canonical residue map.

Let F' be a B-module and H a submodule such that the module G = F/H is a
flat A-module. We have an exact sequence of Ag-modules

0= H®s Ay — F®R4A)— F/H®4 Ay — 0,
that is the exact sequence of Ag-modules
0— Hy— Fy— (F/H)y — 0.

In particular we have a canonical isomorphism Fy/Hy — (F/H)o. We also have
an exact sequence of B-modules

0—>F/H®R41—F/H®aA— F/H®4A)— 0,
that is the exact sequence of B-modules
0—>F0/H0®AOI—>F/H—>F0/H0—>O.

We shall identify the B-module Fy/Hoy ®a, I with its image I(F/H) in F/H.
Let
u HO — Fo/HO ®A0 I

be a By-module homomorphism, that we with the above identification consider as
a B-module homomorphism
u:Hy— F/H

with image in the kernel I(F/H) of the map F/H — Fy/Hy. Let

H,={r+y:vcHyclF ulug/;u(r)) =up/uy)}.
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Then we have that:

(1) The group H, is a B-module such that the image of H, by the map up)rp
F — Fy is Hy and F/H, is a flat A-module.

(2) The correspondence that sends u to H, defines an operation of the module
Homp, (Ho, Fo/Ho ®a, I) on the set Q of all B-submodules H' of F' such
that the image of H' by the map up,;p : F — Fy is Hy and F/H' is a flat
A-module. This action makes Q into a principal homogeneous space under
HOIIlBO(H(), FO/HO ®A0 I)

Proof. We have that H, is a B-module since ug /g, up/g and u are B-module
homomorphisms. Moreover the image of H, by the homomorphism up/;p : F' —
Fy is Hy. It is clear that the image contains Hy. Conversely, when xq € Hy we
choose x € H such that ug, ;g (x) = 9. We have that u(ug, (7)) = u(zo) lies
in the kernel I(F/H) of F/H — Fy/Hy. Consequently we can find y € IF such
that up g (y) = w(up/ra(x)). It follows that x +y € H,, and thus that z, lies in
the image of H, by the homomorphism up/;p : F' — Fp.

We notice that H and H, have the same image Hq by the map up/rp : F' — Fy
ifand onlyif H C H, +IF and H, C H + IF.

Next we shall show that F//H, is flat over A. It follows from the Local Criterion
of Flatness (3.7) that when A is noetherian it is necessary and sufficient that the

homomorphism
F/H,®s I — F/H,

is injective. Let > _ up /g, (7o) ®4 iq With o € F and i, € I be in the
kernel. That is, we have ) . iazq € Hy. Since ) . ia2q € IF it follows
from the definition of H, that we have 0 = u(up/rg(0)) = up/ag(Q_4csiaTa)-
Consequently we have that ) ion2q € H. Then ) up/p(za) ®4 iq is in
the kernel of F//H @4 I — F/H, and since F//H is flat over A by assumption we
have that ) . ;up/ p(%a) ®4ia =0in F/H ®4 1.

We have a B-linear map F/H ® o I — F/H, ® 4 I that is uniquely determined
by mapping up/ g (z) ®44 with x € Fand i € I to up/ g, () ®44. This map is well
defined because from the equality up,f(71) = up/ g (z) we obtain that xy —z € H
so we can find elements ' € H, and y € I'F such that 1 —x = 2’ + y. Then we
have that UF/Hu(xl) XA = UF/Hu(x) XA 1+ UF/Hu(x/) XA 1+ uF/Hu(y) XA 1=
up/m, () ®a1. In particular we have that 0 =3 up/g(2a)®aie in F/H®4 1
maps to 0 = > ;up/f, (Ta)®aie in F//H,®41, and we have proved that F//H,
is flat over A.

It remains to prove that every submodule H’ of F' such that the image of H’
by the homomorphism F' — Fy is Hy and such that F'/H' is flat over A is on the
form H, for exactly one map u: Hy — Fyo/Ho ®4, I. We construct the map

UZHO —>F0/H0 ®AOI
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as follows:

For every xo € H' we choose an element 2’ € H' such that ug ;g (z') = xo
and we let u(xo = up, g (2).

We have that up, g (2") lies in the kernel of the homomorphism F/H — Fy/Hy
because H' C H+1F with 2’ = v +y with z € I and y € IF and thus up, g (z') =
up/p(x) + up/p(y) = up/p(y) € I(F/H). Moreover we have that up, g (z') is
independent of the choise of =" because if ug: ;g (2") = upg/rg(2"”) for some
2" € H' then we have that '’ — z” € TH'. However IH' C IH + IIF = IH and
IH C IH' so that up/ g (2') = up/g(2' —2") +up/g(z") = up/p(z"). We have
thus proved that u is well defined and has image in the kernel I(F'/H) of the map
F/H — Fo/Ho.

It is clear that H' C H, because if 2’ € H' we have that 2’ = x + y with
r € H and y € IF and we have that up/rp(2') = up/;p(x). Hence we have that
w(up/rm(x)) = u(ug rp(2')). Moreover we have that wugy /g (2') = up (2’
by the definition of u. Hence we have that w(ug, ;g (2')) = up/a(z") = wp/a(x +
y) = up/a(y) and thus z +y € H,.

The inclusion of H' in H,, gives a commutative diagram

H®pl —— H®R®42A —— H®44 —— 0

! l !

H sl —— H, QA —— H,®4 A4 —— 0

where the right and left vertical maps are isomorphisms as we have seen above.
Consequently the middle vertical map is a surjection. That is we have H' = H,,.
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4. Base change.

(4.1) Setup. Given a noetherian ring A and a free A-module F of rank r+1. Let
R = Sym 4(F) and let P(E) = Proj(R)). Moreover, given a noetherian scheme S
and a morphism f: X — S which is separated of finite type. Let F be a quasi—
coherent O x—module. For each point x of X we denote by x(z) the residue class
of the local ring Ox , at x modulo the maximal ideal.

(4.2) Remark. Let g:T — S be a morphism from a noetherian scheme 7. We
saw in (1.11.2) that there is a base change map

Ot Koy Hi(X, .7:) = g*Rif*]: — RifT*fT.
and this map is an isomorphism if and only if the base change map
B XA Hi(XSpeCAaJTSpeCA) - Hi(XSpecBaJTSpeCB)

of (1.9.3) is an isomorphism for all affine open subsets Spec A of S and Spec B
of T such that Spec B maps to Spec A. With the notation of Definition (1.7) we
have the isomorphism B ® 4 Fiy — (Fspec )y 0of B-modules of (1.7.1) and thus
an isomorphism H(B ®4 Fy) — H*(Xspec B, Fspec B) of B-modules. Hence the
base change map is an isomorphism if and only if the base change map

B®s H (Fy) — H(B®a Fu)
is an isomorphism for all open affine subset Spec A of S and Spec B of T such that
Spec B maps to Spec A.
(4.3) Lemma. With the notation of (1.9) we have that the base change map

B®aHY(F)— H(B® F)

of (1.9.3) is an isomorphism if:
(1) The map B ®4 BT F) — B ®4 F'™™ is injective.
(2) The map B4 Z'(F) — B ®4 F* is injective.
Proof. Assume that the conditions (1) and (2) hold. From the sequence (1.9.1)

for the complexes F' and B ® 4 F' we obtain the following commutative diagram of
B-modules:

B®AZi(F) E— B®AFi E— B®ABi+1(F)

l H !

0 —— Zi(B®AF) _ Fi(B®AF) _ Bi+1(B®AF).
\hilball.tex
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with exact rows. Since the right vertical map is injective by assumption the left
vertical map is surjective, and since B ® 4 Z*(F) — B ®4 F" is injective by as-
sumption, the left vertical map is an isomorphism.

From (1.9.2), for the modules F' and B® 4 F', we obtain a commutative diagram
of B—modules

B®y B{(F) —— B®u Z{(F) —— B®4 H(F) —— 0

! ! J

B(B®sF) —— Zi{(B®sF) —— Hi(B®s F) —— 0.

with exact rows. We Noted in (1.10) that the left vertical map is surjective, and
we just proved that the middle vertical map is an isomorphism. It follows that the
right vertical map is an isomorphism.

(4.4) Theorem. (Flat base change) Given a flat morphism g:T — S from a
noetherian scheme T. Then the base change map

G*R'f.F — R'fr.Fr

of Definition (1.11) is an isomorphism for all i.

Proof. The assertion is local on S and T. Hence we may assume that S = Spec A
and T = Spec B for an A—algebra B. Then B is flat over A and consequently
B ®4 B (Fy) — B®a (Fy)! and B®a Z4(Fy) — B ®4 (Fy)? are injective for
all i. It follows from Lemma (4.3) that the base change map B ® 4 H*(Fy) —

HY(B ®4 JFy) is an isomorphism for all i. The Theorem therefore follows from
Remark (4.2).

(4.5) Note. Given a field K and a morphism Spec K — S. Denote by s the
image point. We have a field extension x(s) — K. It follows from Theorem (4.4)
that we have an isomorphism

K ®/€(s) Hi<XSpecm(s)7fSpecm(s)) - Hi(XSpecKafSpecK)

of K—vectorspaces, for all 7. In particular, if g: 7" — S is a morphism and ¢ a point
in T" we obtain an isomorphism

K<t) ®n(g(t)) Hi(XSPeC H(Q(t))7FSpeCH(9(t))) - Hi<XSpecn(t)a]:Spec n(t))~ (451)
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(4.6) Proposition. With the notation of Definition (1.9), assume that the A—
modules FO, F1,... of the complex F are flat and that H*(F) is a flat A-module
fori>p+ 1. Then, for every A-algebra B, the base change map

B®as HY(F)— H(B®,4 F) (4.6.1)

is an isomorphism for ¢ > p.
In particular, when H*(F) =0 fori > 0 then:
(1) The base change map B @4 HY(F) — HY(B ®4 F) is an isomorphism.
(2) We have that H{(B®a F) =0 fori > 0.

Proof. Since H'(F) is flat for i > p+1, it follows from sequence (1.9.2) and Lemma
(3.5) that B ®4 B*(F) — B ®4 Z*(F) is injective for i > p + 1. It follows from
Lemma (3.15) that B*(F) is flat for i > p + 1. Hence it follows from the sequence
(1.9.1) and Lemma (3.5) that B ®4 Z'(F) — B ®4 F' is injective for i > p.
Conditions (1) and (2) of Lemma (4.3) are therefore satisfied. The Proposition is
therefore a consequence of Lemma (4.3).

(4.7) Theorem. Assume that F is flat over S and that R f.F = 0 for i > 0.
Giwen a morphism g: T — S from a noetherian scheme T. Then:

(1) The Or-module fr.Fr is flat.

(2) We have that R fr.Fr =0 fori > 0.

(3) The base change map

9 [« F — fr«Fr

18 an 1somorphism.

Proof. The assertions are local on S and T so we may assume that S = Spec A
and that T' = Spec B where B is an A-algebra.

With the notation of Definition (1.7) we have the isomorphism B ®4 Fyy —
(FspecB)v of (1.7.1). When F is flat we noted in (3.11) that the complex Fy,
consists of flat A-modules and since H*(Fy) = H*(X,F) = 0 for i > 0 by as-
sumption, it follows from Proposition (4.6) with p = 0 that H*(Xspec B, Fspec B) =
H((Fspee)v) = H(B ®4 Fy) = 0 for i > 0 and that the base change map

B®s HY (X, F)=B®s H (Fy) —
HO(B ) flx{) - HO((JTSpecB>V> — HO(XSpeCBaJTSpeCB>

is an isomorphism. We have proved assertions (2) and (3). Assertion (1) follows
from (2) and Theorem (3.16)(1).
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(4.8) Lemma. Assume that A is local and let k be the residue field. With the
notation of (1.9) assume that the A-modules F°, F', ... of the complex F are flat

and that H'(F) is a finitely generated A-module for all i. Moreover, assume that
Hi(k®a F) =0 fori>0. Then we have that

H(F)=0

for i > 0.

Proof. We shall prove, by descending induction on p, that for p > 0 we have
that HP(F') = 0, that ZP(F) is flat, and that k ® 4 ZP(F) — ZP(k ®4 F) is an
isomorphism. These assertions hold for p > r. Assume that they hold for p + 1.
Then BPYL(F) = ZPTY(F). By the assumption we have that HP*!(k @4 F) =0
and thus BPTH(k®a F) = ZPTH(k®4 F). Since BPT1(F) = ZPT(F) is flat by the
induction assumption it follows from the sequence (1.9.1) with ¢ = p and Lemma
(3.18) that ZP(F) is flat.

From the sequence (1.9.1) for F' and k ® 4 F' we obtain a commutative diagram

0 —— k@4 ZP°(F) —— k@aFP —— ko ZPHY(F)

l H l

0 —— ZP(k @4 F) —— FP(k@a F) —— 2P k@, F)

and it follows from Lemma (3.5) that the top row is exact. Hence the left vertical
map is injective. Since the right vertical map is injective, by the induction as-
sumption, we obtain that the left vertical map is surjective. The sequence (1.9.2)
for © = p applied to F' and k ® 4 F' gives a commutative diagram

k®4 BP(F) —— k®a ZP(F) — k®s H(F) —— 0

| | |

Bk @A F) — ZP(k@aF) —— HP(k@4 F) — 0

with exact rows. We have proved that the middle map is an isomorphism and noted
in (1.10) that the left vertical map is surjective. Hence the right vertical map is an
isomorphism. Since HP(F ®4 k) = 0 for p > 0 it follows from Nakayama’s Lemma
that HP(F') =0 for p > 0.

(4.9) Theorem. Assume that F is flat over S and that R'f,F is coherent for all
1. Let s be a point of S be such that Hi(XSpeCl{(s)7fSpecn(s)> =0 fori>0. Then
(R f.F)s =0 fori>0.
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In particular, when Hi<XSpeCH(s)7fSpeCH(s)) =0 fori >0 and all s in S, we
have that R'f,.F = 0 fori > 0.

Proof. We can clearly assume that S is affine. Let S = Spec A and let P be the
prime ideal in A corresponding to the point s. It follows from (1.7.4) that the
assertion of the Theorem is equivalent to (R'f.F)s = Ap ®4 H'(X,F) = 0 for
1> 0.

Theorem (4.4) for the flat map A — Ap states that we have an isomorphism
Ap@aH (X, F) — H(Xspec Ap, Fspec ap)- Hence it suffices to prove the Theorem
when S = Spec Ap. That is, we can assume that A is local.

With the notation of Definition (1.7) with B = k(P) we have the isomorphism
K(P) ®a Fuyy — (Fspecr(py)y of (1.7.1). Consequently it follows from the assump-
tion that HZ(IQ(P) XA fu) = Hi(XSpecn(P)a]:Specn(P)) =0 for ¢ > 0. When F is
flat over S we Noted in (3.11) that the complex Fy; consists of flat modules and
we have that H*(Fy) = H*(X, F) is finitely generated for all i by assumption. It
follows from Lemma (4.10) that H(X,F) = H'(Fy) = 0 for i > 0, as we wanted
to prove.

(4.10) Proposition. Assume that S = Spec A, that X is a closed subscheme of
P(FE), and that F is coherent. Given a morphism g:T — S from a noetherian
scheme T'. Then there is an mg such that the base change map

OT ®OSpecA HO<X7 f(m)) = g*f*]:(m) - fT*]:T(m)
18 an isomorphism for m > my.

Proof. The base change map is local in T'. Hence it suffices to prove that the base
change map

B ®A HO(X7 F(m)) - HO(XSpeCBaJTSpeCB(m»

is an isomorphism for m sufficiently big for every open affine subset Spec B of T'.
With the notation of Setup (2.1) we have that F = Mz for a graded (R/I)-
module Mz, where [ is an ideal in R defining X in P(F). Then we have that

Ospec B ®0gpec 4 F = B ®a4 Mr. We obtain a commutative diagram

(Mz)m — —— HO(X, F(m))

l l (4.8.1)

(B XA M]:)m B HO(XSpeCB7fSpecB<m))

where the left vertical map sends m € (Mxz),, to 1 @ m € (B ®4 Mx),, and the
right vertical map is the map H°(X, F(m)) — H°(Xspec B, Fspec 5(m)) of (1.7.3).
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In diagram (4.8.1) we can extend the scalars of the modules in the top row from
A to B. We obtain a commutative diagram

B@A (Mf)m - B®A HO(XvJT(m))

H l . (4.8.2)
(B®a Mg)ym ——— H(Xspee By Fspec (1))

where the right vertical map is the base change map of (1.11.1). It follows from
Theorem (2.2)(1) that the horizontal maps of diagram (4.8.1) and thus of diagram
(4.8.2) are isomorphisms for big m. Consequently the right vertical base change
map of (4.8.2) is an isomorphism for big m.

(4.11) Lemma. Assume that S = Spec A, that X is a closed subscheme of P(E),
and that F is coherent. There is an mg such that for all m > mg and for all points
s € Spec A the following two assertions hold:

(1) We have that Hi(XSpeCH(S),]—"Spec,{(s)(m)) =0 fori> 0.

(2) The base change map

’{(S) XA HO<X7 f(m)) - HO(XSpec n(s)7fSpecn(s) (m))
1s an 1somorphism.

Proof. 1t follows from Proposition (3.18) that we can find a finite number of locally
closed reduced subschemes of Spec A that cover Spec A and such that F is flat over
each of the subschemes. If necessary, covering each of these reduced subschemes
with a finite number of open affine sets, we can cover Spec A with a finite number
of locally closed reduced affine subschemes S; = Spec B; such that Fg; is flat over
S;.

From Theorem (2.2)(2) it follows that we can find an m; such that we have
H'(S;j, Fs,(m)) = 0 for m > my for all j and all i > 0. Hence it follows from
Theorem (4.7) applied to the flat Og,~module Fg, that for m > m, and all j, and
for all points s € S;, we have that Hi(XSpeC/ﬁ(s)afSpecn(s)<m)) =0 for i > 0 and
that the base change map

I{(S) ®Bj HO(XSjﬂij (m)) - HO(XSpecn(s)a]:Specn(s)(m)) (4111)

is an isomorphism. In particular we have proved assertion (1).
It follows from Proposition (4.10) that we can choose an mgo such that the base
change map
B; @4 H*(X,F(m)) — H°(S;, Fs,(m)) (4.11.2)
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is an isomorphism for m > mag, and for all j. Let m > mg = max(mq,ms2)
and let s € S. Choose an S; that contains s and let S; = Spec B;. We obtain
isomorphisms

k(s) @4 HY(X, F(m)) = k(s) @p, (B; @4 H(X, F(m))
- K(S) ®Bj HO(‘Sja]:Sj (m)) - HO(XSpecn(s)afSpecn(s)<m))

where the left map is obtained from (4.11.2) and the right is given by (4.11.1).
Clearly the composite map is the base change map for the point s of A and we
have proved assertion (2).

We sum up the main results about projective spaces in this Section in the
following result:

(4.12) Theorem. Assume that S = Spec A, that X is a closed subscheme of
P(E), and that the Ox -module F is coherent and flat over S. Then there is an
mo such that for all m > mg we have that given morphisms T — Spec A and
g:U — T of noetherian schemes then:

(1) The Op-module fr, F(m) is locally free.

(2) There is an equality R' fr, F(m) =0 for each i > 0.

(3) The base change map

g*fT*fT(m) - fU*fU

1S an 1somorphism.

Proof. Tt follows from Lemma (4.11) that there is an mg such that for all m > my
and for all points s of S we have that H"(Xspec,,v(s),fspec,@(s)(m)) =0 for i > 0.
Consequently it follows from (4.5.1) that for all m > mg and all points ¢ of T we
have that Hi(XSpeCH(t),fspec,{(t)(m)) = 0 for i > 0. It follows from Theorem (2.7)
that R’ fp,F(m) is coherent for all i and m, and thus it follows from Theorem (4.9)
that R fr,Fr(m) = 0 for m > mg and i > 0. Hence we have proved assertion (2).
It follows from Theorem (4.7) that assertion (3) is a consequence of assertion (2).
Assertion (1) is a consequence of (2) and Theorem (3.16)(1).
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5. Hilbert polynomials.

(5.1) Setup. Given a noetherian ring A and a free A-module F of rang r+1. We
choose a basis e, ..., e, of E. Denote by R = Sym 4(F) the symmetric algebra of
E over A and write P(E) = Proj(R).

Let X be a closed subscheme of P(FE) with inclusion ¢: X — P(FE), and F a
coherent O x—module.

(5.2) Definition. Denote by QJt] the polynomial ring in the variable ¢ over the
rational numbers. For each positive integer d we define a polynomial (2) in Q]t]

by
(2) :t(t—l)(t—Q)...(t—aH—l) ) gt g

d!
and we let (é) =1.

(5.3) Note. For each positive integer e we define an operator A, on all functions
f:Z — Z by
Acf(m) = f(m+e€) — f(m).
We let A = A;. Then A(Z) = (dfl).
For each non—negative integer d we have that (fi) defines a function Z — Z and
we have that

t t+e t -1
Ae = — P _d_2 e .
(a) = (57~ (&) =eq@my +tuat 4ot

Thus the polynomials Ae(i),Ae (;), ... form a Q-basis for QJt]. In particular

every polynomial @ € QJt] of degree d — 1 can be written in the form A.P = Q
for a polynomial P(t) of degree d.
(5.4) Lemma. Given a polynomial P(t) € Q[t] of degree d.

(1) There is an mg such that P(m) € Z, for m > mg, there exist integers
Co, ... Cq such that

P(t):cd(:;) +cd_1(df1) b e

(2) Given a function f:Z — Z and a polynomial Q(t) € Q[t] of degree d — 1
such that
Acf(m) = f(m +e€) — f(m) = Q(m),
for all m. Then there is a polynomial P(t) € Qlt] of degree d such that
f(em) = P(em)

for all m. The polynomial P(t) satisfies AP = Q.
\hilball.tex
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Proof. Write P(t) = cq (Z) + a1 (djl) + -+ ¢o with ¢g,...,cq in Q.

We prove assertion (1) by induction on d. The assertion holds trivially for d = 0.
By the induction assumption the assertion holds for the polynomial AP(t) =
Cd (dil) + .-+ ¢y of degree d — 1. We conclude that cq,...,cq are integers. Then
P(m) —cq("}) =+ —c1(}) = co is an integer for m > mgy. We have proved the
first assertion.

To prove the second assertion we use the first assertion to write Q(¢) in the
form Q(t) = bg_1 (dil) + -4 bg where by, ...,bs_1 are integers. We saw in Note
(5.3) that there is a polynomial Pi(t) = cq(}) + -+ + c1(}) in Q[t] of degree
d such that A,P, = Q. Then A.(f — P;) = 0. Consequently we obtain that
(f = P1)(em) = (f = P)(e(m — 1)) = -~ = (f = P1)(0). Write by = (f — P1)(0).
Then f(em) = (P;+bg)(em) for all m and thus f(em) = P(em) with P = P; +bg.
We have proved the first assertion of (2). The second assertion of the Lemma
follows from the equality A.(P) = A.P; = Q.

(5.5) Theorem. Assume that A is an artinian ring. Then

r

XF(m) = (=1)'la (H'(X, F(m)))

=0

1s a polynomial in m of degree dim Supp F, and the coefficient of the term of
highest degree is positive.

Proof. To simplify the notation we observe that it follows from the equalities
HY(X,F(m)) = H (P(E),1.(F(m))) = HY(P(E), (t+F)(m)) of Note (1.6) and
Setup (2.1) that it suffices to prove the Theorem when X = P(FE).

We shall prove the Theorem by induction on the dimension s of the support
Supp F of F = M, where M = Mz is the finitely generated R—module of Setup
(2.1). When s < 0 we have that F = 0 and the statement is true. Assume that
s > 0. It follows from Lemma (2.6) that M has a finite filtration whose quotients
are isomorphic to (R/P)[d], where P is a prime ideal in R. The support of F is
the union of the irreducible varieties Z(P) in P(E). Since 4 and x are additive
it suffices to prove that the Theorem holds when F is the sheaf associated to
the R-module L = (R/P)[d]. We have that L = 0 when P contains the ideal
(eo,-..,e.). Hence we can assume that the ideal P does not contain (e, ..., e,).
Since we assumed that s > 0 there exists such an ideal P.

Let P =Py C P, C --- C P; be a maximal sequence of homogeneous prime
ideals in R such that (eg,...,e,) is not contained in Ps. Choose a homogeneous
element f € Py \ P of degree d. (Ma gjore s =0. Ta e; ¢ P = Py) We obtain an

exact sequence

0— L5 L[d—N-o. (5.5.1)
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The dimension of Supp N is s — 1 because [ defines an isomorphism at the generic
point P of Z(P) and Py is contained in Supp N. From the long exact sequence of

cohomology corresponding to the seqence 0 — F J, F(d) — N — 0 associated to
(5.5.1) we obtain that

Aaxr(m) = xz(m+d) — xz(m) = x5(m).

It follows from the induction assumption that x ﬁ(m) is a polynomial of degree
s — 1 whose coefficient of the term of degree s — 1 is positive. We obtain from
Lemma (5.4)(2) that there is a polynomial P(t) € Q[t] of degree s whose coefficient
of the term of degree s is positive and such that yz(dm) = P(dm) for all m.

Since (eq,...,e,) is not in P; we can choose an e; ¢ P;. Then e;f € P, \ P.
The same reasoning as above shows that xz(m +d+ 1) — xx(m) is a polynomial
in m. Consequently we have that

Axr(m+d) = xgp(m+d+1) — xz(m) + xF(m) — xF(m + d)

is a polynomial in m. It follows from Lemma (5.4)(2) with e = 1 that there is a
polynomial P;(t) € Q[t] such that xz(m) = Pi(m). Then P(md) = xr(md) =
Py (md) and thus P(t) = P;(t). Consequently x#(m) = P(m) and we have proved
that x# is a polynomial of degree s whose term of degree s has positive coefficient.

(5.6) Corollary. With the assumptions of the Theorem there is an mq such that
la((MF)m) is a polynomial in m for m > mg, where Mx is the module of Setup
(2.1) such that F = Mg.

Proof. The proof follows from the Theorem and Theorem (2.2)(1).

(5.7) Definition. The polynomial xz of Theorem (5.5) is called the Hilbert

polynomial of F , and the polynomial of Corollary (5.6) that gives [ 4((Mzxz),) for
big m is called the Hilbert polynomial of the R/I-module M . For any ring A we
write

r

X7,s(m) = x7p(m) =Y (=1)" dimy (o) H' (Xspec n(s)s Fopee n(s) (1))
=0

for each point s of Spec A with corresponding prime ideal P.

(5.8) Note. Let K be a field and Spec K — Spec A a morphism. Denote by s the
image point of the map. It follows from Note (4.5) that we have X 7 s = XFg . x,(0)-
In particular, given a morphism ¢g: T — Spec A, we obtain, for each point ¢ of T

that X}—,g(t) = XFr,t-
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Moreover, it follows from Proposition (4.10) and Theorem (2.2) that there is
an mg depending on s such that H*(Xspec ks Fspec k(m)) = 0 for i > 0 and such
that the base change map

K ®Aa HO(X7 f(m)) - HO(XSpecKafSpecK(m))
is an isomorphism for m > mg. We obtain that
XF.s(m) = dimg (K @4 H(X, F(m)))

for m > mg where mg depends on s.

(5.9) Lemma. Given a local noetherian integral domain A and let k and K be
the residue field, respectively the fraction field of A. Let F be a finitely generated
A-module. If

d= dlmk(k XA F) = dimK(K XA F)

we have that F' is a free A—module of rank d.

Proof. By assumption we have that d = dimg(k®4 F'). It follows from Nakayama’s
Lemma that we have a surjective map A4 — F of A-modules. Let L be the kernel
of this map. Since K is A-flat we obtain an exact sequence

0> KR4L—>K®4 A 5 K®@4 F — 0.

of vectorspaces over K. Since d = dimg (K ®4 F) by assumption the surjection
K ®4 A% — K ®4 F must be an isomorphism. Hence K ®4 L = 0. However
the map L — K ®4 L which sends [ to 1 ® [ is injective because it is induced by
the composite L — A% — K ®4 A¢ of two injections. Hence L = 0, and F is
isomorphic to A%.

(5.10) Theorem. Assume that Spec A is connected.

(1) If F is flat over Spec A then the polynomial xr s is independent of s €
Spec A.

(2) If A is integral and x r s is independent of s € Spec A, then F is flat over
Spec A.

Proof. Assume that F is flat over Spec A. It follows from Theorem (2.2) that
HY(X,F(m)) =0 for i > 0 and for big m. Moreover it follows from Theorem (2.7)
that f.JF(m) is coherent for all m. Consequently it follows from Theorem (3.16)(1)
that f.F(m) is locally free. Since Spec A is connected we have that f.F(m)

—_—

has constant rank r(m) on Spec A. It follows from the equality H°(X, F(m)) =
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f«F(m) of (1.7.4) that Ap ®4 H°(X, F(m)) is a free Ap—module of rank r(m) for
all prime ideals P in A. Consequently we have that
r(m) = dim,(p) (K,(P) @4, Ap @4 H'(X, f(m)))
= dim,(p) (k(P) ®4 H*(X, F(m))).
From Proposition (4.10) it follows that the base change map
K(P) @4 HY(X, F(m)) — H*(Xspec n(P): Fspec n(P) (M)
is an isomorphism for big m. Consequently we have that

r(m) = dlm/{(P) (HO(XSpec H(P)7fSpec K(P) (m>)> = X}—,P(m)
for big m. Hence x 7, p is independent of P.

Conversely, assume that A is integral and that xr p is independent of the prime
ideal P of A. Denote by s the point corresponding to the prime ideal P. Let K be
the fraction field of A. It follows from Proposition (4.10) applied to Spec Ap and
the points s respectively (0) of Spec Ap that we, for big m, have isomorphisms

H(P) PAp HO(XSpeCApaJTSpeC Ap (m>) - HO(XSpec K(P)7fSpecn(P) (m))a (591)
respectively
K ®@a, H*(Xspee Aps Fspee Ap (M) = H®(Xspee i, Fspec (m)).  (5.9.2)

Since xr,p(m) = Xz, (0)(m) for all m, by assumption, and we have that both
H()(XspeCK(P),fspeCH(P)(m)) and H(Xspec i, Fspee i (m)) are zero for big m by
Theorem (2.2) we have that the right hand sides, and therefore the left hand sides,
of (5.9.1) respectively (5.9.2) have the same dimension over x(P) respectively over
K. Tt follows from Lemma (5.9) that H%(Xspec ap, Fspecap(m)) is a free Ap—
module. Since Spec Ap — Spec A is flat, it follows from Theorem (4.4) that we,
for each m, have an isomorphism

Ap @4 H° (X, F(m)) — H°(Xspec Ap, Fspec Ap(M)).
Consequently we have that Ap ®4 H°(X, F(m)) is free for big m. Since the A-
module H(X, F(m)) is finitely generated by Theorem (2.7) we have that f.JF(m)

is a locally free Ogpec A—module for big m. It follows from Theorem (3.16)(2) that
F is flat over Spec A.

(5.11) Proposition. There is only a finite set of polynomials {P;};cy such that
Pj(n) = xr,s(n) for some s € Spec A.

Proof. 1t follows from Proposition (3.19) that we can find a finite number of locally
closed reduced subschemes S1,...,.S,, of Spec A that cover Spec A and such that
Fs, is flat over ;. It follows from (5.10(1)) that xr s is independent of s € S,
and we have proved the Proposition.
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6. Castelnuovo—-Mumford regularity.

(6.1) Setup. Assume that k = A is a field and E a vector space of dimension
r + 1. We choose a basis e, ..., e, of E. Denote by R = Sym 4(F) the symmetric
algebra of E over A and write P(E) = Proj(R).

Let t: X — P(F) be a closed immersion of a scheme X into P(E) and let F
be a coherent Ox—module. Given a closed immersion j: H — X we shall write
F|H = j*F.

(6.2) Definition. We say that F is m—-regular if
HY(X,F(m—1i)) =0, fori>D0.
(6.3) Remark. It follows from Theorem (2.2) there is an mo(F) such that F is

m~—regular for m > mg(F).

(6.4) Note. For every field extension k C K, we have:

(1) The Ox—module F is m-regular if and only if Fgpec x is m-regular.
(2) The map (2.4.2) for k= A

B (Spec A): HO(X, F(m)) @r H*(X,0x (1)) — H*(X, F(m + 1)) (6.4.1)
is surjective if and only if the map (2.4.1) for K

ﬁm(SpeC K) HO(XSpeCK,fSpeCK(m)) K HO(XSpeCKa OXK(l))
— HO(XSpecKafspeCK(m + ]‘))

is surjective.

These assertions follow from Note (4.5).

(6.5) Lemma. Assume that k = A is an infinite field. Given a non—zero coherent
sheaf G on P(E). For h € E we let H = Z(h) = P(E/AR) be the corresponding
hyperplane in P(E) and j: H — P(E) the corresponding closed immersion. Then,
for a general choice of h we have that the sequence

0—G(—1) 2 G — j.(G|H) — 0 (6.5.1)

is exact, where the map G(—1) LR G is obtained from multiplication by the element
h € E. Moreover we have that dim Supp j.(G|H) < dim Supp G.

Proof. We check the exactness on the open subsets U; = D4 (e;) of X. The Lemma

assert that for a general linear form h € E we have that the map M, LN M,

\hilball.tex
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is injective for ¢ = 0,...,7, where M = Mg is the R—module of Setup (2.1)

such that G = M. When M,y = 0 we can choose any h. Otherwise we must
choose h such that h/e; is not contained in any associated prime of M, in
Aleg/é€i, ..., e /e;]. For every associated prime P, the subspace Ep of E consisting
of the elements h such that h/e; is in P is a proper subspace, since e;/e; = 1 is not
in Ep. Since k = A is infinite F can not be the union of the vector spaces consisting
subspaces Ep for the finite set of associated primes and all i = 0,1,...,7. Any h
outside of the union of these spaces will give a hyperplane satisfying the assertions
of the Lemma.

(6.6) Note. Assume that k = A is an infinite field. If follows from Lemma (6.5)
that, for a general hyperplane j: H C P(E), we have an exact sequence

0—G(-1) 25 G — j,.(G|H) — 0.
Consequently we obtain a commutative diagram
HO(P(E),G(m)) © H(P(E), Oy (1))~ HO(P(E),G(m +1)
pm®7l meﬂ (6.6.1)
HO(H, (G|H)(m)) @ H(H,0p(1))  —— H°(H,(G|H)(m+1)).

Here + is surjective because H'(P(FE), Ox(1)) = 0.
(6.7) Definition. We say that F is generated by global sections if the map

[ fF —F

is surjective.

(6.8) Proposition. Assume that F is m-reqular. Then

(1) F is (m+ 1)-regular.
(2) The map

H(X, F(m)) @ H(X,0x(1)) — H°(X, F(m + 1))

18 surjective.
(3) F(m) is generated by global sections.

Proof. To simplify the proof of the Proposition we observe that it follows from the
equalities H (X, F(m)) = HY(P(E),w(F(m))) = HY(P(E), (t+F)(m)) and the
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isomorphism ¢*¢1,.F — F of Note (1.6) and Setup (2.1) that it suffices to prove the
Theorem when X = P(F).

We observed in Note (2.4) that (3) is a consequence of (2). To prove the two first
assertions it follows from Note (6.4) that we may assume that kK = A is infinite.
We prove the Proposition by induction on the dimension r of X = P(E). The
case r = 0 is clear. When r > 0 we choose a hyperplane j: H — P(FE) of P(F) as
in Lemma (6.5). From the short exact sequence (6.5.1) tensored by Op(g)(m — i)
we obtain the piece

= H'(P(E), F(m — i) —
H'(P(E), j.(F|H)(m —i)) — HH(P(E), F(m —i—1)) = -

of the corresponding long exact sequence. Since F is m-regular it follows that
F|H is m-regular.

From the short exact sequence (6.5.1), with F = G tensored by Op(gy(m + 1)
we obtain an exact sequence

H'(P(E),F(m—1)) — H(F(m+1—1i)) — H'(H,(F|H)(m+ 1 —1))

The left hand term is 0 by the m—regularity of F and the right hand term is 0 be-
cause F|H is (m+1)-regular by the induction assumption. Hence H*(P(E), F(m+
1—14)) =0, and we have proved the first assertion of the Proposition.

To prove the second assertion of the Proposition we note that, by the induction
assumption, we have that the bottom map of diagram (6.6.1) is surjective. Since F
is m-regular we have that p,,: H*(P(E), F(m)) — H°(H, F|H(m)) is surjective,
the cokernel being H'(P(E), F(m —1)). Hence the map p,, ®~ of diagram (6.6.1)
is surjective. To prove that f3,, is surjective it therefore suffices to check that
Ker py,i1 € Imf3,,. However, we have that Kerp,,.1 = hHO(P(E), F(m)) =
Bm(HY(P(E), F(m)) @ (h)), where h € E is the linear form that defines H.

(6.9) Lemma. Given a non-zero coherent Op(gy-module G. Let j: H C P(E) be
a hyperplane such that the sequence
0—-G(-1) 56— j.(GIH) =0 (6.9.1)

of (6.5.1) is exact. Assume that G|H is mq-regular. Then:

(1) We have that dim, HY(P(E),G(m)) < dimy H*(P(E),G(m —1)), for m >
m
(2) Iflm >my and HY(P(E),G(m — 1)) # 0, then

dim;, H'(P(E),G(m)) < dimy H*(P(E),G(m — 1)).
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In particular, if dimy H'(P(E),G(m — 1)) = d + 1 we have that H'(P(E),G(m +
d)) = 0.

Proof. 1t follows from the long exact sequence associated to (6.9.1) tensored by
Op(g)(m) that we have an exact sequence

H°(P(E),G(m)) “ H°(P(E), j.(G|H)(m)) —
HY(P(E),G(m —1)) - HY(P(E),G(m)) — 0 (6.9.2)

for m > my. In (6.9.2) we have 0 to the right because H(P(E), j.(G|H)(m)) =
HY(H,(G|H)(m)) = 0, which follows from the assumption that G|H is m-regular
and thus, by Proposition (6.8), is m-regular for all m > m;. In particular we
have that dimy H'(P(E),G(m)) < dimy H'(P(E),G(m — 1)), which is the first
assertion of the Lemma.

The second part of the Lemma asserts that when m > m and H(P(E), G(m—
1)) # 0, then p,, is not surjective. Assume, to the contrary, that H!(P(E),G(m —
1)) # 0 and that p,, is surjective. We shall prove by induction on n that p,, is sur-
jective for n > m. Assume that p,, is surjective. Since G|H is mj-regular it follows
from Proposition (6.8)(2) that the bottom line of diagram (6.6.1) with m = n is
surjective. Since p,, surjective implies that the left vertical map of diagram (6.6.1)
is surjective for m = n, we conclude that p,, ;1 is surjective. Since p,,, pm+1, ... are
surjective it follows from (6.9.2) that H*(P(E),G(m — 1)) = HY(P(E),G(m)) =
-+ =0, and it follows from Theorem (2.2) that H'(P(E),G(n)) = 0 for big n
and we obtain a contradiction to the assumption that H'(P(E),G(m — 1)) # 0.
Hence, p,, is not surjective and we have proved the second part of the Lemma.

The last assertion follows from the inequalties dim; H'(P(E),G(m; — 1)) >
dimy HY(P(E),G(my)) > --- > dimy, H(P(E),G(m1 + d)), where we have that
dimy HY(P(E),G(n — 1)) > dimy H'(P(E),G(n)) if HY(P(E),G(n — 1)) # 0.

(6.10) Theorem. Let P € Q[t] be a polynomial. Then there is an integer mo(P)
such the kernel of every surjection F — G to a coherent O x —module G with Hilbert
polynomial P is mq(P)-reqular.

Proof. 1t follows from Note (6.4) that we can assume that the field k¥ = A is
infinite. We can also assume that X = P(F). Indeed the quotients 7 — G on X
with kernel K give quotients t,F — ¢,G on P(FE) with kernel i,K. and we have
that H'X,K(m)) = H'(P(E), 1.K(m)) by Note (1.6) and Setup (2.1).

We shall prove the Theorem by induction on the dimension r of X = P(E).
The case r = 0 is clear. Assume that r > 0 and that the Theorem holds for r — 1.
Fix a quotient F — G with kernel K. It follows from Lemma (6.5) that we can
choose a hyperplane j: H C P(FE) such that the sequences

0—-G(-1) 56— 4. (GH) -0 (6.10.1)
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and
0— F(=1) 25 F — j(FIH) =0

are exact. Hence we obtain a surjection F|H — G|H with kernel K|H, and an
exact sequence

0— K(=1) 25 K — j.(K|H) — 0. (6.10.2)

From Sequence (6.10.1) we obtain that

xg(m) —xg(m —1) = xgju(m).

Hence the Hilbert polynomial @ of G|H is given by P(m) — P(m — 1) = Q(m),
that depends on P only. It follows from the induction assumption that there is a
number mo(Q) = m1(P) > 0 such that the kernel of all surjective maps F|H — H,
where H has Hilbert polynomial @, have an m(Q)-regular kernel. In particular
we have that K|H is mg(Q)-regular. We choose mo(Q) > 0 so big that F is
m-regular for all m > m(Q). This is possible, as noted in (6.3). From Sequence
(6.10.2) tensored by Op(gy(m+1—i) and Note (1.6) we obtain the exact sequence

H'"\(H, j.(K|H)(m + 1 — 1)) — H'(P(E),K(m — i)
— H'(P(E),K(m + 1 — i) — H'(H, j.(K|H)(m +1 - ).

Since K|H is my(Q)-regular, and thus m-regular for m > mg(Q) by Proposition
(6.8)(1), we have that the left and right hand terms are zero for m > mg(Q).
Hence we obtain that H*(P(E),K(m —i)) = H/(P(E),K(m + 1 —i)), and thus
HY(P(E),K(m —1i)) = H(P(E),K(m —i+1)) = -+ for m > mo(Q) and i > 2.
It follows from Theorem (2.2) that H*(P(E),K(m —i)) = 0 for i > 2. From the
short exact sequence 0 — K — F — G — 0 tensored by Op(g)(m — i) we obtain
the exact sequence

H'(P(E), F(m — i)) — H'(P(E),G(m — i)) — H'" (P(E), K(m — )).

We have chosen m(Q) so big that F is mo(Q)-regular. Hence we have that
HY(P(E),K(m —1i)) = 0 for i > 2 and m > m(Q) we get that H(P(E),G(m —
i)) = 0 for i > 1 and m > mo(Q). Consequently we have that G is my(Q)-
regular. We obtain from Proposition (6.8)(1) that H*(P(E),G(mo(Q) — 1)) =0
for i > 1. Hence we have that dimy H°(P(E),G(mo(Q) — 1)) = xg(mo(Q) — 1) =
P(my(Q) — 1) = do(P), depends only on P. We have a surjection

H°(P(E),G(mo(Q) — 1)) — H' (P(E),K(mo(Q) — 1))
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because H!(P(E), F(mo(Q) — 1)) = 0. Hence we have that

dimy, H' (P(E), K(mo(Q) — 1) < do(P).
From Lemma (6.9) it follows that

H'(P(E),K(mo(Q) + do(P) — 1)) = 0.

Together with the equalities H*(P(E),K(m —i)) = 0 for i > 2 and m > mo(Q)
we see that if we choose

we have that K is mg(P)-regular.

(6.11) Note. Let K be the kernel of a surjection 7 — G of coherent Op(pg)—

modules. We obtain that xx(m) + xg(m) = x#(m). It follows from Note (6.3)
that there is an integer mg(F) such that F is m-regular for all m > mg(F). From
the exact sequence

H'(P(E), F(m—1i)) —» H"'(P(E),G(m — i) —
HY(P(E), K(m — i) — H(P(E), F(m — i)
and Proposition (6.8)(1) we see that, for m > my(F) +r — 1, we have that £ is

m regular if and only if G is m — 1 regular and the map H°(P(E), F(m —i)) —
HO(P(E),G(m — 1)) is surjective.
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7. Fitting ideals.

(7.1) Setup. Given a ring A and a finitely generated A-module M. Fix a
non—negative integer r. Choose generators my, ..., mg for M and let

N:{(al""’as)EAn:a1m1+"'+CL5m5:O}_

Moreover, choose generators {n, = (aa,1,---,aa,s) }aecz for the A-module N. We
denote by I, the ideal in A generated by the (s —r)—minors of the (#Z x s)-matrix
B = (an,1;---50a,s)acz- When (s —r) > min(#1,s) we let I, = (0) and when
(s—r) <Owelet [, = B. Wehavethat 0=1_1 C Iy C---C Iy =B=1I441="--.

(7.2) Note. Given an element n = (a,...,as) in N. Let J be the ideal in A
generated by the s —r minors of the ((#Z + 1) x s)-matrix C' obtained from B by
adding (aq,...,as) as the first row. Then J = I,.

It is clear that I, C J because the matrix B is formed from the rows 2,3, ...
of C.

To prove the opposite inclusion we only have to show that the s — r—minors
containing the first row of C' are contained in I,.. However, we have that n =
bina, + - bsng,, for some b; in B, and «; in Z. Hence, the first row of C' is a sum
of rows a1 +1,- -+, a;+ 1 multiplied with by, ..., b; respectively. Hence the (s—r)—
minors containing the first row can be expanded as a sum of the (s — r)—minors
containing rows aq + 1,...,a; + 1 multiplied by by, ..., b;. We consequently have
that J C I,.

By (transfinite, if necessary) induction, we obtain that the ideal in A obtained
from the (s — r)—minors of the matrix obtained by adding to B rows coming from
any set of elements of NV, is equal to I,.. In particular we obtain that the ideal I,
is independent of the choice of generators n, of N. Indeed, if we chose another
set of generators for N, we have that the ideal obtained from the union of the two
sets of generators is equal to the ideal obtained from each set.

(7.3) Note. Let m be an element of M. Moreover, let

P:{(G/,ad,...;as) EAS+1:am—|—a1m1_|_..._|_asmS :0}

Then, if we write m = —bym;—- - -—bsmy, with b; in A, we have that P contains the
element p = (1,01, ...,bs), and that the A—module P is generated by the element p
and elements {p, = (0,aq,1,--.,0a,s) }acz, Where ng = {(an,1,--.,0q,s) }acT are

generators for N. Let J be the ideal in A generated by the (s—r-+1)—minors of the
((#Z+1) x (s+1))—matrix whose first row is the the element p and whose (a+1)’st
row consists of the coordinates of p,. It is clear that we have an equality J = I
and it follows from Note (7.2) that J is independent of the choice of generators
\hilball.tex
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of P. We have shown that I, is the ideal defined by the (s + 1 — r)-minors of
the matrix obtained from s + 1 generators mq,..., mg,m of M and any set of
generators of P. By induction on ¢t we obtain that I,. is the ideal obtained from
the (s +t — r)—minors of the (#Z + t, s + t)—matrix obtained from s + t elements
mi,...,Mg,N1,...,Ns, and any set of generators of the A—module

{(a1,...,as,b1,...,b)|army + -+ asmg +bymq + -+ + bymy = 0}.

In particular we have that the ideal I,. is independent of the choice of generators
mi,...,mg of M. Indeed, if we had another set of generators we have that the
ideal obtained from the union of the two sets of generators is equal to the ideal
obtained from each set.

(7.4) Definition. Let M be a finitely generated A—module and r a non—negative
integer. We saw in Notes (7.2) and (7.3) that the ideal in A generated by the
(s — r)—minors of the matrix obtained from a set of generators my,...,ms of M
by taking as rows the set of generators for the A-module N = {(ay,...,as) €
A%|>°F | a;m; = 0} is independent of s, of the choice of generators of both of M,
and of the corresponding N. Thus the ideal depends only on M and r. We denote
the ideal by F,.(M) and we call it the r’th Fitting ideal of the A—module M .

(7.5) Remark. We have inclusions 0 = F_1(M) C Fo(M) C --- C F,._1(M)
F.(M). If M can be generated by s elements we have that A = Fy (M)
Foo(M) =

1M

(7.6) Note. Given generators my, ..., mg for the A-module M. We obtain a
surjection

A — M

and it is clear that N of Setup (7.1) is the kernel to this map. The choice of
generators {nq }acz for N gives an exact sequence

A®T — B - M —0

of A-modules. It follows from Definition (7.4) that F}.(M) is the ideal of A gener-
ated by the (s — r)-minors of the ((#Z) x s)-matrix A9 — A®s,

(7.7) Lemma. Let B be an A—algebra and let M be a finitely generated A—module.
Then we have an equality

F.(M)B=F,(B®aM)

of ideals in B.
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Proof. 1t follows from Remark (7.5) that we have a presentation
ABT L q®s 0
of M. We obtain a presentation
By A®T = BT 22198, Bo, A% =B . B, M —0

of B®a M. It follows from Remark (7.6) that F.(M) and F,.(B ®4 M) are
generated by the (s — r)—minors of (§ respectively f ® idg. The Lemma follows
since the images of the entires of # in B are the same as the entries of 3 ® 4 idp.

(7.8) Proposition. Given a noetherian ring A and a finitely generated A—module
M. Let P be a prime ideal of A. Then r is the minimal number of generators for
the Ap—module Mp if and only if F,._1(M) C P and F.(M) € P.

We have that Mp is free Ap—module of rank r if and only if F,._1(M)Ap =0
and F.(M) Z P.

Proof. When the minimal number of generators for Mp is r it follows from the
definition of Fitting ideals and Lemma (7.7) that F.(M)Ap = F.(Mp) = Ap.
Thus we have that F.(M) ¢ P. It follows from Nakayamas Lemma that we

have a presentation A%, LN Ap — Mp — 0 which induces an isomorphism
(Ap/PAp)" — Mp/PMp. Hence all the elements of the matrix 3: AL — A%
are in PAp. Since F,._1(M)Ap is generated by these elements it follows that
F._1(M)Ap # 0. Multiplying, if necessary, with a unit in Ap we may assume that
the matrix [ is the image of a matrix with coefficients in A. Then F,_;(M) C P.
When Mp is free we can choose t = 0 and thus obtain that F._1(M) = 0.
Conversely, assume that F.(M)Ap = Ap that F.(M)Ap C PAp. Choose

a presentation Al LN A% — Mp. If necessay, we may multiply the § with a
unit in Ap such that the coefficients of 3 are images of elements in A. Since
F.(M)Ap = Ap there is an (s — r)-minor of the matrix  which is invertible.
Reordering, if necessary, the bases for A% and A% we can assume that this minor
is the determinant of the matrix in the upper left corner of 3.

Reordering the first s — r rows and coluns, if necessary, and using row and
column operations, we can make the upper left (s — r) x (s — r)-matrix in the
upper left corner the unit matrix. We can then use row and column operations
on 5 to put B in a form where the r x (s — r)—matrix in the lower left corner
and the (s —r) X (t — s + r)—matrix in the upper right corner are zero. Since
we have assumed that F,._1(M)Ap C PAp we have that the coordinates of the
r X (t — s + r)-matrix in the lower right corner are in PAp. It follows that the
surjection (Ap/PAp)® — Mp/PMp induces an isomorphism between Mp/PMp



12 January 2006 7. Fitting ideals fittingid 7.4

and the vector subspace of (Ap/PAp)® generated by the r last basis vectors.
Hence the minimal number of generators for M is r.

When F,._1(M)Ap = 0 we have that the r x (t — s + r)—matrix in the lower left
corner is zero and thus that A3 — Mp induces an isomorphism between M and
the submodule of A% generated by the last r basis vectors. Hence Mp is free of
rank n.

(7.9) Definition. Let S be a scheme and G a coherent Og—module. It follows
from Lemma (7.7) that the ideals F,.(G(Spec A)) for all open affine subschemes
Spec A of S define a quasi—coherent ideal F}.(G) of Og such that F,.(G)(Spec A) =
F,.(G(Spec A)). We call this ideal the r'th Fitting ideal of G in S .

(7.10) Remark. Corresponding to the inclusion 0 = F,_1(M) C Fo(M) C
Fi(M) C .- C F._1(M) C F.(M) of Remark (7.5) we obtain inclusions 0 =
F_1(G) C Fo(G) C F1(G) € -+ C Fra(9) C F(9).

(7.11) Proposition. Let g:T — S be a morphism and G a coherent Og—module.
We have that
F.(g°G) = 9" (F:(9))Or.

Proof. Let Spec A be an open subset of S and Spec B an open affine subset of
T mapping to Spec A by g. Moreover, let M = G(Spec A). By definition of the

Fitting ideals of G we have that F}.(¢*G) = FT(BE@;/M) and ¢*(F-(G))Ospec B =

—_—

F,.(M)B. Hence the Proposition follows from Lemma (7.7).

(7.12) Proposition. Given a noetherian scheme S, a coherent Og—module G and
a point s of S. Then r is the minimal number of generators for the Og s—module
G, if and only if s € Z(Fy_1(9)) \ Z(F+(G)).

We have that G, is a free Og s—module of rank r if and only if Fr._1(G)s = 0
and F.(G)s = Ogs.

Proof. Let Spec A be an open subset of S containing s and let P be the prime
ideal in A corresponding to the point s. Moreover, let M = G(Spec(A4)). Then
Gs = Mp and s € Z(F,_1(G)) if and only if P O Z(F,_1(M). The Proposition
therefore follows from Proposition (7.8).
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8. Flattening stratifications.

(8.1) Setup. Given a noetherian ring A and a free A—module E of rank r+1. Let
S be a noetherian scheme and f: X — S a morphism from a scheme X. Moreover,
let F be a coherent O x—module.

(8.2) Definition. A flattening stratification of F over S is a finite collection
{S; }iez of disjoint locally closed subschemes of S such that S is the set theoretic
union of the S;, and such that, for each morphism ¢g: T — S, we have that Fr is
flat over T if and only if ¢~ 1.9, is open and closed in 7.

In other words, given a morphism g: T — S from a connected scheme T', then
Fr is flat over T if and only if g factors via one of the .5;.

(8.3) Proposition. Let G be a coherent Og—module. For each non-negative in-
teger r there is a locally closed subscheme S, of S such that a morphism g: T — S
factors via S, if and only if g*G is locally free of rank r, and S, is empty ex-
cept for a finite number of integers. That is, the Og—module G has a flatttening
stratification over S.

Proof. We shall show that the locally closed subschemes
Sy = Z(Fr—l(g» \ Z(Fr(g>)

of S form a flattening stratification for G. It follows from Proposition (7.12)
that g*G is locally free of rank r if and only if Fi.(¢*G) = Or and F,_1(¢9*G) =
0. However, it follows from Proposition (7.11) that ¢*F,.(G)Or = F,.(¢*G) and
9 F._1(G)Or = F._1(g*G). Hence g*G is locally free if and only if we have that
the map ¢*F,.(G) — Or is surjective and the map g*F,._1(G) — Or is zero. The
condition that the first map is surjective is equivalent to the condition that g
factors via S\ Z(F,(G)), and the condition that the second is zero is equivalent to
the condition that g factors via Z(F,._1(G)).

The rank of G is limited by the maximum of the dimensions dim,(5) Gs®oy , £(5)
for s € S, and the dimension is upper semi—continuous and therefore limited since
S is noetherian. Hence there is only a finite number of different schemes S,..

(8.4) Lemma. (alt nedenfor gjores for fast m?) Assume that X is a closed
subscheme of P(E) with structure map f. Given a morphism g:T — Spec A.
Assume that mg is such that

Hi<XSpec H(s)afSpec K(s) (m)) =0

for i >0 and m > mqg. Then Fr is flat over T if and only if f.JF(m)r is locally
free for m > mg.
\hilball.tex
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When Fr is flat we have that the base change map f.Fr(m) — fr.Fr(m) is
an isomorphism for m > my.

Proof. Assume that Frp is flat over 7. It follows from Proposition (4.9) that
Rifr.Fr(m) = 0 for i > 0 and m > mg. Consequently it follows from Theorem
(4.7) that f.F(m)r = fr«Fr(m) for m > mgy. Moreover it follows from Theorem
(3.16)(1) applied to Fr over T that fr.Fr(m) is locally free for m > my. Hence
f«F(m)r is locally free for m > mg. We also proved the last assertion of the
Lemma.

Conversely, assume that f.F(m)r is locally free for m > mg. It follows from
Proposition (4.10) that f.F(m)r = fr.Fr(m) for big m. Thus fr.Fr(m) is
locally free for big m. It follows from Theorem (3.16)(2) that Fr is flat over 7.

(8.5) Theorem. Assume that X is a closed subscheme of P(E). There is a
flattening stratification {Sp}peqpy of F over Spec A such that for every morphism
g:T — Spec A we have that g factors via Sp if and only if Fr is flat over T with
Hilbert polynomial P.

Proof. Tt follows from Lemma (4.11) that we can choose an mg such

Hi(XSpec n(s)afSpec K(s) (m)) =0 (851)
for + > 0 and
I{(S) ®A HO(X7 ]:(m)) - HO(XSpeC n(s)aFSpecn(s) (m))

is an isomorphism for m > mg and all points s € Spec A. For m > mg choose a

stratification {S;(m)}iez(m) for fuF(m) = HY(X,F(m)) as in Proposition (8.3)
such that f.F(m)sg,(m) is locally free of rank i. Since S;(m) is locally closed we
have an equality on fibers k(s) ®os . (f+F(M)s,(m))s = K(8) ®Ogpee 4.0 fxF(M)s.
The latter fiber is equal to k(s) ®4, H°(X,F(m))p = k(P) ®4 H°(X, F(m)),
where P is the prime ideal in A corresponding to the point s. We obtain that the
rank of f.F(m)sg,(m) is equal to

dimn(s) HO(XSpeC n(s)afSpec k(s) (m)) = X]-',s(m)
for m > mg. Hence the underlying set of S;(m) is
{s € Spec A: xr s(m) = i}.

Denote by {7Tj(n)},c(n) the stratification of Proposition (8.3) for the Ospec a—
module N,, = @1 f.F(mo+1). Since the sum N,, is locally free if and only if each
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summand is locally free we have, for a given j € J(n), that T;(n) is the disjoint
union of the sets
Sio (mo) N---N Szn (mo + n)

where j =149+ - +14,. We obtain that the underlying set of T);(n) is the disjoint
union of the sets

{s € Spec A: xr s(mo + h) =iy, forh=0,...,n}. (8.5.2)

with j = dg 4+ -+ iy.

It follows from Theorem (5.5) that x# s has degree at most r. When n > r we
therefore have that xr , is defined by its values on my, ..., mo + 7. In particular
the values 4,41, %r42,... are determined by <, ...,%,. It follows that the xr s are
the same for s € S(mg) N---NS(mg + r) and that for n > r we have that the
underlying set of T);(n) is the disjoint union of the sets

{s € Spec A: xr s(mo +h) =i, for h=0,...,7}

where j = >} _ x#,s(mo + h). We thus have a sequence Tj(r) 2 Tj(r+1) D ---
of locally closed subschemes of Spec A with the same underlying set. It follows
that there is an ng > r such that Tj(ng) = Tj(no + 1) = ---. Since there is only
a finite number of j’s, by the definition of a stratification we can choose ngy such
that the equality T;(no) = T;(no + 1) = --- holds for all indices j.

We have proved that a morphism ¢: 7" — Spec A factors via T)j(ng) if and only
if feF (Mo + 1)1, (ny) is locally free of rank Pj(mg + i) for i = 0,1,.... Tt follows
from (8.5.1) and Lemma (8.4) that g factors via Tj(ng) if and only if Fr, () is
flat over T)j(ng). It also follows that the rank of fr, (n,)«F1;(no)(m) is Pj(m) for
big m. In particular the Hilbert polynomial of Fr,(,,) is P;. We have proved that
the finite collection of sets {T}(no)},ecs gives the asserted flattening stratification
for F over Spec A.

(8.6) Note. It follows from the definition of a stratification that there is only a
finite number of strata in Theorem (8.4). Moreover the strata are unique because
if {S%} is another stratum, then each S, must factor via Sp, and conversely.
However, both are subschemes of Spec A and must therefore be equal.
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9. Representation of functors.

(9.1) Setup. Given a scheme S and a contravariant functor F' from schemes over
S to sets. All schemes and morphisms will be taken over S. Given a scheme X over
S, we denote by hyx the contravariant functor from schemes over S to sets which
sends a scheme T to the set of S—homomorphisms hx (7)) = Homg (T, X) from T
to X, and to a morphism h: U — T associates the map hx(h): hx(T) — hx(U)
given by hx(h)(g) = gh, for all morphisms ¢: T — X.

(9.2) Note. There is a natural bijection between elements in F'(X) and mor-
phisms of functors H: hx — F.
Given an element ¢ € F(X) we define a morphism

Hgihx — F

by He(T)(g) = F(g)(&) for all S—schemes T" and all S—morphisms ¢:T — X.
In this way we clearly obtain a morphism of functors hx — F. We have that
He(X)(idx) = F(idx)(§) = ¢

Conversely, given a morphism of functors H: hx — F. We obtain an element
&g = H(X)(idx) in F(X) such that for all morphisms g: 7 — X we have that

H(T)(g) = H(T)hx(9)(idx) = F(9)H(X)(idx) = F(9)(xr)-

In particular we have that H = Hy,,.
Hence we have that the map that sends § to H¢, and the map that sends H to
&y are inverses of each other.

(9.3) Definition. The functor F is representable , and is represented by a scheme
X if there is an element ¢ € F'(X) such that the morphism H¢:hx — F of Note
(9.2) is an isomorphism. We call £ the universal element .

(9.4) Note. It follows from the definition of a representable functor that the
scheme X representing the functor F' is determined up to isomorphisms.

(9.5) Definition. Given a contravariant functor G from schemes over S to sets.
We say that G is a subfunctor of F if G(T') C F(T) for all schemes T over S
and we have that G(g)(n) = F(g)(n) for all morphisms g:U — T over S and all
ne G(T).

(9.6) Example. Given a scheme X over S and let i: Y — X be the immersion of a
subscheme Y of X. Two different morphisms g, h: T' — Y give different morphisms
ig,th: T — X. Hence we have that hy is a subfunctor of hx. We have that a
morphism ¢: T — X lies in hy (T) if and only if g factors viai:Y — X.
\hilball.tex



12 January 2006 9. Representation of functors repr 9.2

(9.7) Note. Given a subfunctor G of F' and let H¢: hx — F' be the morphism of
functors given by an element £ € F(X). We obtain a subfunctor hx xp G of hx
which, for every scheme T over S is given by

(hx xp G)(T') = hx(T) xr(r) G(T) ={g € hx(T): He(T)(g) € G(T)}
and which to a morphism h: U — T associates the map

(9.8) Definition. A subfunctor G of F' is locally closed if there, for every
morphism H¢:hx — F' of functors, is a subscheme X¢ ¢ of X such that hx,, =
hx Xr G, where hx . is considered as a subfunctor of hx via the immersion
i XG,.{ — X.

The subfunctor G is open or closed if the scheme X ¢ is an open, respectively
closed, subscheme of X.

(9.9) Note. It is immediate from Definition (9.8) that the subfunctor G of F' is
locally closed if and only if there, for every scheme X over S and every element

¢ € F(X), is a subscheme X ¢ of X such that a morphism g: 7' — X factors via
X¢,e if and only if F(g)(¢) € G(T).

(9.10) Note. It follows from the Definition of a locally closed subfunctor that
the associated scheme Xq ¢ is unique.

(9.11) Note. Given a locally closed subfunctor G of F. Let H¢:hx — F be
the morphism associated to an element { € F(X), and let i: Xg ¢ — X be the
corresponding subscheme of X. We have that i is the image of idx by the map
hx(X) M hx(XG’g), and of idXG,E by the map hXG,& (XG’g) — hx(XG’g). It
follows that F(i)(§) = He(Xae)(i), and that F(i)(§) € G(Xg,¢). We obtain
that the morphism hx., — G induced by H¢:hx — F is equal to Hp(g)-
In particular, if F' is represented by (X,¢), we have that G is represented by

(Xa.e, F(1)(€))-

(9.12) Definition. A family {F;};c7 of open subfunctors of F'is an open covering
of F if, for every scheme X over S and every element ¢ € F(X), the open
subschemes X, ¢,, X, ¢ of X corresponding to F; cover X.

(9.13) Definition. A functor F'is a Zariski sheaf if, for every scheme T over S
and every open covering {T;};cz of T the sequence

F(T) — [ F(Ty) p: I F@inT)) (9.13.1)

i€l P2 i,5€T
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is exact. That is, the map p defined by the restrictions F(T') — F;(T) is injective,
and the image of p is the kernel

{(fiiez € [ F(T3): p1(f:) = pa(f:) for all i € T}

1€l

of the projections p; and p, induced by the maps F(T;) — F(T;NTj), respectively
F(T}) — F(T;NT}), for all 4,5 € T.

(9.14) Example. Given a scheme X over S and let Y be a subscheme of X with
immersion i: Y — X. We have that hy is a locally closed subfunctor and that
Y = X}, ;. Hence hy is an open or closed subfunctor of hx if and only if YV is an
open respectively closed subscheme of X.

Given an open covering {X;};ez of X. Then the subfunctors {hx,}icz of hx
form an open covering of hx. For an element £ € hx(Z) corresponding to a
morphism g: Z — X we have that Z, ., = g H(Xy)

We have that the functor hy is a Zariski sheaf. Given an open covering {7} };c7
of the scheme T. The exactness of the sequence (9.13.1) for hx means that a
morphism ¢: 7 — X is determined by the restrictions ¢|7;:T; — X for i € 7,
and that morphisms g¢;: 7; — X such that g;|T; NT; = g;|1; N T; for all 4,5 in 7
uniquely determine a morphism ¢g: T — X such that g|T; = g;.

(9.15) Theorem. Given a functor F which is a Zariski sheaf and an open cov-
ering {F;Yicz of F' by representable functors F;. Then F' is representable.

Proof. For all i € T let the scheme X; represent the functor F;. By assumption
we have an open cover {hx, };cz of F'. For every i and j in Z we have a morphism
hx, — F of functors, and an open subfunctor hx, of F. Hence there is an unique
open subset X; ; of X; which represents the functor hx, Xr hx, = hx, Nhx,. It
follows from the definition of X ; that, for all 7, j € Z, there is a canonical isomor-
phism p; ;: X; ; — X ;, and this isomorphism sends X; ; N X, ; isomorphically to
X,.i N X, for all indices k. Moreover we have that (p; 1| X;r N X;:)(pi;|Xi; N
Xik) = pi|Xikr N X, , and that p; ; = idx,.

We can thus use the morphisms p; ; to glue the schemes {X;};cz into a scheme
X with maps ¢;: X; — X of X; onto an open subset of X such that ¢;|X;; =
(051 X5.4)pi g

Given a morphism ¢: T — X. Let T; = g7 (;(X;)), and let g;: T; — ¢(X;) be
the morphism induced by g. We obtain a unique morphism ;: T; — X; such that
wi; = g;. Denote by o; the image of ¢; by the inclusion hx,(7;) — F(7;). The
element (0;)icz € [[;c7 F(T3) has the same image by p1 and ps since g;|T; NT; =
g;|T; N'T;. Since F is a Zariski sheaf we obtain a unique element o € F(T)
that maps to (0;)iez by F(T') — [[,c7 F(T;). We have thus constructed a map
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hx(T) — F(T'). The map is injective since the map [[,.; hx, (T3) — [[,c7 F(T3)
is injective. It is clear that this construction is functorial in 7. Hence we obtain
a subfunctor hx — F of F.

It remain to prove that hx(T) — F(T) is surjective for all schemes T over
S. Let o € F(T). Since F is covered by the functors hx, = F; we can cover
T by open subsets T; = T, , such that a homomorphism h:U — T factors
via T; — T if and only if the image of h by F(T) — F(U) lies in hx,(U). In
particular, when h is the inclusion 7; — T, we obtain that the image o; of o by
the map F(T) — F(T;) comes from a morphism ;:7; — X,;. When h is the
inclusion T; NT; — T or the inclusion T; N'T; — T we obtain that the morphisms
eiv: Ty — X and @;v;:T; — X are equal on T; N1 = T; N'T; because these
restrictions maps are elements in hx (T; N7T;) = hx (T; NT;) that, by the injection
hx (T;NT;) = hx(T;NT;) — F(T;NT;) = F(T,;NT;), map to the image of 0. Hence
the maps ¢;1; glue together to a morphism ¢g: 7' — X such that g|T; = p;1); for all
i € Z. We have that g € hx(T) maps to (¢;¥;)iez in [[,c7 hx(Ti) and (0i;)ier
maps to (0;)ier in [[;c7 F'(T;). Since the map [],.; hx,(T;) — [l;ez F(T3) is
injective and since F' and hx are Zariski sheaves we have that ¢ maps to ¢ by the
map hx(T) — F(T).

(9.16) Note. Given an open covering {S; };cz of S. For every morphism ¢: 7" — S
we define

P { F(T) when g factors via S;

() otherwise.

It is clear that F; is a subfunctor of F. We have that F; is an open subfunctor.
Indeed, given an S-scheme f: X — S and £ € F(X). Let X; ¢ = f~(S;). Then
an S-morphism h:T — X factors via X; ¢ if and only if fh factors via S;. Hence
h factors via X, ¢ if and only if F'(h)(§) lies in F;(T'), that is X; e = Xp, ¢. Since
the X, cover S we have that the X; ¢ cover X. Consequently we have that {F;}icz
is an open covering of the functor F.

In particular, it follows from Theorem (9.15) that, if F' is a Zariski functor then
F' is representable if and only if all the F; are representable.

(9.17) Definition. Given a morphism f: X — S of schemes, and an O x—module
F. Two surjections F — G and F — G’ of Ox—modules are equivalent if they
have the same kernel.

Assume that F is quasi coherent.

Given a scheme T over S we let

Quotz(T) = {equivalence classes of Or—module surjections Fr — G

to a quasi coherent Ox,—module G which is flat over T'}.
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For each morphism h:U — T we let
Quotx(h): Quotz(T) — Quotx(U)

be the map sending a surjection a: Fr — G to the surjection h*(«): Fyy = h*Fr —
h*@. It is clear that we obtain a contravariant functor Quot  from schemes over
S to sets, called the quotient functor of F .

We call Quoto, the Hilbert functor and denote it by Hilbx,s. Given an S—
scheme T" we have that

{closed subschemes of T" x g X such that the projection Z — T is flat}.

When X = S We define, for each S—scheme T

Grassy(T') = {equivalence classes of Op—module surjections Fr — G

to a locally freeOp—module of finite rank.G}.

It is clear that Grassr is a subfunctor of Quot .
For each non-negative integer r we let Grass’s be the subfunctor

Grass’s(T) = {equivalence classes of surjections Fr — G

to a locally free Op—module G of rank r}.

(9.18) Proposition. Given a morphism f: X — S of schemes and a quasi—
coherent Ox —-module F. The functors Quotr, Grassy and Grass'y are all Zariski
sheaves.

Proof. Let g:T — S be a morphism and let {7}};cz be an open covering of 7.
Consider the sequence

b1
Quotx(T) — H Quotz(T;) __. H Quot(T; NTj).
1€l P2 4,j€T

Given (fi)ier € [[;c7 Quotx(T;), where f; is represented by surjections Fr, — G;
on Xr,. If p1(fi) = p2(fi) we have that the restriction of Fr, — G; to f;l(Ti NTj)
is equivalent to the restriction of Fr, — G; to f7'(T; N T;), for all i and j.
Consequently the kernels of the maps Fr, — G;, for all i, define a submodule
IC C Fr, such that the restriction of the quotient Fr — G to f YT;) is equivalent
to Fr, — G; for all i € Z. Hence (f;)iez is the image of the equivalence class of
Fr — G in Quotx(T). Clearly Fr — G is unique since it is determined by its
restriction to T; for all ¢ € 7.
The above proof shows that Grassz and Grass’ also are Zariski sheaves.



12 January 2006 9. Representation of functors repr 9.6

(9.19) Note. We have a map of functors Quotrz — hg sending each element
of Quotz(U) to the structure morphism U — S. Let ¢: T — S be the structure
morphism of a scheme T over S. Given a scheme U over S, the elements in
the product Quotx(U) x4y hr(U) consist of a quotient Fyy — G and an S—
morphism h: U — T. Thus Fy — G is equal to h}TfT — G which is an element
in Quotz, (U). Clearly we obtain a morphism of functors

Quotr Xpg hr — Quotr,.
The morphism is an isomorphism of functors with an inverse
Quot z, — Quot z Xpshr

which, given a morphism h: U — T, sends the element h%,_Fr — G in Quot g, (U)
to the element (gh)%F = h% Fr — G in Quotxz(U) and to h in hr(U).

In particular, if ¢:S — Z is the canonical morphism and there is a scheme
Xo over SpecZ and a quasi-coherent Ox,—module Fy such that X = Xg and
F = c%,Fo, we obtain that there is an isomorphism

Quot r = Quot?_fgl

XhSpec z hs'
Thus, when F is free, S = Spec A and X = P(Sym,4(E)) for a free A-module E
of rank r + 1 we have that

Quoty: = Quotoggelcz XhSpecZ hs.
(9.20) Proposition. The functor Grass'y is representable.

When F is locally free we have that the representing scheme has a natural open
covering of the form V(E* ®spec 4 G), where Spec A is an open subset of S over
which F is free, and £ is the free Ospec 4 —submodule spanned by r basis elements
of F|Spec A, and G the module spanned by the remaining basis elements.

Proof. We first reduce to the case when S is affine and F is a free Og—module.
Assume that we have a surjection ' — F of quasi—coherent O x-modules. For
every scheme T over S we obtain an injection Grass’z(T") — Grass'y, (T') sending a
quotient Fr — G to the quotient . — Fr — G. Clearly Grass'y is a subfunctor
of Grass'y,. It is a closed subfunctor. Indeed, given a morphism g:7 — S and
an element ¢ € Grass’, (T') represented by a quotient 7. — G. Denote by H the
kernel of the map F. — Fr and by Z the image of the map H ®p, G* — Or
obtained from the composite map H — F — G. Let T¢ be the closed subscheme
of T' defined by the ideal Z. Given a morphism h: U — T the quotient F], — h*G
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belongs to Grass’z(U) if and only if the composite map h*Hy — F[, — ¢*G is
zero, or equivalently when the map h*(H ®o, G*) — Oy is zero. The image of
the latter map is the image of h*Z — Op. Hence the quotient F{, — h*G belongs
to Grass’z(U) if and only if h factors via T¢.

It follows from Note (9.16) that in order to represent Grasss we can assume
that S is an affine scheme Spec A. Let M = F(Spec A). Choose a surjection
F — M from a free A-module F'. Since we have proved that Grass’s is a closed
subfunctor of grass% we have that it suffices to represent grass%. We may thus

assume that F is a free Ogpec 4—module.

When S is affine and F is a free Og-—module, we shall cover the functor Grass’s
with open representable functors. Since we have prowed that Grass’s is a Zariski
functor it then follows from Proposition (9.15) that Grass’s is representable.

Choose a free submodule £ of F spanned by r basis vectors. For each scheme
T over S we let

Ge(T) = {Fr — G in Grass’z(T') such that Ep C Fr — G is surjective}.

Clearly we have that G¢ is a subfunctor of Grass’z. It is an open subfunctor.
Indeed, given a scheme g:T — S over S and an element ¢ € Grass'z(T") corre-
sponding to a quotient Fr — G. The subset T¢ ¢ of T' where the map &7 — F — G
is surjective is open. Given a morphism h:U — T. Then &y — h*G belongs to
G¢(U) if and only if the map &y — Fy — h*G is surjective. Given a point
u € U. The determinant of the map &7 ) — Gn(u) of free O j(,)—modules pulls
back to the determinant of the map fy.u = A" (Ernw)) — " (Ghw)) = (F*G)u.
We have that T¢ ¢ is exactly the open subscheme of T" where the determinant of
ET h(uw) = Gh(u) is invertible, and thus where the determinant of £y, — (h*G), is
invertible. The latter determinant is invertible if and only if £ — h*§ is surjective
at u. Hence we have that &y — Fy — h*G is surjective if and only if h:U — T
factors via Tg ¢.

The open subsets T¢ ¢ for varying £ cover T' because at every point ¢ of T we can
find a submodule £ of F spanned by r basis vectors such that 7, — Fr; — G
is surjective, and thus that & — Fr — G is surjective in a neighbourhood of .
To obtain such a map we choose a map k(t) ®o,., Fri — k(t) ®o,, Gr,+ that
sends the vector space spanned by the images of vectors ey, ..., e, of a basis of F
surjectively to x(t) ®o,., G+ By Nakayamas Lemma this map can be lifted to a
surjection OTmel ®---P OTg’geT — G in a neighbourhood Tg ¢ of ¢ in T

It follows that it suffices to represent the functor G¢. Write F as a direct sum
F = E ® F' where F' is the sheaf spanned by the remaining basis vectors. A
surjection & — G to a locally free sheaf of rank r is an isomorphism. Hence

. . % %) .
G must be free and surjections £ — Fpr —— G are in one to one correspondence
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with homomorphisms Fr ~» Er that are the identity on the component Er, via the

homomorphism that send ¢ to (i)~ 'y. Hence surjections & — Fr 2, G are the
same as homomorphisms F7. — Ep. However, a homomorphism F/. — Er is the
same as a homomorphism £} ®o, Fr — Op. It follows that G¢ is representable,
and represented by the affine scheme V(&5 ®o,. Fr) = Spec(Sym 4 (E(Spec A)* ® 4
F'(Spec A))).

We have proved that the functor Grass'; is representable.

(9.21) Definition. The scheme that represents the functor Grass’ is denoted
by Grass”"(F) and called the grassmannian of r—quotients of F . The univer-
sal element idgrass(7) € Grass’(Grass”(F)) corresponds to a universal quotient
Farass(F) — Q on Grass”(£).

We write Grass' (F) = P(F), and we call P(F) the projective space associated
to F. A scheme X over S'is projective over S if there is a locally free Og—module
F of finite rank such that X is a closed subscheme of P(F) and the structure
morphism of X is induced by the structure morphism of P(F).

(9.22) Note. We have earlier used the projective r—dimensional space P(E)
over Spec A, where FE is a free A—module spanned by vectors eq,...,e.. When
S = SpecA and F = E we have that this space is equal to the projective
space P(F) defined in (9.21). Indeed, the latter is covered by affine schemes
V(E®0gpee 4 9) = Spec(SymOSpecA G;), where & = Ogpec a€; and G; = Ogpec 40P
-+ @ Ospec A€i—1 B Ospec A€i+1 B - - B Ospec A€y, in exactly the same way as P(E)
is covered by the affine schemes Spec A[i—?,...,i—:], where Alxg,...,z,] is the
polynomal ring in the variables xg, ..., z, over A. More precisely we have an iso-
morphism Alzg,...,x,] — Sym,4(E) depending on the choise of basis eg, ..., e,
and for each index ¢ this gives an isomorphism A[$¢,..., 2=] = Sym 4 (E} ®4 Gi),
where E; = Ae; and G; = Ae; & --- @ Ae;j—1 © ejy1 & --- ® Ae,.. This iso-
morphism sends i—z toej ®ej for j =1,...,i—1,2+1,...,r. Finally we have

tha’t SpeCOSpeC A (52* ®(/)SpecA gl) = SymA<E7ik ®A GZ) = SymOSpeC A (E'L ®0SpecA G'L)7
which gives the isomorphism P(E) — P(F) on the affine covering.

(9.23) Note. Let U; = Spec A; be an open affine covering of S. It follows from
Note (9.16) that Grass”(F) has an open covering of the schemes Grass" (F|U;). In
particular P(F) can be covered by projective spaces of the form P(E), where E
is a free A—module and Spec A an open subset of S.

(9.24) Note. Assume that F is locally free of finite rank. The r—th exterior power
N Frassr(7) — N'Q gives rise to a morphism 7: Grass"(F) — Grass' (A" F) =
P(A"F).
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(9.25) Proposition. The morphism m: Grass" (F) — P(A"F) of Note (9.22) is a
closed embedding.

Proof. 1t suffices to show that there is an open cover Pz of P(A"F) such that
f~1(Pg) — Pg is a closed embedding. It follows from Note (9.16) that we may
assume that S is affine given by Spec A, and that F is a free Og—module. Let
& be a free submodule of F spanned by r basis elements and let Pe be the open
subscheme of P(A"F) where the map A"Ep(arr) — A"Fpar(r)) — Opar(F)) (1)
is surjective. Write F = £ @ G and let G¢ be the open subscheme of Grass” (F)
over which the composite map Eqrass () — Farass(F) — Q is surjective. We have
that Eqrassr(7) — Q is surjective if and only if A"Eqrassr () — AT Q is surjective.
Indeed, the second is the determinant of the first and both are surjective at the
stalks where the determinant is invertible. Hence we have that Gz = 71 (Pr).
We shall prove that the induced map 7z:Gr = V(E* ®p, G) — V(AE* oy
H) = P is a closed embedding. Write H = A" "1 EQp,GB- - - DERo A" LGHATG.
Then we have that A"F = A"E @ ‘H. For each i we have a canonical isomorphism
ANTTIERos NTEF — ALE*. Hence we have that A"E*®o,H = E*Rp GO E* R0,
NGD- DN R0 A"T1G B ATE* ®os ATG. The morphism mr: V(E* @0
G) — V(AN"E* ®p, H) is given on coordinate rings by an algebra homomorphism
A:Symg (£ ®os G & - B N'E ®og A"G) — Symp (£ ®og G). This map is
determined on the linear part of the source, and given on the factors by the maps

Nt N'E* ®os N'G — Sym%s (& ®os G)

defined by Ai(fy A - AfF@qiAAgGi) = Y pes, (1) (i ®Go1)) - (fF ®o (),
where S; are the permutations of {1,...,4i}. Since A; is the identity we have that
A is surjective, and consequently that 7 is a closed imbedding.

(9.26) Definition. The morphism 7: Grass"(F) — (A" F) is called the Plicker
embedding .
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10. The Quotient functor.

(10.1) Setup. Given a scheme S and a locally free Og—module £ of rank r + 1.
We assume that S is locally noetherian, that is, S can be covered by open affine
subschemes Spec A such that A is a noetherian ring. Let P (&) be the r—dimensional
projective space over S associated to £ and let X be a closed subscheme of P (&)
and ¢: X — P(&) the corresponding closed immersion. Denote by f: X — S the
structure morphism of X. Finally let F be a coherent O x—module.

(10.2) Note. Let F' — F be a surjection of coherent Ox-modules. For every
morphism ¢g: T — Spec A we get a map

Quot £(T') — Quot z (1)

sending the class of the quotient Fr — G to the composite 7. — Fr — G. It is
clear that this map is injective and defines a map of functors Quot » — Quot £,.

(10.3) Proposition. Let F' — F be a surjection of coherent Ox-modules. Then
the injection of Note (10.2) makes Quot r a closed subfunctor of Quot .

Proof. Tt follows from Note (9.16) that Quotz and Quots are covered by open
subfunctors Quot /| f-1(gpec a) and Quot z|r-1(spec 4), Where Spec A is an open
affine subset of S. We can therefore assume that S = Spec A.

We have to show that for every morphism ¢: T — Spec A and every element
Fi — G in Quot 4 (1) there is a closed subscheme Ty of T such that a morphism
h:U — T factors via Ty if and only if F], — h..G factors via Fyy. Such a scheme
is clearly unique, if it exists. Hence we may assume that 7' is affine.

Let K be the kernel of 7/ — F. It follows from Theorem (2.2)(2) and (3) that
we can choose an my such that K(m) and G(m) are generated by global sections,
and such that H*(Xr,G(m)) = 0 for i > 0 and for m > mq. Since G is flat over T
it follows from Theorem (4.7) that frr.h%, G(m) is locally free and the base change
map

h* fr.G = Oy ®o, HY(X7,G(m)) — fu.h,G(m) (10.3.1)

is an isomorphism for m > my.

Since K(mg) is generated by global sections we can, as we saw in Note (2.3)
choose a surjection O%,  — K(mg). We have that the the map Fy; — h% G fac-
tors via Fy if and only if the composite map O%  — Ky(mo) — F{;(mo) —
h%,G(mg) is zero. By adjunction there is a bijection between Ox,-module
homomorphisms O% = f;0p — h%_G(mo) and Oy-module homomorphisms
O — fush’,.G(mo). Consequently we have that O% —— h%_G(mg) is zero
if and only if OF — fU*h_*;(Tg(mO) is zero. The latter map is the composite
\hilball.tex
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map «: O — fu fr;05 = fush, 0%, — fU*h_*;(Tg(mO) obtained from the map
0%, — K(mo) — G(mo). By the base change map (10.3.1) the map « is the same
as the map Of = h*Ofp — h* fx,« f7O1 = b fr.O%  — h* fr.G(mo). We have
proved that the map Of — fu.«h%, G(mo) is zero if and only if the pull back by
h of the map OF — fr.f7OF = f1.O%_ — fr«G(mo) is zero.

Since fr.G(myg) is locally free we can therefore define Tj on each component of T’
to be the (rk(fx,+«G(mo))—1)’st Fitting ideal of the cokernel of O — fx,+G(mo).

(10.4) Definition. Given a morphism ¢g:7 — S and an element Fr — G in
Quotxz(T) Let t € T. For each open affine neighbourhood Spec A of ¢ such that
&|Spec A is free we have defined in (5.7) the Hilbert polynomial xg|s-1(spec 4),t
of G|f~(Spec A) at t. Clearly we obtain the same Hilbert polynomial indepently
of which connected neighbourhood of t we choose. We can therefore define the
Hilbert polynomial xg.+ of G as Xg|f-1(spec 4),t for any connected neighbourhood
Spec A of t.
For P € Z[t] we let

QuotZ(T) = {Fr — G in Quot(T): xg+ = P for all t € T},

It follows from Note (5.8) that Quotf_- is a subfunctor of Quotr.

(10.5) Note. We have that QuotZ is an open subfunctor of Quotz. To prove
this we must show that for every morphism 7" — S and every element Fr — G in
Quotx there is an open subset Tp of T such that a morphism h:U — T factors
via Tp if and only if A*G has Hilbert polynomial P. However, it follows from
(5.10) that G has constant Hilbert polynomial on every connected component of 7.
Consequently G has Hilbert polynomial P on an open, possibly empty, subscheme
Tp of T. It follows from Note (5.8) that Tp is the open set we are looking for.

(10.6) Note. Given an integer n. For every morphism ¢g: T — Spec A we have a
map
Quotr(T) — Quot x(,)(T)

which sends the class of Fr — G to the class of Fr(n) — G(n). It is clear that
this gives an isomorphism of functors

Quotr — Quot}—(n).

We have that xg(m +n) = xg)(m). Consequently we obtain an isomorphism of
functors

Quoti— — Quot?_.(n)

where P and @ are elements in Q[t] related by P(m 4 n) = Q(m) for all m.
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(10.7) Note. Given a closed immersion €: Y — Z of schemes, and let G be an
Oy-module. We have an isomorphism of rings (£.0y).(,) — Oy, for all points
y of Y. Via this isomorphism we have an isomorphism (5*9)5@) — Gy of Oy~
modules, and we have that (¢,G). = 0 when z € Z\e(Y). In particular we have an
isomorphism £*¢,G — G of Oy—modules. Moreover we have that given an quotient
G — H of Oy—modules, then we obtain a quotient £,G — e,’H of Oz—modules,
via the homomorphism Oz — .0y, and e.H(y) — Hc(y) is an isomorphism of
Oy,y—modules, and that H, =0 for z € Z \ (Y).

Given a quotient £,G — K of Oz—modules. We obtain a quotient ¢*¢,G = G —
e*IC of Oy—modules.

It is clear that we in this way obtain a bijection between Oy —module quotients
of G and Oz—module quotients of £,G. Since the fibers of modules corresponding
to each other by this bijection are either isomorphic or zero we have that the
bijection takes quotients that are flat over a morphism Z — T into quotients that
are flat over the restriction Y — T, and conversely. In particular we see that we
have an isomorphism of functors Quotr — Quot;, r from the closed immersion
X — P(E).

(10.8) Theorem. For each P € Qt] we have that the functor QuotZ is repre-
sentable by a quasi projective scheme.

Proof. 1t follows from Note (9.16) that QuotZ can be covered by open subfunctors
Quot 7| y-1(spec A) Where Spec A is an open affine subset of S. Since Quotr and
thus Quot? are Zariski functors it follows from Proposition (9.18) that we may
assume that S = Spec A. It follows from Note (10.6) and Theorem (2.2) that we
may assume that F is generated by global sections. We can then, as we saw in
Note (2.3), find a surjection O% — F. Consequently, it follows from Proposition
(10.3) that we may assume that F is a free Ox—module of finite rank. Finally it
follows from Note (10.7) that we may assume that X = P(F), where E is a free
A-module of finite rank. Then we have that F is flat over S.

Let T be a scheme over Spec A. For every exact sequence

0O—-K—=Fr—G—0
of Ox,-modules, with G flat over T, it follows from Lemma (3.5) that the sequence
0 — Kspecr(t) = Fspecr(t) — specr(t) — 0
is exact, for all ¢ € T'. Since F is free, by assumption, (er dette ngdvendig her?)

it follows from Theorem (6.10) that there is an mg such that, for all schemes T
over Spec A, for all quotients Fr — G in QuotZ(T), and for all points t € T', we
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have that the kernel €k = xr+ — &g+ sa kjernene har samme Hilbert polynom.)
Kspee n(ty Of Fspecn(t) = Gspecn(t) 18 an mo-regular Oxg ., -module. Hence it
follows from Proposition (6.8) that Kgpec x(¢) is m-regular for m > my. It follows
from Note (6.11) that Ggpec (+) is also m-regular for m > mg. Hence we have that

Hi(XSpec K(t)s ICSpec K(t) (m)) = Hi<XSpeC K(t)s gSpeC K(t) (m)) =0,

for ¢ > 0 and m > mg.
Since G and thus K are flat over T' it follows from Theorem (4.9) that

R fr.K(m) =0= R'fr.G(m) fori >0 and m > mo,
and thus it follows from Theorem (3.19)(1) that fr.G(m) is locally free of rank

dim,; 1) H(Xspec () Gspec () (M) = Xg,t(m) = P(m) for m > my. It also follows
that we have an exact sequence

0 — frK(mo) — freFr(mo) — fr«G(mo) — 0 (10.8.1)

of Op-modules.

Since F is assumed to be free and X to be P(F) it follows from Setup (2.1)
that H(X, F(m)) is a free A-module and that H*(X,F(m)) = 0 for i > 0 and for
m > 0. Hence it follows from Theorem (4.7) that we have an isomorphism

—_—

Or QOspec 4 HO(X,F(m)) — fr«Fr(m)
for m > 0. Let V = H°(X, F(mo)) and V = V. Then we obtain an exact sequence
0 — fr(mo) = Vr — friG(m,) — 0

of Or—modules.
We have thus obtained a map

QuotZ(T) — GrassT (™) (V)(T)

which sends the quotient F7 — G to the quotient Vr — fr.Fr(mg). These maps,
for all S-schemes T define a morphism of functors

Quoti— — grassP(mO)(V).
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Indeed, given a morphism h: U — T we obtain a commutative diagram

Vo = hVr ——— B fruF(mg) —— h*freG(mg) — 0

! ! !

Vu — fu«hk, F(mo) —— fu«h%,.G(mg) —— 0

(dette kan skrives mye bedre) where the upper row is the composite map Vpr —
fr«Fr(mo) — fr«G(mp) pulled back to T, the lower row is the surjection on U
that we obtain by the above construction when we start with Fp — G pulled back
to Xy by hx,, and the vertical maps are the base change maps. Since the higher
cohomology of F(mg) and G(my) vanishes it follows from Proposition (4.7) that
the base change maps are isomorphisms. It follows that the construction which to
Fr — G in Quotz(T) associates the surjection Vr — fr.G(mg) is functorial, as
we wanted to prove.

The morphism Quot’k — Grass” (mo) (V) is injective. Indeed, given a morphism
g:T — Spec A and an element Fr — G in Quotﬁ. The image of the quotient
in Grass”(mo)(V) is equivalent to fr.Fr(mo) — fr-G(mo). As we have seen
(sporsmalet er om vi bare har vist dette pa fibre. Vi ma da vise at det folger fra
resultatet pa fibre ved basisbytte) it follows from (6.8) that K(my) is generated by
global sections. Hence the top map in the commutative diagram

frfr«K(mo) ——— K(mo)

! !

fjth*f(mO) - ]:(mO)
is surjective. It follows that G(myg) is the cokernel of the composed map

frfr«K(mo) — frfr«Fr(mo) — Fr(mo) (10.8.2)

Since the map (10.8.2) has kernel f7,/C(mg) by (10.8.1) we can consequently re-
store the quotient Fpr — G from fr.Fr(mgy) — fr«G(mg) .

Finally we shall prove that the functor Quot% is a locally closed subfunctor of
Qrasss(m(’). Since grasss(m(’)
with universal quotient

is represented by a scheme G = GraSSP(mO)(V),

& FVe = farFa(mo) — Q

of Og-modules we must show that there is a locally closed subscheme G¢ of G such
that a morphism h: T — G factors via G¢ if and only if h* fe.Fa(mo) — h*Q is the
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image of a quotient Fr — G in QuotZ(T). That is, we have that h* fg.Fa(mo) —
h*Q, or fr.Fr(mg) — h*Q, is equivalent to fr.Fr(mo) — fr«G(mg). Let
p: G — Spec A be the structure morphism and let R be the kernel of the map
farFa(mo) = fapxF(mo) — Q (dette er gjort for komplisert) correspond-
ing to the canonical morphism Vg = p*f.F(mo) — Q via the isomorphism
p* f+F — fas«pxF. On Xg we obtain an exact sequence

0— f&R — fafesFa(mo) — fEQ — 0

Let H be the Ox,-module such that H(my) is the cokernel of the map

feR — f&faFa(mo) — Fa(mo).

Moreover, let Gp be the locally closed subscheme of G which is the part of the
flattening stratification of ‘H that corresponds to P. The scheme exists by Theorem
(8.5) and is unique by Note (8.6). We shall show that G¢ = Gp.

Assume first that fr.Fr(mo) — h*Q is the image of QuotZ(T). That is,
the quotients fr.Fr(mg) — h*Q and fr.Fr(mg) — fr«G(mg) are equivalent for
some quotient Fr — G in QuotZ(T'). Then the kernel Ry = h*R of fr.Fr(mo) —
h*Q is equal to the kernel fr.K(mg) of fr.Fr(mo) — fr.G(mp). We obtain a
commutative and exact diagram (tvilsom notasjon bruk h)

JiRr = f7frK(mo) —— frfreFr(mo) —— fifreG(mo) —— 0

l l

K(m()) — FT(m())

where the left vertical map is surjective, as we have seen above. It follows that
Hr(mo) = G(myg), such that Hy = G. We have that G is flat over Spec A with
Hilbert polynomial xg; = P for all t € T. The same therefore holds for Hr.
From the definition of Gp as the flattening stratification of ‘H corresponding to P
it follows that h: T — G factors via G p.

Conversely, assume that h: T — G factors via Gp. We have that Hr(myg) is
the cokernel of the map frRr — f7 fr.Fr(mo) — Fr(mg) of Ox,-modules. Let
L be the Op-module such that £(mg) is the kernel of Fr(mg) — Hr(mg). We
obtain an exact commutative diagram of Ox,-modules

0 —— fFRr —— frfrFr(mg) —— frQr —— 0

l l l (10.8.2)

0 —— E(mo) —_— .7-"T(m0) —_— HT(m()) — 0.
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By the definition of H the left vertical map is surjective. Since h factors through
G p we have that Hr is flat over T" and that x,, = P for all t € T'. Hence we have
that Fr — Hr is in QuotZ(T). It follows from Theorem (6.10) that Lgpec () is
mo-regular for all points ¢ of T. Hence it follows from Note (6.11) that Hgpec x(s)
is mo-regular, and from Theorem (4.7) it follows that fr.Hr(myg) is locally free
of rank P(myg). From diagram (10.8.2) we obtain, using fr. an exact diagram of
Or-modules

0 —— R — ——— frFr(mg) —— h*Q — 0

l l !

0 —— frl(mog) —— freFr(mo) —— friHr(mg) —— 0.

Since the middle vertical map is the identity the right vertical map is surjective.
Both Qr and fr.Hr(mg) are locally free modules of rank P(mg). Consequently
the right vertical map is an isomorphism. We conclude that the map fr.Fr(mg) —
Qr = h*Q is equivalent to fr.Fr(mo) — fr«Hr(mg), which comes from the
quotient Fr — Hr in QuotZ(T).

We have proved that Quot? is a locally closed subfunctor of Grass® (o) (V/),
and consequently it is represented by the subscheme G p of G.

(10.9) The differential structure.

Let Y be an S-scheme and let y be a point on Y. We let s be the image of y by
the structure map ¥ — S and let Y5 =Y x g Spec k(s) be the fiber of Y — S over
s. Let Yy, = Y Xgpec(r(s)) SPeC(K(y)) =Y x5 Spec(k(y)) be the extension of Y, —
Spec(k(s)) to Spec(k(y)) by the augmentation map Spec(x(y)) — Spec(k(s)). The
point y € Y induces a point Spec(x(y)) — Y and a section Spec(x(y)) — Y, of
the structure map Y, — Spec(x(y)).

We shall determine the tangent space 7 (Y}), of Y, at the point y.

Let B = (Oy,)y. The structure map Y; — Spec(x(s)) gives B the structure
of an k(s)-algebra, and we have an k(s)-algebra homomorphism B — k(y) corre-
sponding to the point y of Y. We have a multiplication map

¢ : B ®/€(s) ’{(y) - K(y)

that is a x(y)-homomorphism. Let m = (my, ), be the kernel of ). We have that
(B ®s(s) £(y))m = (O, )y. In particular we have that m/m? = (my, ),/(My,)? as
k(y)-modules. We have an isomorphism of k(y)-modules

K

2
m/m® = Qpor | (4)/nls) OBSen) FY)
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that sends the class in m/m? of gy (s)1 € mto dpg, ,\ n(y)/m(y) (9) O B® (s r(y) K(y).
In order to define an inverse we consider the homomorphism of x(y)-modules

B ®/€(s) ’{(y) - m/m2

that maps g ®,(s) h to g ®u(s) b — 11h(g Ry (s) h), where ¢ : K(y) — B Qu(s) k(y) is
defined by ¢(h) = 1 ®,(s) h for all h € xk(y). The formula

99" @ps) W' — 1)(99" ®p(s) hR)
= (9 Dn(s) M) Dr(s) B — 11h(g' @ps) 1))
+ (9" @r(s) M) (g @) h — 110(g D) 1))
— (9 @u(s) b= 10(9 @r(s) PG Ru(s) B — 18h(g’ Rp(s) 1))

shows that D is a (y)-derivation. This gives a B ®,(s) £(y)-linear homomorphism

1 2
Lo oy nlv) nly) — M

We obtain the inverse of the map (?) by extension of the variables by .
Note that Q}B&(S)R(y)/ﬂ(y) = Q}B/R(y) ®pB (B ®y(s) k(y)). Consequently we have

that QIB(X)N(S)/{(y)/H(y) QB rly) BY) = QlB//{(y) ®p k(y). Hence we have an iso-

morphism m/m? ®B® .oy rly) K(Y) — Q}B/H(y) ®p k(Y).

By standard equivalences we get bijections Hom,;(y)_aig(B ®u(s) £(Y), k(y)[e]) =
Der,(,) (B ®y(s) k(y), k(y)) = HomB®N(S),{(y)(QlB®K<S)K(y)/H(y),n(y)), and as we
have seen all these sets are in bijection with the sets Hompeg,_ ., «(y) (m/m?, k(y)) =
(TYy)y-

We have shown that there is a bijection between the tangent space to Y, at y
and all k(y)-algebra homomorphism B ®, ) (y) — £(y)[e], or equivalently with
all morphisms Spec(k(y)[e]) — Y that gives the point Spec(k(y)) — Y when
composed with the augmentation morphism Spec(k(y)) — Spec(k(y)[e])-

Let X — S be a scheme and let F be a quasi-coherent O x-module. Assume that
the functor Quot  is representable, and represented by the scheme (). Let y € @) be
a point. The morphism Spec(k(y)) — Y be a point of @). This point corresponds
to a quotient Fgpec(n(y)) — G of Og,-modules on the fiber Q, = Q x5 Spec(x(y))
to @ — S over y.

A morphism Spec(k(y)[e]) — @ coresponds to a quotient Fspec(x(y)[c]) — Y-
of OgxgSpec(n(y)[e])-modules such that G. is flat over Spec(r(y)[e]). That the
morphism Spec(k(y)[e]) — @ composed with the augmentation Spec(k(y)) —
Spec(x(y)[e]) gives the point y means that the restriction of Fspec(w(y)[e]) — Ge i8
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Fspec((y)) — G by the extension Q, — Q xs Spec(x(y)[g])) of the augmentation
Spec(k(y)) — Spec(k(y)[e]))-
It follows from Lemma (3.21) glabalized that the tangent space to Q, = Q xg
Spec(k(y)) at y is bijective to
Homon (H, Q)

where H is the kernel of Fgpec(x(s)) — G-
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1. Results that are to be included.

(1.7) Definition. Let

F:0_>F0d_O>F1d_1>...L_1>FT_,0

be a complex of A-modules. We write Z* = Z(F) = Kerd’, and B* = B'(F) =
Im d*~t. Moreover we let H*(F) = Z'(F)/B*(F). There are exact sequences

0— ZY(F) - F' - B"(F) =0 (1.7.1)

and
0 — BY(F) — Z'(F) — H'(F) — 0. (1.7.2)

fore—0,...,r
Given an A-algebra B. We obtain a complex
d'idg~ d"'®ids o

0 o
Fo,B0— o, B 425 ple B @4 B — 0.

Consider F'®4 B as an A-module. Then we obtain an A-linear map
F—F®sB (1.7.3)

of complexes, which sends m to m ® 1.

(1.8) Lemma. Given an A-algebra B.
(1) The map (1.7.3) induces a natural map

H(F)®a B — H(F ®4 B)

of B-modules.

(2) Assume that the map B’ (F) ®4 B — FJ ®4 B is injective for j = i,i+ 1,
and that the map Z*(F) ®4 B — F' ®4 B is injective. Then the map of
assertion (1) is an isomorphism.

Proof. The map (1.7.3) induces a map H*(F) — H*(F ® 4 B) of A-modules. We
extend it to the B-module map of assertion (1).

Assume that the assertions of (2) hold. We have that (F ®4 B)! = FI @4 B.
In particular we obtain that the map F’/ — (F ®4 B)’ induces a surjective map
B’ ®4 B — BI(F® B) and since B’ ®4 B — F’ ®4 B is injective for j =i,i+1
by assumption we obtain that B? ® 4 B — B’(F ®4 B) is an isomorphism for
j=di+1.

\hilball.tex



12 January 2006 1. Results that are to be included reserve 1.2

From (1.7.1), for F' and F'®4 B, we obtain the following commutative diagram
of B-modules:

Zi(F)®a B —— Fi@aB —— B+ (F)@, B —— 0

J H !

0 — Zi(F(X)AB) ——— Fi®AB ——— BH_I(F@AB) — 0.

with exact rows. We have seen that the left and middle vertical maps are isomor-
phisms. Hence the right vertical map is an isomorphism.

From (1.7.2), for the modules F' and F'® 4 B, we obtain a commutative diagram
of B-modules

B (F)®s B —— ZY(F)®4 B —— H{(F)®sB —— 0

! ! l

0 —— B (F®4B) —— Z(F®aB) —— H(F®&4B) —— 0.

with exact rows. When the conditions of part (2) are satisfied we have seen that
the two left vertical maps of the last diagram are isomorphisms. Hence the right
vertical map is also an isomorphism.

(1.9) Lemma. Let

F:0_>F0d_O>F1d_l>...L71>FT_,0

be a sequence of flat A-modules. Assume that H*(F) is a flat A-module for i > p.
Then B is flat fori > p and Z* is flat fori > p—1. Moreover, for every A-algebra
B the base change map

H(F)®4 B — H'(F ®4 B) ((3.9.1))

of Lemma (1.8) is an isomorphism for i > p.
In particular, when H'(F) = 0 for i > 0. we have, for every A algebra B, that:
(1) H(F ®4 B) =0 fori> 0.
(2) H°(F ®4 B) is a flat B-module.
(3) The base change map

H (F)®a B — H(F ®4 B)

s an isomorphism for all i.
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Proof. We prove the first assertion of the Lemma by descending induction on p.
The Lemma holds for p > r. Assume that it holds for p + 1 and assume that
HP(F) is flat. By the induction assumption we have that B® is flat for i > p and
Z' is flat for i > p. From the sequence (1.7.2) with i = p and Lemma (1.3(2)) we
conclude that BP is flat. Similarly, from the sequence (1.7.1) with i = p — 1 and
Lemma (1.3(2)) we conclude that ZP~1 is flat over A.

To prove that the base change map is an isomorphism we note that, since Z* and
H(F) are flat for i = p, p+1, it follows from sequence (1.7.2) and Lemma (3.3(1))
that B*®4 B — Z'®4 B is injective for i = p, p+ 1. Moreover, since BPT! is flat,
it follows from sequence (1.7.1) and Lemma (3.3(1)) that Z? ® 4 B — FP ® 4 B is
injective. The two conditions of Lemma (1.8(2)) with ¢ = p are therefore satisfied
and consequently formula (1.6.1) holds for i = p.

The second assertion of the Lemma follows from the first for p = 1. Indeed,
when p = 1 it follows that HY(F) = Z° is flat. Consequently B is also flat.



