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1. Notation.

(1.1) Notation. Let !I! be a set. For every set !M ! we write !M I ! for the setnnn

of all maps I → M , that is the set of all families !(xα)α∈I ! with !xα ∈ M ! for allnn

!α ∈ I!. When !G! is a group we we define the support of an element (gα)α ∈ Inn

as the subset of I consisting of the α such that gα 6= 0. We write !G(I)! for then

set of all maps I → G with finite support , that is all !(gα)α∈I ! in GI with only an
finite number of the gα different from 0.

Denote by !N! the natural numbers. For !(να)α∈I ! in N(I) we let !|ν| =nnn

|(να)α∈I | =
∑

α∈I να!. Let !µ = (µα)α∈I ! be in N(I). We write µ ≤ ν if µα ≤ ναn
for all α ∈ I, and we write µ < ν if µ ≤ ν and µ ≤ ν. Moreover we write
µ+ ν = (µα + να)α∈I .

For every element !g = (gα)α∈I ! in GI we writen

!gν! =
∏

α∈I

gναα =
∏

α∈I,να 6=0

gναα .

Let !un : M → G! for n ∈ N be maps from M to G. For every elementn

!x = (xα)α∈I ! in M I , and every element ν = (να)α∈I in N(I) we writen

!uν(x)! =
∏

α∈I

uνα(xα) =
∏

α∈I,να 6=0

uνα(xα).

Hence the maps un : M → G for n ∈ N give a map

uν : M I → G

for each ν ∈ N(I).
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2. Exponential sequences.

(2.1) Notation. Let !A! be a ring and let !B! be an A-algebra.nn

(2.2) Definition. (III §7 p. 256, B 87) An exponential sequence with values in
B is a sequence !e = (en)n∈N! of elements !en ∈ B! such thatnn

(i) e0 = 1.
(ii) emen =

(

m+n
m

)

em+n.

The set of exponential sequences with values in B we denote by !E(B)!. We definen

the product of two exponential sequences e = (en)n∈N and !f = (fn)n∈N! byn

ef = (
∑

i+j=n

eifj)n∈N.

(2.3) Module structure. The product of two exponential sequences with values
in B is again an exponential sequence with values in B. This follows from the
equality

∑

i+j=m

(

m

i

)(

n

j

)

=

(

m+ n

m

)

that we obtain by considering the coefficient of tm in the identity (1+t)m(1+t)n =
(1 + t)m+n. With this product it is clear that E(B) is an abelian group with unit
(1, 0, 0, . . . ). The inverse of the element f = (fn)n∈N is ((−1)nfn)n∈N.

For all elements !f ∈ B! and all exponential sequences e = (en)n∈N in E(B) wen
have that the product

fe = (fnen)n∈N

is an exponential sequence. It is clear that E(B) with this product is a B-module.
We let !E(B) = EA(B)! when we want to emphasize that we consider E(B) as ann
A-module via the A-algebra structure on B.

(2.4) Remark. Let B be an A-algebra. When !C! is a B-algebra we have thatn
EA(C) and EB(C) are the same abelian group, and that EA(C) is the B-module
EB(C) considered as an A-module via the A-algebra structure on B.

(2.5) The exponential functor. Let B and C be A-algebras and let !ψ : B → C!n
be an A-algebra homomorphism. We obtain a map

E(ψ) : E(B) → E(C)

defined on all exponential sequences e = (en)n∈N of E(B) by

E(ψ)(e) = E(ψ)((en)n∈N) = (ψ(en))∈N.

It is clear that E(ψ) is an A-module homomorphism and that E is a functor from
A-algebras to A-modules.
\divpotensall.tex



12 January 2006 2. Exponential sequences exp 2.2

(2.6) Characterization of homomomorphisms to exponential sequences.
Let !M ! be an A-module. A mapn

!u : M → E(B)!

is the same as maps

!un : M → B! for n = 0, 1, . . .

where u and u0, u1, . . . are related by

u(x) = (un(x))n∈N

for all x in M . We have that the maps un : M → B for n = 0, 1, . . . define an
A-module homomorphism u : M → E(B) if and only if, for all f ∈ A and all x
and y in M , the following equations hold:

(i) u0(x) = 1.
(ii) un(fx) = fnun(x).
(iii) um(x)un(x) =

(

m+n
m

)

um+n(x).

(iv) un(x+ y) =
∑

i+j=n u
i(x)uj(y).
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3. The algebra of divided powers.

(3.1) Introduction. Let M be an A-module. We shall in (3.19) show that→
the functor from A-algebras to A-modules which maps an A-algebra B to the A-
module homomorphisms !HomA(M, E(B))! fromM to E(B) is representable. Thatn

is, there is a A-algebra !Γ(M)!, and for every A-algebra B a canonical bijectionn

!ΨM (B) : HomA -alg(Γ(M), B) → HomA(M, E(B))!

from the A-algebra homomorphisms from Γ(M) to B, which makes ΨM into an
isomorphism of functors from A-algebras to A-modules.

The A-algebra Γ(M) is called the algebra of divided powers of M . It is easy
to construct Γ(M) directly. However, before we construct Γ(M) we shall give its
properties in order to emphasize that these properties follow since th A-algebra
Γ(M) represents the functor that maps B to HomA(M, E(B)), and not of its
construction.

We shall denote the multiplication on Γ(M) by ?. The reason for introducing
a particular notation for the multiplication is that we later shall show that the
ring Γ(M) is graded, and that, when M is an algebra, each graded piece Γn(M)
is a ring under another multiplication, and it is important to distinguish the two
multiplications.

(3.2) Assumption. We assume until Section (3.19) that for every A-module→
M the functor from A-algebras to A-modules which maps the A-algebra B to the
A-module HomA(M, E(B)) is representable by an A-algebra Γ(M).

When we need to emphasize the A-algebra structure we write !Γ(M) = ΓA(M)!.n

(3.3) Unicity. Since Γ(M) represents the functor which maps the A-algebra B
to the A-module HomA(M, E(B)) it is unique up to an isomorphism of A-algebras.

(3.4) Functoriality in the modules. Let !N ! be an A-module and let !u : M →nn
N ! be an A-module homomorphism. We obtain an A-algebra homomorphism

!Γ(u) : Γ(M) → Γ(N)!

which is the image of the identity map on Γ(N) by the composite map

HomA -alg(Γ(N),Γ(N))
ΨN (Γ(N))
−−−−−−→ HomA(N, E(Γ(N)))

HomA(u,id)
−−−−−−−→ HomA(M, E(Γ(N)))

ΨM (Γ(N))−1

−−−−−−−−→ HomA -alg(Γ(M),Γ(N)).

It is clear from the definition of Γ(u) that Γ is a functor from A-modules to A-
algebras.
\divpotensall.tex
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(3.5) The universal map. The image of the identity map on Γ(M) by the bi-
jection ΨM (Γ(M)) : HomA -alg(Γ(M),Γ(M)) → HomA(M, E(Γ(M)) is a universal

A-module homomorphism

!γM : M → E(Γ(M))!,

such that there is a bijective correspondence between A-module homomorphisms
u : M → E(B) and A-algebra homomorphisms ϕ : Γ(M) → B given by

u = E(ϕ)γM .

The homomorphism γM : M → E(Γ(M)) is given by homomorphisms

γnM : M → Γ(M) for n = 0, 1, . . .

that satisfy the conditions

(i) γ0
M (x) = 1.

(ii) γnM (fx) = fnγnM (x).

(iii) γmM (x) ? γnM (x) =
(

m+n
m

)

γm+n
M (x).

(iv) γnM (x+ y) =
∑

i+j=n γ
i
M (x) ? γjM (y).

(3.6) The grading. For every natural number n we let !Γn(M)! be the sub-A-n

module of Γ(M) generated by the elements γνM (x) = ?α∈Iγ
να
M (xα) for all ν in N(I)

with |ν| = n and all x = (xα)α∈I in M I , where we let !Γ0(M) = A!. We also letn

!γnM : M → Γn(M)!

denote the map induced by γnM : M → Γ(M). In particular we have the map
γ0
M : M → A given by γ0

M (x) = 1 for all x in M .
For every A-module homomorphism u : M → N and every nonnegative integer

n it follows from the definitions that we have a commutative diagram

M
γnM−−−−→ Γn(M)

u





y





y

Γn(u)

N −−−−→
γn
N

Γn(N),

where !Γn(u) : Γn(M) → Γn(N)! is the A-module homomorphism on gradedn
pieces induced by Γ(u).

Let f = (fα)α∈I be in A(I) and let x = (xα)α∈I be in M I . By repeated
application of the properties (i)-(iv) of Section (3.5) we obtain the formula→

γnM (
∑

α∈I

fαxα) =
∑

ν∈N(I),|ν|=n

fνγνM (x).
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(3.7) Theorem. The A-algebra Γ(M) is a graded and augmented with Γn(M) as

the elements of degree n, and Γ is a functor from A-modules to graded augmented

A-algebras.

Proof. We first show that the A-algebra Γ(M) is generated by the elements γnM (x)
for all n in N and all x in M . In order to see this we let Γ(M)′ be the sub-A-
algebra of Γ(M) generated by these elements. For each A-algebra B we have that
γM : M → E(Γ(M)) factors via the A-submodule E(Γ(M)′) of E(Γ(M)). From
the isomorphism

ΨM (Γ(M)′) : HomA -alg(Γ(M),Γ(M)′) → HomA(M, E(Γ(M)′))

we consequently obtain an A-algebra homomorphism Γ(M) → Γ(M)′ which com-
posed with the inclusion map Γ(M)′ → Γ(M) gives the identity. Hence we have
that Γ(M)′ = Γ(M)

To show that Γ(M) is a graded A-algebra with Γn(M) as the elements of de-
gree n we observe that the A-algebra structure on Γ(M) induces an A-algebra
structure on ⊕∞

n=0Γ
n(M) such that the map ϕ : ⊕∞

n=0Γ
n(M) → Γ(M), induced by

the inclusions of the A-modules Γn(M) in Γ(M), is an A-algebra homomorphism.
The maps γnM : M → Γn(M) for n in N induce an A-module homomorphism
M → E(⊕∞

n=0Γ
n(M)) since they satisfy the the relations (i)-(iv) of Section (3.5).→

Consequently we obtain an A-algebra homomorphism ψ : Γ(M) → ⊕∞
n=1Γ

n(M)
whose composite with ϕ : ⊕∞

n=0Γ
n(M) → Γ(M) is the identity on Γ(M). Hence ψ

is injective. It follows from the definition of ψ that the composite of the restric-
tion of ψ to Γn(M) and the projection ⊕∞

n=0Γ
n(M) → Γn(M) is the identity on

Γn(M) for all n. Consequently we also have that ψ is surjective, and therefore an
isomorphism.

Corresponding to the A-linear map M → E(A) which maps x to (1, 0, 0, . . . )
for all x in M we obtain an A-algebra homomorphism

!ε : Γ(M) → A!

of graded A-algebra Γ(M) called the augmentation map . Let u : M → N be a
homomorphism of A-modules. Then Γ(u) : Γ(M) → Γ(N) clearly induces a map
of graded augmented A-algebras.

(3.8) Remark. The map
γ1
M : M → Γ1(M)

is an isomorphism of A-modules.
To see this we let !A[M ] = A⊕M ! be the A-algebra of dual numbers , that is, then

multiplication on A⊕M is given by (f +gx)(f ′+g′x′) = ff ′ +f ′gx+fg′x′ for all
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f, f ′, g, g′ in A and all x, x′ inM . Then we have an A-module homomorphismM →
E(A[M ]) which maps x to 1 + x, and thus an A-algebra homomorphism Γ(M) →
A[M ] which maps γ1

M (x) to x. Consequently we have a surjection Γ1(M) → M
whose composite with γ1

M : M → Γ1(M) is the identity on M . Hence γ1
M is an

isomorphism.

(3.9) Functoriality in the rings. Let B be an A-algebra and let C be a B-
algebra via the homomorphism ψ : B → C. Moreover, let N be a B-module and
let !P ! be a C-module, and let !v : N → P ! be a B-module homomorphism,nn

where we consider P as a B-module via ψ. It follows from Remark (2.4) that→
the universal C-module homomorphism γP : P → EC(ΓC(P )) gives a B-module
homomorphism v : P → EB(ΓC(P )), where we consider ΓC(P ) as a B-module via
ψ. Composition with v gives a B-module homomorphism N → EB(ΓC(P )) which
corresponds to a B-algebra homomorphism

!Γψ(v) : ΓB(N) → ΓC(P )! (3.9.1)

uniquely determined by

Γψ(v)(γnN (y)) = γnP (v(y))

for all !y ∈M !. Clearly the diagramn

N
γN

−−−−→ EB(ΓB(N))

v





y





y

E(Γψ(v))

P −−−−→
γP

EC(ΓC(P ))

commutes.
Let M be an A-module. From the homomorphism (3.9.1) with N = M ⊗A B,→

P = M ⊗A C, and v = id⊗Aψ we obtain a map

!Γnψ : ΓnB(M ⊗A B) → ΓnC(M ⊗A C)!

such that the diagram

M ⊗A B
γM⊗AB−−−−−→ ΓnB(M ⊗A B)

id⊗Aψ





y





y

Γnψ

M ⊗A C −−−−−→
γM⊗AC

ΓnC(M ⊗A C)

(3.9.2)

commutes.



12 January 2006 3. The algebra of divided powers alg 3.5

(3.10) Tensor products. Let B be an A-algebra via the homomorphism !ϕ :n

A → B!, and N an B-module. Moreover, let !u : M → N ! be an A-modulen
homomorphism, where we consider N as a A-module via the A-algebra structure
on B. It follows from (3.9.1) that we have an A-algebra homomorphism Γϕ(u) :→
ΓA(M) → ΓB(N) where ΓB(N) is considered as a A-module via the A-algebra
structure on B. Extending scalars we obtain a B-algebra homomorphism

!Γϕ(u)B : ΓA(M) ⊗A B → ΓB(N)! (3.10.1)

determined by
Γϕ(u)B(γnM (x) ⊗A 1) = γnM (u(x))

for all x ∈M . Let C be a B-algebra via the homomorphism ψ : B → C. Assume
that N is also a C-module, and that the B-modules structure on N is induced by
ψ . Then we clearly have a commutative diagram

ΓA(M) ⊗A B
Γϕ(u)B
−−−−−→ ΓB(N)

id⊗Aψ





y





y

Γψ(id)

ΓA(M) ⊗A C −−−−−→
Γψϕ(u)C

ΓC(N).

(3.10.2)

(3.11) Theorem. ([R1], Thm. III, 3 p. 262) Let B be an A-algebra via the

homomorphism ϕ : A→ B. The map of graded B-algebras

Γϕ(u)B : ΓA(M) ⊗A B → ΓB(M ⊗A B) (3.11.1)

obtained from (3.10.1) applied to the canonical A-module homomorphism u : M →→
M ⊗A B, is an isomorphism. The inverse is determined by mapping γnM (x⊗A f)
to γnM (x) ⊗A f

n for all f ∈ B and x ∈M .

Moreover, for every map ψ : B → C of A-algebras we have a commutative

diagram

ΓA(M) ⊗A B
Γϕ(u)B
−−−−−→ ΓC(M ⊗A B)

id⊗Aψ





y





y

Γ(id⊗ψ)

ΓA(M) ⊗A C −−−−−→
Γψϕ(v)C

ΓC(M ⊗A C).

(3.11.2)

where v : M →M ⊗A C is the canonical map.

Proof. We shall construct the inverse to Γϕ(u)B. Let χ : ΓA(M) → ΓA(M) ⊗A B
be the canonical A-algebra homomorphism. From the composite of the univer-
sal map γM : M → EA(ΓA(M)) with the A-module homomorphism EA(χ) :
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EA(ΓA(M)) → EA(ΓA(M) ⊗A B) we obtain an A-module homomorphism M →
EA(ΓA(M) ⊗A B). It follows from from Remark (2.4) that we have a A-module→
isomorphism EA(ΓA(M) ⊗A B) → EB(ΓA(M) ⊗A B). Consequently we obtain
an A-module homomorphism M → EB(ΓA(M) ⊗A B) where the target is con-
sidered as a A-module via ϕ. We extend scalars to B and obtain a B-module
homomorphism

M ⊗A B → EB(ΓA(M) ⊗A B).

This homomorphism corresponds to a B-algebra homomorphism

ΓB(M ⊗A B) → ΓA(M) ⊗A B (3.11.3)

which is easily checked to be the inverse to the map Γϕ(u)B. It is clear that the
homomorphism (3.11.3) maps γnM (x⊗A f) to γnM (x) ⊗A f

n for all f ∈ B.→
The last part of the Theorem follows from the commutativity of Diagram

(3.10.2).→

(3.12) The extended universal map. ([R1] IV §1 p.265) Let B be an A-
algebra. For every natural number n we have a canonical map

!γnB = (γnM )B : M ⊗A B → Γn(M) ⊗A B! (3.12.1)

determined by

γnB(
∑

α∈I

xα ⊗A fα) =
∑

ν∈N(I),|ν|=n

γνM (x) ⊗A f
ν

for all f = (fα)α∈I in B(I) and all x = (xα)α∈I in M I . This map is the composite
of the universal homomorphism γnM⊗AB

: M⊗AB → ΓnB(M⊗AB) with the inverse

of the B-algebra isomorphism Γϕ(u)B : ΓnA(M)⊗A B → ΓnB(M ⊗A B) of (3.11.1).→
That is

γnM⊗AB
= Γϕ(u)Bγ

n
B.

Let ψ : B → C be a homomorphism of A-algebras. It follows from the commu-
tativity of the Diagrams (3.9.2) and (3.11.2) that we have a commutative diagram→→

M ⊗A B
γnB−−−−→ Γn(M) ⊗A B

id⊗Aψ





y





y

id⊗Aψ

M ⊗A C −−−−→
γn
C

Γn(M) ⊗A C.

(3.12.2)

(3.13) Direct limits. ([R1], Thm. 3 p.277) Let I be a partially ordered and
directed set. Moreover let !(Mα, u

β
α)α,β∈I,α≤β! be a directed system of A-modules.n

We denote the direct limit of the system by !!M = lim
−→α∈I

Mα and let !uα : Mα →nn
M ! for α in I be the canonical maps . Because of the functoriality of Γ we obtain
a directed system !(Γ(Mα),Γ(uβα))α,β∈I,α≤β! of A-algebras.n
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(3.14) Theorem. The A-algebra homomorphism

lim
−→
α∈I

Γ(Mα) → Γ(lim
−→
α∈I

Mα) (3.14.1)

obtained from the maps Γ(uα) : Γ(Mα) → Γ(lim
−→α∈I

Mα) for all α in I is an

isomorphism.

Proof. We construct an inverse to the homomorphism (3.14.1). The canonical map→
Γ(Mα) → lim

−→α∈I
Γ(Mα) corresponds to an A-module homomorphism vα : Mα →

E(lim
−→α∈I

Γ(Mα)). We clearly have that vα = vβu
β
α for all α and β in I with α ≤ β.

Consequently we obtain an A-module homomorphism

lim
−→
α∈I

Mα → E(lim
−→
α∈I

Γ(Mα)). (3.14.2)

The map (3.14.2) corresponds to a map of A-algebras→

Γ(lim
−→
α∈I

Mα) → lim
−→
α∈I

Γ(Mα)

which clearly is the inverse to the map (3.14.1).→

(3.15) Exact sequences. ([R1], IV 8 p. 278) A sequence of maps

!L
u1

⇒
u2

M
v
−→ N ! (3.15.1)

is exact if v is surjective, and for all pairs of elements x1, x2 of M we have that
v(x1) = v(x2) if and only if there is an element !w ∈ L! such that u1(w) = x1 andn
u2(w) = x2.

In particular, when the sequence (3.15.1) is exact, we have that for all x in M→
there is a w in L such that u1(w) = x = u2(w).

(3.16) Theorem. ([R1], Thm. IV 5 p. 232) Let L
u1

⇒
u2

M
v
−→ N be an exact

sequence of A-modules. Then the sequence

Γ(L)
Γ(u1)

⇒

Γ(u2)
Γ(M)

Γ(v)
−−−→ Γ(N) (3.16.1)

is an exact sequence of A-algebras.
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Proof. It is clear that Γ(v) is surjective and that Γ(v)Γ(u1) = Γ(vu1) = Γ(vu2) =
Γ(v)Γ(u2). Let I be the image of Γ(L) by the map Γ(u1) − Γ(u2). Then I is
contained in the kernel of Γ(v).

Observe that every element in Γ(M) can be written in the form γ(u1(w
′)) =

γ(u2(w
′)) for some element w′ in L. This is because every element in Γ(M)

is an A-linear combination of elements γµM (x) with !µ = (µα)α∈I ! in N(I) andn

x = (xα)α∈I in M I , and for every α in I we can find an element w′
α in L such

that xα = u1(w
′
α) = u2(w

′
α). Hence

γµM (x) = γµM (u1(w
′)) = γµM (u2(w

′)) = Γ(u1)γ
µ
L(w′) = γL(u2)γ

µ
L(w′)). (3.16.2)

In particular we obtain that I is an ideal because it is generated, as an ideal,
by the elements Γ(u1)γ

ν
L(w)−Γ(u2)γ

ν
L(w) for all ν ∈ N(I) and w ∈M I , and from

(3.16.2) we obtain→

γµL(x)(Γ(u1)γ
ν
L(w) − Γ(u2)γ

ν
L(w)) = Γ(u1)γ

µ
L(w′)Γ(u1)γ

ν
L(w)

− Γ(u2)γ
µ
L(w′)Γ(u2)γ

ν
L(w) = Γ(u1)(γ

µ
L(w′)γνL(w)) − Γ(u2)(γ

µ
L(w′)γνL(w)).

We shall show that the kernel of Γ(v) is contained in the ideal I, and hence
equal to I. Let !uI : Γ(M) → Γ(M)/I! be the residue map. It follows from then
definition of I that the composite maps of A-modules

L
u1

⇒
u2

M
γM
−−→ E(Γ(M))

E(uI)
−−−→ E(Γ(M)/I)

are equal. Consequently the homomorphism E(uI)γM factors via an A-module
homomorphism N → E(Γ(M)/I). Correspondingly there is an A-algebra homo-
morphism Γ(N) → Γ(M)/I which composed with Γ(v) : Γ(M) → Γ(N) is equal
to uI. Consequently the kernel of Γ(v) is contained in I.

We have proved that I is the kernel of the map Γ(v), and thus that the sequence

Γ(L)
Γ(u1)−Γ(u2)
−−−−−−−−→ Γ(M)

Γ(v)
−−−→ Γ(N) → 0 (3.16.3)

is exact.
Let x1 and x2 be elements in Γ(M) that have the same image by Γ(v). Since

the sequence (3.16.3) is exact we can find an element w in Γ(L) such that→

x1 − x2 = (Γ(u1) − Γ(u2))(w).

Let x = x1 − Γ(u1)(w) = x2 − Γ(u2)(w). As we observed, every element x in
Γ(M) can be written on the form x = Γ(u1)(w

′) = Γ(u2)(w
′) for some w′ in

Γ(L). We therefore obtain that x1 = x + Γ(u1)(w) = Γ(u1)(w + w′) and that
x2 = x + Γ(u2)(w) = Γ(u2)(w + w′). Hence we have proved that the sequence
(3.16.1) is exact.→
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(3.17) Corollary. ([R1], Prop. IV.8) Let v : M → N be a surjection of A-

modules. Then we have an exact sequence

0 → !J! → Γ(M)
Γ(v)
−−−→ Γ(N) → 0

where J is the ideal in Γ(M) generated by the elements γnM (x) with n ≥ 1 and with

x in the kernel of v

Proof. Let L be the kernel of v. We have an exact sequence

L×M
u1

⇒
u2

M
v
−→ N

where u1(w, x) = x and u2(w, x) = w + x for all w ∈ L and all x ∈ M . It follows
from the Theorem that we have an exact sequence of A-modules

Γ(L×M)
Γ(u1)

⇒

Γ(u2)
Γ(M)

Γ(v)
−−−→ Γ(N)

and consequently an exact sequence of A-modules

Γ(L×M)
Γ(u1)−Γ(u2)
−−−−−−−−→ Γ(M)

Γ(v)
−−−→ Γ(N) → 0.

Hence we have that the kernel of Γ(v) is generated by elements on the form (Γ(u1)−
Γ(u2))γ

ν
L×M (w, x) = γνM (x) − γνM (x+ w) for all ν ∈ N(I), all w = (wα)α∈I in LI ,

and all x = (xα)α∈I in M I . It follows from the formula γναM (wα+xα) = γναM (xα)+
∑να−1

µ=0 γµM (xα)?γνα−µM (wα), which holds for all α in I, that γνM (x)−γνM (w+x) =
∏

α∈I γ
να
M (xα) −

∏

α∈I γ
να
M (wα + xα) lies in the ideal of Γ(M) generated by the

elements γνα−µM (wα) with µ < να and wα ∈ L. Hence we have proved the Corollary.

(3.18) Direct sums. Let M and N be A-modules. The natural A-algebra
homomorphism Γ(M) → Γ(M) ⊗A Γ(N) gives a canonical homomorphism

M
γM
−−→ E(Γ(M)) → E(Γ(M)⊗A Γ(N))

of A-modules. Similarly we have a canonical homomorphism of A-modules

N
γN
−−→ E(Γ(N)) → E(Γ(M) ⊗A Γ(N)).

We therefore obtain an A-module homomorphism

M ⊕N → E(Γ(M) ⊗A Γ(N)). (3.18.1)
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(3.19) Theorem. ([R1], III §7 p. 256) The A-algebra homomorphism

Γ(M ⊕N) → Γ(M) ⊗A Γ(N)) (3.19.1)

corresponding to the map (3.18.1) is an isomorphism. It is determined by mapping→

γnM⊕N (x, y) to
∑

i+j=n γ
i
M (x) ⊗A γ

j
N (y) for all x in M and y in N .

The inverse is determined by mapping γnM (x)⊗A 1 to γnM⊕N (x), and 1⊗A γ
n
N (y)

to γnM⊕N (y) for all x ∈M and y ∈ N .

Proof. We shall construct the inverse to the map (3.19.1). Observe that the natural→
A-module homomorphisms M → M ⊕N and N → M ⊕N give homomorphisms
Γ(M) → Γ(M ⊕N) respectively Γ(N) → Γ(M ⊕N) of A-algebras. Consequently
we obtain an A-algebra homomorphism

Γ(M) ⊗A Γ(N) → Γ(M ⊕N) (3.19.2)

which is determined by mapping the elements γnM (x) ⊗A 1 to γnM⊕N (x), and the

elements 1⊗A γ
n
N (y) to γnM⊕N (y). Consequently (3.19.2) is the inverse to the map→

(3.19.1).→

(3.20) Co-product structure. We have a homomorphism of graded augmented
A-algebras

!∆ : Γ(M) → Γ(M) ⊗A Γ(M)!

determined by

∆γnM (x) =
∑

i+j=n

γiM (x) ⊗A γ
j
M (x) (3.20.1)

for all x in M and n in N.
This homomorphism is obtained by composing the A-algebra homomorphism

Γ(M) → Γ(M ⊕M), corresponding to the diagonal map M → M ⊕M with the
isomorphism Γ(M ⊕M) → Γ(M) ⊗A Γ(M) of (3.19.1).→

It is clear that the augmentation ε : Γ(M) → A is a co-unit for the multiplication
defined by ∆, and it follows from formula (3.20.1) that the co-multiplication is→
associative and commutative.

(3.21) Construction of divided powers. It remains to prove that the A-
algebra Γ(M) exists. We want the A-algebra Γ(M) to give a canonical isomorphism
of A-modules

HomA -alg(Γ(M), B) → HomA(M, E(B)),

for all A-algebras B, that is functorial in B. It follows from the conditions (i)-(iv)
of Section (2.6) for A-module homomorphisms M → E(B) that these requirements→
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are fulfilled by the residue ring Γ(M) of the polynomial ring over A in the inde-
pendent variables X(n, x) for all (n, x) ∈ N ×M , modulo the ideal generated by
the elements

(i) X(0, x)− 1.
(ii) X(n, fx)− fnX(n, x).
(iii) X(m,x)X(n, x)−

(

m+n
m

)

X(m+ n, x).
(iv) X(n, x+ y) −

∑

i+j=nX(i, x)X(j, y).

for all x and y in M and all f in A. The universal homomorphism

γnM : M → Γn(M)

maps x ∈M to the residue class γnM (x) of X(n, x) in Γ(M).
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4. Symmetric tensors.

(4.1) Notation. Let M be an A-module. Denote by !T (M) = T nA(M)! the tensorn

algebra of the module M over A. We denote by !T n(M) = TA(M)! the tensorn

product of M with itself n times over A. The symmetric group !Sn! operates onn

Tn(M) by!!n

σ(x1 ⊗A x2 ⊗A · · · ⊗A xn) = xσ−1(1) ⊗A xσ−1(2) ⊗A · · · ⊗A xσ−1(n)

for all x1, x2, . . . , xn in M and !σ! in Sn. The elements x in Tn(M) such thatn
σ(x) = x for all σ in Sn we call symmetric tensors of order n. The symmetric
tensors form an A-submodule of T n(M) that we denote by !TSn(M)!. Letn

!TS(M) = ⊕∞
n=0TS

n(M)!.

We have that TS0(M) = A and TS1(M) = M .
For each element x in M the tensor product !x⊗An! of x with itself n times isn

in TSn(M).
Let m1,m2, . . . ,mn be natural numbers, and let!!n

m(i) = m1 +m2 + · · · +mi for i = 1, 2, . . . , n

with m(0) = 0. The subgroup of !Sm(n)! of elements that map the interval!!nn

[m(i− 1) + 1,m(i)]

to itself for i = 1, 2, . . . , n, we denote by !!Sm1|m2|···|mn
. Let !Sm1,m2,...,mn

! benn
the elements in Sm(n) such that

σ(m(i− 1) + 1) < σ(m(i− 1) + 2) < · · · < σ(m(i)) for i = 1, 2, . . . , n.

It is clear that the elements in Sm1,m2,...,mn
form a full set of representatives for

the classes of Sm(n)/Sm1|m2|···|mn
.

(4.2) The shuffle product. For x in TSm(M) and y in TSn(M) we have that
x⊗A y is invariant under the group Sm|n. We define the product of x and y by

xy =
∑

σ∈Sm+n/Sm|n

!!σ(x⊗A y) =
∑

σ∈Sm,n

σ(x⊗A y).

The product gives an A-linear homomorphism

TSm(M) ⊗A TS
n(M) → TSm+n(M)

\divpotensall.tex
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that extends, by linearity, to an A-linear product

TS(M) ⊗A TS(M) → TS(M).

With this product, often called the shuffle product , we have that TS(M) becomes
a commutative graded A-algebra with unit 1 in TS0(M). To prove this the only
difficult part is to verify that the product is commutative and associative.

We first show associativity. Let x, y, z be elements in Tm(M), Tn(M) and
T p(M) respectively. We shall consider Sm+n as the subgroup of Sm+n+p which
fixes the elements in the interval [m + n + 1,m + n + p]. Since we have a se-
quence of subgroups Sm+n+p ⊇ Sm+n|p ⊇ Sm|n|p the product in Sm+n+p of
the representatives Sm+n,p for Sm+n+p/Sm+n|p, and the representative Sm,n for
Sm+n|p/Sm|n|p are representatives for Sm+n+p/Sm|n|p. Consequently we obtain
that

(x ? y) ? z =
∑

τ∈Sm+n,p

τ((x ? y) ⊗A z)

=
∑

τ∈Sm+n,p

∑

σ∈Sm,n

τσ(x⊗A y ⊗A z) =
∑

υ∈Sm,n,p

υ(x⊗A y ⊗A z).

Analogously we obtain that x? (y ? z) =
∑

υ∈Sm,n,p
υ(x⊗A y⊗A z). Consequently

we have that (x ? y) ? z = x ? (y ? z).

In order to show that the product is commutative we define the premutations
!ι! in Sm,n byn

ι(1) = 1 + n, ι(2) = 2 + n, . . . , ι(m) = m+ n

ι(m+ 1) = 1, ι(m+ 2) = 2, . . . , ι(m+ n) = n.

We have that ι−1(y ⊗A x) = x ⊗A y and the correspondence Sn,m → Sm,n that
maps σ to σι is a bijections. Consequently we obtain that

y ? x =
∑

σ∈Sn,m

σ(y ⊗A x) =
∑

σ∈Sn,m

σι(x⊗A y) =
∑

σ∈Sm,n

σ(x⊗A y) = x ? y.

(4.3) Functoriality in the module. Let u : M → N be a homomorphism of
A-modules. It is clear that the map !T (u) : T (M) → T (N)! of tensor algebrasn

induces a map !TS(u) : TS(M) → TS(N)! of graded A-algebras. Thus TS is an
functor from A-modules to graded A-algebras.
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(4.4) Theorem. ([R1], Thm. IV p. 272) Let M be a free A-module with basis

!(eα)α∈I !. Then TS(M) is a free A-module with basis !(e⊗Aν)ν∈N(I)! for ν =nn

(να)α∈I in N(I), where !!e⊗Aν = ?α∈Ie
⊗Aνα
α .n

Proof. Let !J = I [1,n]! be the set of maps from the interval ![1, n]! to I. Thennn

!!E = {eρ(1) ⊗A eρ(2) ⊗A · · · ⊗A eρ(n)}ρ∈J is an A-basis for Tn(M). We have thatn

Sn operates on the elements of E by permutation of the factors. Let !O! ben
the set whose elements are the orbits under this action. For every orbit ω in O
we let !εω =

∑

ε∈ω ε!. It is clear that the elements εω are invariant under Sn.n
Consequently they are in TSn(M). They are also linearly independent since they
are sums of different elements ofE. We shall show that they generate TSn(M). Let
x be in TSn(M). Then there is a family (λε)ε∈E in A(E) such that x =

∑

ε∈E λεε.
Since x is in TSn(M) we must have that λσ(ε) = λε for all ε in E and σ in Sn. It
follows that x is in the submodule of TSn(M) generated by εω for all ω ∈ O.

It remains to show that the elements εω with ω ∈ O are the same as the elements
eν for ν in N(I). To prove this we let u : J → N(I) be the maps such that the
image of ρ : [1, n] → I is defined by uρ(α) = card ρ−1(α) for all α in I. It is
clear that uρ1 = uρ2 if and only if ρ2 = ρ1σ for some σ in Sn. Consequently the
elements of εω are of the form

εω =
∑

ρ∈J,uρ=ν

eρ(1) ⊗A eρ(2) ⊗A · · · ⊗A eρ(n)

for some ν in N(I). For uρ = ν we have να = uρ(α) = card ρ−1(α) for all α ∈ I.
Let {ρ(1), ρ(2), . . . , ρ(n)} = {π(1), π(2), . . . , π(m)}, where π(1), π(2), . . . , π(m) are
different elements of I. Then νπ(i) = uρ(π(i)) = card ρ−1(π(i)) for i = 1, 2, . . . ,m,
and we obtain that

∑

ρ∈J,uρ=ν

eρ(1) ⊗A eρ(2) ⊗A · · · ⊗A eρ(n)

=
∑

σ∈Sνπ(1),νπ(2)
,...,νπ(m)

e
⊗Aνπ(1)

π(1) ⊗A e
⊗Aνπ(2)

π(2) ⊗A · · · ⊗A e
⊗Aνπ(m)

π(m)

= e
⊗Aνπ(1)

π(1) ? e
⊗Aνπ(2)

π(2) ? · · · ? e
⊗Aνπ(m)

π(m) .

(4.5) Divided powers and symmetric tensors. For all natural numbers n
we have that x⊗An is in TSn(M). In the algebra TS(M) we have for all x and y
in M and f in A that

(i) x0 = 1.
(ii) (fx)⊗An = fnx⊗An.
(iii) x⊗Am ? x⊗An =

(

m+n
m

)

x⊗A(m+n).

(iv) (x+ y)⊗An =
∑

i+j=n x
⊗Ai ? y⊗Aj .
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The first two formulas are direct consequences of the definitions. Moreover the
third formula follows from the equations

x⊗Am ? x⊗An =
∑

σ∈Sm,n

σ(x⊗Am ⊗A x
⊗An)

=
∑

σ∈Sm,n

σx⊗A(m+n) =

(

m+ n

m

)

x⊗A(m+n),

and the fourth from the equations

(x+ y)⊗An =
∑

i+j=n

∑

σ∈Si,j

σ(x⊗Ai ⊗A y
⊗Aj) =

∑

i+j=n

x⊗Ai ? y⊗Aj .

(4.6) Theorem. ([R1], Prop. III.1 p. 254) We have a homomorphism of graded

A-algebras

Γ(M) → TS(M)

uniquely determined by mapping γnM (x) to x⊗An for all x ∈M and n ∈ N.

([R1], Thm. IV.5 p.272) When M is free we have that the algebra homomor-

phism is an isomorphism. In particular, if (eα)α∈I is a basis for M , then the ele-

ments (γνM (e))ν∈N(I) = (?α∈Iγ
να
M (eα))ν∈N(I) form a basis for the A-module Γ(M).

Proof. The existence of the map of the Theorem follows from the equalities (i)-
(iv) of (4.5). When M is free the map is an A-module isomorphism because the→
elements eν form a basis for the A-module TS(M), the elements γνM (e) generate

the A-module Γ(M), and γνM (e) maps to eν for all ν in N(I).
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5. The symmetric algebra.

(5.1) Notation. For any A-module M we write !M ∗! for the dual HomA(M,A)n

of M as an A-module. Let !S(M)! be the symmetric algebra of the A-modulen

M , and let !Sn(M)! be the symmetric product n times of M with itself over A.n

Moreover, let!!n

!S(M)∗gr! = ⊕∞
n=0 HomA(Sn(M), A) = ⊕∞

n=0S
n(M)∗

be the graded dual of S(M).
The homomorphism M → S(M)⊗A S(M) of A-modules defined by mapping x

to x⊗A 1 + 1 ⊗A x for all x in M defines uniquely an A-algebra homomorphism

!∆ : S(M) → S(M) ⊗A S(M)!.

The dual of ∆ gives a multiplication

S(M)∗gr ⊗A S(M)∗gr → (S(M)⊗A S(M))∗gr
∆∗

−−→ S(M)∗gr. (5.1.1)

For !u! and !v! in S(M)∗gr we denote the image of u⊗ v by the map (5.1.1), thatnn→
is the product of u and v, by u ? v.

(5.2) Proposition. The multiplication defined in (5.1.1) is associative and com-→
mutative, and makes S(M)∗gr to a graded A-algebra with identity equal to the iden-

tity in HomA(S0(M), A) = HomA(A,A).

Proof. The only difficult part is to verify commutativity and associativity. To
check commutativity and associativity it suffices to check the corresponding prop-
erties on elements of S(M), that is, to check that ∆ followed by the map !τ :n
S(M) ⊗A S(M) → S(M) ⊗A S(M)! that switches the coordinates is equal to ∆,
and that (1 ⊗A ∆)∆ = (∆ ⊗A 1)∆ as maps S(M) → S(M) ⊗A S(M) ⊗A S(M).
However, to prove these formulas we only have to check that they hold on elements
on x of M because all the maps are A-algebra homomorphism and ∆ is determined
by its value on M . However, for all x in M we have that

τ∆(x) = τ(1 ⊗A x+ x⊗A 1) = x⊗A 1 + 1 ⊗A x = ∆(x)

such that τ∆ = ∆, and

(1 ⊗A ∆)∆(x) = (1 ⊗A ∆)(1 ⊗A x+ x⊗A 1)

= 1 ⊗A 1 ⊗A x+ 1 ⊗A x⊗A 1 + x⊗A 1 ⊗A 1 = (∆ ⊗A 1)(1 ⊗A x+ x⊗A 1)

such that (id⊗A∆)∆ = (∆ ⊗A id)∆.
\divpotensall.tex
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(5.3) Explicit description. Let m and n be natural numbers, and let u
and v be A-module homomorphism in Sm(M)∗ = HomA(Sm(M), A) respectively
Sn(M)∗ = HomA(Sn(M), A). Then, by definition, the images of the elements
(u⊗A v)(x1x2 · · ·xi ⊗A xi+1xi+2 · · ·xm+n) by the product

u⊗A v : Sm(M)∗ ⊗A S
n(M)∗ → A

where x1, x2, . . . , xm+n are elements in M is given by:

(u⊗A v)(x1x2 · · ·xi ⊗A xi+1xi+2 · · ·xm+n)

=

{

0 when i 6= m

u(x1x2 · · ·xi) ? v(xi+1xi+2 · · ·xm+n) when i = m.

Hence the product u ? v is determined by

u ? v(x1x2 . . . xm+n) = (u⊗A v)(∆x1∆x2 · · ·∆xm+n)

= (u⊗A v)(

m+n
∏

i=1

(xi ⊗A 1 + 1 ⊗A xi)

= (u⊗A v)
∑

i+j=m+n

∑

σ∈Si,j

xσ(1)xσ(2) · · ·xσ(i) ⊗A xσ(i+1)xσ(i+2) · · ·xσ(i+j)

=
∑

σ∈Sm+n

u(xσ(1)xσ(2) · · ·xσ(m)) ? v(xσ(m+1)xσ(m+2) · · ·xσ(m,n)).

(5.3.1)

(5.4) Divided powers and the symmetric algebra. For every element u in
the dual module M∗ of M we define the element !σn(u)! in the n’th graded partn

Sn(M)∗ of S(M)∗gr by!!n

σn(u)(x1x2 · · ·xn) = u(x1) ? u(x2) ? · · · ? u(xn)

for all x1, x2, . . . , xn in M , and we let σ0(u) = id. For all u and v in M∗ and f in
A we have that

(i) σ0(u) = 1.
(ii) σn(fu) = fnσn(u).
(iii) σm(u) ? σn(u) =

(

m+n
m

)

σm+n(u).

(iv) σn(u+ v) =
∑

i+j=n σ
i(u) ? σj(v).

The equalities (i) and (ii) follow immediately from the definitions. To show
formula (iii) we use formula (5.3.1) and obtain for all x1, x2, . . . , xm+n in M the→
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equalities

(σm(u) ? σn(v))(x1x2 · · ·xm+n)

=
∑

σ∈Sm,n

σm(u)(xσ(1)xσ(2) · · ·xσ(m)) ⊗A σ
n(v)(xσ(m+1)xσ(m+2) · · ·xσ(m+n))

=
∑

σ∈Sm,n

u(xσ(1)) ? u(xσ(2)) ? · · · ? u(xσ(m))

? v(xσ(m+1)) ? v(xσ(m+2)) · · · ? v(xσ(m+n)).

(5.4.1)
When u = v we obtain from (5.4.1) that σm(u)σn(u) =

(

m+n
m

)

σm+n(u). In→

order to prove formula (iv) we use (5.4.1) once more and obtain→

σn(u+ v)(x1x2 · · ·xn) =

n
∏

i=1

(u+ v)(xi)

∑

i+j=n

∑

σ∈Si,j

u(xσ(1))u(xσ(2)) · · ·u(xσ(i))v(xσ(i+1))v(xσ(i+2)) · · ·v(xσ(i+j))

=
∑

i+j=n

(σi(u) ? σj(v))(x1x2 · · ·xn).

(5.5) The symmetric algebra of a free module. Let M be a free A-module
with basis (eα)α∈I , and let !(e∗α)α∈I ! be the dual basis for M∗ = HomA(M,A).n

Then Sn(M)∗ has a basis consisting of the elements !eν∗ = (
∏

α∈I e
να
α )∗! for alln

ν ∈ N(I) with |ν| = n. For ν in N(I) we let !e∗ν = ?α∈Iσ
να(e∗α) = σν(e∗)!.n

(5.6) Theorem. We have that S(M)∗gr is a free A-module with basis (e∗ν)ν∈N(I).

Proof. We have to show that the elements (e∗ν)ν∈N(I) are linearly independent
over A.

Let m1,m2, . . . ,mn be natural numbers and let m(i) = m1 +m2 + · · ·+mi for
i = 1, 2, . . . , n and m(0) = 0. For every set of elements u1, u2, . . . , un in M∗ we
obtain from formula (5.4.1), and induction on n, that→

(σm1(u1) ? σ
m2(u2) ? · · · ? σ

mn(un))(x1x2 · · ·xm1+m2+···+mn
)

=
∑

σ∈Sm1,m2,...,mn

n
∏

i=1

ui(xσ(m(i−1)+1))ui(xσ(m(i−1)+2)) · · ·ui(xσ(m(i))) (5.6.1)

for all elements x1, x2, . . . , xm1+m2+···+mn
of M .
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Let !ρ : [1, p] → I! be a map from the interval [1, p] to I. For ν ∈ N(I) with |ν| =n
p, and να = 0 when α is not in {α1, . . . , αm} we write ν(i) = να1

+ να2
+ · · ·+ ναi

for i = 1, 2, . . . ,m and ν(0) = 0. We obtain from (5.6.1) that→

e∗ν(eρ(1)eρ(2) · · · eρ(p)) = (
∏

α∈I

σνα(e∗α))(eρ(1)eρ(2) · · · eρ(p)) =

∑

σ∈Sνα1
,να2

,...,ναm

m
∏

i=1

e∗αi(eρ(σ(ν(i−1)+1)))e
∗
αi

(eρ(σ(ν(i−1)+2))) · · · e
∗
αi

(eρ(σ((ν(i)))).

Consequently we obtain that

e∗ν(eρ(1)eρ(2) · · · eρ(p))

=











1 when i = ρ(σ(ν(i− 1) + 1))

= ρ(σ(ν(i− 1 + 2))) = · · · = ρ(σ(ν(i))) for i = 1, 2, . . . , n

0 otherwise.

Hence we have that
e∗ν = (

∏

α∈I

eναα )∗ = eν∗

for all ν ∈ N(I), and we have proved the Theorem.

(5.6) Relation between divided powers and the symmetric algebra.
It follows from the formulas (i)-(iv) of (5.4) that we have a homomorphism of→

graded A-algebras
Γ(M∗) → S(M)∗gr

which is uniquely determined by mapping γpM (u) to σp(u) for all natural numbers
p and all elements u in M∗. When M is a free A-module with basis (ei)i∈I the ho-
momorphism maps the basis (γνM (e∗))ν∈N(I) of Γ(M∗) to the basis (σν(e∗))ν∈N(I)

of S(M)∗gr and thus is an isomorphism. Clearly the last part of Theorem (4.6)→
follows.
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6. Polynomial laws.

(6.1) Definition. Let M and N be A-modules. A polynomial law !U ! onn
A-algebras from M to N is a map

!UB : M ⊗A B → N ⊗A B!

for each A-algebra B such that, for every homomorphism ψ : B → C of A-algebras,
the diagram

M ⊗A B
UB−−−−→ N ⊗A B

id⊗Aψ





y





y

id⊗Aψ

M ⊗A C −−−−→
UC

N ⊗A C.

(6.1.1)

is commutative. We say that U is homogeneous of degree n if

UB(gz) = gnUB(z)

for all z in M ⊗A B and all g ∈ B.
The set of all polynomial laws from the module M to the module N we denote

by !P(M,N) = PA(M,N)!, and the subset of all homogeneous polynomial laws ofn

degree n we denote by !Pn(M,N) = PnA(M,N)!.n

(6.2) Remark. For every A-module M we have a covariant functor !FM ! fromn
A-algebras to A-modules defined by FM (B) = M ⊗A B and FM (ψ) = id⊗Aψ for
all A-algebras B and all A-algebra homomorphisms ψ : B → C. A polynomial law
from M to an A-module N is the same as a natural transformation of functors
FM → FN .

(6.3) Remark. We have that P(M,N) and Pn(M,N) are A-modules when we
define addtion of two polynomial laws U and !V ! byn

(U + V )B = UB + VB ,

and multiplication by an element f ∈ A by

(fU)B = fUB

for all A-algebras B.
Let M , N and !P ! be A-modules, and let U and V be polynomial laws from Mn

to N , respectively, from N to P . We define the composite !V U ! of U and V byn

(V U)B = VBUB
\divpotensall.tex
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for all A algebras B. It is clear that V U is a polynomial law from M to P , and
that the corresponding maps

P(M,N) ⊗A P(M,N) → P(M,P )

and

Pn(N,P ) ⊗A Pm(M,N) → Pm+n(M,P )

are A-modules homomorphisms.
For fixed M the correspondences that maps an A-module N to the A-module

P(M,N), respectively Pn(M,N), are covariant functors from A-modules to A-
modules. Similarly, for a fixed A-module N , the correspondences that maps an
A-module M to the A-module P(M,N), respectively Pn(M,N), are contravariant
functors from A-modules to A-modules.

Let M,N,M ′, N ′ be A-modules, and let U and !U ′! be polynomial laws fromn

M to N , respectively from M ′ to N ′. Then there is a polynomial law !U ⊕ U ′!n
from M ⊕N to M ′ ⊕N ′ defined by

(U ⊕ U ′)B = UB ⊕ U ′
B

for all A-algebras B.

(6.4) Example. Let u : M → N be a homomorphism of A-modules. Then the
homomorphisms u⊗A id : M⊗AB → N⊗AB, for all A-algebras B, is a polynomial
law.

(6.5) Polynomial laws and functors. Let M be an A-module, and let GM
be a covariant functor from A-algebras to A-modules. Assume that for every
A-algebra B we have that GM (B) is a B-module and that there is a B-module
homomorphism!!n

uB : GM (B) → GM (A) ⊗A B,

and a map!!n

βB : M ⊗A B → GM (B)

such that for every A-algebra C and every A-algebra homomorphism ϕ : B → C
the digrams

GM (B)
uB−−−−→ GM (A) ⊗A B

GM (ϕ)





y





y

GM (id)⊗Aϕ

GM (C) −−−−→
uC

GM (A) ⊗A C
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and

M ⊗A B
βB

−−−−→ GM (B)

GM (id⊗Aϕ)





y





y

GM (ϕ)

M ⊗A C −−−−→
βC

GM (C).

Then the composite map

uBβB : M ⊗A B → GM (A) ⊗A B,

for all A-algebras B define a polynomial law from M to GM (A). If we have that

βB(gz) = gnβB(z)

for all z ∈M ⊗A B and g ∈ B we have that the polyomial law is homogeneous of
degree n. We obtain a unique A-module homomorphism

ΓnA(M) → GM (A)

such that
γnA(x) = βA(x)

for all x ∈M .

(6.6) Example. (The universal polynomial law) Let M be an A-module and let
n be a non-negative integer. We saw in (3.12) that, for every A-algebra B, we→
have a map

γnB : M ⊗A B → ΓnA(M) ⊗A B,

and it follows from Diagram (3.12.2) that these maps, for all A-algebras B, define→

a polynomial law from M to ΓnA(M) that we denote by !γn!. It follows from (3.12)n→
that γn is a polynomial law of degree n.

(6.7) Remark. Let !(tα)α∈I ! be a family of independent variables over then

ring A, and let !A[t] = A[tα]α∈I ! be the polynomial ring in the variables tα withn

coefficients in A. It follows from the definition of γnA[t] in (3.12) that, for every→

family (xα)α∈I in M (I), we have that

γnA[t](
∑

α∈I

xα ⊗A tα) =
∑

ν∈N(I),|ν|=n

γνM (x) ⊗A t
ν . (6.7.1)

Let U be a polynomial law from M to N . By the definition of a polynomial law it
follows that for every family (xα)α∈I in M (I) there is a unique family with finite
support !(yν(x))ν∈N(I) ! of elements !yν(x) ∈ N ! such thatnn

UA[t](
∑

α∈I

xα ⊗A tα) =
∑

ν∈N(I)

yν(x) ⊗A t
ν . (6.7.2)
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(6.8) Lemma. Let B be an A-algebra and let (fα)α∈I be in B(I). We denote by

ψ : A[t] → B

the A-algebra homomorphism determined by ψ(tα) = fα for all α ∈ I. Then we

have that

γnB(
∑

α∈I

xα ⊗A fα) =
∑

ν∈N(I),|ν|=n

γνM (x) ⊗A f
ν (6.8.1)

and

UB(
∑

α∈I

xα ⊗A fα) =
∑

α∈N(I)

yν(x) ⊗A f
ν . (6.8.2)

Moreover, when U is homogeneous of degree n we have that

UB(
∑

α∈I

xα ⊗A fα) =
∑

ν∈N(I),|ν|=n

yν(x) ⊗A f
ν . (6.8.3)

Proof. Since γn and U are polynomial laws, we obtain from (6.7.1) and (6.7.2)→→

that the equations (6.8.1) and (6.8.2) hold.→→
Let s be a variable over A that is independent of the variables tα for all α in I.

When U is homogeneous of degree n we obtain that

snUA[s,t](
∑

α∈I

xα ⊗A tα) = UA[s,t](
∑

α∈I

xα ⊗A stα) =
∑

ν∈N(I)

yν ⊗A s
|ν|tν .

It follows from (6.8.5) that the equation (6.8.3) holds.→→

(6.9) Theorem. (Thm IV.1) Let M and N be A-modules, and let n be a non-

negative integer. We have an isomorphism of A-modules

HomA(ΓnA(M), N) → PnA(M,N) (6.9.1)

that maps an A-module homomorphism u : Γn(M) → N to the polynomial law

uγn defined by

(uγn)B = (u⊗A idB)γnB

for all A-algebras B.

For fixed M this is an isomorphism of covariant functors from A-modules to

A-modules.

Proof. We first show that the map (6.9.1) is injective. Let u : Γn(M) → N be an→

A-modules homomorphism and let U = uγn. For every family (xα)α∈I in M (I),
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and every family (fα)α∈I in B(I), where B is an A-algebra, it follows from (6.8.1)→
that

UB(
∑

α∈I

xα ⊗A fα) = (u⊗A id)γnB(
∑

α∈I

xα ⊗A fα)

= (u⊗A id)(
∑

ν∈N(I),|ν|=n

γνM (x) ⊗A f
ν) =

∑

ν∈N(I),|ν|=n

uγνM (x) ⊗A f
ν .

Since the elements of the form γνM (x) with |ν| = n, and (xα)α∈I in M (I) generate
Γn(M) it follows that UB is completely determined by u. Consequently the map
(6.9.1) is injective.→

We next show that (6.9.1) is surjective. Assume first that M is a free A-module→

with a basis (eα)α∈I . It follows from (6.7.2) and (6.8.3) that there is a uniquely→→
determined family (yν)ν∈N(I) of elements yν(x) in N such that

UB(
∑

α∈I

eα ⊗A fα) =
∑

ν∈N(I),|ν|=n

yν(x) ⊗A f
ν

for all (fα)α∈I in B(I). Moreover, it follows from Theorem (4.6) that we can define→
a unique A-module homomorphism

u : Γn(M) → N

by
u(γνM (e)) = yν

for all ν in N(I). Then U is the image of u by the map (6.9.1). In fact, for all→

(fα)α∈I in B(I), we have that

UB(
∑

α∈I

eα ⊗A fα) =
∑

ν∈N(I),|ν|=n

yν(x) ⊗A f
ν ,

and it follows from (6.8.1) that→

(u⊗A idB)γnB(
∑

α∈I

eα ⊗A fα) = (u⊗A idB)(
∑

ν∈N(I),|ν|=n

γνM (e) ⊗A f
ν)

=
∑

ν∈N(I),|ν|=n

uγνM (e) ⊗A f
ν =

∑

ν∈N(I),|ν|=n

yν(x) ⊗A f
ν .

Hence we have proved the theorem when M is a free A-module.
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When M is not free we choose a surjective homomorphism of A-modules v :
M ′ →M from a free A-module M ′. There is a polynomial law !U ′! from M ′ to Nn
defined by U ′

B = UB(v⊗A idB) for all A-algebras B. As we just have shown there
is an A-module homomorphism !u′ : Γn(M ′) → N ! such that U ′

B = (u′⊗A idB)γnBn
for all A-algebras B. We shall show that u′ factors via the homomorphism

Γn(v) : Γn(M ′) → Γn(M)

and an A-module homomorphism u : Γn(M) → N .

It follows from (6.7) that for all families (x′α)α∈I in (M ′)(I) we have a unique→
family with finite support (yν)(x)ν∈N(I) of elements yν(x) in N such that

U ′
A[t](

∑

α∈I

x′α ⊗A tα) = UA[t](
∑

α∈I

v(x′α) ⊗A tα) =
∑

ν∈N(I),|ν|=n

yν(x) ⊗A t
ν . (6.9.2)

In particular we see that yν(x) is zero if ν = (να)α∈I and να 6= 0 for some α such
that x′α is in the kernel of v. It follows from (6.8.1) that→

U ′
A[t](

∑

α∈I

x′α⊗A tα) = (u′⊗A idB)γnA[t](
∑

α∈I

x′α⊗A tα) =
∑

ν∈N(I),|ν|=n

u′γνM (x′)⊗A t
ν .

(6.9.3)
From (6.9.2) and (6.9.3) we obtain that→→

yν(x) = u′γνM (x′).

Hence we have that u′γνM (x′) = 0 when ν = (να)α∈I and να 6= 0 for some α such
that x′α is in the kernel of v. It follows from Corollary (3.17) that the elements→
γν(x′) with x′α in the kernel of v for some α such that να 6= 0 generate the
kernel of Γn(v). Consequently we have that u′ factors via Γn(v) and an A-module
homomorphism

u : Γn(M) → N,

that is,

u′ = uΓn(v),

as we wanted to show.

In order to show that (6.9.1) is surjective it remains to prove that U is the→

image of u by (6.9.1). To this end, let (xα)α∈I be in M (I) and choose (x′α)α∈I→

in (M ′)(I) such that v(x′α) = xα for all α ∈ I. For every A-algebra B, and all
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(fα)α∈I in B(I) it follows from (6.8.1) that→

UB(
∑

α∈I

xα ⊗A fα) = UB(
∑

α∈I

v(x′α) ⊗A fα)

= UB(v ⊗A idB)(
∑

α∈I

x′α ⊗A fα) = U ′
B(
∑

α∈I

x′α ⊗A fα)

= (u′ ⊗A idB)γnB(
∑

α∈I

x′α ⊗A fα) = (u′ ⊗A idB)(
∑

ν∈N(I),|ν|=n

γνM ′(x′) ⊗A f
ν)

=
∑

ν∈N(I),|ν|=n

u′γνM ′(x′) ⊗A f
ν =

∑

ν∈N(I),|ν|=n

uΓn(v)γνM ′(x′) ⊗A f
ν

=
∑

ν∈N(I),|ν|=n

uγνM (x) ⊗A f
ν

= (u⊗A id)(
∑

ν∈N(I),|ν|=n

γνM (x) ⊗A f
ν) = (u⊗A id)γnB(

∑

α∈I

xα ⊗A fα).

Consequently we have that UB = (u⊗A id)γnB as we wanted to prove.
The last part of the Theorem is obvious.

(6.10) Proposition. Let U be a polynomial law from M to N . Then the corre-

sponding A-module homomorphism !uU : Γn(M) → N ! is uniquely determined byn
the following condition:

For all ν ∈ N(I) and all x = (xα) ∈M (I) we have that

uU (γνM (x)) = yν(x)

where the element yν(x) ∈ N for ν ∈ N(I) are determined by the equation

UA[t](
∑

α∈I

xα ⊗A tα) =
∑

ν∈N(I)

yν(x) ⊗A t
ν

given in (6.7.2).→

Proof. The proposition follows from the relation UA[t] = (u⊗A idA[t])γ
n
A[t] and the

equations (6.7.1) and (6.7.2).→→

(6.11) Base extension. A homogeneous polynomial law U on A-algebras from
M to N induces a polynomial law Ut on A[t]-algebras from M⊗AA[t] to N⊗AA[t],
by restriction to A[t]-algebras. Consequently we have an A[t]-linear homomor-
phism

uUt : ΓnA[t](M ⊗A A[t]) → N ⊗A A[t]
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such that
uUtγ

n
M⊗AA[t] = (Ut)A[t] = UA[t].

Consequently it follows from Proposition (6.10) that uU : Γn(M) → N is uniquely→
determined by

uUt(γ
n
M⊗AA[t](z))

for all z ∈M ⊗A A[t]. We paraphrase this by saying that after base extension to

A[t] the homomorphism u is determined by the value of γnM (x) for all x ∈M .

(6.12) Homomorphisms to symmetric tensors. For all A-algebras B we
write !GM (B) = TnB(M ⊗A B)!. We have a natural B-module homomorphism!!nn

uB : TnB(M ⊗A B) → TnA(M) ⊗A B

that maps (x1 ⊗A g1) ⊗B (x2 ⊗A g2) ⊗B · · · ⊗B (xn ⊗A gn) to x1 ⊗A x2 ⊗A · · · ⊗A
xn⊗A g1g2 · · ·gn for all elements x1, x2, . . . , xn in M and all elements g1, g2, . . . , gn
in B. Moreover, we have a map!!n

βB : M ⊗A B → TnB(M ⊗A B)

defined by βB(z) = z ⊗B z ⊗B · · · ⊗B z for all z ∈M ⊗A B. It is clear that

βB(gz) = gmβB(z) (6.12.1)

for all g ∈ B. It follows from (6.5) that the maps→

uBβB : M ⊗A B → TnA(M) ⊗A B

for all A-algebras B gives a homogeneous polynomial law of degree n from M to
TA(M). Hence there is a unique B-module homomorphism

ϕ : ΓnA(M) → TnA(M)

such that
ϕ(γnA(x)) = βA(x)

for all x ∈ M . It follows from the definition of the homomorphism ϕ that it
coincides with the composite map of the inclusion TSnA(M) → TnA(M) with the
homomorphism ΓnA(M) → TSnA(M) induced by the homomorphism of Theorem
(4.6).→

Similarly we obtain a homogeneous polynomial law from M to SnA(M) of degree
n, and a unique B-module homomorphism

ϕ : ΓnA(M) → SnA(M)

such that
ϕ(γnA(x)) = βnA(x) = xn

for all x ∈M .
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(6.13) Remark. Theorem (6.9) asserts that for a fixed A-module M the A-→
algebra ΓnA(M) represents the covariant functor that maps an A-module N to
PnA(M,N) This is a fundamental result on polynomial laws. We therefore give a
second proof of Theorem (6.9). Note that in the above proof we used the second→

part of Theorem (4.6) that describes an explicit basis of Γn(M) as an A-module→
when we have an explicit basis of the A-module M . The second proof of Theorem
(6.9) does not use this result. We shall show that in fact the last asertion of→

Theorem (4.6) follows from Theorem (6.9). Hence we obtain another proof of the→→

second part of Theorem (4.6) that does not depend on the theory of the symmetric→
tensors, or of the symmetric algebra.

(6.14) Differential operators. An important ingredient in the second proof of
Theorem (6.9) are certain differential operators that we shall introduce next. We→

shall throughout use the notation of Remark (6.7).→
Let M and N be A-modules, and let x be an element in M . For every A-algebra

B, every element z ∈M ⊗A B, and every polynomial law U ∈ P(M,N) it follows

from (6.7.2) that we have unique elements !( ∂(n)

∂x(n)U)B(z)! in N such that→n

UB[tα](z + x⊗A tα) =
∞
∑

n=0

(

∂(n)

∂x(n)
U

)

B

(z) ⊗A t
n
α,

where only a finite number of the elements ( ∂
(n)

∂x(n)U)B(z) are different from 0.
Consequently we obtain a map

!

(

∂(n)

∂x(n)
U

)

B

: M ⊗A B → N ⊗A B! for n = 0, 1, . . . .

Since U is a polynomial law from M to N it is clear that the maps ( ∂(n)

∂x(n)U)B, for
all A-algebras B, give a polynomial law

!
∂(n)

∂x(n)
U !

from M to N . It follows directly from the definition of ∂(n)

∂x(n)U that if !V ∈n
PA(M,N)! and if f ∈ A we have that

∂(n)

∂x(n)
(fU) = f

∂(n)

∂x(n)
U and

∂(n)

∂x(n)
(U + V ) =

∂(n)

∂x(n)
U +

∂(v)

∂x(v)
V.

We consequently obtain an A-linear homomorphism

!
∂(n)

∂x(n)
: P(M,N) → P(M,N)!.
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This homomorphism induces an A-linear map

!
∂(n)

∂x(n)
: Pm(M,N) → Pm−n(M,N)! for m = 0, 1, . . . .

In fact, let U be homogeneous of degree m. We have for each z ∈M ⊗A B that
∞
∑

n=0

(

∂(n)

∂x(n)
U

)

B[tβ ]

(ztβ) ⊗A (tαtβ)
n = UB[tα,tβ ](ztβ + x⊗A tαtβ)

= tmβ UB[tα,tβ ](z + x⊗A tα) = tmβ

∞
∑

n=0

(

∂(n)

∂x(n)
U

)

B

(z) ⊗A tα.

It follows that
(

∂(n)

∂x(n)
U

)

B[tβ ]

(ztβ) ⊗ tnβ =

(

∂(n)

∂x(n)
U

)

B

(z) ⊗A t
m
β in B[tβ].

That is ( ∂
(n)

∂x(n)U)B(z) = 0 when n > m and ( ∂
(n)

∂x(n) )B[tβ ](ztβ) = ( ∂
(n)

∂x(n) )B(z)tm−n
β in

B[tβ] when n ≤ m. The homomorphism M ⊗A A[tβ] → M obtained by mapping
x ⊗A g(tbeta) to g(f)x, for all g(tβ) ∈ A[tβ], maps z ⊗A tβ to fz. Since U is a
polynomial law we consequently obtain that

(

∂(n)

∂x(n)
U

)

B

(fz) =

{

0 when n > m

fm−n( ∂
(n)

∂x(n)U)B when n ≤ m.

Consequently we have that the polynomial law ∂(n)

∂x(n)U is homogeneous of degree
m− n when U is homogeneous of degree m, as asserted.

(6.15) Theorem. Let M and N be A-modules. The differential operators ∂(n)

∂x(n)

for n = 0, 1, . . . , and for all x ∈M , commute, and for all x and y in M , and f in

A, the following equations hold:

(1) ∂(0)

∂x(0) = id.

(2) ∂(n)

∂(fx)(n) = fn ∂(n)

∂x(n) .

(3) ∂(m)

∂x(m)
∂(n)

∂x(n) =
(

m+n
m

)

∂(m+n)

∂x(m+n) .

(4) ∂(n)

∂(x+y)(n) =
∑

i+j=n
∂(i)

∂x(i)
∂(j)

∂y(j) .

Proof. We shall use the same notation as in Remark (6.7). For all A-algebras B,→
all elements z ∈ M ⊗A B, and all polynomials laws U from M to N , we have that

UB[tα,tβ ](z + x⊗A tα + y ⊗A tβ) =
∞
∑

n=0

(

∂(n)

∂y(n)
U

)

B[tα]

(z + x⊗A tα) ⊗A t
n
β

=

∞
∑

n=0

∞
∑

m=0

(

∂(m)

∂x(m)

∂(n)

∂y(n)
U

)

B

(z) ⊗A t
m
α t

n
β . (6.15.1)
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Similarly we obtain that

UB[tβ ,tα](z+y⊗A tβ+x⊗A tα) =

∞
∑

m=0

∞
∑

n=0

(

∂(n)

∂y(n)

∂(m)

∂x(m)
U

)

B

(z)⊗A t
n
βt
m
α . (6.15.2)

Comparing the expressions to the right in equation (6.15.1) and (6.15.2) we obtain→→

that ∂(m)

∂x(m)
∂(n)

∂y(n) = ∂(n)

∂y(n)
∂(m)

∂x(m) , and we have proved that the differential operators
commute.

(1) Equation (1) clearly holds.
(2) We have that

∞
∑

n=0

(

∂(n)

∂(fx)
(n)
U

)

B

(z) ⊗A t
n
α = UB[tα](z + fx⊗A tα)

= UB[tα](z + x⊗A ftα) =

∞
∑

n=0

(

∂(n)

∂x(n)
U

)

B

(z) ⊗A (ftα)n.

It follows that ( ∂(n)

∂(fx)(n)U)B(z) = fn( ∂
(n)

∂x(n)U)B for all A-algebras B, for all z ∈

M ⊗AB, and for all polynomial laws U from M to N . That is, equation (2) holds.
(3) We have that

UB[tα,tβ ](z + x⊗A (tα + tβ)) =
∑

p=0

(

∂(p)

∂x(p)
U

)

B

(z) ⊗A (tα + tβ)
p

=

∞
∑

p=0

∑

m+n=p

(

∂(p)

∂x(p)
U

)

B

(z) ⊗A

(

m+ n

m

)

tmα t
n
β . (6.15.3)

Let x = y in equation (6.15.1) and compare the coefficient of tmα t
n
β in (613.1) with→→

the coefficient of the same monomial in equation (6.15.3). We obtain that→
(

∂(m)

∂x(m)

∂(n)

∂x(n)
U

)

B

(z) =

(

m+ n

m

)(

∂(m+n)

∂x(m+n)

)

B

(z).

Hence we have proved that equation (3) holds.
(4) We have that

UB[tα](z + (x+ y) ⊗A tα) =

∞
∑

n=0

(

∂(n)

∂(x+ y)
(n)
U

)

B

(z) ⊗A t
n
α. (6.15.4)

Let tα = tβ in equation (6.15.1) and compare the coefficient of tnα in equation→

(6.15.1) with the coefficient of tnα in (6.15.4). We obtain that ( ∂(n)

∂(x+y)(n)U)B(z) =→→
∑

i+j=n(
∂(i)

∂x(i)
∂(j)

∂y(j)U)B(z). Consequently equation (4) holds.
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(6.16) Construction of an inverse to (6.9.1). The reason for introducing and→
studying differential operators is that they make it possible to construct a natural
inverse to the map (6.9.1). This construction is the main ingredient in the second→

proof of Theorem (6.9.1).→

For every ν = (να)α∈I in N(I) and x = (xα)α∈I in M I we write ! ∂
(ν)

∂x(ν) =n
∏

α∈I
∂(να)

∂x(να) !.

Let !EndA(PA(M,N))! be the endomorphism ring of the A-module PA(M,N),n

and let !D! be the A-subalgebra of EndA(PA(M,N)) generated by the elementsn
∂(n)

∂x(n) for n = 0, 1, . . . and for all x ∈M . It follows from Theorem (6.15) that D is→
commutative and that we have a canonical A-module homomorphism

M → EA(D)

that maps x ∈M to
∑∞
n=0

∂(n)

∂x(n) t
n. This homomorphism corresponds to a canon-

ical A-algebra homomorphism
Γ(M) → D (6.16.1)

that is determined by mapping γnM (x) to ∂(n)

∂x(n) for all n ∈ N and all x ∈M .
For every polynomial law U in P(M,N) we have a canonical A-module homo-

morphism
EndA(P(M,N)) → P(M,N) (6.16.2)

that maps u to u(U). Moreover we have an A-linear map

P(M,N) → N (6.16.3)

that maps U to UA(0). When we compose the maps (6.16.2) and (6.16.3) we→→
obtain a canonical A-module homomorphism EndA(PA(M,N)) → N . The latter
map restricts, on the subalgebra D of EndA(PA(M,N), to a canonical A-linear
homomorphism

D → N (6.16.4)

that maps ∂(ν)

∂x(ν) to ( ∂
(ν)

∂x(ν)U)A(0) for all ν ∈ N(I) and all x ∈M (I). The composite

of the maps (6.16.1) and (6.16.4) is a canonical A-module homomorphism→→

Γ(M) → N

that is determined by mapping γν(x) to ( ∂
(ν)

∂x(ν)U)A(0) for all ν ∈ N(I) and all

x ∈M (I). We consequently have defined a canonical A-linear homomorphism

PA(M,N) → HomA(ΓA(M), N) (6.16.5)
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that maps U ∈ PA(M,N) to the A-module homomorphism

uU : ΓA(M) → N

defined by

uU (γνM (x)) =

(

∂(ν)

∂x(ν)
U

)

A

(0)

for all ν ∈ N(I) and all x ∈M I . Since the polynomial law ∂(ν)

∂x(ν)U is homogeneous

of degree n − |ν| when U is homogeneous of degree n we obtain that (6.16.5)→
induces a canonical A-linear homomorphism

!PnA(M,N) → HomA(ΓnA(M), N)! (6.16.6)

that maps U ∈ PnA(M.N) to the A-module homomorphism

uU : ΓnA(M) → N

defined by

uU (γνM (x)) =

(

∂(ν)

∂x(ν)
U

)

A

(0) = yν , (6.16.7)

where the elements yν in N are defined uniquely by the equation

UA[t](
∑

α∈I

xα ⊗A tα) =
∑

ν∈N(I),|ν|=n

yν ⊗A t
ν (6.16.8)

for all x ∈M (I), with the same notation as in Remark (6.7).→

(6.17) (Second proof of Theorem (6.9)) We shall show that the map (6.16.6) is→→

the inverse of the map (6.9.1).→

Let v ∈ HomA(Γn(M), N). Then v is mapped by (6.9.1) to the polynomial→
law vγn ∈ Pn(M,N) such that (vγn)B = (v ⊗A idB)γnB for all A-algebras B.
Moreover we have that vγn is mapped, by the homomorphism (6.16.6), to the→
homomorphism uvγn defined by

uvγn(γνM(x)) =

(

∂(ν)

∂x(ν)
vγn

)

A

(0).

However, it follows from equation (6.7.1) that→

(vγn)A[t](
∑

α∈I

xα ⊗A tα) = (v ⊗A idA[t])γ
n
A[t](

∑

α∈I

xα ⊗A tα)

= (v ⊗A idA[t])
∑

ν∈N(I),|ν|=n

γνM (x) ⊗A t
ν =

∑

ν∈N(I),|ν|=n

v(γνM (x)) ⊗A t
ν . (6.17.1)
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It follows from the defining equation (6.16.7) and from the equations (6.16.8) and→→

(6.17.1), that uvγn
M

(γνM(x)) = v(γνM (x)), thus the composite map of (6.9.1) with→→

(6.16.6) is the identity.→

Conversely, let U ∈ PnA(M,N). Then U is mapped by (6.16.6) to the homo-→
morphism uU : Γn(M) → N defined by uU (γνM (x)) = yν , where yν is given by
(6.16.8). Moreover we have that uU is mapped by (6.9.1) to the polynomial law→→
uUγ

n defined by (uUγ
n)B = (uU ⊗A idB)γnB for all A-algebras B. It follows from

the equations (6.7.1) and (6.7.2), and from the defining equations (6.16.7), and→→→

(6.16.8) that we have equalities→

(uUγ
n)A[t](

∑

α∈I

xα ⊗A tα) = (uU ⊗A idA[t])γ
n
A[t](

∑

α∈I

xα ⊗A tα)

= (uU ⊗A idA)
∑

ν∈N(I),|ν|=n

γνM (x) ⊗A t
ν =

∑

ν∈N(I),|ν|=n

uU (γνM (x)) ⊗A t
ν

=
∑

ν∈N(I),|ν|=n

(

∂(ν)

∂x(ν)
U

)

A

(0) ⊗A t
ν =

∑

ν∈N(I),|ν|=n

yν ⊗A t
ν

= UA[t](
∑

α∈I

xα ⊗A tα). (6.17.2)

The homomorphism M ⊗A A[tα] → M ⊗A B defined by mapping x ⊗A g(tα) to
x⊗Ag(fα) for all x ∈ M and g(tα) ∈ A[tα] maps

∑

α∈I xα⊗Atα to z. Consequently

it follows from equation (6.17.2) that (uUγ
n)B(z) = UB(z) and we have shown that→

uUγ
n = UB . That is, the composite of the maps (6.16.6) and (6.9.1) is the identity.→→

Hence we have a second proof of Theorem (6.9).→

We can now give the second proof of the second part of Theorem (4.6). For→
completeness we repeat the statment.

(6.18) Theorem. ([R1], Thm. IV.5 p. 272) When M is a free A-module with

basis (eα)α∈I we have that Γn(M) is a free A-module with basis γν(e) for all

ν ∈ N(I) with |ν| = n.

Proof. It suffices to show that for every ν with |ν| = n there is an A-module
homomorphism uν : Γn(M) → A such that

uν(e
µ) =

{

1 µ = ν

0 µ 6= ν.
(6.18.1)

For every A-algebra B we have that every element z ∈ M ⊗A B can be written
uniquely in the form z =

∑

α∈I eα⊗Afα with (fα)α∈I in B(I). Consequently, by the
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A-module homomorphism M ⊗AA[tα] →M ⊗AB defined by mapping x⊗A g(tα)
to x ⊗A g(fα) for all x ∈ M and g(tα) ∈ A[t], the element

∑

α∈J eα ⊗A tα in
M ⊗A A[t], where J is the subset of I where να 6= 0, maps to z. It follows
that every polynomial law U ∈ Pn(M,A) is uniquely determined by the elements
UA[t](

∑

α∈J

∑

eα ⊗A tα) for all finite subsets J of I. Moreover, it is clear that we
obtain a polynomial law in Pn(M,N) by choosing an arbitrary family (fν)ν∈N(I) of
elements fν in A and defining U by UA[t](

∑

α∈J eα⊗Atα) =
∑

µ∈N(J),|µ|=n fµ⊗At
µ.

For every ν ∈ N(I) with |ν| = n we let the polynomial law Uν in Pn(M,A) be
defined by

(Uν)A[t](
∑

α∈J

eα ⊗A tα) =
∑

µ∈N(J),|µ|=n

fµ ⊗A t
µ =

{

1 ⊗A t
ν when µ = ν

0 when µ 6= ν

for all finite subsets J of I. It follows from Theorem (6.9) that Uν corresponds to→

a homomorphism uν : Γn(M) → A with the properties described in (6.18.1).→
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7. Multiplicative polynomial laws.

(7.1) Bilinear maps. Let M and N be A-modules, and let B be an A-algebra.
We shall keep the notation of Remark (6.6), so that in particular (tα)α∈I is a→
family of independent variables over A, and A[t] is the polynomial ring in the
variables tα over A. Let (fα)α∈I and (gα)α∈I be elements in B(I), and let (xα)α∈I
and (yα)α∈I be in M (I), respectively in N (I).

We have a canonical isomorphism of B-modules

(M ⊕N) ⊗A B → (M ⊗A B) ⊕ (N ⊗A B) (7.1.1)

that maps the element
∑

α∈I(xα + yα) ⊗A fα to
∑

α∈I(xα) ⊗A fα + (yα) ⊗A fα.
Its inverse maps (

∑

α∈I xα ⊗A fα) + (
∑

α∈I yα ⊗A gα) to
∑

α∈I(xα + 0) ⊗ fα +
∑

α∈I(0 + yα) ⊗ gα. Moreover we have a canonical B-bilinear homomorphism

(M ⊗A B) × (N ⊗A B) → (M ⊗A B) ⊗B (N ⊗A B). (7.1.2)

From the canonical isomorphisms of B-modules (M ⊗AB)⊕ (N ⊗AB) ∼−→ (M ⊗A
B) × (N ⊗A B) and (M ⊗A B) ⊗B (N ⊗A B) ∼−→M ⊗A N ⊗A B and the homo-
morphisms (7.1.1) and (7.1.2) we obtain a canonical map→→

!TB = (TM,N )B : (M ⊕N) ⊗A B →M ⊗A N ⊗A B!

such that the image of
∑

α∈I(xα + yα) ⊗A fα is
∑

α,β∈I xα ⊗A yβ ⊗A fαfβ. It is
clear that for all A-algebra homomorphisms ψ : B → C we have a commutative
diagram

(M ⊕N) ⊗A B
TB−−−−→ M ⊗A N ⊗A B

idM⊕N ⊗Aψ





y





y

idM⊕N ⊗Aψ

(M ⊕N) ⊗A C −−−−→
TC

M ⊗A N ⊗A C.

That is, the map TB , for all A-algebras B, is a polynomial law from the A-module
M ⊕N to the A-module M ⊗AN , and it is clear that T is homogeneous of degree
2.

When we compose the polynomial law T with the universal polynomial law
γnM⊕N from M ⊗A N to Γn(M ⊗A N) we obtain a polynomial law γnM⊕NT of
degree 2n from M ⊕ N to Γn(M ⊗A N). Correspondingly we have a canonical
A-algebra homomorphism

!ϕM,N : Γ2n(M ⊕N) → Γn(M ⊗A N)! (7.1.3)
\divpotensall.tex



12 January 2006 7. Multiplicative polynomial laws multpol 7.2

such that

(ϕM,N ⊗A idB)(γ2n
M⊕N )B = (γnM⊗AN

)BTB (7.1.4)

for all A-algebras B.
The inverse of the A-algebra isomorphism (3.19.1) is a canonical isomorphism→

of A-algebras

Γ(M) ⊗A Γ(N) → Γ(M ⊕A N) (7.1.5)

that is determined by mapping γnM (x)⊗A1 to γnM⊕N (x) and 1⊗Aγ
n
N (y) to γnM⊕N (y)

for all x ∈ M and y ∈ N . Consequently the image of γµM (x) ⊗A γ
ν
N (y) is equal to

γµM⊕N (x)γνM⊕N (y) for all ν, µ in N(I), and for all x ∈ M (I) and y ∈ N (I). From

(7.1.5) we obtain a canonical isomorphism→

⊕i+j=nΓi(M) ⊗A Γj(N) → Γn(M ⊕N), (7.1.6)

which together with the map ϕM,N gives a homomorphism of A-modules

!ϕi,jM,N : Γi(M) ⊗A Γj(N) → Γn(M ⊗A N)! (7.1.7)

for all non-negative integers i and j such that i+ j = 2n.

(7.2) Lemma. Let (sα)α∈I and (tα)α∈I be two families of mutually independent

variables over A, and let A[s, t] be the ring of polynomials in these variables with

coefficients in A. Moreover, let (xα)α∈I and (yα)α∈I be two families of elements

in the A-module M , respectively N . Then we have in Γn(M ⊗A N) ⊗A A[s, t] the

equation

∑

µ,ν,|µ|+|ν|=2n

ϕM,N (γµM⊕N (x) ? γνM⊕N (y)) ⊗A s
µtν

=
∑

ξ∈NI×I ,|ξ|=2n

γξM⊗AN
(x⊗A y) ⊗A (st)ξ, (7.2.1)

where we have written

γξM⊗AN
(x⊗A y) ⊗A (st)ξ = ?α,β∈Iγ

ξα,β (xα ⊗A yβ) ⊗A (sαtβ)
ξα,β .

Let B be an A-algebra, and let z and z′ be elements in M ⊗A B. Then we have

that

(ϕn,nM,N ⊗A idB)((γnM )B(z) ⊗B (γnN)B(z′)) = (γnM⊗AN
)B(z ⊗A z

′). (7.2.2)
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Proof. It follows from the equations (3.5)(iv) and (6.6.1) that→→

(γ2n
M⊕N )A[s,t](

∑

α∈I

xα ⊗A sα + yα ⊗A tα)

=
∑

i+j=2n

(γiM⊕N )A[s,t](
∑

α∈I

xα ⊗A sα) ? (γjM⊕N )A[s,t](
∑

α∈I

yα ⊗A tα)

∑

i+j=2n

(
∑

µ∈NI ,|µ|=i

γµM⊕N (x) ⊗A s
µ) ? (

∑

ν∈NI ,|ν|=j

γνM⊕N (y) ⊗A t
ν)

=
∑

µ,ν∈NI×I ,|µ|+|ν|=2n

γµM⊕N (x) ? γνM⊕N (y) ⊗A s
µtν.

Consequently we have that

(ϕM,N ⊗A idA[s,t])(γ
2n
M⊕N )A[s,t](

∑

α∈I

xα ⊗A sα + yα ⊗A tα)

=
∑

µ,ν∈NI×I ,|µ|+|ν|=2n

ϕM,N (γµM⊕N (x) ? γνM⊕N (y)) ⊗A s
µtν . (7.2.3)

On the other hand we have, via the isomorphism (7.1.1), that→

(γnM⊗AN
)A[s,t]TA[s,t](

∑

α∈I

xα ⊗A sα + yα ⊗A tα)

= (γnM⊗AN
)A[s,t](

∑

α,β∈I

xα ⊗A yβ ⊗A sαtβ) =
∑

ξ∈NI×I

γξM⊗AN
(x⊗A y) ⊗A (st)ξ.

(7.2.4.)

From (7.1.4) we have that ϕM,N ⊗A idA[s,t](γ
2n
M⊕N )A[s,t] = (γnM⊗AN

)A[s,t]TA[s,t].→

Hence the first part of the Lemma follows from (7.2.3) and (7.2.4).→→
The calculations of the first part of the proof shows that

(ϕM,N⊗AidA[s,t])(
∑

i+j=2n

(γiM⊕N )A[s,t](
∑

α∈I

xα⊗Asα)?(γjM⊕N )A[s,t](
∑

α∈I

yα⊗Atα))

= (γnM⊗AN
)A[s,t](

∑

α,β∈I

xα ⊗A yβ ⊗A sαtβ),

and using the isomorphism (7.1.7) with i = n = j we obtain the equation→

(ϕn,nM,N ⊗A idA[s,t])((γ
n
M )A[s,t](

∑

α∈I

xα ⊗ sα) ⊗A[s,t] (γnN )A[s,t](
∑

α∈I

yα ⊗A tα))

= (γnM⊗AN )A[s,t]((
∑

α∈I

xα ⊗A sα) ⊗A[s,t] (
∑

α∈I

yα ⊗A tα)). (7.2.5)

We can clearly find a homomorphism M ⊗A A[s, t] → M ⊗A B that maps the
element

∑

α∈I xα⊗A sα to z and the elements
∑

α∈I yα⊗A tα to z′. Consequently

the second part of the Lemma follows from (7.2.5).→
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(7.3) Proposition. Let µ and ν be in N(I) and let

Nµ,ν = {ξβ,γ ∈ NI×I :
∑

γ∈I

ξβ,γ = µβ for all β ∈ I and

∑

β∈I

ξβ,γ = νγ for all γ ∈ I}. (7.3.1)

Then we have that

ϕ
|µ|,|ν|
M,N (γµM (x) ⊗A γ

ν
N (y)) =

{

0 when |µ| 6= |ν|
∑

ξ∈Nµ,ν
γξM⊗AN

(x⊗A y) when |µ| = |ν|.

(7.3.2)
In particular we have for all x ∈M I and y ∈ N I that

ϕn,nM,N (γnM (x) ⊗A γ
ν
N (y)) = ?β∈Iγ

νβ
M⊗AN

(x⊗A yνβ ). (7.3.3)

Proof. When we compare the coefficient of the monomial sµtν on each side of the
expression (7.2.1) we obtain that→

ϕM,N (γµM⊕N (x) ? γνM⊕N (y)) =
∑

ξ∈Nµ,ν

γξM⊗AN
(x⊗A y). (7.3.4)

We note that the set Nµ,ν is empty when |µ| 6= |ν| because we have the equalities
∑

β∈I µβ =
∑

β,γ∈I ξβ,γ =
∑

γ∈I νγ . Using the isomorphism (7.1.6) we see that→

the first part of the Proposition follows from (7.3.4).→
The second part of the Proposition follows because when J = {α} consists of

one element, and µα = n, we have that Nµ,ν consists of the element (ξα,β)β∈K
with ξα,β = νβ for all β ∈ I.

(7.4) Composition of maps. Let M , N and P be A-modules and let

u : M ⊗A N → P

be an A-module homomorphism. For every A-algebra B we obtain canonical B-
module homomorphisms

(Γn(M) ⊗A B) ⊗B (Γn(N) ⊗A B) ∼−→Γn(M) ⊗A Γn(N) ⊗A B

ϕn,n
M,N

⊗id
−−−−−−→ Γn(M ⊗A N) ⊗A B

Γn(u)⊗Aid
−−−−−−−→ Γn(P ) ⊗A B. (7.4.1)
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(7.5) Lemma. Let z ∈M⊗AB and z′ ∈ N⊗AB. Then the image of (γnM )B(z)⊗B
(γnN )B(z′) by the homomorphism (7.4.1) is equal to (Γn(u)⊗A id)γnM⊗AN

(z⊗Az
′) =→

(γnP )B(z ⊗A z
′).

Proof. The Lemma follows from and the functoriality of Γn(u) in u.

(7.6) Divided powers for algebras. A not necessarily commutative ring !E!n
with a fixed homomorphism of rings ϕ : A→ E such that ϕ(A) is in the center of E
is called a not necessarily commutative A-algebra . A homomorphism χ : E → F
between not necessarily commutative A-algebras is a ring homomorphism such
that ψ = χϕ where ψ : A→ F defines the algebra structure on F .

Let !E! be a not necessarily commutative A-algebra, and let !G! be a leftnn

A-module. The homomorphism!! uG : E ⊗A G → G that defines the modulen

structure gives, as in (7.4) an A-module homomorphism!!→n

vG : Γn(E) ⊗A Γn(G) → Γn(G) (7.6.1.)

We shall show that vE defines a product on ΓnA(E) that makes ΓnA(E) into a not
necessarily commutative A-algebra, and that the homomorphism vG makes Γn(G)
into a Γn(E) module. First we observe that it follows from Proposition (7.3) that→

vG(γµE(x) ⊗A γ
ν
G(y)) =

∑

ξ∈Nµ,ν

γξG(xy) (7.6.2)

for all x in E(I) and y in G(I), and all µ and ν in N(I) with |µ| = |ν| = n,

where we write !?ξG(xy) =
∏

α,β∈I γ
ξα,β
G (xαyβ)!. It follows from (7.6.2) that then→

multiplication of E defined by vE is associative, and that it is commutative when
E is commutative. Moreover it follows from (7.3.3) that→

vG(γnE(x) ⊗A γ
ν
E(y)) = ?β∈Iγ

νβ
E (xyβ)

for all x in E and y in EI and n ∈ N. In particular we have that γnE(1) is a unit
for the multiplication, and it is clear that the homomorphism

A→ ΓnA(E)

that maps f to fγnE(1) gives ΓnA(E) a structure of an A-algebra. Similarly it follows
from (7.6.2) and the A-linearity of vG that ΓnA(G) becomes a ΓnA(E) module under→
the multiplication map vG.
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(7.7) Functoriality and the algebra structure. Let E be a not necessarily
commutative A-algebra and let G and H be left E-modules. It follows from the
definition of the ΓnA(E)-module structure of ΓnA(G) and ΓnA(H) given in (7.6) that→
for every E-module homomorphism u : G→ H the resulting map

ΓnA(u) : ΓnA(G) → ΓnA(H)

is a ΓnA(E)-module homomorphism.
Let ϕ : E → F be a homomorphism of not necessarily commutative A-algebras.

It follows from the definiton of the product on ΓnA(E) and ΓnA(F ) of (7.6) that the→
homomorphism

ΓnA(ϕ) : ΓnA(E) → ΓnA(F )

is a homomorphism of A-algebras. For every A-algebra B we obtain that the
homomorphism

ΓnA(E) ⊗A B → ΓnB(E ⊗A B)

of (3.11.1) is a B-algebra homomorphism.→

(7.8) Definition. A map ϕ : E → F between two not necessarily commutative
A-algebras E and F is called multiplicative if ϕ(1) = 1 and if ϕ(xx′) = ϕ(x)ϕ(x′)
for all x, x′ in E. We say that a polynomial law U from E to F is multiplicative

if the map
UB : E ⊗A B → F ⊗A B

is multiplicative for all A-algebras B.

(7.9) Example. Let E be a not necessarily commutative A-algebra. Then the
polynomial law γn from E to Γn(E) is a homogeneous multiplicative law of degree
n for n = 0, 1, . . . . In fact, this is an immediate consequence of Lemma (7.5).→

(7.10) Proposition. Let E and F be not necessarily commutative A-algebras,

and let U be a polynomial law from E to F . With the notation of (6.6.1) we write→

UA[t](
∑

α∈I

xα ⊗A tα) =
∑

ν∈N(I)

zν(x) ⊗A t
ν

with zν(x) ∈ F . Then U is multiplicative if and only if

zµ(x)zν(y) =
∑

ξ∈Nµ,ν

zξ(xy) (7.10.1)

for all x, y in E(I), where Nµ,ν is defined in Proposition (7.3.1).→
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Proof. With the same notation as in (7.1) we have the equations→

UA[s,t](
∑

α∈I

xα ⊗A sα)UA[s,t](
∑

α∈I

yα ⊗A tα)

= (
∑

µ∈N(I)

zµ(x) ⊗A s
µ)(

∑

ν∈N(I)

zν(x) ⊗A t
ν) =

∑

µ,ν∈N(I)

zµ(x)zν(y) ⊗A s
µtν

(7.10.2)

and from (6.6.2) we have that→

UA[s,t]((
∑

α∈I

xα ⊗A sα)(
∑

α∈I

yα ⊗A tα))

= UA[s,t](
∑

α,β∈I

xαyβ ⊗A sαtβ) =
∑

ξ∈F(I)

zξ(xαyβ) ⊗A (st)ξ. (7.10.3)

Comparing the coefficients of sµtν on the right hand sides of the equations (7.10.2)→

and (7.10.3) we obtain the equation (7.10.2).→→

(7.11) Theorem. Let E and F be not necessarily commutative A-algebras. The

bijection

HomA(Γn(E), F ) → Pn(E,F )

of (6.8.1) induces a bijection between A-algebra homomorphisms Γn(E) → F and→
homogeneous multiplicative polynomial laws of degree n from E to F .

Proof. Let ϕ : Γn(E) → F be an A-algebra homomorphism. We saw in Example
(7.9) that the corresponding polynomial law ϕγn from E to F , that is given by→
(ϕγn)B = (ϕ⊗A id)(γnM )B for all A-algebras B, is multiplicative.

Conversely, assume that U is a homogeneous multiplicative polynomial law of
degree n from E to F , and let ϕ : Γn(E) → F be the corresponding A-modules
homomorphism such that U = ϕγn. It follows from Example (7.9) and Proposition→

(7.10) that for all x, y in E(I) and all µ and ν in N(I) with |µ| = |ν| = n, we have→

that γµE(x) ? γνE(y) =
∑

ξ∈Nµ,ν
γξE(xy). Consequently it follows from Proposition

(6.10) that→

ϕ(γµE(x) ? γνE(y)) =
∑

ξ∈Nµ,ν

ϕ(γξE(xy)) =
∑

ξ∈Nµ,ν

zξ(xy), (7.11.1)

where UA[t](
∑

α∈I xα ⊗A tα) =
∑

ν∈N(I) zν(x) ⊗A t
ν . Correspondingly it follows

from Proposition (6.10) that→

ϕ(γµE(x))ϕ(γνF (y)) = zµ(x)zν(y)
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for all x and y in E(I) and all µ and ν in N(I). Since U = ϕγn is multiplicative
by assumption it follows from (7.10.2) that→

ϕ(γµE(x) ? γνE(y)) = ϕ(γµE(x))ϕ(γνF (y)).

Since the elements γµE(x) for all x ∈ E(I) and µ ∈ N(I) generate the A-module
Γn(E) we have that ϕ is multiplicative, and consequently an A-algebra homomor-
phism.

(7.12) Example. let E be a not necessarily commutative A-algebra. For every
A-algebra B we have that T nB(E⊗AB) is a not necessarily commutative B-algebra
under the multiplication

(y1 ⊗B y2 ⊗B · · · ⊗B yn)(z1 ⊗B z2 ⊗B · · · ⊗B zn) = y1z1 ⊗B y2z2 ⊗B · · · ⊗B ynzn

and

g(z1⊗B z2⊗B · · ·⊗B zn) = gz1⊗B z2⊗B · · ·⊗B zn = · · · = z1⊗B · · ·⊗B zn−1⊗B gzn

for all elements y1, y2, . . . , yn, z1, z2, . . . , zn in E ⊗A B and all g in B.
Similarly we obtain a B-algebra structure on SnB(E ⊗A B).
We have that the canonical homomorphism

uB : TnB(E ⊗A B) → TnB(E) ⊗A B

of section (6.12) is a B-algebra homomorphism, and the map→

βB : E ⊗A B → TnB(E ⊗A B)

from (6.12) is multiplicative and satisfies formula (6.12.1). Consequently the poly-→→

nomial law from E to T nB(E) given in section (6.12) also multiplicative, and the→
canonical homomorphism

ΓnA(E) → TnA(E)

is an A-algebra homomorphism. Since each element of the group Sn acts on
TnA(E) as an A-algebra homomorphism we have that TSnA(E) is a sub A-algebra
of TnA(E), and the induced map

ΓnA(E) → TSnA(E)

is a homomorphism of not necessarily commutative A-algebras.
Similarly we obtain an A-algebra homomorphism

ΓnA(E) → SnA(E).
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8. Norms.

(8.1) Determinants. Let M and N be finitely generated free A-modules. For
every A-algebra B we have a natural isomorphism of B-modules

HomA(M,N) ⊗A B → HomB(M ⊗A B,N ⊗A B). (8.1.1)

We obtain for every positive integer n a natural map

HomB(M ⊗A B,N ⊗A B) → HomB(∧n(M ⊗A B),∧n(N ⊗A B)) (8.1.2)

such that the image of u is ∧nu. The maps (8.1.1) and (8.1.2) together with the→→
isomorphisms (∧nM)⊗AB → ∧n(M ⊗AB) and (∧nN)⊗AB → ∧n(N ⊗AB) give
a natural map

HomA(M,N)⊗A B → HomB((∧n)M ⊗A B, (∧
n)N ⊗A B).

The inverse of the map (8.1.1) for the A-modules ∧nM and ∧nN therefore gives→
a natural map

UB : HomA(M,N) ⊗A B → HomA(∧nM,∧nN) ⊗A B.

It is clear that for allA-algebra homomorphisms χ : B → C we have a commutative
diagram

HomA(M,N) ⊗A B
UB−−−−→ HomA(∧nM,∧nN) ⊗A B

idHomA(M,N) ⊗Aχ





y





y

idHomA(M,N) ⊗Aχ

HomA(M,N)⊗A C −−−−→
UC

HomA(∧nM,∧nN) ⊗A C.

Hence the maps UB for all A-algebras B define a polynomial law U on A-algebras
from HomA(M,N) to HomA(∧nM,∧nN), and it is clear that U is homogeneous
of degree n.

The polynomial law U determines a unique A-module homomorphism!!n

∧nM,N : Γn(HomA(M,N)) → HomA(∧nM,∧nN))

such that
U = ∧nM,Nγ

n
HomA(M,N)

where ∧nM,Nγ
n
HomA(M,N) is defined by

(∧nM,Nγ
n
HomA(M,N))B = (∧nM,N ⊗A idB)(γnHomA(M,N))B

\divpotensall.tex
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for all A-algebras B. In particular we have, for all A-module homomorphisms
u : M → N , that

∧nM,N (γnHomA(M.N))(u) = ∧nu.

(8.2) Composite maps. Let L,M,N be A-modules. We have natural maps

HomA(L,M)⊗A HomA(M,N) → HomA(L,N) (8.2.1)

and

t : HomA(∧nL,∧nM) ⊗A HomA(∧nM,∧nL) → HomA(∧nL,∧nN). (8.2.2)

By (8.4) we obtain from (8.2.1) a homomorphism of A-modules→→

w : ΓnA(HomA(L,M))⊗A ΓnA(HomA(M,N)) → ΓnA(HomA(L,N)). (8.2.3)

(8.3) Lemma. Let L,M,N be free A-modules of finite rank. For every non-

negative integer n we have a commutative diagram

ΓnA(HomA(L,M))⊗A ΓnA(HomA(M,N))
w

−−−−→ ΓnA(HomA(L,N))

∧nL,M⊗A∧nM,N





y





y

∧nL,N

HomA(∧nL,∧nM) ⊗A HomA(∧nM,∧nN) −−−−→
t

HomA(∧nL,∧nN)

(8.3.1)

where w is the homomorphism (8.2.3) and t is the natural map (8.2.2).→→

Proof. By extension of scalars to A[t] it suffices to show that for all A-module
homomorphisms u : L → M and v : M → N we have that the images of
γnHomA(L,M)(u) ⊗A γ

n
HomA(M,N)(v) by the clockwise and counter clock wise maps

of diagram (8.3.1) are equal. However, we have that→

∧nL,N (γnHomA(L,M)(u) ⊗A γ
n
HomA(M,N)(v)) = ∧nL,N (γnHomA(L,N)(vu)) = ∧n(vu),

and

t(∧nL,M ⊗A ∧nM,N )(γnHomA(L,M)(u) ⊗A γ
n
HomA(M,N)(v))

= ∧nM,Nγ
n
HomA(M,N)(v) ∧

n
L,M γnHomA(L,M)(u) = ∧nv ∧n u.

The lemma consequently follows from the well known formula ∧n(vu) = ∧nv∧n u.
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(8.4) Notation. For every A-module M we write !EndA(M) = HomA(M,M)!n
for the ring of A-endomorphisms of M . Assume that M is a free A-module of
rank n. Then ∧nM is a free A-module of rank 1 and EndA(∧nM) is canonically
isomorphic to A. It follows from Lemma (8.3) with L = M = N that the map→

∧nM,M : ΓnA(EndA(M)) → EndA(∧nM)

is an A-algebra homomorphism. We consequently have a canonical A-algebra
homomorphism!!n

∧nM : ΓnA(EndA(M)) → A

such that for all endomorphisms u : M →M we have that!!n

∧nMγ
n
EndA(M)(u) = detA(u : M).

where !!detA(u : M) is the determinant of u.n
Let B be an A-algebra and assume that M is an B-module in such a way that

the A-module structure on M is given via the A-algebra structure on B. We have
a canonical A-algebra homomorphism!!n

ϕM : B → EndA(M) (8.3.1)

that maps g ∈ B to the endomorphism !ug : M →M ! given by ug(x) = gx for alln
x ∈ M . By functoriality we have an A-algebra homomorphism ΓnA(ϕM )ΓnA(B) →
ΓnA(EndA(M)). Hence we obtain a canonical A-algebra homomorphism!!n

normM = ∧nM (ΓnA(ϕM )) : ΓnA(B) → A

such that for all g ∈ B we have that

normM (γnB(g)) = ∧nM (γnEndA(M)(ϕM (g))) = detA(ug : M).

(8.5) Notation. Let

0 →M ′ →M →M ′′ → 0 (8.5.1)

be an exact sequence of free A-modules M ′,M,M ′′ of ranks n′, n, n′′ respectively.
Moreover, let !E! be the A-algebra of elements u ∈ EndA(M) such that u(M ′) ⊆n

M ′, and let !ι! : E → EndA(M) be the inclusion map. Then we have an A-module
homomorphism

v : E → EndA(M ′) ⊕ EndA(M ′′)
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that maps u ∈ E to !(u′, u′′)!, where u′ : M ′ → M ′ and u′′ : M ′′ → M ′′ are then

natural maps induced by u. We saw in (3.19.1) that we have a canonical A-module→
homomorphism

w : Γn(EndA(M ′) ⊕ EndA(M ′′)) → Γn
′

(EndA(M ′)) ⊗A Γn
′′

(EndA(M ′′))

such that
w(γn(u′, u′′)) = γn

′

(u′) ⊗A γ
n′′

(u′′).

From (8.5.2) and (8.5.3) we obtain an A-module homomorphism→→

Γn(E) → Γn
′

(EndA(M ′)) ⊗A Γn
′′

(EndA(M ′′)).

(8.6) Theorem. With the notation of (8.5) we have a commutative diagram of→
A-algebras

Γn(E)
wΓn(v)
−−−−→ Γn

′

(EndA(M ′)) ⊗A Γn
′′

(EndA(M ′′))

Γn(ι)





y





y
∧n

′

M′⊗A∧n
′′

M′′

Γn(EndA(M)) −−−−→
∧n
M

A.

(8.6.1)

Proof. Extending the scalars to A[t] it suffices to prove that for all u ∈ E the
images of γnE(u) in A by the clockwise and anti clockwise maps of diagram (8.6.1)→
are equal. However we have that

(∧n
′

M ′ ⊗A ∧n
′′

M ′′)wΓn(v)(u)

= ∧n
′

M ′γn
′

M ′(u′) ⊗A ∧n
′′

M ′′γn
′′

M ′′(u′′) = detA(u′ : M ′) detA(u′′,M ′′),

and that detA Γn(ι)(u) = ∧nMγ
n
EndA(M)(u) = detA(u : M). The theorem hence

follows from the well known equality detA(u′,M ′) detA(u′′,M ′′) = detA(u : M)
that is easily proven by choosing a splitting of the exact sequence (8.5.1).→

(8.7) Remark. Let B be an A-algebra, and let M and N be B-modules. Then
there is a canonical surjective A-module homomorphism

⊗mA (M ⊗B ⊗nBN) → ∧mnA (M ⊗B N) (8.7.1)

that maps (⊗A)mi=1(xi⊗B (⊗B)nj=1yij) to (∧A)mi=1(∧B)nj=1(xi⊗B yij) for all xi ∈M

and yij ∈ N where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The homomorphism (8.7.1)→
factors via a canonical homomorphism of A-modules

! ⊗mA (M ⊗B ∧nBN) → ∧mnA (M ⊗B N)! (8.7.2)
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that maps (⊗A)mi=1(xi ⊗B (∧B)nj=1yij) to (∧A)mi=1(∧B)nj=1(xi ⊗B yij), and (8.7.2)→
factors via a canonical homomorphism of A-modules

vN : ∧mA (M ⊗B ∧nN) → ∧mnA (M ⊗B N)

that maps (∧A)mi=1(xi ⊗B (∧B)nj=1yij) to (∧A)mi=1(∧B)nj=1(xi ⊗B yij). It is clear
that for all B-module homomorphisms u : N → P we have that

vP (∧mA (idM ⊗B ∧nB u)) = ∧mnA (idM ⊗Bu)vN (8.7.3)

Assume that M is a free A-module of rank m via the A-algebra structure on
B, and that N is a free B-module of rank n. We have that M ⊗B N is a free
A-module of rank mn because a B-module isomorphism N ∼−→ !B⊕n! to the sum
of B with itself n times gives A-module isomorphisms

M ⊗B N
∼−→M ⊗B B

⊕n ∼−→ (M ⊗B B)⊕n = M⊕n.

Let u ∈ EndB(N).

(8.8) Notation. We denote the determinant of u by !!detB(u : N), and then
determinant of the A-module endomorphism idM ⊗Bu on M ⊗B N we denote by
detA(idM ⊗Bu : M⊗BN). Finally we let !detA(detB(u : N) : M)! be the determi-n
nant of the A-module endomorphism of M given by multiplication by detB(u : N).

(8.9) Lemma. Let B be an A-algebra and let M and N be B-modules. Moreover,

let u : N → N be a B-module homomorphism. Assume that M is a free A-module

of rank m via the A-algebra structure on B, and that N is a free B-module of rank

n. Then

detA(idM ⊗Bu : M ⊗B N) = detA(detB(u : N) : M). (8.9.1)

Proof. Under the assumptions of the lemma we have that vN is an isomorphism.
Via this isomorphism the identity (8.7.3) can be written on the form (8.9.1).→→

(8.10) Notation. Let B be an A-algebra, and M a B-module that is free as
an A-module of rank m. Moreover let C be a B-algebra, and N a C-module
that is free as a B-module of rank n. We denote by B ′ the image of B by the
natural homomorphism ϕM : B → EndA(M) of (8.3.1) and we let ι : B′ →→
EndA(M) be the inclusion map. Then B′ is an A-algebra, the map ι is an A-
algebra homomorphism, and M is a B′-module via ι. We shall consider all B′-
algebras and B′-modules as B-algebras, respectively B-modules, via the surjection
!ϕ′
M : B → B′! induced by ϕM .n
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Let N ′ = N ⊗B B′. Then N ′ is a free B′-module of rank n. It follws from
Example (8.9) that we have a multiplicative homogeneous polynomial law of de-→
gree n on B′-algebras, from EndB′(N ′) to ΓnB′(EndB′(N ′)), and a multiplicative
homogeneous polynomial law of degree m on A-algebras from ΓnB(EndB′(N ′)) to
ΓmA (ΓnB′(EndB′(N ′)). By composition of polynomial laws we obtain a multiplica-
tive homogeneous polynomal law of degree mn on A-algebras from EndB′(N ′) to
ΓmA (ΓnB′(EndB′(N ′)). It follows from Theorem (8.11) that we have a canonical→

A-algebra homomorphism!!n

ϕ : ΓmnA (EndB′(N ′)) → ΓmAΓnB′(EndB′(N ′)),

and it is clear that for all u ∈ EndB′(N ′) we have that

ϕ(γmnEndB′ (N ′)(u)) = γmΓn
B′ (EndB′ (N ′)(γ

n
EndB′ (N ′)(u)).

Note that M ⊗B′ N ′ ∼−→M ⊗B N is a free A-module of rank mn and that we
have a natural map of B′-algebras

ψ : EndB(N ′) → EndA(M ⊗B′ N ′)

that maps u′ to idM ⊗B′u′.

(8.11) Proposition. With the notation and assumptions of (8.10) we have a→
commutative diagram

ΓmAΓnB′(EndB′(N ′))
ΓmA (∧n

N′ )
−−−−−−→ ΓmA (B′)

ϕ

x









y

detM

ΓmnA (EndB′(N ′)) −−−−−−−−−−−→
∧mn
M⊗

B′N
′Γ
mn
A

(ψ)
A.

(8.11.1)

Proof. By extension of scalars to A[t] it suffices to show that for all u′ ∈ EndB′(N ′)
the images of the element γmnEndB′ (N ′)(u

′) in A are equal by the clockwise map and

the bottom map of diagram (8.11.1). We have that→

normM ΓmA (∧nN ′)ϕ(γmnEndB′ (N ′)(u
′))

= normM ΓmA (∧nN ′)γmΓn
B′(EndB′ (N ′)γ

n
EndB′ (N ′)(u

′))

= normM γmB′(∧nN ′γnEndB′ (N ′)(u
′)) = normM γmB′(detB′(u′ : N ′))

= detA(udet(u′:N ′) : M),
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where udetB′ (u′:N ′) is the multiplication of detB′(u′ : N ′) on M . On the other
hand we have that

∧mnM⊗BN ΓmnA (ψ)γmnEndB′ (N ′)(u
′) = ∧mnM⊗B′N ′ΓmnA (ψ)γmnEndB′ (N ′)(u

′)

= ∧mnM⊗B′N ′γmnEndA(M⊗B′N ′)(idM ⊗B′u′) = detA((idM ⊗B′u′) : M ⊗B′ N ′).

The commutativity of diagram (8.11.1) consequently follows from Lemma (8.9).→→

(8.12) Corollary. Let B be an A-algebra, and let M be a B-module that is free as

an A-module of rank m. Moreover let C be a B-algebra, and let N be a C-module

that is free as a B-module of rank n. We consider M ⊗B N as a C-module via the

action of C on N . Then the diagram

ΓmAΓnB(C)
ΓmA (normN )
−−−−−−−→ ΓmA (B)

ϕ

x









y

normM

ΓmnA (C) −−−−−−−→
normM⊗BN

A

(8.12.1)

is commutative

Proof. Since N ′ = N ⊗B B′ there is a natural B-algebra homomorphism !χ! :

EndB(N) → EndB′(N ′) and we have from (8.3.1) a natural B-algebra homomor-→

phism ϕC : C → EndB(N). It follows from (3.9.1) that we have a composite→
homomorphism υ given by

ΓmB (C)
ΓmB (ϕC)
−−−−−→ ΓmB (EndB(N))

ΓmB (χ)
−−−−→ ΓmB (EndB′(N ′))

Γm
ϕ′
M

(id)

−−−−−→ ΓmB′(EndB′(N ′)).

It is clear that the diagrams

ΓmAΓnB(C)
ΓmA Γn

ϕ′
M

(υ)

−−−−−−−→ ΓmAΓnB′(EndB′(N ′))

ϕ

x





x





ϕ

ΓmnA (C) −−−−−→
Γmn
A

(υ)
ΓmnA (EndB′(N ′)),

(8.12.2)

and
ΓnB(C)

normN−−−−→ B

υ





y





y

ϕ′
M

ΓnB′(EndB′(N ′)) −−−−→
∧n
N′

B′,

(8.12.3)
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are commutative. From diagram (8.12.3) we obtain the commutative diagram→

ΓmAΓnB(C)
ΓmA (normN )
−−−−−−−→ ΓmAB

ΓmA (υ)





y





y

ΓmA (ϕ′
M )

ΓmAΓnB′(EndB′(N ′)) −−−−−−→
Γm
A

(∧n
N′ )

ΓmA (B′).

(8.12.4)

The commutativity of diagram (8.12.1) follows from the commutativity of the→

diagrams (8.11.1), (8.12.2) and (8.12.4).→→→
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[B1] N. Bourbaki, Algèbre, Chapitre IV, Polynomes et Fractions Rationelles.
ISBN 2-225-68574-6, Masson, Paris, 1981.
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