Topological spaces

1. Notation and Zorns Lemma.

(1.1) Notation. Let !!I be an index set and !!{E,},er a collection of sets E,,
indexed by I. We denote by !'T] .; Eo the cartesian product of the sets E,. The
elements of [[ . ; Eo we denote by !!(ga)acr With go € E, for all o € I. When
I={1,2,...,n} we write E1 X E3 X --- x E,, for the product.

We can interpret the elements of [] .; Fo as applications !'p : [ — UyerFEq
from I to the union of the sets E, such that p(a) € E, for all « € I. With this
interpretation the relation between the functions ¢ : I — UgyerFE, and the elements
(9a)acr € [ e Ea is given by ¢(a) = go for all @ € I. When all the sets E, are
equal to the same set E we write !!E! for the cartesian product. That is E' consists
of all maps I — FE.

When !{F,}acr is another collection of sets and we have maps lu, : B, — F,
for all a € I, we obtain a map of sets '] c;ua : [[oe; Pa — [laes Fao defined by
(Hael Ua)(Ga)ael = (Ua(ga))acr-

Let {Eq}acr be a collection of sets and let .J be a subset of I. Themap [],.; Eo —
[1scs £ that sends (za)aer to (x5)pes we call a projection.

(1.2) Definition. A partially ordered set is a set E with a relation !!< such that,
for all "o, B, in E, satisfies the conditions:

(1) a<a.

(2) If @ < and B < « then a = g.

(3) f a < B and B <~y then a < 7.
The partially ordered set E is upper filtrating or upper directed if there, for all «, (3
in F/,is a v in E such that a <~ and g < ~.

Let F be a non-empty partially ordered set. A chain !'F in E is a subset of F
such that for «, § in F' we have that either o < F or 8 < «.

(1.3) Zorns Lemma. Let E be a non-empty partially ordered set. If all chains F’
in F have an upper bound in E, that is, there is an element « in E such that 0 < «
for all # in F', then E has at least one maximal element. In other words, there is a
~ in E such that no element !!§ of E different from ~ satisfies v < 6.

(1.4) Definition. A partially ordered set E satisfies the mazimum condition if
every non-empty subset I’ has a maximal element, that is, there is an element 3 € F
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2 Topological spaces

such that a < g for all o € F. It satisfies the minimum condition if every non-empty
subset F' has a minimal element, that is, there is an element 3 € F' such that § < «
for all o € F.

(1.5) Lemma. Let E be a partially ordered set. The following conditions are equiv-
alent:

(1) Every increasing chain lay < ap < ... is stationary, that is, there is a positive
integer n such that o, = 41 = -.
(2) The set E satisfies the maximum condition.

Proof. (1) Assume that E satisfies the maximum condition, and let a3 < g < ...
be a chain in E. If «a,, is a maximal element for the subset {a, },en we have that
oy = Q1 =+

(2) Assume that every sequence is stationary, and let F' be a subset of E. By
induction on n we can clearly find a sequence a1 < ag < -+ < a1 < ap < ...,
which is not stationary.

(1.6) Exercises.

1. Let E be a set and let 1€ = {E,},er be a collection of subsets of E. We write
E., < Eg when E|, is contained in Eg. Show that £ with the relation < is a partially
ordered set.

2. Let E be a set. The set !ZF! consists of all functions ¢ : E — Z from E to the
integers Z. We denote by !Z! the family consisting of all subsets !a! of Z¥ different
from Z* satisfying the two conditions:

(i) If p € a and y € ZF then px is in a.

(ii) If ¢, x are in a then ¢ + x is in a.

(1) Show that the sets a(F) = {p € Z¥ : p(x) = 0 for all z € F} for all non-
empty subsets I’ of E satisfy conditions (i) and (ii).

(2) Show that when we order Z partially by inclusion of the sets a, then Z will
contain maximal elements.

3. Let H be the collection of subsets of the set ZN of functions ¢ : N — Z from the
natural numbers !IN! to the integers consisting of sets H such that if ¢ and y are in
H then ¢ + x is also in H.

(1) Show that for all integers n and prime numbers p the set 'H,, , = {(m;)ien :
p divides m,, } is a maximal subset of H.

(2) Show that there are other maximal subsets of B than those of the form H,, ,,.

(3) Let 'ZM! be the subset of ZN consisting of functions with finite support,
that is ¢(n) = 0 except for a finite number of natural numbers n. Is Z™ a
maximal subset of ZN?

4. Let I be a partially ordered upper directed set. An inductive system of sets !!
{E., pg}a”@’e[’agﬁ consists of a collection of sets {Fy }qcr, and maps PG Eo — Ep
for all pairs of elements «, 3 in I with a < (.
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Let {Ea, pj}ta,pera<p be an inductive system indexed by the partially ordered
upper directed set I. Denote by 'E' = Uner(Eq X {a}) the disjoint union of the sets
E, for a € I. We define on E a relation !!~ by (x4, ) ~ (g, ) if there isa v € I
satisfying o < and 8 <y such that pJ(z,) = p2(xg).

(1)
(2)

gt
Show that ~ is an equivalence relation on E.
Let lim FE, = E/~ be the residue classes of E modulo the equivalence

—«
relation ~, and let u, : £, — lim  E, be the map that sends an element
—a€el

To € FE, to the equivalence class of (z,,«). Show that u, = ugpG when
a < (. We call the module lim  E, together with the maps u,, the direct

—a€el
limat of the inductive system. It is often convenient to call lim  E, simply
—acl

the direct limit of the system.

Show that for every element = in lim  E,, there is an index o € I and an
—a€el

To € E, such that uy(zs) = .
Show that if x, € E, and zg € Eg are such that us(z,) = ug(xg) then there
is an index v € I satisfying o <y and 8 < such that pJ(z,) = pg(xﬁ).
Show that if  and y are elements in E there is an index o € I and x4, Yy, in
E, such that uy(x) = z and v (ya) = y-
Show that the inductive limit has the following universal property:

For all « € I let v, : F, — F be maps into a set F' such that v, = vgpg
for all o, 3 in I with o < 3. Then there is a unique map v : lim E, — F

—a€el
such that v, = uu, for all o € I.

Show that the universal property characterizes the direct limit up to isomor-
phisms. That is, if w, : E, — G are maps for o« € I with the universal
property that for all v, : £, — F' such that v, = wg pjz there is a unique map

w : G — F satisfyting v, = vu,, then there are unique maps lim F, — G
—acl
and G — lim F, that are inverses.

—«
Let {F,, og}aﬁg,agg be another inductive system of sets. Assume that we
for every a € I has a map !lu,, : F, — F, such that qug = agua for all o, B
in I with o < 3. We call the collection {us}acr a map of inductive systems.
We call the collection {uq}acr a map of inductive systems.
Show that there is a unique map lim  wu, :lim FE, — lim  F, such

. —ael —ael '—’aGI .
that im  wuapo = oqu, for all a € I, where o, : F,, — lim  F, is the
—acl acl

canonical map for the inductive system {Fy, 05 }a ger,a<p-



Matematikk MA



TOPOLOGY 2 5

2. Categories.

(2.1) Definition. A category 'K consists of a collection of objects !!Obj(K) and, for
every pair of objects 'A, B a set !Mor(A, B) of morphisms with the property that
for lu € Mor(A, B) and !'v € Mor(B, C) there is a composition vu in Mor(A, C') such
that:

(1) For every object A in Obj(K) there is an element !lid4 in Mor(A4, A) such
that v = uid4 and v = idg u.
(2) If "w € Mor(C, D) then w(vu) = (wv)u in Mor(A, D).

Often we simply say that Obj(K) is a category and we write !lu : A — B instead of
u € Mor(A, B). A morphism u : A — B is an isomorphism if there is a morphism
v: B — A such that vu = id4 and wv = idg.

(2.2) Example. Let Obj(K) be the collection of all sets, and for every pair of
sets A, B we let !Mor(A, B) be all maps from A to B. Then Obj(K) with these
morphisms form a category called the category of sets.

(2.3) Example. Let E be a partially ordered set under a relation <, and let Obj(K)
consist of the elements of E. For two elements «, § in E we let Mor(«, (3) consist of
all relations o < (3. That is, a morphism a — f is a relation a@ < 3. Then Obj(K)
with the sets Mor(a, (3) is a category.

(2.4) Definition. Let K and !'L be categories. A covariant, respectively contravari-
ant, functor !F from K to L is a map that associates to every object A in Obj(K)
an object F(A) of Obj(L) and that to each morphism ¢ : A — B in Mor(A4, B)
associates a morphism F(p) : F(A) — F(B), respectively F(p) : F(B) — F(A),
such that:

(1) F(idp) = idr(p)-

(2) If x : B — C is another morphism then F(x¢) = F(x)F(p), respectively

Fxe) = F(o)F(X)-

We usually simply say that F is functorial in A.

A natural transformation u : F — G of two functors from the category K to the
category L is a map u(A) : F(A) — G(A) for each A € Obj(K) such that for each
morphism ¢ € Mor(A, B) in the category K we have that u(B)F(¢) = G(p)u(A).
We say that the natural transformation is an isomorphism if it has an inverse.

Two categories K and L are equivalent if there are functors F and G from K to L,
respectively from L to K, such that GF is isomorphic to the identity id g and F@ is
isomorphic to idp,.

(2.5) Remark. When F is a functor from the category K to the category L, and
G is a functor from L to the category M we have that the composite GF is a functor
from K to M. Moreover, the identity map on objects and morphisms in the category
K is a functor id g from K to itself. Hence categories with natural transformations
form a category.
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(2.6) Products. Let K be a category and let {A,}acr be a collection of objects in
Obj(K). The product of the objects A, is an object !!'[] c; Ao in Obj(K) together
with a morphism wu,, : Hae ;Ao — A, for each a € I such that for every object B
of K and every collection of morphisms v, : B — A, for all a € I there is a unique
morphism v : B — [],c; Ao such that v, = u,v for all a € I.

(2.7) Example. Let I be an index set. In the category of sets we have that the
product [[.,c; Eo of the sets {Eq}aer is the product in the categorical sense, that
is, the product in the category of sets.

(2.8) Coproducts. Let K be a category and {A,}acr be a collection of objects
in Obj(K). The coproduct of the objects is an object !!'[[ ., Aa in Obj(K) together
with a morphism

Uy P Ay — H A,

a€cl

for each o € I such that for every object B of K and every collection of morphisms
Vo ¢ Ao — B for all a € I there is a unique morphism v : [] A, — B such that
Vg = VU, Tor all o € 1.

(2.9) Exercises.

1. Let {E,}aer be a collection of sets. Show that the disjoint union F = Uyer(E, X
{a}) together with the maps u, : E, — FE defined by u,(zq) = (2o, ) for all a € T
is the coproduct in the category of sets.

2. Let E be a set and let Obj(K) consist of all subsets of E. For two subsets A and
B of E we let Mor(A, B) consist of all maps A — B. Show that Obj(K) with the
maps Mor(A, B) is a category.

3. Let E be a set and let Obj(K) consist of all subsets of E. For two subsets A and
B of E we let Mor(A, B) be the inclusion map if A C B and otherwise be empty.
Show that Obj(K) with the maps Mor(A, B) is a category.

4. Let K be the category of Exercise (3) and let L be the category of Exercise (2).
Show that the map F : Obj(K) — Obj(L) defined by F(A) = A for all subsets A of
E, and by F(u) = u for all maps u: A — B in K is a covariant functor.

acl
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3. Topological spaces.

(3.1) Definition. A topological spaceis aset !!X together with a collection !'{U, }ner
of subsets U, of X such that

(1) The set X and the empty set () are in the collection {Ug }aer-

(2) For every subset !lJ of I the union Uge;Ug of the sets in {Ug}ges is in the
collection {Uy }aer-

(3) For every finite subset J of I the intersection Nge Uz of the sets in {Us}ges
is in the collection {U, }aer-

The sets U, are called the open sets of X and the complement !X \ U, of the open
sets are called closed. We say that the collection of sets {U, }aer is a topology on X.
Often we simply say that X is a topological space.

Let !z be a point of X. A subset !!Y of X that contains z is a neighbourhood of
x if there exists an open subset U of X such that z € U C Y. A collection {Us}ges
of open sets in X is called an open covering of X if the union of the sets is X, that
is X = UgesUg.
(3.2) Example. Let X be a set. The set X with the collection {{), X} consisting of

the empty set and X itself is a topological space. This topology is called the trivial
topology on X.

(3.3) Example. Let X be a set. The set X with the collection of all subsets of X
is a topological space. This topology is called the discrete topology.

(3.4) Example. Let X be a set. The set X with the collection of sets consisting of
() and all the subsets U of X whose complement !!X \ U is a finite set is a topological
space. We call this topology the finite complement topology.

(3.5) Remark. Let X be a topological space with open sets {U, }ocr. For every
subset Y of X we have that the collection of sets {U, N'Y },c; are the open subsets
of a topology on Y. We call this topology on Y the topology induced by the topology
on X, and we say that Y is a subspace of X.

(3.6) Definition. Let X be a topological space and let = be a point of X. A
collection of sets !B = {Ug}ge s consisting of open neighbourhoods Ug of x is a basis
for the neighbourhoods of x if there, for every open neighbourhood U of z, is an open
set Ug belonging to B such that x € Ug C U.

A collection of subsets B = {U,},ex of X consisting of open sets U, of X is a
basis for the topology if the members !B, = {U € B : x € U} containing x is a basis
for the neighbourhoods of = for every point z € X.

(3.7) Example. The collection of all open sets is a basis for the topology on X.

(3.8) Definition. For every subset !'Y of X we denote by 'Y the intersection of

all the closed sets that contain Y. Equivalently Y is the set consisting of all points x
in X such that every open neighbourhood of x contains at least one point of Y. We
call Y the closure of the set Y.
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(3.9) Definition. Let X and Y be topological spaces. A map !¢ : X — Y is called
continuous if the inverse image ¢ ~1(V') of every open subset V of Y is open in X.

The map is an isomorphism, or homeomorphism, if there is a continuous map
"w:Y — X which is inverse to ¢. That is wy = idx and Yw = idy.

(3.10) Example. Let X be a topological space and Y a subset considered as a
topological space with the induced topology. Then the inclusion map ¥ — X is
continuous.

(3.11) Example. The set theoretic inverse of a bijecive continuous map ¢ : X — Y
is not necessarily bijective. For example the identity map idx : X’ — X" from
the topological space X’ with X as underlying set and the discrete topology to
the topological space X" with X as underlying set and trivial topology is always
continous. However, the inverse, which is also idx is not continous if X has more
than one point.

(3.12) Remark. For every topological space X the map idx is continuous. When
Y: X —Y and w:Y — Z are continuous maps of topological spaces we have that
wy : X — Z is continuous. In other words the topological spaces with continuous
maps form a category, called the category of topological spaces.

(3.13) Remark. Let X be a topological space and let Obj(K) be the collection of
open sets of X. For each pair of open sets U,V in X we let Hom(U, V') consist of
the inclusion map of U in V if U is contained in V', and otherwise let Hom(U, V') be
empty. Then Obj(K) with these morphisms form a category.

(3.14) Exercises.
1. Let X beaset andlet X =Uy D U; D Us D --- be a sequence of subsets.

(1) Show that the sets @ and {U, },en are the open sets of a topology of X.
(2) Show that if N,enU, # 0 the set N,enU, is not open in X.

2. Let X be a set and let xg be an elements of X.

(1) Show that X with the collection of all subsets of X that contain z( is a
topological space.
(2) Show that X has a basis for the topology with open sets consisting of 1 or 2

elements.
(3) Find the closed points of X.

3. Let Y = {y, X} be the disjoint union of a point y and the underlying set X of
a topological space with open sets {Uy}acs. Show that Y with the family of sets
{y, Us}aer is a topological space.

4. Let X and Y be topological spaces and ¢ : X — Y a map.

(1) Show that when X has the discrete topology then v is continuous.
(2) Show that when Y has the trivial topology then 1) is continuous.

5. Give another example than (7) of a continuous bijective homomorphism ¢ : X —
Y of topological spaces which is not an isomorphism.
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6. Let X and Y be topological spaces and 8 a basis for the topology on Y. Show
that a map ¢ : X — Y is continuous if and only if the inverse image of every open
set belonging to B is open in X.

7. Let X be aset and let B = {U, }4cr be a family of subsets U, with the property
that for every pair of sets Uy, Ug in the family B and every point z € U, N Ug there
is a U, in B such that x € U, C U, NUg. Let U be the family of all subsets U of X
such that for every point x € U there is a U, in 8 such that z € U, C U.

(1) Show that X with the family of sets I/ is a topological spaces.
(2) Show that the sets of B form a basis for the topological space of part (1).

8. Let X and Y be topological spaces and let !!V be the collection of subsets of the
cartesian product X x Y of the form U x V', where U is open in the X and V is open
inY.
(1) Show that X x Y with the sets !!{/ which consists of all the unions of the sets
in V form a topological space. We call this topology the product topology on
X xY.
(2) Show that the projection!!m : X xY — X defined by 7(x,y) = x is continuous
when X X Y has the product topology.
(3) Assume that X and Y have the finite complement topology. Show that in
most cases the finite complement topology on X x Y is different from the
product topology.

9. Let X = Z. An arithmetic progression consists of numbers of the form 'V, , =
{pn + q : n € Z} where p and ¢ are integers, and p # 0.

(1) Show that for every integer m we have that Vj, ; = Vj, mp+tq-

(2) Let p',p",q,q"” be natural numbers. Show that for every number n in V,/ ;N
Vprr o there are natural numbers p, ¢ such that n € V, , C Vi o NV 0.

(3) Show that the collection of all subsets of Z that are arithmetic progressions
satisfy the conditions of Exercise (6), and consequently is the basis for a
topology on X.

(4) Show that all the arithmetic progressions V,, , are closed in the topology of
part (3).

(5) Let Y be the union of all the sets V), o where p is a prime number. Show that
X\Y ={-1,1} and that {—1,1} is not open in X.

(6) Use part (4) and (5) to prove that there exists infinitely many prime numbers.

10. Let X be a set with a metric, that is, for each pair of points =,y of X there is
a real number d(z,y) such that for all elements x,y, z of X we have:

(1) d(z,y) = 0.

(2) d(z,y) =0 if and only if z = y.

(3) d(z,y) = d(y, ).

(4) d(z,z) < d(z,y) +d(y, 2).

Let U consist of all sets U with the property that for every point x of U there is a
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real number ¢, such that the set {y € X : d(x,y) < e,} is contained in U.

(1) Show that X with the family U is a topological space.
(2) Show that for each point x of X the sets U, = {y € X : d(y,z) < 1/n} for
all natural numbers n form a basis for the neighbourhoods of x.
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4. Irreducible sets.

(4.1) Definition. A topological space X is irreducible if X is non-empty, and if any
two non-empty open subsets of X intersect. Equivalently X is irreducible if X # ()
and X is not the union of two closed subsets different from X. A subset Y of X is
irreducible if it is an irreducible topological space with the induced topology.

(4.2) Proposition. Let X be a topological space.

(1) A subset Y of X is irreducible if and only if the closure Y is irreducible.
(2) Every irreducible subset Y of X is contained in a maximal irreducible subset.
(3) The maxmial irreducible subsets of X are closed, and they cover X.

Proof. (i) The first claim follows easily from the observation that every open subset
that intersects Y also intersects Y.

(ii) Let Y be an irreducible subset of X, and let !!Z be the family consisting of
all irreducible subsets of X that contain Y. For every chain !I\7 = {Z,}acr in Z we
have that Z = U,c1Z, is irreducible. This is because, when U and V are open sets
that intersect Z there are o and 3 in 7 such that U N Z, and V N Zg are non-empty.
Since J is a chain we have that either the sets UNZ, and V NZ,, or the sets UN Zg
and V N Zg, are non-empty. In particular (U N Z) N (V N Z) is non-empty. Since
all chains have maximal elements it follows from Zorns Lemma that Z has maximal
elements.

(iii) The third claim is an immediate consequence of assertions (1) and (2).

(4.3) Definition. The maximal irreducible subsets of X are called the irreducible
components of X.

(4.4) Example. The irreducible components of the topological space with the trivial
topology is X itself.

(4.5) Example. The irreducible components of the topological space X with the
discrete topology are the points of X.

(4.6) Example. The topological space X with the finite complement topology is
irreducible exactly when X consists of infinitely many points, or consists of one point.

(4_7) Example. Let x be a point of the topological space X. Then the closure
{x} is irreducible.

(4.8) Definition. Let X be an irreducible topological space. If there is a point z
in X such that X = {z} we call x a generic point of X.

(4.9) Definition. A topological space X is compact if every open covering {Uqy }aer
has a finite subcover, that is, there is a finite subset J of I such that X = UgecUj.

(4.10) Example. The topological space X with the trivial topology is compact.
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(4.11) Example. The topological space X with the discrete topology is compact
if and only if the set X is finite.

(4.12) Example. The topological space X with the finite complement topology is
compact.

(4.13) Definition. The combinatorial dimension, or simply the dimension, of a
topological space X is the supremum of the length n of all chains

XoCXiC---CX,

of irreducible closed subsets X; of X. We denote the dimension of X by dim(X).
Let Y be a closed irreducible subset of X. The combinatorial codimension, or
simply the codimension, of Y in X is the supremum of the length n of all chains

Y=XgoCXyC---CX,

of irreducible closed subsets X; of X. We denote the codimension of Y in X by
codim(Y, X).

(4.14) Example. The topological space X with the trivial topology has dimension
0.

(4.15) Example. The topological space with the discrete topology has dimension
0.

(4.16) Example. Let X = {z(, 21} be the topological space consisting of two points
and with open sets {0, X, {z¢}}. Then X has dimension 1.

(4.17) Remark. Let X be a topological space and { X, }aer its irreducible compo-
nents. Then dim(X) = sup,¢; dim(X,).

(4.18) Remark. For every subset Y of X with the induced topology we have that
dim(Y’) < dim(X). This is because when Z is closed and irreducible in Y, then the
closure Z of Z in X is irreducible by Proposition (4.2), and since Z is closed in Y we
obtain that ZNY = Z.

(4.19) Remark. A topological space X is noetherian if the open subsets of X
satisfy the maximum condition. That is, every chain of open subsets of X has a
maximal element. Equivalently the space X is noetherian if the closed subsets of X
satisfy the minimum condition. That is, every chain of closed subsets have a minimal
element. A space is locally noetherian if every point x € X has a neighbourhood that
is noetherian.

(4.20) Example. The topological space X with the trivial topology is noetherian.

(4.21) Example. The topological space X with the discrete topology is noetherian
exactly when the space consists of a finite number of points.
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(4.22) Example. A topological space with the finite complement topology is noe-
therian.

(4.23) Remark. Let X be a noetherian topological space. Then every subspace Y
of X is noetherian. This is because a chain {Z,}aer of closed subsets in Y gives a
chain {Z,}aer of closed subsets in X, where Z,, is the closure of Z, in X. We have
that Z, NY = Z, and consequently that when Z, C Z3 then Zo C 75.

(4.24) Remark. A noetherian topological space X is compact. This is because
if {Uq}aer is an open covering of X without a finite subcovering we can find, by
induction on n, a sequence of indices a1, g, ..., qy,... in I such that U,, C Uy, U
Uay CUy UU,, UU,, C ---. Hence X is not noetherian.

Conversely, if every open subset of X is compact, then X is noetherian. This is
because if X is not noetherian then we can find an infinite sequence of open subsets
Uy Cc Uy C--- of X. Then the union U2 U, is an open subset of X with a covering
{Un }nen that does not have a finite subcovering.

(4.25) Proposition. A noetherian topological space X has only a finite number
of distinct irreducible components X1, Xs, ..., X,. Moreover we have that X is not
contained in U;x; X; fori=1,2,...,n.

Proof. Let Z be the collection of all closed subsets of the topological space X for
which the Lemma does not hold. Assume that Z is not empty. Since X is noetherian
the collection Z then has a minimal element Y. Then Y can not be irreducible, so
Y is the union Y = Y/ UY” of two closed subsets Y’,Y" different from Y. By
the minimality of Y the sets Y’ and Y” both have a finite number of irreducible
components. Consequently Y can be written as a union of a finite number of closed
irreducible subsets. It follows from Proposition (4.2) that Y has only a finite number
of irreducible components. This contradicts the assumption that Z is not empty.
Hence 7 is empty and the Proposition holds.

If 7 is such that X; C U;x;X; we have that X; is covered by the closed subsets
X;N X, fori # j. Since X, is irreducible it follows that X; must be contained in one
of the X, which contradicts the maximality of X;.

(4.26) Exercises.
1. Find the generic points of the topological space X with the trivial topology.

Let X with a distinguished element zg be the topological space with open subsets
consisting of all subsets that contain zq.

(1) Find the irreducible subsets of X.
(2) Find the generic point of all the irreducible subsets.

2. A topological space X is called a Kolmogorov space if there for every pair x,y
of distinct points of X is an open set which contains one of the points, but not the
other. Show that when X is a Kolmogorov space which is irreducible and has a
generic point, then there is only one generic point.
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3. A topological space is called a Hausdorff space if there for every pair of distinct
points x,y of X are two open disjoint subsets of X such that one contains x and the
other contains y. Determine the irreducible components of a Hausdorff space.

4. Let X be an irreducible topological space, and f : X — Y a continuous map to
a topological space Y.

(1) Show that the the image f(X) of X is an irreducible subset of Y.
(2) Show that if x is a generic point of X, then f(z) is a generic point of f(X).

5. Let X be an irreducible topological space. Show that all open subsets are irre-
ducible.

6. Let X = N be the natural numbers and let ¢/ be the collection of sets consisting
of X, () and the subsets {0,1,...,n} for all n € N.

(1

(2
(3
(4

) Show that X with the collection of sets U is a topological space.

) Show that the topological space of part (1) is irreducible.

) Show that the topological space of part (1) has exactly one generic point.
) What is the dimension of X7
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Rings

1. Groups.

(1.1) Definition. An abelian, or commutative, group !'G is a set with an addition
+ that to every pair of elements z, y of GG associates an element x + y of G satisfying
the following properties:

(1) There is an element 0 in G such that 0 +x =2+ 0 =z for all z in G.

(2) For every z in G there is an element y in G such that z +y =y +x = 0.

(3) For all elements z,y, z of G we have that (z +y) + 2z =z + (y + 2).

(4) For every pair of elements x,y of G we have z +y =y + .

(1.2) Remark. The element 0 of part (1) is unique because if 0/ + x =z + 0 ==z
for all z in G then 0’ =0+ 0 = 0. We call 0 the zero element of the group G.

The element y in part (2) is also unique for if z+3y" =y’ +2 =0 then ¢y = ¢y’ +0 =
v+ (x+y) =W +2)+y=0+y=1y. We call the element y = ¢’ the inverse of x
and write it —x.

(1.3) Example. The integers !!Z, the rational numbers !'Q, the real numbers 'R,
and the complex numbers !!C are abelian groups under addition. On the other hand
the natural numbers !'N is not a group since all elements do not have an inverse.

The non-zero rational, real and complex numbers !!Q* = Q \ {0}, '/R* =R\ {0}
respectively !C* = C\ {0} are groups under multiplication. On the other hand the
non-zero integers do not form a group under multiplication because all elements do
not have an inverse under multiplication.

(1.4) Definition. A subgroup 'H of G is a subset of G such that for every pair z,y
of elements in H we have that t +y € H and —x € H.

(1.5) Remark. A subgroup H of G is a group under the addition induced by the
addition on G.

(1.6) Example. Each group in the sequence Z C Q C R C C is a subgroup of the
following group. The same is true for the sequence Q* C R* C C*.

(1.7) Definition. A map !'u : G — H from a group G to a group H is a group
homomorphism, or a homomorphism of groups, if for all pairs !z, y of elements of G
we have

w(z +y) = u(x) +u(y).

15
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A homomorphism of groups is an isomorphism if it has an inverse, or equivalently if
it is bijective. The inverse is then automatically a homomorphism.

(1.8) Example. Let u : G — H be a homomorphism of groups. The set {z €
G : u(xz) = 0} of all elements that are mapped to zero in H is a subgroup of G.
Moreover the image {u(z) : * € G} of the elements of G by u is a subgroup of
H. The homomorphism u is injective if and only if {0} = {x : u(x) = 0} because
u(x) = u(y) if and only if u(x —y) = 0.

(1.9) Remark. Let G be a group. Then idg is a group homomorphism. Moreover,
ifu:F — Gandv:G — H are group homomomorphisms then vu : F' — H is a
group homomorphism. In other words the groups with group homomorphisms form
a category. We call this category the category of groups.

(1.10) Residue class groups. Let H be a subgroup of an abelian group G. When
x,y are elements of G such that z —y € H we write !!lz =y (mod H). It is clear that
the relation = (mod H) defines an equivalence relation on G, and we say that x is
equivalent to y modulo H. The collection of equivalence classes we denote by !G/H.
There is a unique way of defining an addition on G/H such that G/H becomes a group
and the canonical map 'ug,g : G — G/H becomes a homomorphism of groups.
The addition on G/H is given by ug/u(x) + ug/u(y) = ug/u(z +y) for all pairs of
elements =,y of G. It is clear that the definition of multiplication is independent of
the choice of representatives z and y for the classes ug,p (), respectively ug/m(y).
We call the group G/H the residue class group of G with respect to H.

The canonical homomorphism ug, gy : G — G/H is surjective and H = {z € G :

ug/m(z) =0}

(1.11) Definition. Let u : G — H be a homomorphism of groups. We call
the sub-group !!Ker(u) = {z € G : u(z) = 0} the kernel of u, and the sub-group
NMm(u) = {u(z) : * € G} of H the image of u. The group H/Im(u) is called the
cokernel of w.

(1.12) Operations on groups. Let {G,}aecr be a family of abelian groups G,,.
The cartesian product [ .; G« becomes an abelian group under pointwise addition.
That is, for elements (x4)acs and (Yo )acs we define the sum by (z4)acr + (Yo )acr =
(Ta + Ya)aer-

We denote by !!®,ecrG o the subset of [] . ; G consisting of the elements (24)acr
with finite support, that is the elements (z4)qaes such that z, = 0 except for finitely
many «. It is clear that the addition on Hae ; G induces an addition on ©aerGa,
and that ®,c;G, with the induced addition becomes a subgroup of Hae 1 Go. We
call this subgroup the direct sum of the groups G, for « € I. When I = {1,2,...,n}
we write @oec;Ga =G1 DG @ - D Gy,

When all the groups G, are isomorphic to the same group G we denote the direct
sum by !G(). Then GU) is the subgroup of G! consisting of functions ¢ : I — G
such that ¢(a) = 0 except for a finite number of o € I.
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Let (Z4)acs be an element of G). We shall write !} ; 2, for the sum > 5es T8
for every finite subset J of I such that x, =0 when aw € I'\ J.

Let {G4 }aer be a family of subgroups of a group G. Tt is clear that the intersection
Nac1Gq of the groups G, is a subgroup of GG. Then the intersection of the subgroups
of G that contain the groups G, for a € I is a group that we denote by > _; Gq. It is
the smallest group that contains all the subgroups G, and it is clear that ) ., G4
consists of all the elements of the form 5 ;g for all finite subsets J of I and
elements x5 € Gg for 3 € J. That is, the group ) .; G, consists of all elements of
the form ) ., x4 with z, € G, for all a € I and where x, = 0 except for a finite
number of indices « € I.

(1.13) Remark. The product [[,.; Go and sum ©,e7G, of a collection of groups
{G4 }aer are the product, respectively coproduct in the categorical sense, that is, the
product and co-product in the category of groups.

(1.14) Exercises.
1. Show that all the subgroups of the integers Z are of the form mZ = {mn : n € Z}
for some integer m.

2. Let !¢, = cos(2m/n) + isin(27/n)! where i is the complex number /—1.

(1) Show that ", = {¢ : i € Z} is an abelian group under multiplication of
complex numbers.

(2) Show that the abelian groups p,, and Z/nZ are isomorphic groups.

(3) Are all abelian groups with n elements isomorphic?

3. Let G and H be abelian groups, and Hom(G, H) the set of all group homomor-
phism from G to H. We define an addition on the set Hom(G, H) pointwise, that is
the sum v + v of two group homomorphism v : G — H and v : G — H is defined
by (u+ v)(x) = u(z) + v(z). Show that Hom(G, H) is an abelian group under this
addition.

4. Let {Ga,pGla,pera<p be an inductive system of groups such that the maps pj
are group homomorphisms.

(1) Show that then lim G, has a unique structure of group such that the
—a€el
canonical maps p, are group homomorphisms for all o € I.

(2) Let {H,, ag}a,geljagﬁ be another inductive system, and let u, : Go — H,,
for « € I be a map of inductive systems.

Show that the resulting map lim  u, :lim G, — lim  H, is a group
. —ael —a€el —ael
homomorphism.

5. Let n be a natural number. Find all group homomorphisms Z/nZ — Z.
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2. Rings.

(2.1) Definition. A commutative ring with unity, which we simply call a ring below,
is an abelian group !'A under an addition +, that also has a multiplication which
associates to each pair of elements f,g in A an element fg in A that satisfies the
following properties for all elements !!f, g, h of A:

(1) There is a unit element 1 =14 in A such that 1f = f1 = f.

(2) f(gh) = (fg)h.
(3) flg+h)=fg+ fhand (f +g)h = fh+ gh.
4) fg=9gf

(2.2) Example. The integers Z, the rational numbers Q, the real numbers R, and
the complex numbers C are all rings.

(2.3) Example. Let n be a positive integer and let !Z/nZ be the residue group of
the integers modulo the subgroup nZ. We use the canonical homomorphism uz /7 :
Z — Z/nZ to give a multiplication on Z/nZ by uz/nz(p)uz/nz(q) = uz/mz(pq) for
all integers p and ¢. This multiplication makes the group Z/nZ into a ring.

(2.4) Example. Let E be a set and A a ring. We define addition and multiplication
on the set AF of all maps from E to A pointwise, that is for all maps ¢ : E — A
and x : E — A we define the sum by (¢ + x)(z) = ¢(z) + x(x) and the product by
(ex)(x) = @(z)x(x) for all z € E. With the pointwise addition and multiplication
AF becomes a ring.

(2.5) Polynomials in one variable. Let A be a ring. A formal expression of the
form Nf(¢t) = fo+ fit + -+ + fimt"™, where m is a natural number and where the
elements fy, f1,..., fm are in A, we call a polynomial. The set of all polynomials we
denote by A[t]. When f,, # 0 we call m the degree of the polynomial f(¢), and we
let f; = 0 for ¢ > m. Two polynomials fo+ fit+---+ fi,t" and go + g1t + - - - + gnt"
are equal when they are identical, that is when f; = g; fort =10,1,....

We define addition of the polynomials (fo+ fit+-- -+ fit™) and (go + g1t +-- -+
gnt™) in A[t] by

(fo+fit+- -+ fmt™) +(go+git+---+gnt") = (fo+g0) +(f1+g0)t+- -+ (fp+gp)t7,

where p = max(m,n), and we define multiplication of the polynomials by

(fo+ fit+- -+ fmt™)(go+ g1t +- - -+ gnt™) = fogo+ (fog1+ frgo)t++ -+ frngnt™ ™.

With this addition and multiplication A[t] becomes a ring which we call the poly-
nomial Ting in the variable t over A, or the ring of polynomials in t with coefficients
in A.

Instead of introducing polynomials by the somewhat vague notion of formal ez-
pressions we can be more precise and define the polynomial ring as the set AM)
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with pointwise addition and convolution product. That is, the sum of two func-
tions ¢ : N — A and xy : N — A is the function ¢ + x : N — A defined by
(¢ +x)(n) = p(n) + x(n) for all ln in N, and their product llpx : N — A is de-
fined by (ox)(n) = > , 1 ,—n P(P)x(q) for all n in N. It is clear that AM) with this

addition and product is a ring. Let t € A™) be the function defined by #(1) = 1,
and t(n) = 0 for n # 1. For each natural number n we have that ¢"(n) = 1, and
t"(m) = 0 for m # n, where t" is the convolution product of ¢t with itself n times. It
follows that every function ¢ : N — A with finite support can be written uniquely
as ¢ = Y o2 p(n)t". Hence we have a bijection between AN) and the polynomial
ring A[t] which maps > p(n)t™ considered as a function N — A, to the same
element > 7, (n)t™ considered as a formal expression A[t]. Easy calculations show
that this bijection is an isomorphism of rings.

(2.6) Power series rings. Let A be a ring. We define the sum of two elements in
AN pointwise. That is, the sum ¢ + x of two elements ¢ : N — A and y : N — A
is defined by (¢ 4+ x)(n) = ¢(n) + x(n) for all n € N. It is clear that under this
addition AN becomes an abelian group.

Moreover, we define a convolution product, by px(n) = Zp+q:n e()x(q). Tt is
easily checked that the group AN with this product becomes a ring. We denote this
ring by "A[[t]]. The ring A[[t]] we call the power series ring in the variable ¢ over
A, or the ring of power series in the variable ¢ with coefficients in A. We call the
elements of A[[t]] power series in the variable t.

Every element ¢ : N — A in A[[t]] is determined by the family (¢(0), ¢(1),...) of
its values. In analogy with Example (2.5) we write

(f07f17f27"'):f0+f1t+f2t2+"'7

where the expression fo+ fit + fot? 4 - - - is just a formal way of writing the function
¢ : N — A given by ¢(n) = f,. With this notation, addition and multiplication of
power series take the form

(fot+ fit+ fot® +- )+ (go+git+gat*+- ) = (fo+go) + (fi +g1)t+(fa+g2)t* +- -

and
(fo+ fit+ fot? + - )(g0 + git + got* + -+ )
= fogo + (f190 + fog1)t + (f290 + f191 + foga)t? + -+

analogously to the expressions in Example (2.5).

Let t = t' : N — A be the map given by #(1) = 1 and #(n) = 0 when n # 1. Then
t"(n) = 1 and t"(m) = 0 when m # n. Addition and multiplication on AN clearly
induces an addition and multiplication on the subset AM™N). With this addition and
multiplication the subgroup AM™) of AN becomes the polynomial ring A[t] as defined
in Example (2.5). The elements of A[t] are exactly the elements in A[[¢]] of the form
fo+ fit+ fot? + -+ fi,t™ for some elements fo, fi, ..., fm in A. This explains the
use of formal expansion foy + fit + fot? 4 --- for power series.
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(2.7) Polynomials in several variables. Let A be a ring. We defined in Example
(?7) the polynomial ring B = Afu] in the variable u over A. Similarly we can define
the ring B[v] = Alu|[v] in the variable v over B. Changing the notation we obtain in
the same way a ring A[v][u|. It is clear that there is a bijection between A[u][v] and
A[v][u] mapping u to v and v to u, and that this bijection preserves addition and
multiplication. We therefore can identify the two rings and write Afu, v] = Aful[v] =
A[v][u]. By induction on n we can thus define the polynomial ring Altq,ta,...,t,] in
the variables tq,ts,...,t, over A for every natural number n.

(2.8) Polynomials in an arbitrary set of variables. We can use the inductive
procedure of Section (2.7) to define polynomial rings in any finite set of variables. In
analogy with Section (2.5) we prefer however to define polynomial rings directly in
terms of functions.

Let I be an index set. We define an additon on N() pointwise, that is, the sum
w4+ v of two functions !y : I — N and !lv : I — N is defined by (u + v)(«a) =
p(a) + v(a) for all a € I. We consider I as a subset of N identifying o € I with
the function that maps a to 1 and all other elements in I to 0, and we write O for
the element of N() that maps all a € I to 0.

Let A[ta]aer be the set of maps N — A with finite support. We define addition
on Alta|aer pointwise and multiplication by convolution. That is the sum and product
f + g, respectively fg, of two functions 'f : NO) — A and !lg : N) — A with finite
support is given by:

(f+9)w) = f(w) +9(u), and (fg)(w) = > f(v)g(n)

p=v—+m

for all p € N . It is clear that Alta]aer becomes a ring with this addition and
multiplication. The unit element 1 is defined by 1(x) = 1 if p = 0 and 1(u) = 0 if
1 # 0. We call this ring the polynomial ring in the variables t, over A, or the ring
of polynomials in the variables t, with coefficients in A.

For every o € I we have a map t, : N) — A defined by t, (o) = 1 and to () =0
for p # «. We have for every integer n, that t%~(8) = 0 when 8 # n,a and
the (noa) = 1, where ¢« is the product of ¢, with itself n, times in the convolution
product. For every u € N we let Ilth = [lacr () = HaeJt“(o‘) for every finite
subset J of I such that pu(a) = 0 for « € I\ J. Then t*(v) is equal to 1 when
vV = Y ner M(a)a and otherwise is equal to 0. Consequently we have that every
element f: NU) — A in Alt,]aes with finite support can be written uniquely in the

form £ = 3 e F()t".
(2.9) Remark. When I = {1,2,...,n} we have that Example (2.7) and Example
(2.8) give the same ring Alto]acr = Alt1,to, ..., tn].

(2.10) Definition. A subring B of a ring A is a subgroup of A that contains the
unit 14 of A, with the property that for every pair f, g of elements in B the product
fgisin B.



22 Rings

(2.11) Remark. A subring B of A is a ring under the addition and multiplication
induced by the addition and multiplication of A, and with the same unit as that of
A.

(2.12) Example. Each ring in the sequence Z C Q C R C C is a subring of the
following ring.

(2.13) Example. The polynomial ring A[t] in the variable ¢ over the ring A is a
subring of the power series ring A[[t]] in the variable ¢ over A when we identify a
polynomial fo+ fit+--- fot™ in A[t] with the power series fo+ fit+- -« fut™ +0t" 1+
0"+ 4.

(2.14) Definition. A ring homomorphism, or a homomorphism of rings, !¢ : A —
B from a ring A to a ring B is a map such that, for all elements f,g in A, the
following properties hold:

(1) o(f+9)=0(f)+elg) -

(2) o(fg) = e(f)elg).

(3) (1) =1.
A homomorphism ¢ is an isomorphism if it has an inverse. Equivalently a homomor-
phism is an isomorphism if it is bijective. The inverse is then automatically a ring
homomorphism.

(2.15) Remark. Let ¢ : A — B and !y : B — C be homomorphism of rings. Then
idg and xp : A — C are ring homomorphisms. In other words, the rings and their
homomorphisms form a category. We call this category the category of rings.

(2.16) Example. The homomorphism ugz .z : Z — Z/nZ defined in Example (2.3)
is a ring homomorphism by definition.

(2.17) Example. Let A be a ring and g an element in A. The map Aft] — A
which to a polynomial f(t) = fo + fit + - + fut" associates the element f(g) =
fo+ fig+---+ fng™ is a ring homomorphism.

(2.18) Definition. An element f in a ring A is a zero divisor if f # 0 and there
is an element g # 0 in A such that fg = 0. A ring where all elements are non-zero
divisors is called an integral domain.

A nilpotent element in A is an element f such that f™ = 0 for some natural number
n. We call the ring reduced when it has no non-zero nilpotent elements.

We call an element f in A a unit, or an invertible element, if there is an element
g in A such that fg = 1. The element g is unique, for if ¢’ is another element such
that fg’ =1 then ¢’ = ¢'(fg) = (¢'f)g = g. We call the element g = ¢’ the inverse
of the element f and denote it by !!f~1.

If 1 # 0 in A and all non-zero elements in A are units we call A a field.

(2.19) Example. Let p and ¢ be prime numbers. In the ring Z/(p™) all the elements
in the ideal (p)/(p™) are nilpotent. All other elements are invertible. This is because,
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for any integer m, we can find integers r and s such that rm + sp = 1. We have that
Z/(p) is a field.

In the ring Z/(pq) all non zero elements in the ideals (p)/(pq) and (q)/(pq) are
zero divisors. The ring is reduced. All the elements that are not contained in the
ideal (p)/(pq) or (q)/(pq) are invertible. This is because, for any integer m, we can
find integers r and s such that rm + spg = 1.

(2.20) Example. Let f(t) = fo+ fit+---+ fnt™ be a polynomial in the variable ¢
with coefficients in the ring A. When f(¢) is a zero-divisor in A[t] there is an element
h € A such that hf(t) = 0. In order to prove this we let g(¢t) = go + g1t + - - - + gpt?
be a non-zero polynomial of minimal degree in ¢ with coefficients in A such that
f(t)g(t) = 0. We first prove by descending induction on ¢ that f,g(t) = 0 for
g = 0,1,...,n. Assume that we have shown that f,119(t) = fi429(t) = -+ =
fng(t) = 0 for some integer ¢ satisfying 0 < ¢ < n. Then we have that f(t)g(t) =
(fo+ fit +---+ fyt?)g(t) = 0. However, then we have that f,g, = 0. In particular
we have that f,g(t) is of degree at most p — 1 and f,g(¢)f(t) = 0. It follows from
the minimality of the degree of g(t) that f,g(t) = 0. We have thus proved that
fqg(t) =0for ¢ =0,1,...,n. Consequently we have that f,g, =0for¢=20,1,...,n,
and consequently that g, f(t) = 0.

In particular we have that if f(¢) has one coefficient that is not a zero-divisor in
A then f(t) is not a zero divisor in A[t].

We can generalize the above Example to several variables. Let A[ty,ta,...,t,]
be the ring of polynomials in the independent variables tq,ts,...,t, with coeffi-
cients in A. When f(t1,%2,...,t,) is a zero-divisor in A[ty,ts,...,t,] there is an

element h in A such that hf(t1,to,...,t,) = 0. In fact, write f(t1,t2,...,t,) =
dojer futff(l)tg(z) ) With fu in A, where 7 is a finite subset of N™. We choose
an integer m which is strictly larger than all the coordinates pu(1), u(2),..., u(n) of

w, for all p in Z. Then all the numbers p(1) + p(2)m+- - -+ p(n)m™ 1 for p in 7 are
different. We have that

Flm, ) = Z FuthDHu@met et m !
pez

and we can use the first part of the example to conclude that there is an element
h in A such that hf, = 0 for all 4 € Z. Hence we have that hf(ti,t2,...,t,) =

> et hfut’f(l)tgm ) = 0 as asserted.

(2.21) Operations on rings. Let {A,}aes be a collection of rings. As we saw in
(?) the product [],c; Aq is in a natural way an abelian group. We define a product
on [[,cr Aa by (fa)aci(9a)acr = (faga)acr- With this multiplication the product
[I.cr Aa becomes a ring.

(2.22) Remark. The product [],.; Aq of a collection of rings { A }aer is a product
in the categorical sense. In other words [] A, is the product in the category of
rings.

acl
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(2.23) Notation. Let A be a ring and let {f,}aecsr be a collection of elements in

A. For every element 1 € N we write Il f* = [],; phle) Haejfff(a) for every
finite subset J of I such that u(a) =0 for all a € I'\ J.

(2.24) Exercises.
1. Let A be a ring. Determine all ring homomorphisms Z — A.

2. Determine the units in the ring Z of integers.

3. Let A be a ring and let P(A“”) be the subset of A4 of polynomial maps, that is
maps ¢ : A — A with the property that there exists a natural number n and elements
fos f1,-- -, fn in A such that ¢(g9) = fo + fig+ -+ fng™ for all g in A.

(1) Show that the ring structure of A4 with pointwise addition and multiplication
induces a ring structure on P(A4).

(2) Show that there is a natural surjective ring homomorphism Afzx] — P(A%)
sending x to the identity map A — A.

(3) Give an example where the map of part (2) is not an isomorphism.

4. Show that there are no ring homomorphisms C — R from the complex to the
real numbers.

5. Show that the rational numbers Q, the real numbers R, and the complex numbers
C are fields.

6. Let !K! be a field.

(1) Determine all the units in the polyomial ring K [¢] in the variable t over K.
(2) Show that every homomorphism K — A of rings is injective.

7. Let {An}aer be a family of rings. Moreover, let ©,ec7A4, be the group which is
the direct sum of the rings A, considered as groups.

(1) Show that the multiplication on [] ., As induces a multiplication on the sum
@QGIAQ .

(2) Show that ©nerAq with addition and multiplication induced from [, .; Aa
is not a ring.

8. Let {Aq, pj}a,per,a<p be an inductive system of rings such that the maps pj are
ring homomorphisms for all a < 3.

(1) Show that the group lim A, has a unique product that makes the group
—a€el
lim A, into a ring, in such a way that the canonical maps p, : A, —
—acl
lim A, are ring homomorphisms.
—a€el

(2) Let {Ba,ag}awge[ﬂgﬁ be another inductive system of rings, and let ¢, :
An — B, for a € I be a map of inductive systems, where each ¢, is a ring
homomorphism.

Show that the resulting map lim ¢, : lim A, — lim B, is a ho-
—a€el —a€el —a€l
momorphism of rings.
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9. Let G be an abelian group. We define an addition on the set Z x G by (m,x) +
(n,y) = (m+n,x +y), and a multiplication by (m,z)(n,y) = (mn, nx + my).

(1) Show that Z x G with this addition and multiplication is a ring.

(2) Find all the zero divisors in Z x G.

(3) Find all the nilpotent elements of Z x G.

10. Let p be prime number and let Z,) be all rational numbers of the form m/n
such that p does not divide n. Show that !Z,)! is a ring.
11. Let A be a ring and let f, g be elements of A.

(1) Assume that f is a unit and that g is nilpotent. Show that the element f + g
is a unit.

(2) Assume that f and g are nilpotent. Show that the element f+ g is nilpotent.
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3. Algebras.

(3.1) Definition. Let A be a ring. An A-algebra is a ring B with a fixed ring
homomorphism ¢ : A — B. For simplicity we often say that ¢ : A — B is an A-
algebra. In cases when it is unnecessary to refer explicitely to ¢, it is more convenient
to say that B is an A-algebra. When ¢ is injective we often identify A with its image.

An A-algebra 1 : A — C'is a subalgebra an A-algebra ¢ : A — B if C' is a subring
of B and 9(f) = ¢(f) for all f in A.

Let ¢ : A — B and x: A — C be two A-algebras. An A-algebra homomorphism,
or a homomorphism of A-algebras, is a ring homomorphism v : B — C such that

X = Y.

(3.2) Example. Allrings A are Z-algebras under the unique homomorphism Z — A
that maps n to the sum n1 4 of the unit of A with itself n times. A ring homomorphism
is the same as a Z-algebra homomorphism.

(3.3) Example. The polynomial ring A[t,]acr in the variables ¢, over A, for a in
an index set I, is canonically an A-algebra under the ring homomorphism ¢ : A —
Alto)aer that maps f € A to the constant polynomial f. That is, to the polynomial
N@ — A mapping 0 to f and the other € N) to 0. The homomorphism ¢ is
clearly injective and we identify A with its image.

(3.4) Example. The power series in ¢ with coefficients in A is canonically an
A-algebra under the ring homomorphism ¢ : A — A[[t]] that maps f € A to the
constant power series. That is, to the power series that maps 0 to f and all the other
natural numbers to 0. The homomorphism ¢ is clearly injective. We identify A with
its image.

With the ideantification of Example (2.7) we have that A[t] is a subalgebra of
All]}-

(3.5) Notation. Let ¢ : A — B be an A-algebra. When the reference to ¢ is clear
we write fg = ¢(f)g in B when f € A and g € B.

(3.6) Proposition. Let ¢ : A — B be an A-algebra, and let {h,}ocs be a collection
of elements of B. Then there is a unique homomorphism

A[ta]ael — B

of A-algebras that maps t, to h, for all o € 1.

Proof. Since every element f in Alt,|aes can be written in a unique way in the
form f(t) = >_ ,enw f(p)t#, where only a finite number of the f(u) are different
from zero and where t# =[] .; t’é(a), it is clear that an A-algebra homomorphism
¢ : Altalaer — B is uniquely determined by the equations ¢(t,) = h, for all «

in I. Moreover it follows that we can define a map ¢ : Afty|acr — B of sets by
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o(f) = X en f()R*, where h* =[] ¢, R*) " This map satisfies the relation

@(t") = h* for all € NU) and consequently we have that ¢(t,) = he, for all a € 1.
It remains to prove that ¢ is a homomorphism of A-algebras. To this end let

@) =2 jenen F()t" and g(t) = >°  cnn g(p)t* be elements of Altalacr, and let
e be an element of A. The following three sets of equalities express that ¢ is a
homomorphism of A-algebras:

e(f+9)=0( > Ft"+ > gwt")=o( > (f(u)+g(w)t*)

M€N<I) M€N<I) M€N<I)
= > (FW+g)h* = > fwh*+ > gwh* = o(f) +¢(9),
peN) neN neNW

S Fwtt)y =e( > ef(u)tt)

peN) peN)

= > ef(wht=e > f(wh" =ep(f),

pneN) peN

(D fw)g(m)t*
n=v+m
S fWgmpt= Y fwh” Y g(mhT =o(f)elg).

pu=v+m veN) TeNW)

(3.7) Remark. Let B be an A-algebra via the homomorphism ¢ : A — B, and
let {ga}acr be a collection of elements in B. It follows from Proposition (3.6) that
we have a unique homomorphism ¢ : A[t,]aer — B defined by ¢(tn) = go. Since
Alto)aer is an A-algebra it follows that the image of ¢ is an A-algebra. The image
consists of all elements in B of the form LEN(D fug* with f, € A and where only
a finite number of the f,, are non-zero.

(3.8) Definition. Let B be an A-algebra via the homomorphism ¢ : A — B, and let
{ga}acr be a collection of elements in B. We denote by Alg,|acs the A-algebra in B
consisting of the elements of the form > o) fug” = X2 ena ¢(fu)g" with fy, € A,
and where only a finite number of the f, are different from 0. The algebra A[ga]acr
is called the A-algebra generated by the elements {go}acr- When B = Alga]acr we
say that B is generated by the elements {ga }acr, and the elements g, are called the
generators of B as an A-algebra. We say that B is a finitely generated A-algebra, or
that the homomorphism ¢ is of finite type, if B = Alg1, g2, . . ., gn] for some elements

91,92, ..., gn of B.
(3.9) Example. Let A be a ring and A[t,]ocr the polynomial ring in the variables

{ta}acr over A. Then Alt,]aer is an A-algebra which is generated by the variables
to for a € I. It is finitely generated if exactly when the set I is finite.
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(3.10) Exercises.
1. Let B and C be A-algebras and ¢ : B — C a surjective map of A-algebras. Show
that when B is of finite type then C' is of finite type.
2. Let B be a finitely generated A-algebra and C' a finitely generated B-algebra.
Show that C' is a finitely generated A-algebra.
3. Show that an A-algebra B is of finite type if and only if there is a surjective map
Alt1,ta,...,t,] — B of A-algebras.
4. Show that Q is not of finite type as a Z-algebra.
5. Let Au,v] be a polynomial ring in the variables lu, v! over the ring A.

(1) Show that all the elements of A[u,v] of the form )  _  frnu™u" with fp,, €

A and where only a finite number of of the f,,, are non-zero, form an A-

algebra.
(2) Is the A-algebra of part (1) of finite type?
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4. Ideals.

(4.1) Definition. An ideal la! in a ring A is a subgroup of A such that for all
elements f in A and ¢ in a we have that fg € a.

(4.2) Notation. Let {f,}aecs be a family of elements f, in the ring A. We denote
by !(fa)aer = > ocr Afa the subset of A consisting of all sums

> gsfs

BeJ

for all finite subsets J of I with gg € A. It is clear that (fa)acr = D ,c; Afa is an
ideal in A, and that it is the smallest ideal of A that contains the elements f, for all
ael.

When there is only one element f in the family we have that (f) = Af, the set of
all elements gf with g in A.

(4.3) Definition. We call (fo)acr = > c; Afa the ideal generated by the elements
fa for ain I. The ideals of the form Af are called principal ideals.

(4.4) Example. The kernel Ker(¢) = {f € A: ¢(f) = 0} of a ring homomorphism
p:A— Bisan ideal in A.

(4.5) Residue class rings. Let a be an ideal in the ring A. The residue class
group A/a of (?) has a unique multiplication that makes !!A/a into a ring in such a
way that the canonical homomorphism!!

QOA/Q:A—>A/CI

becomes a homomorphism of rings. This multiplication is defined by the equalities
©asa(f)pasalg) = pasa(fg) for all elements f,g in A.

(4.6) Lemma. Let a be an ideal in the ring A and let 4, : A — A/a be the
canonical homomorphism. The image @ 4/q(b) of an ideal !'b that contains a is an
ideal in A/a. Moreover the correspondence that maps b to v 4,4(b) gives a bijection
between ideals in A that contain a and the ideals in A/a.

Proof. Tt is clear that ¢ 4/4(b) is an ideal in A/a and that gOZ}a(QOA/a(b)) D b. More-
over it is clear that the inverse image by ¢4/, of an ideal in A/a is an ideal in A that
contains a.

To prove that the correspondence of the Lemma is a bijection it therefore suffices
to prove the inclusion QOZ}G(QOA/Q([J)) Cb. Let f € QOZ}G(QOA/a(b)). Then we have
that ¢ 4/q(f) = ¢a/a(g) for some g € b. Consequently we have that f — g is in the
kernel a of v, /q, that is f = g + h for some h € a. Since both g and h are in b we
have that f € b as we wanted to prove.
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(4.7) Operations on ideals. Let {a,}ner be a family of ideals in the ring A. The
intersection Nyerae of the ideals a, is an ideal in A. The smallest subgroup > ; 6a
of A that contains all the groups a, is clearly an ideal of A. It is the smallest ideal
containing all the ideals a,, and it consists of the elements of the form ) ; f with
fs € ag for all finite subsets J of I.

Let aq,as,...,a, be ideals in A. We denote by ajas---a, the smallest ideal
containing all products of the form fyfo--- f, with f; € a; fori = 1,2,...,n. The
ideal ajas---a, we call the product of the ideals a{,as,...,a,. It is clear that the
product consists of all finite sums of elements of the form f;fs--- f, with f; € a; for
i=1,2,...,n.

(4.8) Remark. Let f1, fo,..., fin be nilpotent elements in the ring A, and let a be
the ideal generated by these elements. Then there is an integer n such that a™ = 0.
This is because the elements of a” are sums of product of n elements on the form
g1fi1 +g2fa+ -+ gmfm with g; € A. However, the product of n such elements is a
sum of elements of the form g f"* f532 - f}'» with g € A and ny +no+ -+ - +n,, = n.

When we choose an integer p such that f’ = 0 for ¢ = 1,2,...,m we have that
T f? - fiim =0 when n = nqg +ng + -+ - + ny, and n > mp. Consequently we

obtain that a” = 0 when n > mp.

(4.9) Definition. An ideal !!p in the ring A is a prime ideal if it is different from A,
and if f, g are elements in A such that if fg € p, then f € p or g € p. Equivalently
we have that an ideal p is prime if for each pair of elements f, g in A that are not in
p we have that fg is not in p.

An ideal !!lm of A is mazimal if it is different from A and it is not contained in
any ideal in A different from A and m. A ring with only one maximal ideal is called
a local ring. We shall denote by m = m4 the maximal ideal in a local ring A. A
homomorphism ¢ : A — B of local rings is called local if it maps the maximal ideal
in A to the maximal ideal in B, or equivalently if we have ¢~ !(mp) = m4.

(4.10) Example. The prime ideals in Z are the ideals (p) = pZ generated by the
prime numbers p, and the ideal (0). We have that the maximal ideals are those
generated by the prime numbers.

(4.11) Example. Let p be a prime number and let Z, be the rational numbers of
the form m/n where p does not divide n. Then the ideal p = pZ,) generated by p is
a prime ideal which is maximal, and (0) is a prime ideal. There are no other maximal
ideals in Z,) because if q is an ideal that is not contained in p it must contain an
element m/n such that p divides neither n nor m. However, then m/n is invertible
in A and therefore generates the ideal A. Thus q = A. Hence Z, is a local ring.

(4.12) Example. Let K be a field. The ideals of the form (t1,t2,...,t,) =
St Klti,ta, ..., ty]t; of the polynomial ring K[ty,ts,...,t,] are prime ideals, and
(t1,ta,...,t,) is maximal.



RINGS 4 33

(4.13) Proposition. Let a be an ideal in A.

(1) The ideal a is prime if and only if the ring A/a is an integral domain.
(2) The ideal a is maximal if and only if the ring A/a is a field.

Proof. (1) Let w44 : A — A/a be the canonical homomorphism. Then f is not in
a if and only if ¢ 4/q(f) is not zero in A/a. Hence assertion (1) follows from the
equality ©a/a(f)pa/a(9) = ¢a/a(fg) valid for all pairs of elements f, g of A.

(2) We have that a is maximal if and only if Af + a = A for all elements f ¢ a.
However the equality Af + a = A is equivalent to the existence of an element g of A
such that gf + h = 1 for some element h € a, that is the existence of an element g
such that ©4,4(9)©a/q(f) = 1. Hence a is maximal if and only if ¢ 4/4(f) is a unit
in AJaforall fe A\ a.

(4.14) Definition. A non-empty subset !!S of a ring A is called multiplicatively
closed if it contains 1 and for every pair s, t of elements in S the product st lies in S.

(4.15) Example. Let A be a ring and let p be a prime ideal. Then A\ p is a mul-
tiplicatively closed subset of A. Let f € A. Then {1, f, f2,...} is a multiplicatively
closed subset of A. We also have that the collection of all elements of A different
from 0 that are not zero divisors is a multiplicatively closed subset of A.

(4.16) Lemma. Let a be an ideal in a ring A and let S be a multiplicatively closed
subset of A that does not intersect a. Then there is a prime ideal p in A that contains
a and that does not intersect S.

Moreover, every ideal in the ring A which is different from A is contained in a
maximal ideal.

Proof. Let !!Z be the set of all ideals in A that contain a and that do not intersect
S. We order the elements of Z by inclusion. For every chain {a,}.es of elements in
7 the union a = U,era, of the ideals a, clearly is an ideal in A which is different
from A and does not intersect S. Hence every chain in Z has a maximal element.
It follows from Zorns Lemma that the set Z contains a maximal element p. When
S = {1} we have that p is a maximal ideal in A.

It remains to prove that p is a prime ideal. Let f and f’ be elements in A that
are not in p. We must show that ff’ is not in p. Since p is maximal in Z the ideals
fA+pand f'A+p of A both intersect S. Hence there are elements g, ¢’ in A, h, b’
in p, and s, s’ in S such that fg+h = s and f'¢g’+h' = s'. Since ss’ € S the product
(fg+h)(f'g’+h') is not in p. Since h and A’ both are in p, we therefore have that
ff' can not be in p, as we wanted to prove.

(4.17) Remark. Let A be a ring and m an ideal in A. Then A is a local ring with
maximal ideal m if and only if all elements in A \ m are invertible in A.

It is clear that if all the elements of A\ m are invertible then m is maximal and
A can not have other maximal ideals than m. Conversely if A is a local ring with
maximal ideal m and f € A\m, then f must be invertible. In fact, if f is not invertible
we can by Lemma (7) find a maximal ideal containing f, and thus different from m.
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(4.18) Proposition. Let a be an ideal in the ring A. The intersection of all prime
ideals that contain a is equal to the set of nilpotent elements {f € A : f"f €
a for some natural number ns} of A.

In particular the nilpotent elements of A form an ideal of A.

Proof. If f™ € a we have have that f is contained in all the prime ideals that contain
a and hence in the intersection of all these ideals.

It remains to prove that, if f is an element in A such that f™ is not in a for
any positive integer n, then f is not in some prime ideal containing a. However,
when f" is not in a for any positive integer n the ideal a does not intersect the
multiplicatively closed subset {1, f, f2,...} of A. It follows from Lemma (4.2) that
we can find a prime ideal p of A containing a that does not intersect S, as we wanted
to prove.

(4.19) Definition. Let A be a ring and let E be a subset of A. We write !lt(E) =
ta(E) ={f € A: f*s € E for some natural number n¢}. Let a be an ideal in A.
The ideal t(a) we call the radical of a, and the ideal t(0) = t4(0) we call the radical
of A.

(4.20) Example. When p is a prime ideal of the ring A we have that t(p™) = p for
all positive integers n. It is clear that p C v(p™). Conversely, if f ¢ p we have that
f™ ¢ p for all natural numbers m. In particular f™ ¢ p™ for all natural numbers m.
That is, we have that f ¢ ¢(p™).

(4.21) Remark. Let a be an ideal in the ring A and let ¢4/ : A — A/a be the
canonical homomorphism. Then t4(a) = @Z} .(tasq(0)). This is because for f € A
we have that f" € a if and only if ¢4 ,,(f)" = 0.

(4.22) Proposition. Let A be a ring and let p1,pa, ..., p, be prime ideals in A.
(1) If a is an ideal of A such that a C U ,p,,, then a C p; for some i.
(2) Ifay,aq,...,qa, areidealsin A and p is a prime ideal of A such that N*_;a; C p,
then a; C p for some i.

Proof. (1) We show assertion (1) by induction on n. For n = 1 the assertion is
clear. Assume that assertion (1) holds for n — 1. If a C U c p; for some subset

J of {1,2,...,n} with less than n elements assertion (1) follows by the induction
hypothesis. We prove assertion (1) by showing that if a is is not contained in the
union of the ideals pi1,...,p;—1,Pi+1,- .., Pn for any ¢, then a can not be contained in

Ul ,p;. In fact we can then find, for each i, an element f; € aNp; such that f; & p;
when ¢ # j. Then
¢ pi

€p; JFi
Hence exactly one term in the sum f = >"" | f1-+- fi—1fit1-+- fn 1S not in p;, and
thus f ¢ p; for j =1,2,...,n. Since f € a we can not have that a C U7, p;.

fl"'fi—lfi—i—l"'fn:{



RINGS 4 35

(2) If a; Z p for all i we can find an f; € a;\p fori =1,2,...,n. Then we have that
fife- - fn € mpag---a, € N’ ;a;. On the other hand we have that fifo--- f, € p,
which contradicts the assumption that N ;a; C p.

(4.23) Exercises.
1. Let K be a field and let K[t] be the polynomial ring in the variable t over K.

(1) Find all non-zero divisors in the residue class ring k[t]/(t?).
(2) Find all the units in the residue class ring k[t]/(¢?).

2. Let n be a positive integer.

(1) Determine for which integers n the ring Z/nZ is an integral domain.
(2) Determine for which integers n the ring Z/nZ is a field.

3. Let Z]t] be the polynomial ring in the variable ¢ over Z.
(1) Show that (2,2 + 1) is a maximal ideal.
(2) Is the ideal (¢ + 3,t* + 2) a maximal ideal?
4. Let K be a field, and let K[u,v| be the polynomial ring in the independent
variables u, v over K. Show that K[u,v]/(v? — u?) is an integral domain.
5. Let K be a field and let I be an infinite set.

(1) For each § € I we let ag = {(fa)acr : f3 = 0}. Show that the ideals ag are
maximal ideals in K.
(2) Show that there are other maximal ideals than the ideals ag for 5 € I.

6. Let p be a prime number and let Z,) be the ring of rational numbers of the form
m/n such that p does not divide n. Let m be the maximal ideal pZ,) of Z,. Show
that the residue ring Z,)/m is canonically isomorphic to Z/(p).

7. Let A[t] be the polynomial ring in the variable ¢ with coefficient in A and let p
be a prime ideal in A. Show that the set pA[t] of all polynomials with coefficietns in
p form a prime ideal in A[t].
8. Let K|u,v] be the polynomial ring in the two variables u and v over the field K.
Is the union (u) U (v) of the two ideals (u) and (v) of Klu,v] an ideal?
9. Show that if A is a ring such that 1 # 0 then A has minimal prime ideals.
10. Let K be a field an let K[t] be the ring of polynomials in the variable ¢ over K.
Moreover, let A = K[t]/(t?(t — 1)3).

(1) Determine the radical of A.

(2) Determine the prime ideals of A whose intersection is the radical of A.

11. Let K be a field and let K[u,v] be the ring of polynomials in the variables u, v
with coefficients in K. Moreover, let A = Ku,v]/(u?, uv).

(1) Find the radical of A.
(2) Determine the prime ideals of A whose intersection is the radical of A.

12. Let A be a ring and let a and b be ideals in A.

(1) Show that if a C b then t(a) C v(b).
(2) Show that v(t(a)) = t(a).
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13. Let A be a ring. Show that the following assertions are equivalent:

(1) Every element in A is either a unit or is nilpotent.

(2) The ring A has exactly one prime ideal.

(3) The ring A/¢(0) is a field.
14. Let D[u,v,w| be the polynomial ring in the variables u,v,w over a field K.
Moreover, let a = (u,v) and b = (v, w). Is the set {fg: f € a,g € b} an ideal?

15. Let A be a local ring. Show that if f is a non-zero element in A that is nilpotent,
that is f2 = f, then f is a unit in A.
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5. The Zariski topology.

(5.1) Notation. Let A be a ring. We denote by !!Spec(A) the set consisting of
all prime ideals in A. For every subset E of A we denote by !!V(E) the subset of
Spec(A) consisting of all prime ideals that contain E.

Let f be an element of A. We write !!D(f) = Spec(A) \ V(f) for the set of prime
ideals not containing f.

It is often useful to distiguish between the prime ideals of A and the elements of
the set Spec(A). We therefore denote by !!j, the prime ideal corresponding to the
element x of Spec(A).

(5.2) Remark. Let E and F be subsets of a ring A.
(1) If E C F then V(F) C V(E).
(2) Let a be the ideal generated by the elements of E. Then V(a) = V(E).
The inclusion V(a) C V(FE) follows from the first Remark. To prove the
opposite inclusion we take a prime ideal p that does not contain a. Then it

can not contain all elements of E. Consequently p does not contain F, and
V(E) C V(a) as we claimed.

(5.3) Proposition. Let A be a ring.
(1) We have that V(0) = Spec(A), and V(1) = 0.
(2) For every collection {a }qer of ideals a,, in A we have that

V(@) =V aa)

acl acl
(3) Let ay,as,...,a, be ideals in A. Then

V(ie)UV(ag)U---UV(a,) =V(ajag---ay,).

Proof. (1), (2) The assertions (1) and (2) are easily checked.

(3) If we can prove the third assertion for n = 2, we can prove it for any n by
induction on n. To prove the assertion for n = 2 we observe that the inclusion
V(a1) UV (az) € V(ajaz) is obvious. We shall prove the opposite inclusion. Let p be
a prime ideal that contains neither a; nor as. Then we can find elements fi € a; \ p
and fo € ag \ p. Since the ideal p is prime it follows that fi fo is not in p. Hence p
does not contain the ideal a;as and we have proved that V(ajaz) C V(ay) UV (ag).

(5.4) The Zariski topology. It follows from Proposition (5.3) that the collection
of subsets X \ V(a) of Spec(A) for all ideals a in A makes Spec(A) into a topological
space with open sets X \ V(a). The closed sets of the topology are the sets V'(a) for
all ideals a in A, or equivalently the sets V(FE) for all subsets E of A.

The sets of the form D(f) for f € A are open, and the collection of open sets
{D(f)}sea is a basis for the topology of Spec(A). In fact we take an open subset
U=X\V(a)in X and x € U. That is a € j,. Then there is an element f € a '\ j,.
Hence z € D(f) and D(f) C X \ V(a)=U.
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(5.5) Example. When A is a field the topological space Spec(A) consists of the
point corresponding to the ideal (0) of A.

(5.6) Example. We have that Spec(Z) consists of the closed points corresponding
to prime numbers of Z, and the generic point corresponding to the ideal (0).

(5.7) Example. Let p be a prime number and Z,) the ring of rational numbers
of the form m/n where p does not divide n. Then Spec(Z,)) consists of the closed

point corresponding to the maximal ideal pZ,), and the generic point corresponding
to the ideal (0) of Z,).

(5.8) Remark. Under the correspondence that maps a point x € Spec(A) to the
prime ideal j, in A, the closed points correspond to the maximal ideals. In fact
the points in the closure {z} of 2 in Spec(A) correspond to the prime ideals of A
containing j,.

(5.9) Remark. Let a be an ideal in the ring A. Then the bijection between
ideals in the residue ring A/a and the ideals of A containing a, via the canoni-
cal homomorphism ¢,4,, : A — A/a descibed in Section (?), gives a bijection be-
tween Spec(A/a) and V(a). We give V(a) the topology induced from the topology
on Spec(A). Then the bijection is an isomorphism of topological spaces because
D(¢a/q(f)) in Spec(A/a) corresponds to D(f) in Spec(A) for all f € A.

(5.10) Maps. Let ¢ : A — B be a homomorphism of rings. For every prime ideal
g in B we have that ¢~1(q) is a prime ideal in A. Consequently we obtain a map of
topological spaces 1% : Spec(B) — Spec(A).

(5.11) Proposition. Let ¢ : A — B be a homomorphism of rings. For each ideal a
of A we have that “p=1(V(a)) = V(¢(a)).

In particular =1 (D(f)) = D(o(f)) for all f € A, and %y is a continuous map of
topological spaces.

Proof. For x € Spec B we have that %p(z) € V(a) if and only if ¢=1(j,) 2 a, that
is, if and only if j, O ¢(a). However j, O ¢(a) if and only if x € V(¢(a)). Hence
®p(z) € V(a) if and only if x € V(p(a)) and we have proved the first assertion. The
last assertions follow from the first since D(f) = Spec(A) \ V(f).

(5.12) Remark. Let a and b be ideals in the ring A. We have that V(a) = V(v(a))
and V(a) C V(b) if and only if b C t(a). In fact v(a) is the intersection of all prime
ideals of A containing a. We have, in particular that V(a) = V(b) if and only if
t(a) = t(b).
(5.13) Proposition. Let A be a ring and a an ideal in A. The closed subset V (a)
of the topological space Spec(A) is irreducible if and only if the radical t(a) of A is
a prime ideal.

In particular the correspondence that maps a prime ideal p to the irreducible
closed subset V (p) of Spec(A) is a bijection between the prime ideals of A and the
irreducible closed subsets of Spec(A).
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Proof. Tt follows from the isomorphism of topological spaces between Spec(A/a) and
V(a) of Remark (5.9), and from Remark (4.21) that it suffices to consider the par-
ticular case when a = 0.

The topological space Spec(A) is irreducible if and only if, for each pair of elements
f, g in A we have that D(f) # 0 and D(g) # () implies that D(fg) = D(f)ND(g) # 0.
It follows from Proposition (4.18) that D(h) = () for an element h € A if and only
if h is nilpotent, that is, if and only if h € t(0). Hence Spec(A) is irreducible if and
only if f ¢ ¢(0) and ¢ ¢ ¢(0) implies that fg ¢ ©(0). That is, Spec(A) is irreducible
if and only if ©(0) is a prime ideal.

(5.14) Proposition. Let ¢ : A — B be a homomorphism of rings. For every ideal
b in B we have that “p(V (b)) = V(o™ 1b).

Proof. Tt is clear that %p(V (b)) C V(p~'b), and consequently that we have an
inclusion 2¢(V (b)) C V(¢~'b). To prove the opposite inclusion we take a point
x & 2p(V(b)). Then there is a neighbourhood D(f) of x for some f € A that does not
intersect “p(V (b)), that is f ¢ j, and f € ¢~ (j,) for all y € V(b). Hence ¢(f) € j,
for all y € V(b), that is, the element ¢(f) is in t(b). However, then ¢(f™) € b
for some positive integer n, and thus f* € o~ 1(b). Since f™ ¢ j, we have that
iz 2@ 1(b), that is & V(p~1(b)). We obtain the inclusion V(o= 1(b)) C 2¢(V (b))
that we wanted to prove.

(5.15) Definition. Let A be a ring. The dimension of A is the dimension of the
topological space Spec(A). That is, the dimension of A is the supremum of the length
n of the chains pg D p; O --+ D p,, of prime ideals p; in A. We denote the dimension
of A by dim(A). For every prime ideal p of A the height of p in A is the codimension
of the irreducible subset V' (a) of Spec(A). That is, the height of p is the supremum
of the lengths n of the chains p = py D p1 D --- D p,, of prime ideals p;, of A. We
denote the height of p by ht(p) = ht4(p). When there exists arbitrary long chains
we say that A has infinite dimension.

(5.16) Example. We have that dim(Z) = 1.

(5.17) Example. Let p be a prime number and Z, the ring of rational numbers
of the form m/n such that p does not divide n. Then dim(Z,)) = 1.

(5.18) Example. When A is a field dim(A) = 0.

(5.19) Example. Let K|[t1,ts,...] be the polynomial ring in the infinitely many
variables tq,to,... over K. Then the dimension of Klt1,ts,...] is infinite because
there is an infinite chain (¢1) C (t1,t2) C --- of prime ideals (tq,to,...,t,) =
Yo Klt1, ta, ... ]t
(5.20) Theorem. Let {fo}acr be a family of elements in A, and let f € A.

(1) We have that D(f) C UaerD(fo) if and only if f € (3 c; Afa)-

(2) (Partition of unity) When D(f) C UaerD(fs) there is a finite subset J of

I with the property that for every family !{ng}ge; of positive integers ng
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there is a positive integer n and a family {gg}se.s of elements gg of A such

that
fr=>_15"gs

BedJ

(3) The open subset D(f) of Spec(A) is compact.

Proof. (1) We let a = > _; Afa be the ideal generated by the elements f, for all
a € I. We have that D(f) C UaerD(fo) if and only if every prime ideal p that
does not contain f does not contain f, for some o € I. That is, if and only if
every prime ideal that contains the elements f, for all a € I also contains f. Hence
D(f) C UaerD(fq) if and only if f € v(a).

(2) When D(f) € UnerD(fn) we have that f € t(a). Consequently there is a
positive integer n and a finite subset J of I such that f" = ZBGJ fahg with hg € A
for all 8 in a finite set J. Hence f € tv((fg)ges) and it follows from assertion (1)
that D(f) C UgesD(f3). However D(fg) = D(fgﬁ) for all positive integers ng.
Consequently D(f) C UgesD( fg ?), and using assertion (1) once more we obtain the
inclusion f € ¢(( fgﬁ )ses) which is equivalent to the equality of assertion (2).

(3) When D(f) is covered by a family {U, }aer of open sets, we can cover each U,
with open sets of the form D(g) for some g € A. To show that D(f) is compact it
therefore suffices to prove that when D(f) C U,erD(fo) there is a finite subset J of
I such that D(f) C UgesD(f3). However, this we verified in the proof of assertion

(2).

(5.21) Exercises.
1. Show that the space Spec(A) is Kolmogorov.

2. Find all the closed sets subset of the topological space Spec(Z).

3. Let Z(,) be the ring of all rational numbers of the form m/n such that p does
not divide n. Let x¢ and 1 be the points of Spec(Z,)) corresponding to the prime
ideals (0), respectively pZ ), of Z(,), and let x be the point of Spec(Q).

(1) Find all the open and closed subsets of the topological space Spec(Z)).

(2) Let ¢ : Spec(Q) — Spec(Z,)) be the continuous map corresponding to the
inclusion Z,) € Q. Describe the image of x by “¢.

(3) Let v : Spec(Q) — Spec(Zy)) be the map defined by 9 (x) = x;. Show that

1 is continuous, but does not come from a ring homomorphism Z,) — Q.
4. Let G be a group. What is the dimension of the ring Z x G with additon defined
by (m,x) + (n,y) = (m + n,z + y), and multiplication defined by (m,z)(n,y) =
(mn, my + nzx)?
5. Let K be a field and let A = K|[t1,ta,...,t,] be the polynomial ring in the

variables ¢1,12,...,%, over K. Denote by a the ideal generated by the elements ¢;t;
for i,j =1,2,...,n. Determine the dimension of the ring A/a.
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6. Let K be a field and let A = K™ be the product of the field K with itself n times.
(1) Describe Spec(A).
(2) What is the dimension of Spec(A)?
7. Let A =Z" be the cartesian product of the ring Z with itself n times.
(1) Describe Spec(A).
(2) What is the dimension of Spec(A)?
8. A topological space X is connected if there is no non-empty subset of X different
from X. Let A be a ring and let X = Spec(A). Show that the following assertions
are equivalent:
(1) The space X = Spec(A) is not connected.
(2) There are elements f and g in A such that fg = 0, f2 = f, ¢> = g, and
f+g=1.
(3) The ring A is isomorphic to a direct product B x C' of two rings B and C.

9. Let A be a ring and let f € A. Show that the open subset D(f) of Spec(A) is
empty if and only if f is nilpotent in A.
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Sheaves

1. Sheaves.

(1.1) Presheaves and sheaves. Let X be a topological space and B a basis for
the topology. A presheaf !!F on B consists of a set F(U) for each subset U of X

belonging to 28, and for every inclusion U C V of subsets of X belonging to 28 a map
i

i = (pF)l + F(V) — F(U)
such that for all inclusions U C V C W of sets belonging to 8 we have:
(1) ppy = idrw)-
(2) pt = puipy -
We call the elements in F(U) sections of F over U. The maps py; we call restriction
maps, and for a section s € F(V) over V we call p{;(s) the restriction of s to U.

The presheaf F is called a sheaf on B if we for all collections {Uy }aes of subsets
U, of X belonging to B with union U = U,¢;U, belonging to B have:

(F1) For every pair of sections s, ¢ in F(U) such that

pU.(5) = pu, ()

for all € I, we have that s = t.
(F2) For every collection {sq }ecr of sections s, € F(U,) that satisfy the condition

U
P\% (5a) = Pvﬁ (sp)

for all o, 8 in I, and all V' belonging to B with V' C U, NUg, there is a section
s in F(U) restricting to U, for all a € I, that is,

Py (s) = sa

for all o € I.

A presheaf, or sheaf, that is defined on all the open subsets of X is called a presheaf
respectively a sheafon X.

(1.2) Remark. If follows from property (F1) that the section s of property (F2)

i unique. Moreover from the equality ) = ) U () is follows from property (F2) for
sheaves that when not all the F(U) with U belonging to B are empty we have that
F(0) consists of exactly one element.

43
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(1.3) Remark. A presheaf is the same as a contravariant functor from the category
of open sets of X, with inclusions as maps, to the category of sets.

(1.4) Example. Let X be a topological space and E a set. Let F(U) = E for
all non-empty open subsets U of X, and let p}; = idg for all inclusions U C V of
non-empty open subsets of X. Then F is a presheaf that we call the constant presheaf
with fiber E. This presheaf is not necessarily a sheaf. If there are two disjoint non-
empty subsets U and V of X and there are two different elements s and ¢ in F, there

can be no section in F(U U V) = E which maps to s and ¢ by the restriction pY“V

respectively p{V.

(1.5) Example. Let X and Y be be topological spaces. For every open subset U
of X we let F(U) be all continuous maps U — Y, and for each inclusion U C V of
open subsets of X we let pg be the map that takes a continuous map ¢ : V. — Y to
its restriction ¢|U : U — Y to U. Then F with the maps py; is a sheaf on X.

(1.6) Example. Let X be a topological space and let {F, }.cx be a collection of
sets. For every open subset U of X we let 7(U) = [[,cy Ez, and for every inclusion
U C V of open subsets of X we let pl; : [[,cv Eo — [l,cpr E» be the projection.
Then F with the maps p}; is a sheaf on X.

(1.7) Example. Let F be a presheaf on X and let W be an open subset of X.
We define a presheaf F|W on W by (F|W)(U) = F(U) for all open subsets U of X
contained in W, and take (pzyw)}; = (p#){; for all inclusions U C V' of open subsets
of X contained in W.

When F is a sheaf on X we have that F|W is a sheaf on W. We call F|W the
restriction of F to W.

(1.8) Example. Let X be a topological space and let Y be a closed subset. We
give Y the topology induced by the topology on X. Let G be a presheaf on Y. We
define a presheaf F on X by F(U) = G(UNY) for every open subset U of X, and
(pF) = (pg) Ry for all inclusions U C V of open subsets of X.

When G is a sheaf we have that F is a sheaf. We call F the extension of G to X.

(1.9) Definition. Let X be a topological space and F and G presheaves defined on
a basis B of the topology. A homomorphism v : F — G of presheaves is a map !!

uy : F(U) — G(U)

for each subset U of X belonging to 98, such that if U C V is an inclusion of subsets
of X belonging to B then the diagram

FV) —— G(V)

(pr)El l(pg)g
F(U) —— G(U)

uu
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commutes.

A homomorphism of sheaves, or a homomorphism from a presheaf to a sheaf on
B, is a homomorphism of presheaves, when we consider the sheaves as presheaves.
When B consists of all open sets in X we say that u is a homomorphism of presheaves
on X. All homomorphisms u : F — G of sheaves, or presheaves, on X we denote by
Hom(F,G).

An isomorphism of sheaves is a homomorphism « : F — G that has an inverse.
Equivalently the maps uy for all U in B are isomorphisms. The inverses of the maps
uy then define a homomorphism of sheaves G — F.

(1.10) Remark. Let u:F — G and v : G — H be homomorphisms of presheaves
on B. Then idx and vu : F — H are homomorphisms of presheaves on B. In other
words the presheaves on 8B together with the homomorphisms of presheaves on 85
form a category. Hence the sheaves defined on B also form a category.

(1.11) Stalks. Let X be a topological space and 98 a basis for the topology on X.
Moreover, let F be a presheaf on 9B. For every point x of X we define the stalk !'F,
of F at x by:

Take IR, to be the family of all pairs (U,t) where U is a neighbourhood of x
belonging to 9B, and ¢t € F(U). We define a relation !!~ on R, by (U, s) ~ (V,t) if
there is an open neighbourhood W of x belonging to 8 contained in U NV such that
pY,(s) = pyp(t). Tt is clear that ~ is an equivalence relation on R,. We define F, as
the equivalence classes 'R/~ of R, modulo the relation ~.

For every neighbourhood U of x belonging to 8 we have a canonical map!!

Pz = (pr)y : F(U) = F;

that takes a section s of F(U) to the class of (U, s) in F,. We write !!/p¥(s) = s, and
call s, the germ of the section s at .
For every inclusion U C V of open neighbourhoods of z belonging to B we have

py = ppl).
When F is a sheaf on B we let F, be the stalk of F when F is considered as a
presheaf.

When u : F — G is a homomorphism of presheaves on 8 we obtain for each point

x in X a map of stalks!!

Uyt Fo — Go
by mapping the class s, of a pair (U, s) where U is a neighbourhood of x belonging
to B and s € F(U) to the class of (U,uy(s)) in G,. It is clear that the map is

independent of the choice of representative (U, s) of the class s,, and that for all U
belonging to B and for all x € U we have that

uz(pF)Y = (pg)Yuv.

(1.12) Example. Let X be a topological space and let E be a set. When F is the
presheaf defined in Exercise (?) we have that F, = F for all x € X.
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(1.13) Example. Let X be a topological space and let W be an open subset of
X. Moreover let F be a sheaf on X and F|W the restriction of F to W defined in
Example (7). Then (F|W), = F, for all z € W.

(1.14) Example. Let X be a topological space and let Y be a closed subset of
X. Moreover let G be a presheaf on Y and F the extension of G to X defined in
Excercise (7). Then F, =G() forallz € X \Y and F, =G, forallz € Y.

(1.15) Characterization of sheaves. Let X be a topological space and let B be
a basis for the topology. Moreover let F be a presheaf on 9B. For every open subset
U belonging to ‘B we let

7y F(U) — H Fa

zeU

be the map that takes s to (s;)zcu. The following assertions are equivalent:

(1) The presheaf F is a sheaf.
(2) We have
(i) The maps 7y are injective for all open subsets U belonging to 8.
(ii) The image of F(U) by 7y consists exactly of the elements (s,).cu of
[1,cu F= with the property that for each # € U there is a neighbourhood
U, of x belonging to B contained in U, and a section s(z) € F(U,) such
that s, = s(z), for all y € U,.

(2) = (1) With the notation of property (F1) for sheaves we have that s, = t, for
all z € U,, and consequently s, = t, for all x € U. Since 7 is injective by property
(i) we have that s = ¢t. Hence the property (F1) for sheaves holds.

We shall prove that property (F2) of sheaves holds. With the notation of property
(F2) for sheaves we have that (sq), = (sg), for all x contained in an open set V'
belonging to B and contained in U, N Us. Hence (sq4), = (sg), for all x € Uy, N Usg.
We can therefore define an element (s;).cv € [[,cy Fo bY 82 = (8a)2 for any a such
that € U,. Then (s;)zev is in 7y (F(U)) by property (ii) because for each x € U
we can take U, = U, and take s(x) = s, € F(U,) for any « such that x € U,. Then
Sy = (Sa)y = s(x)y for all y € U, = U,. Finally pf (s) = s, since the projection of
s = (sz)zev by [loey Fo — HIGUQ Fuis (Sz)zev, = ((Sa)z)zevu, = So- Hence we
have proved that property (F2) for sheaves holds.

(1) = (2) Let F be a sheaf. We first prove that property (i) of assertion (2) holds.
If s and ¢ are sections of F(U) such that s, =t, for all x € U, then, for each x € U,
there exists a neighbourhood U, of 2 contained in U such that p{j (s) = pg (t). Since
the sets U, for all x € U cover U it follows from property (F1) for sheaves that s = ¢.
Hence property (i) holds.

The images by 7y of the sections of F(U) satisfy property (ii) of assertion (2)
since for s € F(U) we can take U, = U and s(z) = s for all z € U.

Conversely let (s;)eev € [[ ey Fo satisfy the condition of (ii), We shall show
that (sz)zcy is in the image of my. By property (F1) of sheaves we then have
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pgszz/ (s(x)) = pgz'mUz/(s(a:')) for all z, 2" in U. Hence p* (s(x)) = pgm/(s(x’)) for
all neighbourhoods V' belonging to 8 and contained in U, N U, and it follows from
property (F2) for sheaves that there is an s € F(U) such that pf (s) = s(z) for all
x € U. It follows that pJ(s) = p=pf (s) = pY=(s(x)) = s, for all x € U. Hence
7 (s) = (8z)zeu as we wanted to prove.

(1.16) Remark. When F is a sheaf on B we shall we shall always identify F(U)

with its image by the map 7y : F(U) — [[,cy Fz, for all open subsets U of X .

(1.17) Remark. Let u:F — G be a map of sheaves defined on B. For every open
set U belonging to B we obtain a map [[, .y Ue : [[,cp Fe — [loep 9o It is clear
that this map induces the map uy : F(U) — G(U). In particular the map u: F — G
is determined by the maps u, : F, — G, for all z € U.

(1.18) Remark. Let X be a topological space with a basis 8 of the topology, and
let F be a presheaf on X. We denote by F|B the restriction of F to B. That is
for each inclusion U C V of open sets belonging to B, we let (F|B)(U) = F(U) and
(pr18) = (pF)y;- For all z € X we have a canonical bijection i : (F|B), — F,
which maps the class in (F|B), of a pair (U, s) with U belonging to B to the class in
F. of the same pair. To prove that the map ¢ is a bijection we define its inverse. Let
sz be an element in F, which is the class of a pair (V, s) where V is a neighbourhood
of x and s € F(V). Since B is a basis for the topology there is a neighbourhood U
of  belonging to B with U C V. We map s, to the class of the pair (U, (pr)}(s)) in
(F|B),. It is clear that the map is independent of the choice of the pair (V,s) and
of U, and that the map is the inverse of i.

Let G be another presheaf on X and let v : F — G be a homomorphism of
presheaves. We let u|B : F|B — G|B denote the homomorphism of presheaves
defined by (u|B)y = uy for all U belonging to B. Clearly (u|B), = u, for all
reX.

(1.19) Exercises.
1. Let !'E, F and G be three sets. A sequence !!

ELSF=G-0

is exact if u is injective, if vu = wu, and if for every element y € F' that satisfies the
equation v(y) = w(y) there is an element x € F such that u(z) = y.

Let X be a topological space and let F a presheaf on X. For every open set U of
X and covering {Uq }aer of U:

(1) Show that the restrictions pf; define a natural map !!F(U) = oer F(Ua).

(2) Show that the restictions pgszﬁ and pggmUQ for all a, 8 define two natural

maps [[,c; F(Ua) = 11, ger F(Ua N Up).
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(3) Show that F is a sheaf if and only if the sequence of sets

Flu) = [[ F(U) ? [[ 7W.nUs)

ael a,Bel
is exact.

2. Let X be a topological space and F a set. We let F()) = {#} and for all other
open subsets U of X we let F(U) = EY be all maps U — E, and for all inclusions
U C V of open subsets of X we let p¥; be the map that takes a function ¢ : V — E
to its restriction p|U : U — E.

(1) Show that F is a sheaf on X.
(2) Show that there is a natural inclusion F C F, for all z € X
(3) Fix a point z € X and let Y be the intersection of all open sets in X that
contain . Show that there is a canonical map F, — EY .
(4) Is the map of part (3) always an isomorphism?
3. Let X be a topological space. Define F(U) on all open subsets U of X by
F(X)=7Z and F(U) = {0} for all U different from X.

(1) Show that F with the only possible group homomorphisms py; : F(V) —
F(U) is a presheaf on X.
(2) Is F a sheaf on X7

4. Let X be a topological space. Define F(U) for all open subsets U of X by
F(0) = {0}, F(X) = {0}, and F(U) = Z for all the other open sets U of X. For
each inclusion U C V of open subsets of X let p¥; : F(V) — F(U) be the identity
map when U C V are different from () and X and otherwise the only possible group
homomorphism.

(1) Show that F with these maps is a presheaf on X.
(2) Is F a sheaf on X7

5. Let X be a topological space and let xq,zs,...,x, be closed points. Moreover
let Gi,Gs,...,G, be groups. For each open subset U of X we let F(U) = G, x
Gj, X -+ x Gj, when U contains the points z;,,2j,,...,2;,, and no other of the
points x1,x2,...,T,. When U C V is an inclusion of open sets we let pg F(V) =
Giy X Giy X -+ x G, — G, x Gj, x ---x G, =F(U) be the natural projecton.

(1) Show that F is a presheaf on X.

(2) Describe the stalk F, of F for all x € X.

(3) Is F a sheaf on X7

6. Let X be aset and let X = Uy D Uy D Uy D --- be a sequence of subsets U,
strictly contained in each other. Give X the topology consisting of the open sets
0 and {U,}nen. Let {E,}nen be a collection of sets and {p,}nen a collection of
maps pp, : E, — E,y1. For all n € N we write F(U,,) = E,, and for all m,n in N
with n < m we let p : F(U,) — F(U,,) be the identity on F, when m = n and

m=1l.. -pZiépZH when n < m.

(1) Show that F with the restriction maps pI, for all n < m is a presheaf.
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(2)
(3)

Show that the presheaf F of part (1) is a sheaf when F(0) = {0}.
Find the stalks of F over the points of N,enU,, when E,, = E and p,, = idg
for all n € N.

7. let X be a topological space with a basis B for the topology. For every open
subset U of X we consider U as a topological space with the topology induced by
that of X, and we let By be the basis for U consisting of open sets V' belonging to
B that are contained in U.

For every presheaf F defined on B we let F|U be the presheaf on By defined by
(FIU)(V) = F(V) for all V belonging to By and (pxj))Y = (pr)} for all inclusions
V' C W of open sets belonging to By .

Let F and G be sheaves defined on B. For every open subset U belonging to B we
write Hom(F,G)(U) = Hom(F|U,G|U) for the set of all presheaf homomorphisms
from F|U to G|U.

(1)

Show that for all inclusions U C V of open sets belonging to 8 we have a
canonical map

py - Hom(F|V,G|V) — Hom(F|U,g|U)

that maps a homomorphism u : F|V — G|V to the restriction u|U : F|U —
GlU to U.

Show that Hom(F,G) with the restriction maps py; : Hom(F,G)(V) —
Hom(F,G)(U) for all inclusions U C V of open subsets belonging to B is
a presheaf on ‘B.

Show that for all x € X we have a canonical map of stalks

Hom(F,G)y — Mor(Fy, Gy)

that maps the class of a pair (U, u), where u : F|U — G|U is a homomorphism
of presheaves, to the map w, : F, — G,, and where Mor(F,,G,) is the
collection of maps from F, to G,.

Show that when F and G are sheaves on 8 then Hom(F,G) is a sheaf on B.
Let X = {xo,x1} be the topological space with open sets {0, {xo}, X }. More-
over let F be the sheaf defined by F(X) = (0) = F(0) and F({zo}) = Z,
and let G be the sheaf defined by G(X) = Z and G({zo}) = (0) = G(0), both
with the only possible restriction maps. finally let H be the sheaf defined by
H(D) =0, H(X) =Z = H({xo}), and with (pﬁ)éo} = idg.

(a) Show that the map

Hom(F,F)z, — Mor(Fyy, Fay)

is not injective.
(b) Show that the map

Hom(g, H)xl — Mor(gml ; Hl‘1)

is not surjective.
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8. Let X be a topological space with open sets {U,, 11 }nen and ) where X = Uy D
Uz O ---. Define a sheaf F on X by F(U;) = {n € N : n < i}, and with restriction
maps (pr)5 = idn | F(U;) for i < j. Then we have that F, = N for all z € N2, U,,.
Let G be tlrie simple sheaf with stalk N. Moreover let H be the sheaf defined by
HU;) ={z € Q:x < (1/i)} and with (pH)gj = z when z € U; and (pH)gj =0
when x ¢ U; for ¢ < j.
(1) Show that for all v € Hom(F|U;, G|U;) we have that v,(n) = 0 when n > i,
and z € Uy U,.
(2) Show that when x € N%2 U, there is no element in Hom(F,G), that maps
to idg : F, — G, by the map

Hom(F,G), — Mor(F,,G.)

in Excercise (7).

(3) Show that for all x € N2, U,, we have that H, = 0.

(4) Show that we have homomorphisms of sheaves u : H — G defined by uy,, :
H(U,) — G(U,) that sends 0 to 0 and all other elements in H(U,,) to 1.

(5) Show that we have a homomorphism of sheaves v : H — G that sends all
elements in H(U,,) to 0.

(6) Show that v and v induce different elements in Hom(H,G),.

(7) Show that the map

Hom(H,G)r — Mor(Hyz, G,)

in Excercise (?7) is not injective when x € N>, U,.
9. Let X = {xo,z1} be the topological space with open sets (), X, {z0}. Moreover

let F be the sheaf on X defined by F(0) = {0}, F(X) = Z and F({zo}) = Z/2Z @
Z/27Z, and with the restrictions maps beeing zero except for pfigo} which sends n to

(uz/2z(n),0).
(1) Show that Hom(F,F),, = Hom(F,F).
(2) Show that Mor(F,,,Fs,) = Mor(Z,Z).
(3) Show that there does not exist a homomorphism of sheaves u : F — F such
that ux(0) =0 and ux(2) = 1.
(4) Show that the map

Hom(f, f)xl — Mor(fxl,fxl)

defined in Excercise (?) is not surjective.

(5) Show that there is a homomorphism of sheaves v : F — F such that vy =
idr(x) and vy (m,n) = (m,0) for all m,n in Z/2Z.

(6) Show that the map v is different from the identity map.

(7) Show that the map

Hom(f, f)xl — Mor(fxl,fxl)

defined in Excercise (7) is not injective.
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10. Let X be a topological space with basis B for the topology. Moreover let
{Fa}aecr be a collection of presheaves on B. For every open subset U of B we let
FU) =1Il,er FalU), and for every inclusion U C V of open subsets belonging to B

we let (pr)l = [Toer(pFa)U-

(1)
(2)

(6)

(7)

Show that F with the restrictions (pz)}; is a presheaf on B.

For every a € I and every open subset U of 8 we have a projection map
(Pa)u : [per Fa(U) = Fo(U). Show that the maps (pq)v for all U belonging
to B define a homomorphism

Po: | [ Fo— Fa

of presheaves.

Show that F with the projections p, is a product of the presheaves F, in the
category of presheaves.

Show that when all the presheaves F, are sheaves then F is a sheaf. We
denote this sheaf by Hae ; Fo and call it the product of the sheaves F,.
Show that the sheaf [, .; Fo together with the projections p, is a product
of the sheaves F, in the category of sheaves.

For every z € X and for every a € I we have a map (pa)z : ([[ac; Fa)e —
(Fa)z- Show that these maps, for all a € I, give a map

(II 7o)e = ] (Fo)a-

acl acl

Assume that X has a sequence X = Uy D U; D Uy D --- of subsets U,
strictly contained in each other. Then the set X is a topological space with
the collection {0, {U,}nen} as open sets. For every p € N we let F,,, = Z
for n < p and F,, = (0) for n > p. Moreover we let (p,)" : F, , — Fpp
be idz for all m,n,p in N such that m < n < p and otherwise zero. We
denote by F, the sheaf on X such that F,(U,) = Fj,, for all n € N and with
restricions (pfp)g: for all m,n in N with m <n.
Let F be the simple sheaf with stalk Z.
(a) For all p € N we have a map s, : F — F,, of sheaves given by (u,)u, :
F(U,) — Fp(Uy) which is the identity on Z when n < p and otherwise
zero. Show that this defines a map of sheaves

F— 11 %
peN

such that F(Uy,) — ([[,en Fp)(Un) is injective for all n € N.
(b) Show that the map

fx%(pr)m

peEN
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is injective for all z € X.

(c) Show that for all points z € N,,enU,, we have that (F,), = 0, and that
[Len(Fp)z = (0).

(d) Show that the map

(pr)m_’ H(]:p)m

peN pEN

is not injective.

(8) Let G, = Z when n > p and G,, = (0) when n < p. Moreover let
(0,)M . G — Gp.n be the identity for all m, n, p in N such that p < m < n,
and otherwise zero. We denote by G, the sheaf defined by G,(U,,) = G, and
with restriction maps (pgp)g: = (op) for all m,n in N with m <n.

(a) Show that for all x € N,enU, we have that (G,), = Z, and that
(op)7t =idz when p < m < n.

(b) Show that all sections (s,)pen in ([[,en Gp)(Un) satisfy s, = 0 for
n < p.

(c) Show that the element (7,)pen € [],,cn(Gn)e With 2, =1 for all p can
not be in the image of

(H Gp)a — H (Gp)a-

peEN pEN

11. Let X be a topological space with open sets () and {U, }nen where X = Uy D
U; D ---. Moreover let F be the sheaf defined by F(U,,) = NU» and with restriction
maps pg”m(s) = s|U,, for all s € F(U,) and m > n. Let F,, = F forn=0,1,2,...
and let s, € F(X) be the function defined by s, (x) =1 when z € U,, and s,(x) =0
when x ¢ U,,. Moreover let s € F(X) be defined by s(xz) =1 for all x € X.

(1) Show that for all z € N ,U,, we have that pX (s,,) = pX (s) in F.

(2) Show that the elements (s, )nen and (s)nen in [[ -, Fn(X) do not have the

same class in ([])_, Fn)a-
(3) Show that the map

(IT 7)== TT(Fn)e

of Exercise (7) is not injective.
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2. Direct and inverse images.

(2.1) The direct image. Let X and Y be two topological spaces and ¢ : X — Y
a continuous map. Moreover let F be a presheaf on X. We define a presheaf !y, (F)
on Y as follows:

For each open subset V of Y we let ¥, (F)(V) = F(»=1(V)), and for each inclusion
V C W of open sets of Y we let

A = (o)W = (pr) o) - FW™H (W) — FW™H (V).

It is clear that v, (F) is a presheaf on Y, and that when F is a sheaf on X then
4 (F) is a sheaf on Y. We call ¢, (F) the direct image of F by 1.

It is clear that when u : F — G is a homomorphism of presheaves on X we obtain
a homomorphism 9, (u) : ¥.(F) — 1.(G) of presheaves on Y defined for each open
subset V in Y by 9. (u)y = uy-1(v)-

We have 9, (idr) = idy,(F), and when v : G — H is another homomorphism
of presheaves on X then 1, (vu) = 1. (v)s(u).!! In other words, we have that 1,
is a functor from presheaves, respectively sheaves, on X to presheaves, respectively
sheaves, on Y.

For all z in X we have a canonical map of stalks:!!

% = (Iﬁ]:)x . lﬁ*(f)w(m) — .7:96 (2.1.1)

that takes the class of the pair (V,t), where V' is an open neighbourhood of ¥ (x) and
t € P (F)(V) = F(p~(V)), to the class in F, of the pair (vp=1(V),t). It is clear
that the map (i£), is independent of the choice of the representative (V,t) of the
class t,(z). Let V' be an open subset of Y and U an open subset of v~ V). We

clearly have that

)Y ()t V) = (Wr)a Py ).

When u : F — G is a homomorphism of presheaves we have that u,(¢Yz), =

(10g )2 (¥ (1)) (a)-

When w : Y — Z is a continuous map of topological spaces then (wi)).(F) =

Wi (Vs (F)), and (idx)«(F) = F.

(2.2) The inverse image. Let ¢ : X — Y be a continuous map of topological
spaces X and Y, and let B be a basis for the topology on Y. For each presheaf G
defined on B we define a sheaf !!11)*(G) on X as follows:

For every open subset U of X we let ¢*(G)(U) be the subset of the product
[l.cu Gu(z) that consists of the collections !!(Zy(4))zcr With the property:

For every point z € U there exists a neighbourhood !!V;;(,) of 9 () belonging to
B, a section !'t(x) € G(Vy(y)), and an open neighbourhood U, of 2 contained in

U Ny~ (Viyz)) such that for all y € U, we have ty () = t(2) () = (pg)l‘;f;?(t(x))
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It is clear that for every inclusion U C V of open sets on X the projection
[Licv Go@) — Ilicv Gu(a) induces a map

Pt = (Py=))1 = ¥ (G)(V) — ¢*(G)(V),
and that ¢*(G), with these maps, is a presheaf on X.
We have that ¢*(G) is a sheaf on X.

To see that 1*(G) is a sheaf we let U be an open subset of X, and we let {U, }acr
be an open covering of U. A section t = (5y(3))ecv in ¥ (G)(U) C [l,cv Gu) 18
completely determined by the values sy, for all z € U. Since pga is given by the
projection [.cp Gyx) = [loer, Gu() two sections of 9*(G)(U) that have the same
restriction to ¥*(G)(U,) for all a € I must be equal. Thus property (F1) for sheaves
is satisfied by the presheaf )*(G).

Let so € ¥*(G)(Uy) be a section on U, for all a € I such that s, and sz have
the same restriction to U, N Ug for all o,3 in I. For each o € I we have that
Sa = ((ta)y(z))zcv. € ¥ (G)(Uy) for some (ta)y(a) € Gy(x), and since the restriction
of s and sg to U,NUpg are equal we have that (to)y(z) = (£3)y(2) for all @, B in I and
all . € Uy N Up. Hence we can define L) € Gy(a) bY ty(z) = (ta)y () for any a € I
such that € U,. We thus obtain an element s = (ty(z))zct € [ e Gyp(x)- Since
(ty(2)) e, = ((ta)y(@))ecv, € ¥ (G)(Uy) for all a € I it follows from the definition
of Y*(G)(U) that s = (ty(s))zev € ¥*(G)(U). It also follows that pf (s) = sq. Hence
we have proved that property (F2) for sheaves is satisfied for the presheaf 1)*(G). We
have thus proved that ¥*(G) is a sheaf.

It follows from the definition of *(G) that for all subsets W of Y that belong to
B there is a map

GW) — ¢*(G) (™ (W) = . (*(G)) (W)
that takes a section ¢ in G(W) to the section (ty(x))zey-1(w) in ¥*(G) (™1 (W)).
These maps define a homomorphism of presheaves on %5: !!

pg : G — Ui (7(G)). (2.2.1)
When u : F — G is a homomorphism of presheaves on B the maps [], .y %) :
[L.cu Fo@) — llicu Gue) for each open set U in X induce a homomorphism *(u) :
V*(F) — ¥*(G) of presheaves on X. We have that ¢*(idg) = idy«(g), and when
v : G — H is another homomorphism of presheaves on B we have that *(vu) =
Y*(v)Y*(u). In other words ¥* is a functor from presheaves on 8B to sheaves on X.
Let w : Y — Z be a continuous map of topological spaces, and H a presheaf
defined on a basis of Z. Then we have that (w)*(H) = ¢¥*(w*(H)).
For every point x in X we obtain from the homomorphism (2.2.1) and the homo-
morphism (2.1.1) a map !!
(tg)z = (Yy=(9))2(PG)w(a) * Gi(a) = ¥ (G)a

that takes the class of a pair (W,t) where W is a neighbourhood of ¥ (z) belonging
to B and ¢t € G(W) to the class of ("1 (W), (ty(a))weyp—1(w)) I V*(G)a-
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(2.3) Proposition. The map (1g)e = (Vy+(g))2(PG)p) : Gp@) — ¥ (G): is a
bijection.

Proof. We construct the inverse of the map (tg),. Let s, be an element in ¢*(G),.
Then s, is the class of a pair (Us, (t(2)y(y))yev, ), where t(z) € G(Vy () for a neigh-
bourhood Vi (,) of 9 (x) belonging to B, and where U, is a neighbourhood of
contained in U N~ (Viy(,)). We map s, t0 (2)yp(y). It is clear that this map is
independent of the representative (Uy, (t()y(y))yev, ), and of Vi (g).

(2.4) Remark. We have two descriptions of the inverse image ¥*(G) of G by .
Firstly it follows from the definition of ¢*(G) that for all U belonging to % we have
that ¥*(G)(U) C [[,cv Gu(x)- Secondly since 1)*(G) is a sheaf it follows from Remark
(?) that v*(G)(U) C [[,cy ¥*(G)e. From the first description we can write every
section s € ¥*(G)(U) on the form s = (ty(m))zcv With tyu) € Gym), and from
the second we have that s = (s,)zer where s, = (py-g)Y(s) € (¥*G),. The two
descriptions are linked by the formula

(tg)z(ty(a)) = sa

for all z € U.
When v : G — H is a homomorphism of presheaves on 8 we have that

(V)2 (tg)z = (LH)wvl/)(I)‘

(2.5) Definition. Let G be a presheaf defined on a basis 98 of the topological space
Y. The sheaf (idy )*(G) on Y is called the sheaf associated to the presheafG. It comes
with the canonical homomorphism

pg : G — (idy)*(9) = (idy).(idy)*(9).

(2.6) Remark. Let G be a presheaf defined on a basis 8 of the topological space Y.
It follows from Proposition (7) that the map (ig), : G, — (idy)*(G), is the identity
map on G,.

For every open subset V' of ¥ we have that (idy)*(G)(V) C [[,cy Gy- It follows
from the definition of the associated sheaf (idy )*(G) and the characterization (?7) of
sheaves that G is a sheaf on B if and only if the homomorphism (pg)y : G(V) —
(idy )*(G)(V) is an isomorphism for all open subsets V' of X belonging to 8.

When G is a sheaf on B we have that G(V') and (idy )*(G)(V) is the same subset
of Hyev G, for all open sets V' belonging to 8.

(2.7) Example. Let X be a topological space and let E be a set. The associated
sheaf to the constant presheaf with fiber F has fiber F at all poins. We call the
associated sheaf the simple sheaf with fiber E.
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(2.8) Proposition. Let ¢ : X — Y be a continuous map of topological spaces and
let B be a basis for Y.
(1) When G is a presheaf defined on Y, and G|B its restriction to 8, we have
that ¥*(G|B) = *(G).
(2) When u: G — H is a homomorphism between presheaves on Y we have that

P (u) = ™ (ulB).

Proof. (1), (2) We have that ¢*(H)(U) is determined, as a subset of [] .y Hy(a),
by conditions on arbitrarily small neighbourhoods U, of = contained in ¢~ (Vy(y))

for an arbitrarily small neighbourhood Vi) of 9 (z). Hence part (1) and (2) follow
immediately from the definitions of ¥*(G|B) < ¥*(G),¢*(u) and ¢¥*(u|B).

(2.9) Adjunction. For every presheaf G on B we saw in (?) that we have a
homomorphism of presheaves

pg G — u(P7(9)).

On the other hand we have, for every sheaf F on X, a homomorphism of sheaves:!!

oF Y (Pu(F)) = F.

In order to define o we take an open neighbourhood U of X and a section s €
Y* (1. (F))(U). For every point x € U there is an open neighbourhood V() of 1 (),
a section t(z) € . (F)(Vip(z)) = F( ™ (Vip(a)), and an open neighbourhood U, of x
contained in UMy~ (Vi) such that sy = (ty, 7))y (E(@)y () for ally € U, as we ob-

served in Remark (2.2.3). Let s(x) = (py.—);/]); (VW‘”))(t(x)) € F(U,). Since F is a sheaf
it follows from Remark (1.7) and Remark (7) that the section s(x) of F(U,) is deter-

mined uniquely by s(2), = (o)} (p5)p, ) (@) = (W) (o) sy () =
(¥F)y(t(7)y(y)), and therefore by s, = (14, (F))y(t(2)y(y)) for all y € U,. Hence
the sections s(z) for all z € U define a section ox(s) € F(U). It is clear that the
definition of o #(s) is independent of the choices of Vi, (., t(z) and U, for x € U.

Let F be a sheaf on X and G a presheaf on 8. For every homomorphism of
presheaves lu : G — 1, (F) on B we obtain a homomorphism !!

uf = orp*(u) : *(G) = F

of presheaves on B. In order to describe u# explicitely let s € ¥*(G)(U) be a section
of 1*(G) over an open neighbourhood U of X. For every point € U there is an
open neighbourhood Vy,(,y of ¥(x) belonging to B, a section t(z) € G(Vy(s)), and a
neighbourhood U, of z contained in U N ¢~ (Vi (,) such that s, = (1g)y (6(2)p(y))

for all y € U,. Then uﬁU(s) € F(U) is determined as a subset of [[ ., F. by

Uh(8)e = (V) wthyp(a) (H() () for all z € U.
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For every homomorphism !lv : ¢*(G) — F of sheaves on X we obtain a homomor-
phism !!

v =9 (0)pg : G — Yu(F)

of presheaves on 8. In order to describe v” explicitely we let t € G(V') be a section over
a subset V of Y belonging to B. Let s be the section of ¥*(G)(¢¥~1(V)) determined
by sz = (tg)aty(r) for all z € ~1(V). Then we have that v}, (t) € ¥.(F)(V) =
F(p~1(V)) is determined as a subset of [T.cy-1(v) Fz by the equalities 0 (t), =
vz () for all z € = H(V).

It follows from the explicit expression for u# and v” that (u#)” =« and (v")f = v.
We have thus shown:

The map
Homx (¢*(G), F) — Homy (G, ¥« (F)) (2.9.1)

that takes v : ¥*(G) — F to v’ : G — 9, (F) is a bijection. The inverse map takes
u: G — P (F) tout : p*(G) — F.

In particular we obtain, for every presheaf G defined on a basis 8 of Y and for
every homomorphism w : G — H to a sheaf H on Y, a unique homomorphism
w? : (idy )*(G) — H of sheaves such that w = w'pg.

(2.10) The image of homomorphisms of sheaves. Let X be a topological space
with a basis B for the topology. Moreover let u : F — G be a homomorphism of
presheaves on B. For every open set U belonging to B we let 'H(U) = Im(uy). It is
clear that for every inclusion U C V of open sets belonging to 8 the restriction map
(pg)t; : G(V) — G(U) induces a restriction map (p)¥; : H(V) — H(U), and that H
with these restriction maps becomes a presheaf on 8. Moreover it is clear that the
surjections F(U) — H(U) and the inclusions H(U) — G(U) induce homomorphisms!!

v:F—-H
respectively!!
i1:H—G

of presheaves on ‘B.
We write!!
w = ppv: F — (idx)*(H).

When G is a sheaf on B it follows from Remark (?) that the homomorphism 4 induces
a homomorphism!!

j=i:(idx)*(H) = G

of sheaves on B such that i = jpy. We then have that u = v = jprv = jw.
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(2.11) Example. Even when the homomorphism v : F — G is a homomorphism
of sheaves the presheaf H of Section (2.7) does not have to be a sheaf.

Let X = {xg, 1, x2} be the topological space with open sets (), X, Uy = {xo}, U; =
{0, 21}, Uz = {x0,22}. The constant presheaf F on X with fiber Z is in this case a
sheaf, and thus equal to the simple sheaf with fiber Z.

Let G be the sheaf defined by G(0) = {0}, G(X) = Z® Z, and G(U;) = Z for
i =0,1,2, and with restrictions (,og)go = idz, and (pg){}, the projection on the i’the
factor, for i = 1, 2.

It is clear that the map v : F — G given by ux : Z — Z ® Z with ux(n) = (n,n),
by ug = idjoy, and where uy, = idz for ¢« = 0,1,2, is a homomorphism of sheaves.
We have that H(0)) = {0}, H(X) is isomorphic to Z, H(Uy) = {0}, and H(U;) = Z
for i = 1,2. Then H is not a sheaf because sections of H(U;) = Z and H(Uz) = Z
that are represented by different integers can not come from a section of H(X).

(2.12) Lemma. Let X be a topological space with a basis B of the topology, and
let u : F — G be a homomorphism of presheaves defined on ‘B.

(1) Ifuy : F(U) — G(U) is injective for all open sets U belonging to B we have
that the map u, : F, — G, is injective for all x € X.
(2) Ifuy : F(U) — G(U) is surjective for all open sets U belonging to B we have
that the map u, : F, — G, is surjective.
(3) If F and G are sheaves on B and the map u, : F, — G, is injective for all
x € X, then we have that uy : F(U) — G(U) is injective for all open sets U
belonging to B. In particular, the homomorphism w induces an isomorphism
F = H.
(4) If F and G are sheaves on B and the map u, : F, — G, is surjective for all
x in X, then we have that jy : (idx)*(H)(U) — G(U) is an isomorphism for
all open sets U belonging to 8. That is, the homomorphism u induces an
isomorphism (idx)*(H) = G.
In particular we have that when F and G are sheaves, then u : F — G is an isomor-
phism if and only if the induced map on stalks u, : F, — G, is an isomorphism for
all points r € X.

Proof. (1) Let s, and t, be elements in F, such that wu,(s;) = wu.(t;). We can
find a neighbourhood V of x belonging to %6 and sections s,t in F (V') such that
(pF)Y (s) = s and (px)Y (t) = ti. Then (V,uy (s)) and (V,uy (t)) have the same class
in G,. Consequently there is a neighbourhood U of x belonging to 8 and contained
in V' such that (U, (pg){; (uv (s))) = (U, (pg); (uv(5))). That is (U, uu ((pF)((s))) =
(U,uu((pF)y(t))). Since up is injective by assumption we have that (pr)}(s) =
(py:)‘[j, and consequently that s, = t,. Hence we have proved that u, is injective.

(2) Let t, € gx. Then there is an open neighbourhood U of z and t € G(U) such
that (pg)Y (t) = t,. Since uy is surjective we can find a section s € F(U) such that
uy(s) =t. Then ux(sx) = t, and we have proved that u, is surjective.

(3) Since the maps u, for z € X are injective, we have an injective map [, v :
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[Lcv Fo — Il,cy Ge- It follows from Remark (?) that it suffices to prove that if
($2)zev lies in F(U) then (uy(sy))zev lies in G(U). However it follows from the
characterization on sheaves that if (s;).cy € F(U) then there is, for every = € X,
a neighbourhood U, of = belonging to B and a section s(x) € F(U,) such that
sy = s(x), for all y € U,. Let t(z) = uy,(s(x)). Then t(z) € G(U,) and for all
y € U, we have that t(z), = uy(s(z),) = uy(sy). From the characterization (7) of
G(U) as a subset of [],.;; G, it follows that (uz(sz))zcv € G(U).

(4) Since H(U) C G(U) for all U belonging to B it follows from part (7) that
ie @ Hy — G, is injective for all z € X. It follows from the definition of the
homomorphism j that the isomorphism [[, . iz : [[,c He — [1, e 9o induces the
map jy : (idx)*(H)(U) — G(U) for every open set U belonging to B. Hence jy is
injective.

In order to show that jy is also surjective we choose a section (t;)zcy in G(U)
with ¢, € G,. We shall show that (¢;).cy is contained in (idx)*(H)(U) when
(idx)*(H)(U) is considered as a subset of [[,.; He € [[ ey Ge- It follows from
the characterization of sheaves (7) that we, for each z € U, can find an open neigh-
bourhood U, of  belonging to B and a section ¢(z) € G(U,) such that t, = t(z), for
all y € U,. We have that H(U,) C G(U,), and since i, : H, — G, is surjective we can
find a neighbourhood V. of = belonging to B and a section s(z) € H(V,) such that
t, is the class of (V,, s(z)) when we consider s(x) as a section of G(V,). Since t, is
also the class of (U,, t(z)) we can find a neighbourhood W, of = belonging to B, and
contained in U, NV, such that (pH)‘V/‘fI (s(x)) = (pg)g‘}; (t(x)) in H(W,) C G(W,).
Consequently we have found a neighbourhood W, of z belonging to B and a sec-
tion r(z) = (pH)“,/;I(s(x)) in H(W,) such that t, = t(x), = (pg)?‘;vz (pg)gfz (t(x)) =
(pr)y (pH)“,/;z(s(x)) = (pn)y = (r(x)) = r(z), for all y € W,. Consequently we have
that (t;)zev lies in (idx)*(H)(U) and we have shown that jy is surjective.

(2.13) Definition. Let X be a topological space with a basis 98 for the topology.
Moreover let u : F — G be a homomorphism of sheaves on 9. The sheaf (idx)*(H)
is called the image of u and is denoted by 'Im(u) or by "u(F). A sheaf is a subsheaf
of G if it is of the form Im(u) for some homomorphism u : F — G of sheaves.

We identify Im(u), with a subset of G, via j, and Im(u)(U) with a subset of G(U)
via the inclusion [, .y jz : [[pep Im(u)e — [ e Ge-

The homomorphism u is injective if w : F — Im(u) is an isomorphism, and it is
surjective if j : Im(u) — G is an isomorphism. When w is injective we sometimes
write !Im(u) = u(F).

(2.14) Remark. Let u : F — G be a homomorphism of presheaves on B. It

follows from Lemma (7) that for all x € X the map v, : F, — H, is surjective and

iz : Hy — G is injective. Because of the inclusions H(U) C G(U) for all U belonging

to B, it is natural to identify H, with a subset of G, via the homomorphism 1i,.
When F and G are sheaves it follows from Remark (7) that

Wy : Fp — Im(u),
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is surjective, and that
Jz :Im(u), — G,

is injective.

(2.15) Remark. It follows from Lemma (?) that a homomorphism u : F — G of
sheaves on B is injective if and only if uy : F(U) — G(U) is injective for all open
sets U belonging to 98, or equivalently, if and only if u, : 7, — G, is injective for all
x € X. Moreover it follows from Lemma (?) that the homomorphism u is surjective
if and only if jy : Im(u)(U) — G(U) is surjective for all open sets U belonging to B,
or equivalently, if and only if u, : F, — G, is surjective for all z € X.

In particular it follows from Lemma (7) that the homomorphism w : F — Im(u)
is surjective, and from Lemma (?) that j : Im(u) — G is injective. Since u = jw and
w, is surjective we have that

Im(u,) = Im(j,) = Im(u),

as subsets of G, for all x € X.

(2.16) Exercises.

1. Let X be a topological space and let Y be a closed subset of X. Denote by
t:Y — X the inclusion map. For every sheaf G on Y, describe the stalks of ¢.(G) at
all points of X.

2. Let X be the topological space with two points z and Y with open sets {0, X, Y}.
Moreover, let ¢ : Y — X be the inclusion map. For every sheaf G on Y describe the
sheaf ¢, (G) and its stalks.

3. Let X be a topological space with the discret topology. For each open subset U
of X that contains at least two points let F(U) = Z and let F(U) = 0 otherwise.
When U C V is an inclusion of open sets in X we let pg = idg if U contains at least
two points and otherwise be 0.

(1) Show that F is a presheaf on X.
(2) Describe the associated sheaf (idx)*(F) of F.

4. Let Y be a topological space and X = {y} the topological space that consist of
a closed point y of Y. Moreover let ¢ : X — Y be the inclusion map and let G be a
sheaf on Y.

(1) Describe the sheaf 1*(G).

(2) Describe the map pg : G — . (¥*(G)).
5. Let X be a topological space and let ¢ : X — Y be the map into a topological
space Y consisting of a single point. Moreover let F be a sheaf on Y.

(1) Describe the sheaf 1, (F).
(2) Describe the map oz : ¥* (¢ (F)) — F.
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6. Let ¢ : X — Y be a continuous map of two topological spaces X and Y. Moreover
let 7 and G be sheaves on X, respectively Y.

(1) Which map ¢* (1. (F)) — F corresponds to the identity map 1. (F) — 1« (F)
by adjunction?

(2) Which map G — 1. (1*(G)) corresponds to the identity map ¥*(G) — ¥*(G)
by adjunction.

7. Let X be a topological space with the discrete topology, and let {G.}.cx be a
collection of commutative groups.

(1) Let 7(X) = (0) and F(U) = [[,cy G for all non empty open subsets U of
X different from X. Moreover let pi¥ be the zero map, and let py; be the
projection when U C V and U # () and V' # X. Show that F is a presheaf
and describe the associated sheaf.

(2) Let F(X) = [l,ex G and let F(U) = (0) for all open subsets U of X
different from X. For all inclusions U C V of open sets in X different from
X we let py; be the zero map and we let px = idx. Show that F(X) is a
presheaf and describe the associated sheaf.

8. Let X be a topological space. Moreover let F(X) = Z and let F(U) = (0) for all
other open subsets of X.

(1) Show that F with the restriction maps that are zero is a presheaf.
(2) Describe the associated sheaf.

9. Let X be a topological space and let {G,}.ex be a collection of commutative
groups. Moreover let F(X) = (0) and let F(U) = [,y Go for all open subsets
of X different from X. Define the restriction maps p}; : F(V) — F(U) to be the
projections for all inclusions U C V of open subsets of X with V' £ X, and otherwise
to be the zero map.

(1) Show that F with the restriction maps py; is a presheaf.
(2) Describe the associated sheaf.

10. Let X and Y be topological spaces where Y has the discrete topology. Moreover
let F be the constant presheaf with fiber Y, and let G be the sheaf where G(U)
consists of all continous maps U — Y for all open subsets U of X and the restrictions
(pg)Y : G(V) — G(U) sends ¢ : V — Y to its restriction p|U : U — Y for all
inclusions U C V of open subsets of X.

Show that G is the sheaf associated to the presheaf F.

11. Let F be a preshaf on the topological space X. Morover let Y = U,ex (Fy, )
be the disjoint union of the fibers F, of F for all x € X. We have amap ¢ : Y — X
defined by mapping the pair (s,,x) with s, € F, to x. For every open subset U in
X, and every section s € F(U) we have a map sy : U — Y that maps = to the pair
(sz, ). This map satisfies the equation wsy = idy. The maps s : U — Y such that
ws = idy are called sections of w over U.

(1) Let {V4}aes be the collection of all subsets of Y such that s;;'(V,,) is open
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in U for all open subsets U of X and all sections s € F(U). Show that Y is
a topological space with the collection {V, },cs as open sets.

(2) Show that the map 7 is continous for this topology on Y.

(3) For every open subset U of X we let G(U) be the collection of all continous
sections of 7w over U, that is, the continous maps ¢ : U — Y such that
mo = idy, and let (pg)y; be the restriction of functions on V to functions on
U. Show that G is a sheaf.

(4) Show that G is the associated sheaf of F.

12. Let X be a topological space and let G be an abelian group. Fix a point x € X.
Let G(U) = G if x € U and let G(U) = (0) otherwise. Moreover define the restriction
maps to be (pg)}; = idg if x € U, and otherwise to be zero.

(1) Show that G is a presheaf on X.

(2) Describe the fiber of G at each point in the closure {z} of z in Y.

(3) Show that if + : {x} — X is the inclusion map and F is the simple sheaf on
{z} with fiber G, then G = 1, (F).

13. Let X be a topological space with the discrete topology and let {G,}.cx be
a collection of commutative groups. For each open subset U of X we let F(U) =
[1,ctr Ga, and for every inclusion of open sets U C V of X we let py; : F(V) — F(U)
be the projection. Moreover, for every point x € X and every open set U of X we
let if; : G, — F(U) be the map that sends z € G to (2y)yecv € F(U) with z, = 2
and z, = 0 when x # y. Fix a point 2’ € X. For each open set U of X we define a
map uy : F(U) — F(U) by uy = i¥% p¥ when 2/ € U and uy = 0 otherwise.
(1) Show that F with the restrictions p; is a sheaf on X.
(2) Find the fiber F, of F at z.
(3) Show that every sheaf G on X with fiber G, = G, is equal to F.
(4) Show that u : F — F is a homomorphism of sheaves.
(5) Let K(U) = Ker(uy) for all open subsets U of X. Show that I with the
restriction maps (px)y; induced by the maps py; is a sheaf.
(6) Let G(U) = Im(uy) for all open subsets U of X. Show that G with the
restriction maps (pg)y; induced by the maps py; is a presheaf.
(7) Let H(U) = Coker(uy ) for all open subsets U of X. Show that H with the
restriction maps (py)(; induced by the maps (pg)y; is a presheaf.
(8) Is the presheaf G always a sheaf?
(9) Is the presheaf H always a sheaf?
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3. Sheaves of groups and rings.

(3.1) Definition. Let X be a topological space and let 98 be a basis for the topology.
Moreover let | F! and ! A! be presheaves defined on B. We say that F takes values in
groups, or is a presheaf of groups, on B if for every subset U of X belonging to B we
have that F(U) is a group, and for every inclusion U C V of subsets of X belonging
to B the map (px)}; : F(V) — F(U) is a group homomorphism. Similarly we say
that A takes values in rings, or is a presheaf of rings on B, if A(U) is a ring, and
(pa)Yy; is a homomorphism of rings for all inclusions U C V of sets belonging to B.

When F and A are sheaves on B we say that F is a sheaf of groups, respectively
that A is a sheaf of rings, on B if they are presheaves of groups, respectively rings,
when considered as presheaves on ‘B.

(3.2) Remark. It follows from Remark (7) that for a sheaf of groups F we have
that F(0) = (0).

(3.3) Stalks. Let F and A be presheaves of groups, respectively rings, defined on
a basis B of the topological space X. For every point x in X the stalk F, has a
natural structure as a group in such a way that the map (pr)Y : F(U) — F, is a
group homomorphism, and A, has a natural structure as a ring in such a way that
the map (p4)¥ is a ring homomorphism for all neighbourhoods U of = belonging to
8. In order to define the addition on F,, and the multiplication on A, we let s,
and t, in F, be the classes of pairs (V,s) and (W, t) where V and W belong to B,
and s € F(V) and t € F(W). Then there is a neighbourhood U of = belonging to
B contained in V N W. We define the sum s, + t, of s, and ¢, as the class in F,
of the pair (U, (pr)(s) + (p£)¥ (t)). Tt is clear that the definition is independent of
the choice of the representatives (V,s) and (W,t) of the classes s, and t, and of U.
Moreover it is clear that F, with the addition becomes a group in such a way that
(pr)Y is a homomorphism of groups. When s € A(V) and t € A(W) we define the
product s,t, of s, and t, as the class of the pair (U, (p.a)¥(s)(pa)ly (t) in A,. It
is clear that the definition is independent of the choice of the representatives (V, s),
(W,t) of s, and t,, and of U. Moreover it is clear that .4, with the given addition
and multiplication becomes a ring in such a way that (p4)Y is a homomorphism of
rings.

(3.4) Definition. Let F and !G! be presheaves of groups on a basis B of the
topological space X. A homomorphism u : F — G of presheaves is a homomorphism
of presheaves of groups on B if for every subset U of X belonging to B we have
that uy : F(U) — G(U) is a group homomorphism. Let A and !B! be presheaves of
rings defined on 2. We have that a homomorphism ¢ : A — B of presheaves is a
homomorphism of presheaves of rings on B if for every subset U of X belonging to
B we have that ¢y : A(U) — B(U) is a homomorphism of rings.

When A, B, F and G are sheaves of rings respectively groups we say that the
homomorphisms are homomorphisms of sheaves of groups respectively rings. A sheaf
of rings B together with a homomorphism ¢ : A — B we call an A-algebra.
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(3.5) Remark. We easily see that if u and ¢ are homomorphisms of groups, re-
spectively rings, then the map of stalks u, : F, — G, respectively ¢, : A, — B,
are homomorphisms of groups, respectively rings for all x € X.

(3.6) The direct image. Let ¢ : X — Y be a continuous map of topological
spaces and F a presheaf of groups on X. The direct image 1, (F) is then a presheaf

of groups on Y. In fact, for every inclusion V' C W of open subsets of Y we have
-1

that ¢, (F)(V) = F(yp~1(V)) is a group, and (pg:)i,lgy)) is a group homomorphism.

Hence (py, (7)Y = (p]-‘)Z:iE‘V;/)) is a group homomorphism. When A is a presheaf of

rings we have that the direct image ¥, (A) is a presheaf of rings. In fact . (A)(V) =

A(p~H(V)) is a ring and (py, ()} = (pA)i,igy)) is a homomorphism of rings for
all open subsets V', and all inclusions V' C W of open subsets of Y.

For every point = of X the map (Vx)s : ¥«(F)y(z) — Fe is a homomorphism of
groups, and the map (¥4)¢ : ¥« (A)y(z) — Az is a homomorphism of rings.

When u : F — G is a homomorphism of presheaves of groups on X we have that
Yy (u) @ Ye(F) — 1¥4(G) is a homomorphism of presheaves of groups. In fact, for
every open subset U of V', the map ¥, (u)y comes from a homomorphism of groups
1y  FH D)) = GL(0)),

When ¢ : A — B is a homomorphism of presheaves of rings we have correspond-
ingly that ¥, (p) : ¥.(A) — 1. (B) is a homomorphism of presheaves of rings.

(3.7) The inverse image. Let ) : X — Y be a continuous map of topological
spaces, and let B be a basis for Y. Moreover let G be a presheaf of groups on B
and B a presheaf of rings on 9. The inverse image ¥*(G) of G is a sheaf of groups
on X and ¢*(B) is a sheaf of rings on X. In fact, we shall verify that for every
open subset U of X the group structure on [, .. Gy (») induces a group structure on
V*(G)(U). Let (Sy(a))zcr and (ty(a))zcv be elements of [[ .y Gy(x) that belong to
the subset 1*(G)(U). Then there is an open nieghbourhood V) of 1 (z) belonging
to B and s(x),t(z) in G(Vy(y)) such that for all y in a neighbourhood of 2 contained
in U Ny~ (Vy)) we have that sy, = s(z), and ty) = t(z),. We have that
s(x) + t(r) € G(Vy)) and (s(x) +t(x))y = s(x)y +t(x)y = Sy(y) + tyy). Hence
(Sp(@))acr + (typ@))eery = (Sp@) + typ@))eeuy = (8(2)a + H(@)a) = (s(x) + 1(2))a-
Hence we have that (sy(2))zev + (Ly(2))ecv is contained in 1*(G)(U) as we wanted
to verify.

Moreover, for every inclusion U C V of open subsets of X we have that the
projection [ ..y Gyz) — [locr Gu(a) is @ group homomorphism that induces a group
homomorphism (py+(g))r = ¥*(G)(V) — ¢*(G)(U). Similarly the ring structure on
[1.cu By(x) induces a ring structure on ¢*(B)(U), and the projection [], oy Byz) —
[I.cu By(x) is a ring homomorphism inducing a ring homomorphism (pw*(lg))g :
P*(B)(V) — ¢*(B)(U), for every inclusion U C V of sets belonging to 8. For every
r € X we have that the map (tg)s : Gy(z) — ¥*(G): is a group homomorphism, and
the map (t5)z : By(e) — ¥*(B)s is a ring homomorphism.
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(3.8) Adjunction. Let F and A be sheaves of groups, respectively rings, on X,
and let G and B be presheaves of groups, respectively rings, on Y. The adjunction
maps pg : G — Y. (¥*(G)) and or : Y*(Y.(F)) — F are both homomorhism of
presheaves of groups, and pp and o4 are homomorphisms of presheaves of rings.
Consequently the adjunction Homx (¢*(G),F) — Homy (G, .(F)) of (3.9.1) and
Homyx (¢*(B),.A) — Homy (B, ¥.(.A)) induce bijections between the subset consisting
of homomorphisms of presheaves of groups, respectively of presheaves of rings.

(3.9) Definition. A ringed space is a pair consisting of a topological space X and
a sheaf of rings A. We shall often denote a ringed space by !(X,Ox)! where Ox
is the sheaf of rings on the topological space X. The stalk of Ox at a point x of
X we denote by Ox . A homomorphism (¢, 0) : (X, A) — (Y, B) of ringed spaces
consists of a continuous map 1 : X — Y of topological spaces and a homomorphism
0 : B — 1.(A) of sheaves of rings. We say that (X,.A) is a local ringed space if A,
is a local ring for all z € X. A local homomorphism of local ringed spaces (1, 0) :
(X, A) — (Y, B) is a homomorphism of ringed spaces such that (8)% : *(B), — A,
maps the maximal ideal in ¥*(B), = By(,) to the maximal ideal in A, for all x € X.

(3.10) Remark. The ringed spaces with morphism form a category, as does the
locally ringed spaces with local homomorphisms.

(3.11) Exercises.

1. Let X be a topological space and G an abelian group. For every non-empty open
subset U of X we let F(U) = GY be all maps U — G. Let F())) = {0}. For every
inclusion U C V of open subsets of X we define py; : F(V) — F(U) to be the map
that takes a section s : V — G to its restriction s|U : U — G. Show that F with the
maps py; has a natural structure as a sheaf of groups.

2. Let X be a topological space and A a ring. For every non-empty open subset U of
X we let A(U) = AY be all maps U — A. For every inclusion U C V of open subsets
of X we define p}; : A(V) — A(U) to be the map that takes a section s: V — A to
its restriction s|U : U — A. Let A(0) = {0}. Show that A with the maps p}; has a
natural structure as a sheaf of rings.

3. Let X = {x0,x1} have the topology with open sets 0, X, {zo}. Welet A(x) = Z(,),
A(zo) = Q, and F(0) = {0}. Moreover, we let pg)fo : Z(,y — Q be the inclusion map.

(1) Show that A is a sheaf and that the pair (X, .A) is a local ringed space.

(2) Let Y = {yo} and let B be the sheaf B(Y) = Qon Y. Moreover let ¢ : Y — X
be the map that takes yy to xg. Show that there is a unique homomorphism
of sheaves of algebras A — 1, (B) which is the identity on Q over {z¢}, and
the inclusion Z,y — Q on X.

(3) Show that the map of part (2) is a local map of local ringed spaces.

(4) Let ¢ : Y — X be the map that takes yo to z1. Show that there is a map of
sheaves of rings A — . (B) which is the inclusion Z(,) — Q on X and the
zero map Q — {0} on {z(}. Show that this is not a local homomorphism of
local ringed spaces.
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4. Let X be a topological space and let F be a sheaf of groups on X. Show that for
every open subset U of X, and every section s € F(U) we have that the set consisting
of x € U such that s, = 0 is open in X.



Modules

1. Modules.

(1.1) Definition. Let A be a ring. An A-module is an abelian group !!M and an
operation of A on M which to !!f € A and "z € M gives a product fx € M such
that for all f,gin A and x,y in M we have:

(1) 1z = =z.

(2) (f+g)r=fr+gz

(3) flx+y)=fz+ fy.

(4) flgz) = (fg)=.
(1.2) Remark. An operation of A on M, or a product of the elements of A with
the elements of M, is the same as a map A x M — M.

(1.3) Example. Every abelian group G is a Z-module under the multiplication that
to a positive integer n and an element x € GG associates the ssm nx =z +x+---+x
of x with itself n times, and (—n)x = —nzr = —z —x — - -+ — x is the sum of —x with
itself n times. We let 0z = 0.

(1.4) Example. Let A be a ring. Multiplication on A makes A into an A-module.

(1.5) Definition. Let A be a ring and M an A-module. A submodule !'L of M is
a subgroup of M such that for all f in A and z € L we have fx € L.

We say that a submodule L of M is properly contained in M if L is different from
M, and that L is a proper submodule of M if it is non-zero and properly contained
in M.

(1.6) Remark. Let M be an A-module and L a submodule. The A-module structure
on M induces an A-module structure on L.

(1.7) Example. Consider the ring A as a module over itself. A subgroup a of A is
an ideal if and only if a is a submodule of A.

(1.8) Definition. Let A be a ring and M and N two modules. A map 'u: M — N
is A-linear or an A-module homomorphism if, for all f € A and x,y in M, we have:
(1) u(fz) = fu().
(2) u(z+y) = ulz) +uly).
An A-module homomorphism is an isomorphism if it has an inverse, or equivalently if
it is bijective. The set theoretic inverse is then automatically a homomorphism of A-
modules. We denote the A-module homomorphisms from M to N by Hom 4 (M, N).

67
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(1.9) Remark. We know that Hom (M, N) is a group under the addition that
takes u: M — N and v : M — N to the homomorphism (u+wv) : M — N defined by
(u+v)(x) = u(x) +v(x) for all z € M. The ring A operates on Hom 4 (M, N) by the
product that takes f € A and u to fu defined by (fu)(z) = f(u(x)) for all x € M.
It is clear that the group Hom4 (M, N) becomes an A-module under this operation.

(1.10) Remark. Let u: M — N and 'v: N — P be A-module homomorphisms.
Then idy; and vu : M — P are A-module homomorphisms. In other words, the
A-modules with A-linear homomorphisms form a category. We call this category the
category of A-modules.

(1.11) Residue modules. Let M be an A-module and L a submodule. The A-
module structure on M induces a unique A-module structure on the residue group
M/L such that the canonical homomorphism "uy;/f, : M — M/L is an A-module
homomorphism. The multiplication of an element f € A with the residue class
upr/r(x) of an element x € M is defined by fun/r(x) = upr/p(fz). It is clear that
the definition is independent of the choice of representative = of the class uns/r ().

(1.12) Example. Let A be aring and v : M — N a homomorphism of A-modules.
The kernel Ker(u) = {z € M : u(x) = 0} of u is a submodule, and the image
Im(u) = {u(x) : © € M} is a submodule of N. The cokernel N/Im(u) of N is an
A-module under the multiplication defined by fun/tmw)(¥) = Un/me) (fy) for all
feAandye N.

(1.13) Lemma. Let A be a ring, and let w : M — N be a homomorphism of
A-modules. Moreover let L be a submodule of M.

(1) The homomorphism u factors via the canonical map wuy; /g, : M — M/L and
an A-linear homomorphism v : M/L — N if and only if u(L) = 0. When v
exists it is unique.

(2) Ifv exists, then it is injective if and only if L = Ker(u).

Proof. (1) Assume that v exists. Then, for each z € L, we have u(z) = vuyy,r(v) =
v(0) = 0. Conversely, if u(L) = 0 we can define the homomorphism v : M/L —
N by v(upy/r(r)) = u(r). The homomorphism v is independent of the choice of
representative  of the class of up/r,(x). In fact if ups/r(2) = upar/r(y) we have that
x—y € L and consequently that u(z) = u(z—y+y) = u(z—y)+u(y) = 0+u(y) = u(y).
Finally, since uy,p, is surjective, we have that v is uniquely determined by the relation
u(z) = v(upyL(z)).

(2) Since u(x) = v(up/r(x)) we have that Ker(v) = 0 if and only if u(z) = 0 is
equivalent to uys/r(z) = 0. However we have that uys,r(z) = 0 if and only if z € L.

(1.14) Lemma. Let N be an A-module and L, M two submodules. Then there is
an isomorphism L/(LNM) — (L+ M)/M of A-modules which maps the class of an
element x € L in L/(L N M) to the class of x in (L + M)/M.
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Proof. Tt is clear that the map L/LNM — (L + M)/M is well defined and gives an
A-module homomorphism. The homomorphism is injective because the class of z is
mapped to zero in (L + M)/M exactly when x € M and thus x € (LN M). It is
surjective because every class in (L + M) /M is represented by an element x € L.

(1.15) Operations on modules. Let A be a ring and !'{M,},es a collection
of A modules M. The direct product '] ,.; My of the groups M, becomes an A-
module when we define the product of f € A and (z4)acr € [[4e; Ma by f(Ta)acr =
(fra)acr- We call the A-module [] ., M, the direct product of the modules M,.
We have a canonical projection [[,.; Mo — Mp for all 3 € I. We have that
Pﬂ((ma)ael) = Zg-

The direct sum '@, M, of the groups M, for @ € I becomes an A-submodule
of the product [[,.; Mo. We call the A-module @©,crM, the direct sum of the A-
modules M. The direct sum comes with a canonical homomorphism hg — ©aecrMa
to factor [ for all 5 € I. We have that hg(z) = (z4)aer With 23 = z and z, = 0
when a # .

More generally, if /{A,}acr is a collection of rings A, and {M,}q.cr is a col-
lection of A,-modules M, we have that [] ., M, becomes an ([],; Aa)-module
when we define the product of (fo)acr € [l e Aa and (za)acr € [lper Ma by
(fa)aci(®a)acr = (faTa)acr- The direct sum ®ocr M, becomes a sub ([],.; Aa)-
module of [], .; M.

When all the modules M, are submodules of the same A-module M the sum
Zae ; M, of the groups M, is an A-submodule of M. It is the smallest submodule
of M containing the submodules M, for a € I. We have that Zae ; M, consists of
all sums ) 5 ;2 for all finite subsets J of I and all x5 € Mg for 3 € J.

When I ={1,2,...,n} we write !!M; x My X --- x M, for the direct product and
"My & My & - - - & M, for the direct sum of the modules My, Ms, ..., M,.

ael

(1.16) Remark. The direct product [] ., M, with the canonical projections pg :
Hae 1 M, — Mg and the direct sum ®,ecrM, with the canonical homomorphism
hg : Mg — @acrM, are the product, respectively coproduct, in the category of
A-modules. That is the direct product and direct sum of a collection of modules is a
product, respectively a coproduct, in the categorical sense.

(1.17) Definition. Let M be an A-module and let {z, },er be a family of elements
in M. The sum ) ; Az, of the submodules Az, of M we call the submodule of M
generated by the elements x.,. When x = Zﬁe] farp with fg € A and where J is a
finite subset of I we say that x is a linear combination of the elements xz.

We say that the elements {zq}acr generate M when M = 3" _; Az,. A module
that is generated by a finite number of elements is called finitely generated.

The elements {xq }aer are linearly independent if a relation )5 ; fazg = 0 with
fs € A and where J is a finite subset of I implies that fg3 = 0 for all 3 € J. A
relation )5 ; faxs = 0 is called a linear relation between the elements z,.
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The module M is free with basis {xs}acr if the set {z4}acr generates M and
consists of linearly independent elements.

(1.18) Remark. The elements {x, }qcr in the A-module M are linearly independent
if and only if each element x of the module ) _; Az, can be expressed uniquely
on the form x = ) _; faws with fo € A where at most a finite number of the
fa are different from 0. In fact if every such expression is unique, we have that
>pes fprs = 0 = 3 5,05 for a finite subset J of I implies that fz = 0 for
all B € J. Conversely if the elements x, are linearly independent two expressions
YoacrJaTa = T = Y c;JaTa for x with f, and g, in A where at most a finite
number of the f, and g, are different from zero imply that ) ;(fa — ga)Ta =0
and consequently that f, = g, for all a € I.

(1.19) Example. Let A be aring and I a set. For each a € I we denote by e(«) the
element (eg)ger in AY) with e, =1 and eg = 0 when a # 3. Then AY) is a free A-
module with basis {e(a)}aes. In fact the elements {e(a)}acr generate AY) because
the coordinates of an element (fy)acs in AU) satisfy fo, = 0 except for at most a
finite number of o € I, and consequently (fo)acr = D e; fae(a). Moreover the
elements e(a) for a € I are linearly independent because a relation ) ., fae(a) =0
with f, € A and at most a finite number of the f, different from zero implies that
(fa)aer = D qer faela) € AWM is 0. That is f, = 0 for & € I. We call the basis

{e(a)}aer the canonical basis of AL,

(1.20) Proposition. Let M be a free A-module with basis {4 }acr. Moreover let
N be an A-module and let {yo }aer be elements in N. There is a unique A-module
homomorphism u : M — N such that u(z,) =y, for all a € I.

Proof. Since the elements {z,}ocr generate M every element x € M can be written
as r = Zﬁe] fsxg where J is a finite subset of I and fz € A. If u exists we have
that u(z) = > 5. ; fou(rp) and the conditions u(xa) = yo for a € I determine u
uniquely.

Every element z in M can be written uniquely as x = ) .; faTa Where f, € A
and with at most a finite number of the f, different from zero. Consequently we
can define a map u : M — N by u(x) = > ./ faYa- We have that u is A-linear
for if o’ = > c; fora with the f) € A and at most a finite number of the f/,
different from zero we obtain that u(z + 2') = u(}_,c;(fa + fo)Ta) = D qer(fa +
fo)¥a =D aer faVa + D acr foVa = u(x) +u(a’). Moreover for f € A we have that
U(f:lf) = U(Zael ffozxoz) = Zae[ JfaYa = fzae] JalYa = fu(x)

(1.21) Definition. When A is a field we call an A-module an A-vector space, and
the elements of M we call vectors. We also say that the vector space is defined over
K. A submodule of M is called a subspace.

(1.22) Theorem. Let M # 0 be a vector space over a field K. Moreover let {x}oecs
be generators for M such that {zs}acy with H C J are linearly independent vectors.
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Then there is a collection I of indices with H C I C J such that {z,}qcr is a basis
for M.

In particular every vector space has a basis.

Proof. Let Z be the collection of subsets I’ of J containing H such that the vectors
{Za}acr are linearly independent. We have that Z is not empty since it contains
H. Every chain in Z has a maximal element. In fact let !'{I5}sec be a chain of
subsets Iy in Z. Then the collection of elements Ugeg{%a}acr, consists of linearly
independent elements since linear relations between the elements {x,}acs involve
only a finite number of these elements. It follows from Zorns Lemma that Z contains
a maximal subset I.

Let L be the subspace generated by the linearly independent vectors {zy }aecr. We
shall prove that L = M. Assume to the contrary that L C M. Since the elements
{Za}aes generate M there must then be an index 3 € J\ I such zg € M \ L. We
shall prove that then the vectors {z3} U {zs}aer are linearly independent. This is
impossible since [ is maximal in Z, and thus contradicts the assumption that L C M.
To prove that the vectors {xg} U {xq}aer are linearly independent we observe that
a relation fxg + > o/ faTa = 0 with f, f, in A where at most a finite number of
the f, are different from zero, implies that f # 0 since the x, for o € I are linearly
independent. Hence we have the equality x5 = — > . ;(fa/f)Za, which is impossible
since 3 ¢ L. This contradicts the assumption that L C M. We have proved that
M = L and thus that the first assertion of the Theorem holds.

The second part follows since we can take {x,}acs to be the collection of all
vectors in M, and H to be empty.

(1.23) Proposition. Let M # 0 be a vector space defined over a field K. Moreover
let {zq }aer be a basis for M, and let {y~}~ecs be a collection of linearly independent
vectors. Then there is an injective map of sets !l. : J — I such that {Ta}aer (7)Y
{yy }~es is a basis for M.

In particular, when M is a finitely generated over K, the least number n of gen-
erators of M is equal to the largest number of linearly independent elements of M,
and n is equal to the number of elements of any basis of M.

Proof. Let 'L be the collection of all pairs (L, ) consisting of a subset L of J and
an injective map of sets ¢ : L — I, and where {Za}acr\.(r) U {¥~}yeL is a basis for
M. Then L is not empty because it contains the empty set. We order the elements
in £ by (L',/) < (L",/")if L’ C L"” and "'|L' = /. Since every element in M can be
expressed as a linear combination of a finite number of basis elements we have that
every chain in £ has a maximal elements. It follows from Zorns Lemma that £ has
a maximal elements (L,¢). To prove the first part of the Proposition it suffices to
show that L = J. Assume to the contrary that L C J. Choose an element § € J \ L.
Then we have that ys = ZQGI\L(L) faTa + Z%L g~Y~ where f, and g, are in A and
at most a finite number for the f, and g, are different from zero. Since the elements
{y }~es are linearly independent we have that there there is a 8 € I\ ¢(L) such that
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fs # 0. Then zg = fﬁ_l(y(; — ZO{EI\{L(L)U{,@}} faxa — Z'yGL g~ ). It follows that
{ytyerusy U{zataenu(n)ugsy) is a basis for M. Hence the pair (L U {d},t5) with
t5(0) = [ and t5|L = ¢ is in £ and it is strictly greater than the pair (L,¢). This
is impossible since (L, ) is maximal in £, and therefore contradicts the assumption
that L C J. Hence L = J and we have proved the first part of the Proposition.

Let x1, s, ..., z, be a set of generators of M with the least number n of elements.
It follows from Proposition (?) that we can find a subset of {z1,xs,...,z,} which is
a basis for M. Since the elements of a basis generate M and n is the minimal number
of elements in a system of generators we have that x1,x,..., 2, is a basis. Hence
it follows from the first part of the Proposition that any set of linearly independent
elements has at most n elements. In particular any basis for M has at most n
elements. However, every basis for M generates M and thus has at least n elements
by the minimality of n. Hence each basis has exactly n elements. We have proved
the last part of the Proposition.

(1.24) Proposition. Let M # 0 be a finitely generated free A-module. Then all
the bases of M have the same number of elements as the least number of generators
for M.

Proof. Let {x}aecr be a basis for the A-module M. Choose a maximal ideal m of A.
The classes z,, of x,, in the A/m-vector space N = M /mM for all a € I is a basis of N.
In fact a relation between the elements z, is the same as a relation Zae ; faTa €Em
with f, € A and at most a finite number of the f, different from zero, and where
fa € A\ m whenever f, # 0. That is, we have ) ., faTa = )_,c1 JaZa With all the
go € m and at most a finite number of the g, different from zero. Since the elements
{Zq}aer is a basis for M we must have that f, = g, for @ € I. But this is impossible
unless f, = 0 for all a because f, ¢ m when f, # 0, and g, € m.

Let y1,92,...,yn be a set of generators of M with the least number of elements.
Then the classes of y1,y2,...,yn in N generate N. Since the {z,}aes is a basis
for N it follows from Proposition (?) that the set [ is finite and has at most n
elements. Since the elements {x, }aecr for a € I is a basis for M by assumption and
in particular generate M we have that I has at least n elements. Hence I contains
exactly n elements, and we have proved the Proposition.

(1.25) Definition. Let M # 0 be a finitely generated free A-module. The common
number of elements of the bases for M is called the rank of M and denoted rk(M) =
rka(M). When K is a field and N is a finitely generated vector space over K the
rank of N is called the dimension of N and written dimg(N). We let tk4(0) = 0
and dimg (0) = 0.

(1.26) Remark. Let L be a subspace of a finitely generated vector space M over a
field K. Then L is finitely generated and if L is a proper subspace then dimg (L) <
dimg (M). This is because every basis of L can be extended to a basis of M.
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(1.27) Theorem. (Nakayamas Lemma) Let A be a ring and let a be an ideal of A.
Moreover let M be a be finitely generated A-module. The following assertions hold:

(1) When M = aM there is an f € a such that (1 + f)M = 0.

(2) When M = aM and a is contained in all the maximal ideals of A we have
that M = 0.

(3) When L is a submodule of M such that M = L 4+ aM, and a is contained in
all the maximal ideals of A, then we have that M = L.

Proof. (1) We show assertion (1) by induction on the least number of generators
for the module M. When M has one generator the assertion is clear. Assume that
assertion (1) holds for all modules that can be generated by n — 1 elements, and
assume that M has n generators x1, zo, ..., T,. The residue module M/Az, can be
generated by n — 1 elements and a(M/Ax,) = aM + Az, /Az, = M + Ax,/Azx, =
M /Az,,. Hence it follows from the induction assumption that there is an elements
g € a such that (1 + g)(M/Az,) = 0, that is, such that (1 + ¢g)M C Az,. It
follows that there are elements g¢i,gs,...,9n—1 in A such that (1 + g)z; = gixn
for i = 1,2,...,n — 1. Since aM = M we can find elements hq,hs,..., h, in a
such that =, = hixy + hoxo + -+ + hpx,. We obtain that (1 4 ¢)(1 — hy)z, =
(14+g)h1z14+(14+g)hozo+- - -+ (14+g) hp—1Zn—1 = g1hixn+g2hoxn+- - -+ gn_1hn_12n.
Let fr, = (1 —g)(1 — hy) — g1th1 — g2ho — -+ — gn—1hpn—1 — 1. Then we have that
fn €aand (14 f,)z, =0. Similarly we can find elements f1, fa,..., fn—1 in a such
that (1+ fi)z; =0fori=1,2,...,n—1. Let f=(1+ f1))(1+ fo)--- (1 + fn) — 1.
Then f € a and (1+ f)M =0, and we have proved assertion (1).

(2) It follows from assertion (1) that there is an element f € a such that (14+¢)M =
0. When a is contained in all maximal ideals of A the element 1+ f is a unit in A. In
fact if 1 + f is not a unit there is a maximal ideal m in A containing 1+ f. However
this is impossible since f € M such that 1 + f € m implies that 1 € m. Since 1+ f
is a unit there is an element g € A such that g(1 + f) = 1, and we obtain that
M = g(1+ f)M = 0, as we wanted to prove.

(3) We have that a(M/L) = (aM + L)/L = M/L. It follows from assertion (2)
that M/L = 0, that is, we have M = L.

(1.28) Lemma. Let A be a ring and M an A-module. Moreover let 2?21 fijz; =0
be equations in M for i =1,2,...,n, with f;; € A and x; € M fori,j =1,2,...,n.
Then there are equations Z?:m gijz; = 0in M for i = m,m + 1,...,n, where
the elements g;; are sums of elements of the form +[[,_, [ with D1 i =
2m=1 " Moreover it is only the coefficients g;; for i = 1,2,...,n where the sums
contain products of the form +[['_, f1", and in g;; there is exactly one such term
m—2 m—3
bt f o fim—1)m—1) fis-
Proof. We prove the Lemma by induction on m. The Lemma clearly holds for m = 1.
Assume that it holds for m — 1. Then we have equations Z?:m_l hijx; = 0 for
i =m—1,m,...,n where the coefficients h;; are as described in the Lemma. Multiply
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both sides of the equation Z;L:m_l h(m—1)jz; = 0 with hy,,_1), and both sides of the

equation hypjz; =0 with Ay, _1)(m—1)- Subtract the first equation from the

j=m-—1
second for p = m,m + 1,...,n. We obtain the equations Z?:m(h(m_l)(m_l)hpj —
hpim—-1)h(m—1)j)z; = 0 for p = m,m + 1,...,n. It is clear that the coefficients

9ij = hm—1)(m-1)Nij — higm—1)R(m—1); are of the form described in the Lemma.

(1.29) Theorem. Let A be a ring and let a be an ideal. Moreover let M be a
finitely generated A-module and u : M — M an A-module homomorphism such that
u(M) C aM. Then there are elements f1, fo, ..., fn in a such that the endomorphism

un+f1un—1+...+fn;M_>M

defined by (u™+ fiu™ 1+ -+ £,)(z) = v () + fru" Y (z) +- -+ fox, forallz € M,
is equal to zero.

Proof. We have that the polynomial ring A[t] in the variable ¢ over A operates on
M by (got™ + g1it"t 4+ - + gm)(x) = gou™(x) + gru" "1 (x) + -+ + gox, for all
9o, 91,---,9n in A and x in M. It is clear that under this action M becomes an
A[t]-module. The Proposition states that we can find elements f1, fo,..., f, in a
such that (" + fit" 1 +---+ f,)(x) =0 for all x € M.

Let x1,xs,...,z,, be generators for the A-module M. Then we have that tx; =
Z;nzl fijxj with f;; € afori,j =1,2,...,m, and thus we have equations Z?ll(téij—
fij)xz; =0fori=1,2,...,m, where §;; = 1 and 6;; = 0 when ¢ # j. We apply Lemma
(?7) to these equations with A[t] instead of A and with m instead of n. We obtain
an equation ¢, = 0 where g,,,, is the sum of terms + H?:szl(téij — fij)™¥ with
Zi, jmpm Mg = 2m=1 From the description of the coefficient g, in The Lemma we
see that all the terms are polynomials in ¢ with all their coefficents in a except the
term (¢ — f11)%"(t = f22)2" - (t = Fim-1)(m-1))(t = frmm). We obtain that gy,
is a polynomial of the form g,,,,(t) = 2" 2T hymom—1 with h;; € a,
and whose product with x,, is 0.

Renumbering the generators z1, xo, ..., x,, we see that for each i we have a poly-
nomial g;(t) = 27 2 hiom—-1 with coefficients h;; € a whose
product with z; is 0. Then g11g22 - - * Gmm = t" + f1t" L +--- 4+ f, is a polynomial
with coefficients in a whose product with all the elements of M is 0.

(1.30) Definition. Let {M,},cz be a sequence of A modules M, and let w,, :
M, — M, for all n € Z be A-module homomorphisms. We say that!!

Un—1 Un
T n—1 Mn Mn—l—l_)"'

is a complex of A-modules if Im(u,,) C Ker(u,y1) for all n € Z. The complex is exact
if Im(u,,) = Ker(u,4+1) for all n € Z. If there are integers p or ¢ such that M,, =0

for n > p or n < ¢ we often write the terms!! ... —— p—1 BN M, — 0, or

u u
N0 — M, —% M, —5 -+ only.
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An exact complex of A-modules!!
0O—-M-—-N-—-P—0

is said to be short exact.

(1.31) Example. Let u: M — N be an A-module homomorphism. We obtain two
short exact sequences:

0 — Ker(u) - M — Im(u) — 0

and
0 — Im(u) — N — Coker(u) — 0.

(1.32) Remark. Let v : M’ — M and w : N — N’ be homomorphisms of A-
modules. We obtain an A-module homomorphism

Hom 4 (v, w) : Homs (M, N) — Homs(M', N')

that maps v : M — N to wuv : M’ — N’. The correspondence that maps an
A-module M to the A-module Hom 4 (M, N) for fixed N is clearly a contravariant
functor from A-modules to A-modules. Similarly the functor the correspondence
that maps an A-module N to Hom (M, N) for fixed M is a covariant functor from
A-modules to A-modules.

(1.33) Lemma. We have
(1) Let
LA5MSNS0 (1.33.1)

be a complex of A-modules. The complex is exact if and only if the complex

Hom 4 (v,idp) Hom 4 (u,idp)
B B

0 — Homu (N, P) Hom (M, P) Homu (L, P) (1.33.2)

is exact for all A-modules P.
(2) Let
0—-L%MEN (1.33.3)

be a complex of A-modules. The complex is exact if and only if the complex

Hom 4 (idp ,u) Hom 4 (idp,v)
- 5 5

Hom 4 (P, L) Hom 4 (P, M) Homu(P,N) — 0 (1.33.4)

is exact for all A-modules P.
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Proof. 1t is clear that if (1.33.1) and (1.33.3) are exact complexes then (1.33.2),
respectively (1.33.4), are exact complexes.

To prove the converse implications we assume that (1.33.2) is exact for all P.
First we let P = N/Im(v). The canonical homomorphism uy/m(y) : N — N/Im(v)
maps to zero in Hom4 (M, N/ Im(v)). Since Hom 4 (idp, u) is injective by assumption
we obtain that un/mmw) = 0, that is N/Im(v) = 0. Hence N = Im(v), and v is
surjective.

Secondly let P = M/Im(u). The canonical homomorphism ups/tm) : M —
M/ Im(u) maps to zero in Hom 4 (L, M/Im(u)). Since the sequence (1.33.2) is exact
by assumption there is an A-modules homomorphism w : N — M/Im(u) such that
Up/Tm(u) = wv. In particular the kernel Ker(v) of v is contained in the kernel
Im(u) of wpr/im(w). However Im(u) C Ker(v) since (1.33.1) is a complex. Hence
Im(u) = Ker(v), and we have proved that (1.33.1) is exact.

Similar reasoning gives that if (1.33.4) is exact for all A-modules P then (1.33.3)
is exact.

(1.34) Proposition. Let

0O — M —“—> M —2— M" 0
w | w| w | (1.34.1)
0 —— N/ N N" 0

/ ’

u v

be a commutative diagram of A-modules with exact horizontal sequences. Then there
is a natural exact sequence of A-modules!!

0 0

0 — Ker(w') “ Ker(w) - Ker(w”) %

Coker(w') RGN Coker(w) o, Coker(w") — 0

where u°,v? are induced by the restrictions of u and v respectively, and (u'), (v')?
are induced by u' respectively v’.

Proof. We first define the homomorphism d. Let 2/ € Kerw”. Choose an ©z € M
such that v(z) = 2. Then we have that v'w(z) = w”v(z) = w”(z”) = 0. Since
the bottom horizontal sequence is exact there is a unique element 3y’ € N’ such that
w(z) = u/'(y'). We take d(z”) to be the class of 3’ in N’/Im(w’). The definition
of d is independent of the choice of x. In fact, since the top horizontal sequence
of diagram (1.34.1) is exact, we have that v(z1) = z” and w(x;) = v/(y}) with
r1 € M and y; € N'. In particular v(x — x1) = v(z) —v(zy) = 2" — 2" =

and since the top horizontal sequence is exact we have that x — z; = wu(a’) for
some ' € M'. Then w(x) — w(zy) = w(zr — x1) = wu(z’) = v'w' ('), and thus
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u(y') = w(x) = w(zy) + ' (2') = u/'(y]) + Jw'(2') = o/ (y; + w'(2’)). Since o’
is injective we have y" = y] + w'(2’). Thus y and y; belong to the same class in
N'/Im(w").

Simple calculations show that the sequence is exact.

(1.35) Exercises.
1. Let A be a ring and let M, M’ and M" be A-modules. We have defined what

it means that a sequence of sets M’ — M = M" is exact and what it means that

a sequence of A-modules 0 — M’ — M — M"” — 0 is exact. Give the connection
between the two notions of exactness.

2. Show that the polynomial ring A[t] in the variable ¢ with coefficients in the ring
A is a free A-module with basis {1,¢,t2,...}.

3. Let M be an A-module. Define the sum and product of the elements in the
cartesian product A x M by (f,z) + (9,y) = (f + g,z + y), and (f,z)(9,y) =
(fg,9x + fy). Show that A x M with this sum and product is a ring which is an
A-algebra under the map A — A x M that sends f € A to (f,0) in A x M. We
denote this A-algebra by A[M].

4. Let A # 0 be a ring and denote by A™ the direct sum n times of the A-module A
with itself. Assume that u: M — A™ be a surjection of A-modules. Show that there
is a submodule L of M such that M is isomorphic to the A-module L & Ker u.

5. Let {M,, pg}aﬁ@,agﬁ be an inductive system of A modules.

(1) Show that the group lim M, has a unique structure of an A-module such
—a€el
that the canonical homomorphisms g : Mg — lim IMa of groups are all
—ag
A-module homomorphisms.

(2) Let {N4}aer be another family of A-modules, and let {uq}acr be a map of

the inductive systems. Show that the resulting map lim  wu, : lim M, —
—ael —acl

lim N, is an A-module homomorphism.

—a€el

6. Let A # 0 be a ring and let A™ be the direct sum of the A-module A with itself
n times. Let u: A™ — A™ be an A-linear map.

(1) Show that for every ideal a of A the map u induces a canonical A-linear
map uq : (A/a)™ — (A/a)" that sends (va/q(f1),ua/a(f2),- -, va/a(fim)) to
Up/a(ur(z)), uasa(uz(z)), ..., ua/a(un(x))) for all . = (f1, f+2,..., fin) in
A™_ where we have written u(z) = (u1(z), us(z),. .., uy(x)).

(2) Show that if u : A™ — A™ is surjective then m > n.

(3) Show that if u is surjective and injective then m = n.

7. Let A be a ring and let M # 0 be a free A-module of finite rank. Moreover let
{zq}acr be a collection of elements of M.

(1) Is it true that when the elements {x,}acr generate M then we can find a

subset J of I such that the elements {zg}ses form a basis for M?
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(2) Isit true that when the elements {z },cs are linearly independent then there
is a set K containing I and elements {x.},ck that form a basis for M?

8. Let I be an infinite set, and let A be a ring. For each a € I we let e(a) =
(eg)per € AT be the element given by e, = 1 and eg = 0 when a # 3.

(1) Are the elements {e(a)}qer linearly independent in AT?
(2) Are the elements {e(a)}ocr generators for the A-module AZ?

Un—1

9. Let - — M, — M, —= M, +1 — --- be a complex of A-modules M,,.

(1) Show that we obtain complexes 0 — Ker(u,,) — M,, — Coker(u,,—1) — 0 for
n € Z.

(2) Show that the complexes of (1) are exact for all n € Z if and only if the
complex - -+ — M, _1 M, M M, .1 — --- is exact.

10. Show that when K is a field and when

0—-My— M —---— M, —0

is an exact sequence of finitely generated K-vector spaces, then >, dimg (M;) = 0.
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2. Tensor products.

(2.1) Definition. Let A be a ring and let M, N and P be A-modules. A map
"b: M x N — P from the direct product of M and N to P is called A-bilinear if we
for all elements z,z’ in M, y,3’ in N and f in A have:

(1) b(fz,y) = folz,y) = bz, fy).

(2) bz +a',y) = b(x,y) + b(a",y).

(3) bz, y+y') = bz,y) + b(z,y).
(2.2) Construction of tensor products. We saw in (?) that the the A-module
AMXN) g free and has a canonical basis consisting of the family {e(z, Y)}zy)eMx N
where e(2,y) = (e ,y)) (2, )eMmx N With ez ) = 1 and e,y = 0if (z,y) # (', ).
Let L be the submodule of AM*N) generated by the elements

e(x +a',y) —e(x,y) —e(z',y),

ez, y+y') —e(r,y) —e(z,y),

e(fx.) — felz.y). 22:1)
e(z, fy) — fe(x,y),

for all elements x,z’ in M, y,3’ in N and f in A. Moreover let !!
M@y N =AM*N) /1.

and let up/g N ¢ AMXN) _, M @4 N be the canonical homomorphism. We denote
the residue class of e(x,y) in M ®4 N by !z ® 4 y. It follows from the definition of
the A-module M ® 4 N that M ®4 N is generated as an A-module by the elements
of the form x ® 4 y for all z € M and y € N, and that we have relations

(z+2)Qay=2@ay+2' ®ay, 2QaWy+yY)=rQay+ray,
froiay=fzr®ay)=2®a fy. (2.2.2)

Finally we let !!
bM®ANZMXN—>M®AN

be the homomorphism defined by byrg N (T,y) =2 R4 y.

(2.3) Remark. It follows from the equalities (2.2.2) that if M and N are generated
as A-modules by the elements {z, }oer respectively by {yg}ses then the A-module
M ®a N is generated by the elements {x4 ®A Yg}(a,8)erx -

(2.4) Proposition. Let M, N and P be A-modules. The canonical homomorphism
byosn: MXN — M®y N is A-bilinear and it has the following universal property:

Ifb: M x N — P is an A-bilinear map, then there is a unique A-linear homomor-
phism u: M ®4 N — P such that b = ubyg ,N-
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Proof. Since bye (%, y) = x4y for all (x,y) € M x N, the bilinearity of the map
byrg N follows from the relations (2.2.1).

The homomorphism w« is unique when it exists, because the A-module M ® 4 N
is generated by the elements x @4 y for all (z,y) € M x N, and u(zx ®4 y) =
u(bpe n(@,y)) = bz, y).

In order to show the existence of u we observe first that it follows from Proposition
(?) that there is an A-linear homomorphism v : AM*N) — P defined by v(e(z,y)) =
b(z,y) for all (z,y) € M x N where {e(z,¥)}(z,y)emxn is the canonical basis for
AMXN) “Since the map b is A-bilinear it follows that v is zero on the submodule L.
Hence it follows from Proposition (?) that v factors via an A-linear homomorphism
UM AN AMXN) _ M@ 4 N and an A-linear homomorphism v : M®, N — P. We

have that b(z,y) = v(e(z,y)) = u(ume, n(e(z,y))) = u(z ®a y) = wbue,n(z,Y)).
Hence we have that b = ubyrg , N -

(2.5) Remark. The universal property determines by N : M X N — M ®4 N
uniquely, up to an A-module isomorphisms. In fact if ¢ : M x N — T is a bilinear
map of A-modules such that for each A-bilinear map b : M x N — P there is a unique
homomorphism v : T' — P with b = uc, then the universal properties for bj;g , ;v and
¢ define unique A-linear homomorphisms v : M @4 N — T and w : T — M ®4 N
such that b = vbyg v and byrg , v = wb. Hence b = vwb and byrg , N = Wby 4N,
and again by uniqueness v and w must be inverses.

(2.6) Definition. The module M ® 4 N is called the tensor product of M and N.

(2.7) Example. When p and q are different prime numbers we have that Z/pZ ®z
Z/qZ = 0. In fact, it follows from the Euclidian algorithm that we can find an integer
n such that ng = 1 (mod p). Hence, when we denote by 7 the class of an integer n
in Z/pZ and Z/qZ, we have that 1 ®z 1 =Rz 1 =1 ®zq=01in Z/pZ @z Z/qZ.

On the other hand we have that Z/pZ ®z Z/pZ is isomorphic to Z/pZ, because
for all integers m and n, we have that m ®zn = 1 ®z mn. Hence the homomorphism
Z/pZ ®z Z/pZ — Z/pZ that maps m Rz 1 to mn is an isomorphism with inverse
mapping m to 1 ®z m.

(2.8) Multilinear maps. Let A be a ring and let My, M, ..., M,, be A-modules.
A map !!
m: My X My x---x M, — P

is A-multilinear if for all f € A and z;, 2 in M; for i = 1,2,...,n we have that

M(T1, .o+ T ) = (X1, Ty ey Tp) U T, Ty Ty
m(xy, ..., fxiy ... xn) = fm(xy, ...,z .., 2,)
for i = 1,2,...,n. An analogous construction to that giving the tensor product of

two modules will give the tensor product 'M; ®4 Ms ®4 --- @4 M, of the mod-
ules M, M, ..., M, and an A-multilinear homomorphism !"my;, ¢, Mo@a--0aM, °
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My xMox---xM, - M @A Ms®4---®a M, with the universal property that if m :
MixMsx---xM, — Pisan A-multilinear map then there is a unique A-linear homo-
morphism u : Mi@AMa®@a---Q@aM, — P such that m = ump, g My04--04M, - The
universal property again determines M7 ® 4 My ®4 - ®4 M, up to an A-module
isomorphism. We denote the image of the elements (z1, xo, ..., x,) by the homomor-
phism MM, @A M@ 4R a4 M, by 1 @4 22 ®4 -+ @4 Ty

(2.9) Maps of tensor products. Let u: M — N and v’ : M" — N’ be homo-
morphisms of A-modules. We obtain a map b : M x M’ — N ®4 N’ defined by
b(xz,z") = u(x) ®4 u(z’) for all x € M and x’ € M'. It is clear that the map b is
A-bilinear. Consequently we obtain an A-linear homomorphism !!

U®AUIZM®AM/—>N®AN’.

When v : N — P and v : N/ — P’ are A-linear homomorphisms we clearly have
that:

(R0 ) (u@au) =vu®4 v'u.

(2.10) Remark. For fixed N we have that the correspondence that sends an A-
module M to M ®4 N is a covariant functor from the category of A-modules to
the category of A-modules. Similarly for fixed M the correspondence that sends the
A-module N to M ®4 N is a covariant functor between the same categories.

(2.11) Lemma. Let M, N and P be A-modules.

(1) We have an isomorphism of A-modules M ® 4 A — M that is uniquely deter-
mined by mapping x @4 f to fx for all f € A and x € M.

(2) We have an isomorphism of A-modules (M @4 N) @4 P — M ®4 N ®4 P
that is uniquely determined by mapping (r ®4 y) @4 2 t0 T @4 Yy D4 2.

Proof. (1) The map M x A — M that takes (x, f) to fx is A-bilinear. Consequently
there is an A-linear homomorphism M ® 4 A — M that maps x ® 4 f to fx. We also
have an A-linear homomorphism M — M ®4 A that maps x to z ® 4 1. It is clear
that the two homomorphisms are inverses of each other.

(2) For every element z in P we have a map M x N — M ®4 N ® 4 P that takes
(z,y) to t®4Yy® 4 2. This map is clearly A-bilinear. Consequently there is an A-linear
homomorphism u, : M ® 4 N — M ®4 N ® 4 P that maps w to u,(w) = w®4 z. In
particular it maps T @4y to @4y ®4 2. The map (M @y N) X P — M ®s N ®4 P
that takes (w, z) to u,(w) is clearly A-bilinear. Consequently we have an A-linear
homomorphism (M ®4 N) ®4 P — M ®4 N ®4 P that maps (z ®4 y) ®4 2 to
TRaYyR4z. Wealso have amap M X N X P — (M ®4 N)®4 P that takes (z,y, z)
to (r ®4 y) ®a z. This map is clearly A-multilinear, and thus defines an A-linear
homomorphism M@ N4 P — (M®4N)®4 P. The two homomorphisms between
(M ®4N)®sg Pand M @4 N ®4 P are clearly inverses of each other.
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(2.12) Proposition. Let {M,}aecr be a collection of A-modules, and let N be an
A-module. Then there is an isomorphism of A-modules

U (PacrMa) ®a N = Daer (My ®a N)

that is uniquely determined by u(xo ®4 y) = to ®a y for all z, € M, and y € N.

Proof. 1t is clear that w is unique if it exists.

We have a map (PacrMa) X N — @aer(Mao ®4 N) that takes (3 .7 Za,y) to
YoacrTa®@ayforall Y ;24 € DacrM, and y € N. This map is clearly A-bilinear
and thus defines an A-linear homomorphism v : (Bacr)Ma®@aN — Dacr(Ma®4N).

To show that u is an isomorphism we shall construct the inverse homomorphism.
For each o € I we have a map M, X N — (®oerM,) ®4 N which takes (z,y) to
To ®ay for all x, € M, and y € N. The map is clearly A-bilinear. Consequently we
obtain an A-linear homomorphism M, ®4 N — (®acrMy) @4 N for all @ € I. From
the categorical definition of the sum of modules we have an A-linear homomorphism
Bact(My ®a N) — (BaciMy) ®4 N. Tt is clear that the latter homomorphism is
the inverse of wu.

(2.13) Corollary. Let M be a free A-module with basis {z4}acr, and let N be
an A-module. Then every element in M ® 4 N can be written uniquely on the form
Zael To @A Yo With y, € N, and with y, = 0 except for at most a finite number of
the a € 1.

Proof. Since M is free it is isomorphic to the direct sum ®,¢c Az, via the homomor-
phism that maps ) ; faZo in M to Y ; faTa in @acrAzy. It follows from the
Proposition that M ® 4 N is isomorphic to @aer(Az, ®4 N). We have that the map
A — Az, that sends f to fx, is an isomorphism. Hence it follows from Lemma (7)
that Az, ®4 N is isomorphic to N. Hence M ® 4 N is isomorphic to ®,c7N and we
have proved the Corollary.

(2.14) Proposition. Let
MM Mo
be an exact sequence of A-modules. For every A-module N the sequence

M’@AN u @aidy Moa N U ®aidy M @A N =0

is exact.

Proof. Since u” is surjective and M"” ® 4 N is generated by the elements 2"/ ® 4 z with
2" € M" and z € N we have that u” ® 4 idy is surjective. Moreover, since u”u’ = 0,
it is clear that Im(u' ® 4 idy) C Ker(u” ® 4 idy).

It remains to prove that Im(u’ ®4 idy) = Ker(uv” ®4 idy). Let L = Im(u’ ®4
idy). It follows from Proposition (?) that we have an A-linear homomorphism
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u:(M®aN)/L - M”" ®4 N that maps the class of z ®4 z to u”(x) ®4 z, and
that we have an equality L = Ker(u” ®4 idy) if and only if the homomorphism u is
injective. To prove injectivity of u it suffices to prove that there is a homomorphism
v:M' @y N — (M ®4 N)/L such that vu is the identity on (M ®4 N)/L. In
order to prove the existence of v we let b : M x N — (M ®4 N)/L be the map
that takes (u”(x),z) to the class of x ®4 z for all x € M and z € N. The map b
is well defined if v (z) = v (y) we have that z — y is in the kernel of u”, and thus
x—y =u(2) for some &’ € M’. Then we have that 1 @42 =y®Ra 2+ (/) R4 2 =
yRaz+ (v ®@41dy) (2" @4 2), and consequently z ® 4 z and y ® 4 z have the same
class in (M ®4 N)/L. Tt is clear that b is A-bilinear. Hence we obtain an A-linear
homomorphism v : M" ®4 N — (M ®4 N)/L. Since the A-module M ®4 N is
generated by elements of the form x ®4 z, it suffices, in order to prove that vu is
the identity homomorphism, to check that vu is the identity on the classes of the
elements r ®4 z. However the class of x ® 4 z is mapped by u to v”(z) ® 4 z and
v(u" () @4 2) =2 ®4 2.

(2.15) Remark. We express the conclusion of the Proposition by saying that the
tensor product is exact to the right or right exact. It is not left eract because the
homomorphism Z =N/ given by multiplication by 2 is an injection of Z-modules. It
follows from Proposition (?) that Z ®yz Z/27Z = Z/2Z. However the homomorphism
7%y (Z/QZ) 2z®zidz/2z
0.

Z®7(Z/2Z) is zero because 2z ®zidz oz = idz ®z27/27 =

(2.16) Tensor products of algebras. Let A be a ring and let ¢ : A — B and
X : A — C be A-algebras. Moreover let N be a B-module and P a C-module. We
consider N and P as A-modules the product gy = ¢(g9)y and gz = x(g)z for all

g€ A, ye N and z € P. We have a map
BXCXNxP—-N®yP

which takes (g, h,y, z) to gy ®4 hz. It is clear that this map is A-multilinear. Con-
sequently we obtain an A-linear homomorphism

By C®@s N®@g P— N®y P.

Using Lemma (?) repeatedly we obtain an A-module isomorphism (B® 4 C)®4(N® 4
P) - B®4C®4 N ®4 P which maps (g ®4 h) ®4 (y®42) to gRAh @4y R4 2.
Consequently we have an A-module homomorphism (BR4C)®@4(N®@aP) — Ny P
that gives an A-bilinear map

(B®AC)X(N®AP)—>N®AP

that takes ((g®a h), (y®a4 2)) to gy®4 hz. We have thus defined an operation of the
tensor product B®4 C on the group N ® 4 P such that the product of Y ;" g; ®4 h;
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and Y 1" | y; ®4 2i, with g; € B, h; € C, y; € N and z; € P for i = 1,2,...,m and
Jj=12,...,n,is given by

(Z 9 ®a h) (Z Yi ®a z) =33 giy; @4 hiz. (2.16.1)
i=1 i=1 i=1 j=1

It follows from Formula (2.16.1) that when B = N and C' = P the group B® 4 C with
this product is a ring with unit 1® 4 1, and that N ® 4 P becomes a B ® 4 C-module.
It is easy to see that the homomorphism

W:A— Bo,sC (2.16.2)

defined by ¥(f) = p(f)®al = 1®4 x(f) is a ring homomorphism which gives B® 4 C
a natural structure as an A-algebra.

(2.17) Restriction and extension of scalars. Let A be aringandlet p: A — B
be an A-algebra. Moreover let M be an A-module and N a B-module.

We obtain an operation of A on the group N by defining the product of f € A and
y € N by fy = p(f)y. It is easy to check that N with this operation by A becomes
an A-module. We say that N is an A-module via the A-algebra structure on B and
denote this A-module by !!N,). The A-module N}, we call the A-module obtained
from the B-module N by restriction of scalars to A.

The tensor product M ® 4 B has a natural structure as an A-module when the
product of f € A withx®s9 € M ®4 Bisgiven by f(r®a9) = frRag=2R4 fg.
As we saw in Section (2.16) the group M ® 4 B has a natural structure as a (A® 4 B-
module, and consequently by Lemma (7) a structure as a B-module. The product
of g with Y_0" | @; ®4 h; is defined by

qg (ZZB@ XA h1> = Ug <ZZB@ XA hz> = ZZB@ ®A ghi.
i—1 i=1 i=1

It is easy to verify that M ® 4 B with this product becomes a B-module. We say that
M ®4 B is the B-module obtained from the A-module M by extension of scalars to
B.

Let v : M ®4 B — N be a homomorphism of B-modules. The composite of v
with the homomorphism M — M ® 4 B that maps x € M to x ® 4 1 gives a map of
A-modules M — Mj,. Hence we have defined a map

HomB(M®A B,N)—>HOH1A(M,N[@]). (2.17.1)

This map is a bijection. To construct an inverse we let v : M — N be a homomor-
phism of groups such that u(fz) = ¢(f)u(x) for all f € A and = € M. That is, u is
an A-module homomorphism wu : M — N|,j. Then the A-bilinear map M x B — N
that takes (z,¢) to p(g)u(z) = gu(x) for all g € B and = € M gives an A-linear ho-
momorphism M ® 4 B — N that maps £ ®4 g to gu(z). If follows from the definition
of the B-module structure on M ® 4 B that this is a B-module homomorphism, and
it is clear that it gives an inverse to the map (2.17.1).
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(2.18) Definition. Let ¢ : A — B be an A-algebra, and let M be an A-module,
and N a B-module. A homomorphism of groups u : M — N is compatible with the
algebra structure p, or is a @-module homomorphism if for all f € A and x € M
we have u(fzr) = ¢(f)u(z). Equivalently we have that u is compatible with ¢ if
u: M — N, is a homomorphism of A-modules.

(2.19) Remark. It is clear that the map (2.17.1)
Homy4 (M, Ni,)) == Homp(M ®4 B, N)

is a p-module isomorphism.

(2.20) Remark. Let ¢ : A — B be an A-algebra. Moreover let M be an A-module
and N a B-modules. We have an ¢-module isomorphism

M@A N[¢}L>(M®AB) ®BN (2201)

which is uniquely determined by mapping z ® 4 y to (zx ®4 1) ®p y for all x € M
and y € N. The inverse homomorphism of (2.20.1) maps (z ®4 g) ®p y to x @4 gy
for all g € B, x € M and y € N. In fact we have an A-bilinear map M x Ny, —
(M ®4 B) ®p Nj,) which takes (z,y) to (x ®4 1) ®p y. This map gives an A-linear
homomorphism M ®4 Ni, — (M ®4 B) ®p N.

To define the inverse homomorphism we consider the B-bilinear map (M ® 4 B) X
N — M @4 N that maps (3>, 2; ®4 gi,y) to D1 x; @a gy for all x; € M,
gi € B and y € N. We obtain a B-linear homomorphism (M ®4 B) ® g N —
M ® 4 N. The latter homomorphism defines, by restriction of scalars, the inverse of
the homomorphism (2.20.1).

It is clear that the map (2.20.1) is compatible with (.

(2.21) Remark. Let M be a free A-module with a basis {x,}aecs and let ¢ :
A — B be a homomorphism of rings. Then M ®4 B is a free B-module with basis
{za ®4 1}aer. This follows immediately from Corollary (7).

(2.22) Example. Let ¢ : A — B be a homomorphism of rings, and let A[t] and
B[t] be the polynomials rings in the variable ¢ with coefficients in A, respectively B.
Then there is an isomorphism A[t] ® 4 B — B[t] uniquely determined by mapping
f(t)®a4 g to f(t)g for all f(t) € A[t] and g € B. The existence and the uniqueness is
clear. That the homomorphism is an isomorphism follows from Corollary (7).

(2.23) Lemma. Let ¢ : A — B be an A-algebra. Moreover let N and N’ be
B-modules. Then we have a canonical p-module homomorphism N, ® 4 N[’ o
N ®p N’ which maps y @4y toyp7vy'.

In particular, if M and M’ are A-modules and v : M — N and v’ : M’ — N’ are
p-module homomorphisms we have a natural p-module homomorphism

u®@u':M®AM/—>N®BN'
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that maps x @4 «’ to u(x) @p v'(z’). Whenv : N — P and v’ : N’ — P’ are x-
module homomorphisms for a B-algebra x : B — C we have that (vu) ®y., (V'u') =
(v ®y V') (u @y, u')

Proof. We have a map N, x N[’(P] — N ®p N’ that takes (y,y’) to y®py’. This map
is A-bilinear because, for all f € A, we have that (fy,y’) = (¢(f)y,y’) maps to the

element ¢(f)y ®p y" =y ®p ¢(f)y’ which is also the image of (y, ¢(f)y') = (v, fy').
The remaining properties for A-bilinearity are clearly satisfied. Hence we obtain an

A-module homomorphism N, ®a N[/so] — N ®p N'. It is clear from the explicit
descrition of the map that it is a ¢-module homomorphism.

For the last part we take the composite of the homomorphism N, ®a N, [’ o
N ®p N’ with the natural homomorphism M ®4 M’ — N, ®4 N[’ o] of A-modules
coming from u® 4 u’. The composite homomorphism v ®,u' : M @4 M — N®@p N’
maps x ®4 &' to u(x) ®p u(z'), and is therefore a ¢-module homomorphism.

(2.24) Exercises.
1. Show that there is a canonical isomorphism M ® 4 N — N ® 4 M of A-modules.
2. Let A be a ring and let M be an A-module. Show that for all ideals a of A there
is a canonical isomorphism between M ® 4 (A/a) and M/aM.
3. Let ¢ : A — B be an A-algebra, and let A[t,]aer and B[t,]acr be the polynomial
rings in the variables t,, over A respectively B. Show that A[t,]aer®a B is canonically
isomorphic to Blta|acr-
4. Let Afu] be the polynomial ring in the variable u over the ring A # 0, and let
A[[t]] be the power series ring in the variable ¢ over A.
(1) Show that there is a homomorphism of rings Au] ®4 A[[t]] — Alu][[t]],
uniquely determined by mapping f ®4 g to fg for all f € A[u| and g € A[[t]].
(2) Show that the homomorphism in (1) is injective.
(3) Show that the homomorphism in (1) is not surjective.
5. Let A be a ring and let a be an ideal in A. Moreover let M be an A-module.

(1) Show that the A/a-module M ®4 A/a is canonically isomorphic to the A/a
module M /aM.
(2) Show that the ring (A/a) ® 4 (A/a) is canonically isomorphic to A/a.
(3) Show that the let A/a-module (A/a) ®4 a is canonically isomorphic to a/a?.
6. Let {M,}aer be a family of A-modules, and N an A-module. Show that
Baci(My ®4 N) is isomorphic to (BaerMy) @4 N.

7. Is the tensor product C ®gr C of the complex numbers over the rational numbers
a local ring?
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3. Localization.

(3.1) Construction. Let S be a multiplicatively closed subset of the ring A. For
every A-module M we define a relation !!~ on the cartesian product M x S by
(z,8) ~ (y,t) if there is an element r € S such that r(tx — sy) = 0 in M. It is clear
that the relation ~ is reflerive, that is x ~ x, and symmetric, that is x ~ y implies
that y ~ x. It is transitive because if (z,s) ~ (z’,s') and (2/,s") ~ (2", s”) there are
elements t,¢ in S such that ¢(s'x — sz’) = 0 and t'(s"2" — s’2”) = 0. Then we have
that tt's’(s"x — sa”’) = tt's's" v —tt's'sa” = t's"tsx’ —tst's"x’ = 0, and consequently
that (x,s) ~ (z”,s").

Let 'S™1M = M x S/~ be the residue classes of M x S modulo the equivalence
relation ~. The class of the element (x,s) we denote by z/s. There is a canonical
map!!

iR M — ST'M

defined by i3y,(x) = /1.

On the set S~1M there is a unique addition such that S~!M becomes a group and
such that the canonical map 21%4 is a group homomorphism. The sum of two elements
z/s and y/t in ST'M is defined by z/s + y/t = (tz + sy)/st. We have that the
addition is independent of the choice of representative (z, s) for the class z/s because
if x/s = x’/s’ there is an element r € S such that r(s'z — sz’) = 0. Consequently we
have that r(s't(tz + sy) — st(ta’ + s'y)) = t?rs’x + rs'tsy — rst?x’ — rsts’y = 0, and
thus (tz + sy)/st = (tz’ + s'y)/s’t. Symmetrically the addition is independent of the
choice of representative (y,t) of the class y/t. It is easily checked that S™1M with
this addition becomes an abelian group with 0 = 0/1.

We define the product of an element f/s € S™1A with an element z/t € S~ M
by (f/s)(z/t) = (fx)/(st). A simple calculation shows that the multiplication is
independent of the choice of representatives (f,s) and (z,t) of the classes f/s, re-
spectively x/t. In particular we obtain a multiplication on S~™!A and it is easily seen
that this multiplication toghether with the group structure on S—!'A makes S~'A4
into a ring. Moreover, with this ring structure the above operation of ™' A4 on S™'M
makes S™!M into a (S~1A)-module.

The canonical map!!
i5:A— 8714

that maps an element f in A to f/1 is a ring homomorphism.
(3.2) Definition. We call S~'M the localization of M by the multiplicative set S.

(3.3) Proposition. Let A be a ring and S a multiplicatively closed subset. More-
over, let M be an A-module and N an S~—!'A-module. For every homomorphism

u:M—>N[isM]
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of A-modules there is a unique S~!A-module homomorphism
(O S_lM — N[Z]Sw]
such that u = viy,.
The canonical map i3 : A — S~ A has the universal property:

For every homomorphism of rings ¢ : A — B where ¢(s) is invertible in B for
every element s € S, there is a unique ring homomorphism x : S~*A — B such that
= X%

Proof. If v exists we have, for all z € M and s € S, that v(z/s) = v((1/s)i3,(x)) =
(1/s)v(i7,(x)) = (1/s)u(x). Hence v is uniquely determined if it exists.

To show that v exists we let v(z/s) = (1/s)u(x) for all z € M and s € S. This
definition is independent of the choise of representative (z, s) for the class /s because
if x/s = y/t with y € M and t € S there is an r € S such that u(r(tz — sy)) =
ru(tx — sy) = 0. Hence we have that r(¢(u(z) — su(y)) = 0 in N and consequently
that u(z)/s = u(y)/t in the S~!A-module N. It is clear that v is an S~!A-module
homomorphism and that u = vz’f/‘,.

Finally when ¢ : A — B is a ring homomorphism such that ¢(s) is invertible in
B for all s € S we have that B is an S~!A-module by the multiplication (f/s)g =
o(f)p(s) tgforall f/s € S71A and g € B. It is easily checked that the definition is
independent of the representative (f,s) of the element f/s and that B becomes an
S~ A-module. Hence it follows from the first part of the Proposition that we have a
map x : S~1A — B of S7!A-modules, and it is clear that y is a ring homomorphism.

(3.4) Remark. The universal property characterizes i3 : A — S™!A up to an
isomorphism of rings. In fact let ¢ : A — T be a homomorphism of rings with the
same universal property as i%. That is, for each homomorphism of rings ¢ : A — B
with ¢(s) invertible in B for all s € S there is a unique homomorphism 7 : T' — B
such that ¢ = 7¢. Then the universal properties give unique ring homomorphisms
w:S1A— Tand 7:T — S71A such that wif, =+ and 7¢ = i|. Hence we have
that i = Twi?, and 1 = wry. By unicity, we obtain that 7 and w are inverse maps.

(3.5) Example. Let S =Z\ {0}. Then S~'Z are the rational numbers Q.

(3.6) Example. Let A be a ring and S a multiplicatively closed subset of A con-
taining 0. Then S™1A = 0.

(3.7) Example. Let A = Z/6Z and let S = {1,2,22,...}. Then we have that
S=YA = Z/3Z. The map i3 : Z/6Z — Z/3Z coincides with the canonical residue
map of Z/6Z modulo the ideal 3Z/6Z. In particular we have that i% is not injective.

(3.8) Remark. Let A be a ring and let S be a multiplicatively closed subset that
consist of non-zero divisors different from 0. Then the map ii c A — ST1A s
injective. We often identify A with its image by ;. When A is an integral domain
and S = A\ {0} we have that S™!A is a field.
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(3.9) Definition. The total quotient ring, or total fraction ring of a ring A is the
localization S™'A of A in the multiplicative set S consisting of all non-zero divisors
different from 0. When A is an integral domain we call the field S~'A the quotient
field, or field of fractions of A.

(3.10) Notation. Let f be an element of A. The set S = {1,f,f%...,} is a
multiplicatively closed subset of A. We write !S™'M = M;. Let p be a prime ideal
of A. Then the set T = A\ p is a multiplicatively closed subset of A. We write !!

T~'M = M,. The A,-module M, is called the localization of M at p. Moreover we
b p

write iy, = i}, and i1, = i¥,.
(3.11) Proposition. Let A be a ring and S a multiplicatively closed subset. For
every prime ideal p in A that does not intersect S we have that lpS—'A = {f/s €
S™LA: f € p} is a prime ideal in S™'A. The correspondence that maps p to pS—1A
is a bijection between the prime ideals in A that do not intersect S and the prime

ideals of S~™'A. The inverse correspondence associates to a prime ideal q in S™'A
the ideal (i%)71(q) in A.

Proof. Let q be a prime ideal in ST1A. Tt is clear that (i%)71(q) is a prime ideal in
A that does not intersect S.

Let p be a prime ideal in A that does not intersect S. If (f/s)(g/t) € pS~' A there
is an r € S such that rfg € p. Since r ¢ p we have that f or g are in p, and thus
that f/s or g/t is in pS~*A. Moreover we have that (i5)~!(pS~tA) = p since, if
i5(f) = g/t with g ¢ p, then there is an 7 ¢ p such that r(tf —g) = 0in A. We
obtain that rtf ¢ p, and thus that f ¢ p.

It remains to prove that if p = (5)7'(q) then pS—'A = q. However it is clear
that pS—1A C q. Conversely if f/s € q we must have that f € p.

(3.12) Corollary. Let p be a prime ideal in the ring A. Then the localization A,
of A at p is a local ring with maximal ideal pA,.

Proof. In this case S = A\ p so p is maximal among the ideals in A that do not
intersect S.

(3.13) Remark. Let b be an ideal in S7'A4 and let a = (i%)7'(b). Then, b =
aS7tA={f/se ST1A: f €a,s € S}. Itisclear that aS~1A C b. Conversely, when
f/s € b we have that f/1 € b and consequently f € a. Hence f/s = (f/1)(1/s) €
aS~1A.

(3.14) Proposition. There is a canonical isomorphism of S~ A-modules
M@y S™'A— S (3.14.1)

that is uniquely determined by mapping x ®4 (f/s) to (fx)/s for all f € A, s € S
and x € M.
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Proof. Tt follows from the explicit description of the map (3.14.1) that it is a map of
S—1 A-modules if it exists.

To prove the existence we consider the map M x S™'A — S~'M that maps
(z, f/s) to (fx)/s. It is clear that this map is A-bilinear. Consequently we obtain
an A-linear map M ®4 S~'A — S~!M that maps x ®4 f/s to (fx)/s. It is clear
that this map is an (S~!A)-homomorphism.

In order to show that the map is an isomorphism we construct an inverse S~'*M —
M @4 S™tA by mapping z/s to 1®41/s. The latter map is independent of the choice
of representative (z,s) of the class of z/s. In fact if 2/s = y/t there is an r € §
such that r(tz — sy) = 0 in A. We obtain that z ®4 (1/s) = x @4 ((rt)/(rst)) =
rte @4 (1/(rst)) = rsy @a (1/(rst)) =y ®a ((rs)/(rst)) = y ®a (1/1).

It is clear that the two maps are inverses of each other.

(3.15) Homomorphisms. Let S be a multiplicatively closed subset of A, and
let w : M — N be a homomorphism of A-modules. There is a canonical map of
S~ A-modules:!!

S™lu:857M - STIN

that maps x/s to u(z)/s for all s € S and z € M. The map is independent of the
choice of representative (z, s) of the class x/s because if /s = y/t there is an r € S
such that r(tz — sy) = 0, and thus u(x)/s = u(y)/t. It follows from the explicit form
of S~'u that it is an S~!A-module homomorphism.

(3.16) Remark. When v : N — P is a homomorphism of A-modules we have that
S~ Y(vu) = S7twS~tu, and S7lidy; = idg-15;. In other words, the correspondence
that maps an A-module M to the (S~!A)-module S~'M is a covariant functor from
A-modules to (S7!A)-modules.

(3.17) Notation. Let f be an element of A and let S = {1, f, f2,...,}. Moreover
let p be a prime ideal of A, and let T'= A\ p. For every homomorphism v : M — N

we write luy = S7'u and !lu, = T7'u. Moreover we write the canonical maps
13§ = if), and 3% = "),
(3.18) Proposition. Let A be a ring and S a multiplicatively closed subset. More-

over let
u

0-M S5 ML M -0
be an exact sequence of A-modules. Then the sequence

S~ v
-

0— S1a 5% g1y STIM =0

is an exact sequence of S~'A-modules.

Proof. We first show that S~1u is injective. If 2/ € M’ and s € S, and S~ u(a’/s) =
u(x’)/s = 0 there is a t € S such that u(tz’) = tu(x’) = 0. Since w is injective we
have that tz’ = 0 and consequently z’/s = 0.
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It is clear that we have an inclusion Im(S~! ) C Ker(S71v). We will show that
the opposite inclusion holds. Let z/s € Ker(S~1v), that is v(x)/s = 0. Then there
is a t € S such that v(tx) = tv(x) = 0. Since Im(u) = Ker(v) there is an 2/ € M’
such that u(z') = tz. Consequently S™1u(z'/(st)) = u(z')/(st) = (tz)/(st) = z/s,
and thus z/s € Im(S™1u).

Finally it is obvious that S~'v is surjective.

(3.19) Remark. We paraphrase Proposition (3.17) by saying that the functor S—*
is ezact.

(3.20) Proposition. Let A be a ring and let S be a multiplicatively closed subset.
Moreover let {M,}ocr be a collection of A-modules. Then there is a canonical
isomorphism of A-modules

BacrS ' My =55 (BaerM,) (3.20.1)

such that the composite of the map (3.20.1) with the canonical map vg : S™' Mg —
Bac1S™I M, to factor B is the localization S~ ug : ST1 Mg — S~ (BnerM,) of the
canonical map ug : Mg — @©,e1 M, to factor 3.

Proof. The canonical map ug : Mg — @DacrM, gives a map S~ tug : S~'1Mz —
S~ Y (@®perM,) and by the universal property of direct products we obtain the map
Daer(S™IMy) — S™HBaerM,) of (3.20.1).

To show that the map is an isomorphism we construct the inverse. The canonical
maps M, — S~'M, for o € I define a homomorphism ®acrMy — BacrS™ ' M,.
Consequently it follows from Proposition (3.3) that we have a canonical homomor-
phism S~ @aerMy) — @aerS™ M, and it is clear that this map is the inverse of
the map (3.20.1).

(3.21) Proposition. Let A be a ring and let M be an A-module. The following
conditions are equivalent:

(1) M ={0}.

(2) M, = {0} for all prime ideals p of A.

(3) My = {0} for all maximal ideals m of A.

Proof. (1) = (2) and (2) = (3) are clear.

(3) = (1) Let x € M and let a, = {f € A: fo = 0}. It is clear that a, is an ideal
in A. We shall show that a, = A, and hence in particular that 1z = x = 0. Assume
to the contrary that a, € A. Then there is a maximal ideal m of A that contains a,.
Since My, = 0 we can find an element s € A\ m such that st = 0. Then s € a, which
is impossible since a, C m. This contradicts the assumption that a, € A. Hence we
have proved that a, = A for all x € M and consequently that M = 0.

(3.22) Proposition. Let A be a ring and u : M — N an A-linear homomorphism.
The following conditions are equivalent:

(1) w is injective, respectively surjective.
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2) wuy Is injective, respectively surjective, for all prime ideal p of A.
p .] .]
m ) ) .
(3) uwm Is injective, respectively surjective, for all maximal ideals m of A

Proof. We prove the equivalence of the conditions for injective maps:

(1) = (2) It follows from Proposition (7) that condition (2) follows from conditon
(1).

(2) = (3) This implication is clear.

(3) = (1) Let L = Ker(u). When u,, is injective it follows from Proposition (?)
that Ly, = 0 for all maximal primes m of A. Hence it follows from Proposition (7)
that L = 0 and thus that u is injective.

Similar arguments show the equivalence of the assertions for surjective maps.

(3.23) Corollary. Let f # 0 be an element of A. We have:

(1) If f is not a zero divisor in A then f/1 is not a zero divisor in the localization
A, of A in p for all prime ideals p of A.

(2) If f/1 is not a zero divisor in Ay, for all maximal ideals m of A then f is not
a zero divisor in A.

Proof. We have that f is not a zero divisor in A if and only if the multiplication
map fa : A — A is injective, and f/1 is not a zero divisor in A, if and only if the
multiplication map (f/1)4, : Ay — A, is not injective. Hence the Corollary follows
from the Proposition.

(3.24) Exercises.
1. Let K be a field and let K[u,v] be the polynomial ring in the variables u, v with
coefficients in K. Moreover let A = K[u,v]/(uv).

(1) Show that the ideal p = (u)/(uv) is a prime ideal in A.
(2) Describe the localization A,.

2. Let M and N be A-modules and let S be a multiplicatively closed subset of A.
Show that the S~!A-modules S™(M ®4 N) and S™*M ®g-1,4 S~1N are canonically

isomorphic.
3. Let f be a nilpotent element in A, and M an A-module. Determine M.
4. For every f € A and every prime ideal p of A we let f(p) be the image of f by the

i’ m
composite map A — A, i LLLN p/my. Show that f(p) = 0 for all prime ideals p

if and only if f is contained in the radical t(A) of A.

5. Let ¢ : A — B be a homomorphism of rings, and let S be a multiplicatively
closed subset in A.

(1) Show that T' = ¢(S) is a multiplicatively closed subset of B.
(2) Show that there is a canonical isomorphism between the S~! A-modules T~ B
and ST'B = B®y STLA.
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6. Let A be a ring and p a prime ideal.

(1) Show that if the local ring A, has no nilpotent elements different from zero
for all prime ideals p in A then A has no nilpotent elements different from
Z€ro.

(2) Is it true that if A has no nilpotent elements different from zero then A, has
no nilpotent elements different from zero for all prime ideals p of A?

7. Let M be a finitely generated A module, and let S be a multiplicatively closed
subset of M. Show that S~'M = 0 if and only if there is an element s € S such that
sM = 0.
8. Let !I'P be the set of all prime number in Z
(1) Show that the map Z — [],cp Z/pZ that sends an integer n to (n,n,...) is
injective.
(2) Show that for all injective maps u : G — H of groups the map u ®z idq :
G ®z Q — H ®iq, Q is injective.
(3) Show that (I],cp Z/pZ) ®z Q is not zero
(4) Show that ([],cp Z/pZ) ®z Q is not isomorphic to [, c»(Z/pZ ®z Q).
9. Let A be a ring and S a multiplicatively closed subset. Moreover let M be an
A-module. Describe the kernel of the A-module homomorphism M — M ®4 S™1A
that maps z € M to x ®4 1.

10. Let A # 0 be a ring and u : A™ — A™ an A-linear map. Moreover let p be a
minimal prime ideal in A.

(1) Let f1, f2,..., fm be elements in p. Show that the ideal b in A, generated by
the elements f1/1, fo/1,..., fn/1 is nilpotent, that is, we have b = (0) for
some positive integer m.

(2) Let p be the integer such that b? # (0) and bP™ = (0) in A,. Show that for
all elements f € b? we have that fs # 0 for all s € A\ p, and that f;ft =0
for some t € A\p fori=1,2,...,m.

(3) Show that if u is injective then the map

up : (A/p)™ — (A/p)"

is injective, where the A/p-module homomorphism u, is defined by

up ((wayp(f1),uayp(f2), - wasp(fn))
= (uayp(ur(2)), uasp(ua(z)), . uayp(un(z)))
for all x = (f1, fa, ..., fm) in A™ and where u(z) = (u1(x), uz(x),. .., u,(z))
in A™.
(4) Show that when wu is injective then m < n.
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4. Annihilators, associated ideals and primary modules.

(4.1) Notation. Let M be an A-module, and let E and F' be subsets of M. We
write!!

(E:F)=(E:F)a={f€A: freFEforall z € F}.

When E or F consists of one point x, respectively y, we write!! (z : F) = ({z}, F),
respectively (E :y) = (E : {y}). Moreover we write t((E : F)) =¢v(FE : F) = t4(E :

For every element f € A we let !!fy; : M — M be the A-module homomorphism
defined by fy(x) = fo for all z € M.

(4.2) Remark. It is clear that when E is a submodule of M we have that (E : F)
is an ideal in A.

(4.3) Definition. Let M be an A-module. For each element z € M we write
NAnn(z) = Anny(z) = (0 : z), and call the ideal Ann(z) the annihilator of z. The

annihilator of M is the ideal !Ann(M) = Anna (M) = (0: M).

(4.4) Example. Let a be an ideal in A. Consider A/a as an A-module via the
canonical map ¢ 4/q. Then Anny(A/a) = a.

(4.5) Remark. Let M be an A-module. For all x € M we have an isomorphism
A/ Ann(z) — Az of A-modules that send the class in A/ Ann(z) of f € A to fz. In
particular we have an injection A/ Ann(z) — M.

(4.6) Example. Let K be a field and let A = K[u,v] be the polynomial ring in two
variables u,v over K. Moreover, let M = K[u,v]/(u? uv). Then Anna(u) = (u,v)
and Anny(v) = (u).

(4.7) Definition. Let M be an A-module and f € A. The homomorphism fy; is
nilpotent if there is a positive integer n; such that f,/ = 0, that is, if f € t(Ann(M)).
We say that fy; is locally nilpotent if there for every element x € M is a positive
integer n, such that f;7(x) = f"*x =0, that is, f € Nyemr(Ann(z)).

An element f € A is M-regular, or regular for M, if the map fy; : M — M is
injective. When M = A we simply say that f is a regular element of A. A sequence
of elements f1, fo, ..., fn of Ais M-regular if f; is (M/(f1, f2,- .., fi—1)M)-regular
fort=1,2,...,n.

(4.8) Remark. When M is finitely generated we have that fj; is nilpotent if and
only if it is locally nilpotent.

(4.9) Remark. The A-regular elements of A are the non-zero divisors of A different
from 0.

(4.10) Definition. Let M be an A-module. A prime ideal p in the ring A is
associated to M if p = Ann(z) is the annihilator of an element x in M. The support
"Supp(M) of the module M is the set of prime ideals p in A such that M, # 0.
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(4.11) Example. Let K be a field and let A = K[u,v] be the polynomial ring in
the variables u,v over K. Moreover let M = K[u,v]/(u? uv). We have that the
ideals (u,v) and (u) are associated to the A-module M. They are the only ideals

associated to M since (u,v) and (u) are the only prime ideals in A that contain the
annihilator Ann(M) = (u?, uv).

(4.12) Example. Let A be a ring and let a C A be an ideal. Then the support of
the A-module A/a is the set V(a) of prime ideals of A containing a.

(4.13) Remark. Let A be a ring and let p be a prime ideal of A. For each elements
x € M we have that (Az), # 0 if and only if Ann(z) C p. It follows that the
associated ideals of the A-module M are contained in the support of M. In fact if
p = Ann(z) is associated to M then (Ax), # 0, and consequently it follows from
Proposition (3.18) that M, # 0.

(4.14) Remark. When M is a finitely generated A-module we have that the
support Supp(M) of M is a closed subset of Spec(A). In fact choose generators
x1,T2,...,&, of M. If p ¢ Supp(M) we have M, = 0. Consequently there are ele-
ments sq, So, ..., S, in A\ p such that s;z; =0fori=1,2,...,n. Let f = 5182 8p.
Then f ¢ p and fx; =0 for i = 1,2,...,n. Hence, for each prime ideal q not con-
taining f, we have that M, = 0. That is, the open set D(f) is a neighbourhood of p
such that for q € D(f) we have that M, = 0. Hence the complement of Supp(M) is
open in Spec(A).

(4.15) Example. When M is not finitely generated it is not always true that
Supp(M) is closed. For example, let P be an infinite set of prime numbers of Z such
that there are infinitely many prime numbers of Z that are not contained in P. Then
the support of the Z-module ®,cpZ/pZ is equal to P, which is neither closed, nor
open, in Spec(Z).

(4.16) Definition. Let M be an A-module and let L be a submodule of M. The
radical of L is the ideal vp;(L) =tva(L : M).

(4.17) Remark. When a is an ideal of A, the radical of a as a module coincide
with the radical of the ideal a in the ring A.

(4.18) Remark. We have that va(L) = ta/1(0).

(4.19) Definition. Let M be an A-module. A submodule L of M is primary if the
map far/r : M/L — M/L is either injective, or nilpotent for all elements f € A. An
ideal a in A is primary if it is primary considered as an A-module.

(4.20) Remark. Clearly an ideal a of A is primary if and only if fg € a and g ¢ a
implies that f™ € a for some integer n.

(4.21) Lemma. If L is a primary submodule of an A-module M we have that the
radical vp; (L) of L is a prime ideal in A.
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Proof. When fg € vj(L) and f ¢ v (L) we have that Tyrn9sn = (fg)’XML =0
for some positive integer n. Since L is primary and f ¢ tps(L) we have that f7, L
M/L — M/L is injective. Consequently we have that g7, /1, = 0, or equivalently that

g €ty (L).

(4.22) Definition. Let M be an A-module and L a primary submodule of M. The
prime ideal t;(L) is called the prime ideal belonging to the submodule L. We say
that L is tp;(L)-primary.

(4.23) Example. Let A be a ring. An ideal a whose radical v4(a) is maximal is

primary. This is because the image of t(a) by the canonical map ¢4/ : A — A/a is

the radical v4/4(0) of A/a. When t(a) is maximal the same is true for t4,4(0). The

ring A/a is local and the only prime ideal is t4,4(0) because t4/4(0) is contained

in every prime ideal of A/a. For every element f € A we consequently have that

faja:A/a— Ajais an isomorphism when f ¢ v(a) and is nilpotent when f € t(a).
In particular we have that every power of a maximal ideal in A i primary.

(4.24) Example. It is not true that powers of prime ideals necessarily are pri-
mary. In Example (?) the image of the prime ideal (u) of Klu,v] by the canon-
ical map Yxiuo]/(w2,uw) @ Klu,v] — Klu,v]/(u? uv) is a prime ideal q such that
g% = 0. However the ideal (0) in K[u,v]/(u? uv) is not primary. In fact the map
VK [uo]/(u2,uv) © KU, 0]/ (u?, w) — Klu,v]/(u?,uv) is not injective since the class of

u maps to zero, and it is not nilpotent since v™ ¢ (u?, uv) for all positive integers n.

(4.25) Proposition. Let M be an A-module M, and let L be a submodule of M.

(1) Every prime ideal associated to the module L is associated to the module M.
(2) The associated primes ideals of the module M are associated to either the
module L or to the module M /L.

Proof. (1) The first assertion is clear.

(2) Let p be associated to M. Then p = Ann(x) for some z € M. If AxNL =0
we have that p is associated to M /L. If Az N L # 0 we choose a non zero element
y = fx with f € A. Then p = Ann(y) because, on the one hand p C Ann(y), and on
the other hand g € Ann(y) for some g € A implies that gf € p. Since f ¢ p we have
that g € p.

(4.26) Exercises.
1. Let A be a ring and S a multiplicatively closed subset. What is the relation

between the associated prime ideals of an A-modules M and those of the S—!A-
module S™1M?

2. Let L and M be submodules of an A-module P.

(1) Show that (L : M) = Ann((L+ M)/L).
(2) Show that Ann(L + M) = Ann(L) N Ann(M).
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3. Let N be an A-module, and let L and M be submodules. Prove the following
four assertions:

(1) va(en(M)) = en(M).

(2) en(LNM) =tn(L)Ney(M).

(3) tn(M) = Aif and only if M = L.

(4) en(L+ M) =ra(cn(L) + ey (M)).
4. Let S be a multiplicatively closed subset of the ring A. Moreover, let P be an
A-module and M and N submodules. Show that S™'(M : N) = (S~'M : S~IN).

5. Let A be a ring and M a finitely generated A-module. Show that we have
Supp(M) = V(Ann(M)) in Spec(A).

6. Let A be a ring and let S be a multiplicatively closed subset. Moreover let q be
a primary ideal and let p be the prime ideal belonging to g.

(1) Show that the ideal q instersects S if and only if the ideal p instersects S.
(2) Show that when the ideal q does not intersect S then S~!q is a primary ideal
in S~!A and that the prime ideal S~'p belongs to S~!q.

7. Show that the ideal (4,t) in the polynomial ring Z[t] in the variable t over the
integers is primary. Find the prime ideal that belongs to (4,t).
8. Let A[t] be the polynomial ring in the variable t over the ring A. For each ideal a in
A we write a[t] for the subset of A[t] consisting of all polynomials fo+ fit = - - -+ f,t"
with coefficients fy, f1,..., fn in A.

(1) Show that a[t] is the smallest ideal in A[t] that contains the ideal a.

(2) Show that if p is a prime ideal in A then p[t] is a prime ideal in A[t].

(3) Show that if a is a p-primary ideal in A, then a[t] is p[t]-primary ideal in A[t].
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5. Differentials.

(5.1) Definition. Let A be a ring and let B be an A-algebra. Moreover, let N
be a B-module that we consider as an A-module via restriction of scalars. An A-
derivation from B to N is an A-linear homomorphism D : B — N such that for all
g,h in B we have!!

D(gh) = gD(h) + hD(g). (5.1.1)

The collection of all A-derivations from B to N we denote by Der4(B, N).

(5.2) Remark. We have that D(1) = 0 because D(1) = D(1-1) =1D(1)+1D(1) =
2D(1). Consequently, when ¢ : A — B is the algebra structure, we have for all f € A
that D(¢(f)) = D(o(f)1) = @(£)D(1) = 0 for all f € A.

For every element g € B and every natural number n we have that D(g") =
ng"~tD(g). This is easily shown by induction on n. When g € B is an invertible
element we have that D(¢g~!) = —g~2D(g). In fact, when we take the derivative of
both sides of the equality gg~! = 1 we obtain that ¢D(¢~') + g~ 1D(g) = 0.

(5.3) Remark. We have that Der4 (B, N) is a B-module. The sum D + E of two
A-derivations D : B — N and E : B — N is defined by (D + E)(h) = D(h) + E(h)
for all h € B, and the product gD of D with an element g € B is defined by
(gD)(h) = gD(h). It is easy to check that D 4+ E and gD are derivations and that
the sum and product make Der 4 (B, N) into a B-module.

(5.4) Remark. When the A-algebra B is generated by elements {g, }acs we have
that an A-derivation D : B — N to a B-module N is determined by the values D(g,)
for all « € I. This follows by repeated application of the derivation rule (5.1.1) to
expressions of the form Hﬁe 7 ggﬁ for a finite subset J of I, and with gg € B and
ng € N.

(5.5) Example. Let A[t,]aer be the polynomial ring in the variables ¢, over the
ring A. For each a € I there is a unique A-derivation D, : Alta]acr — Altalacr
determined by D, (t,) = 1 and D,(t3) = 0 when o # (. For every finite subset
J of I, and ng € N the derivation D, maps the monomial Hﬁejtgﬁ to0if a ¢ J

and to ngthe! Hﬁe]\{a} tgﬁ when o € J. It is clear that for every derivation D :
Alta]lacr — N toan (Afta]acr)-module N we have that D(f(t)) = >_ c; Da(f)D(ta)
for all f(t) € Alta]acr- Note that D, (f) = 0 for all but a finite number of o because
each polynomial f(t) is expressed in a finite number of variables t,. Moreover, for

every ideal b of Alty|aer an A-derivation D : Alty|aer — N factors via an A-

derivation Afta]aer/b — N if and only if . ; Do(f)D(to) = 0 for all f € b.

(5.6) Example. Let ¢ : A — B be an A-algebra and x : B — C a homomorphism
of A-algebras. The homomorphism x gives C' a structure as a B-algebra. Moreover
let P be a C-module that we consider as a B-module by restriction of scalars. We
denote by C[P] the C-algebra C' x P with addition defined by (x(g),z) + (x(h),y) =
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(x(g9) + x(h), z + y) and product defined by (x(¢g),)(x(h),y) = (x(9)x(h), gy + hz)
for all g, hin B and z,y in P. Write g4+ = (g, z). We consider C[P] as an C-algebra

via the map C' — C|[P] that sends h to (h,0) and identify C' with its image by this
map.

Let ¢ : B — C[P]and D : B — P be maps that are related by 1(h) = x(h)+D(h)
for all h € B. It is clear that v is an A-linear homomorphism if and only if D is an
A-linear homomorphism. When ¢ and D are both A-linear homomorphism we have
that ¢ is an A-algebra homomorphism if and only if D is an A-derivation because
Y(gh) —¢(g)v(h) = x(gh) + D(gh) — (x(9) + D(g))(x(h) + D(h)) = D(gh) — gD(h) —
hD(g) for all g, h in B. In this way we obtain a bijection

Hom 4 _a1g(B, C[P]) — Dera(B, P).

(5.7) Example. Let ¢ : A — B be an A-algebra and let S and T' be multiplicatively
closed subsets of A respectively B such that ¢(S) C T. Then every A-derivation
D : B — N from B to a B-module N defines a unique (S~!A)-derivation 771D :
T—'B — T71N such that D(g)/1=T"1D(g/1) for all g € B.

It is clear that 7'D is unique if it exists because for all elements ¢ € B and
t € T we have that T='D(g/t) = T~ D((t/1)"(g/1)) = —(g/1)(t/1) 2T D(t/1)+
(t/1)7'T~'D(g/1) = —(g/¢*)(D(t)/1) + (1/t)(D(g)/1) in T~'N.

We define T71D by T-1D(g/t) = D(g)/t — (¢gD(t))/t?> for all g € B and t € T.
The definition is independent of the representation g/t because if g/t = ¢’/t' in T~'B
with ¢ € T and ¢’ € B there is at” € T such that we have an equality t”(gt'—tg’) = 0
in B. Derivation of both sides of the equality gives D(t")(gt’ — tg') + t""(gD(t') +
t'D(g) —g'D(t) —tD(g")) = 0. Multiplication of both sides of the latter equality with
t and division by tt’ in TN gives the equality 0 = (t")2((¢D(t')/(tt') + D(g)/t —
(9'D(1))/(#t') — D(g")/t") = (t")*((g'D(¥))/(t')* + D(g)/t — (9D(t))/t* — D(g)/1).
Hence we obtain that D(g)/t — (gD(t))/t?> = D(g")/t' — (¢’ D(t'))/(t')? in T~1N,
and thus T~'D(g/t) = T~'D(g'/t'). Tt is easy to check that T—!D is an (S71A)-

derivation.

(5.8) Functoriality. Let B be an A-algebra and N a B-module. For every homo-
morphism v : N — N’ of B-modules we obtain a homomorphism of B-modules

vo : Dera(B, N) — Der (B, N')

that maps the A-derivation D : B — N to the A-derivation vD : B — N'. It is clear
that the correspondence that maps a B-module N to Der 4(B, N) with fixed A and
B is a functor from B-modules to B-modules.

Let x : B" — B be a homorphism of A-algebras. We consider N as a B’-module
by restriction of scalars via x. Then we obtain a y-module homomorphism

x? : Ders(B, N) — Dery(B’, N)
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that maps the A-derivation D : B — N to the A-derivation Dy : B’ — N.

Let ¢ : A” — A be a homomorphism of rings. We consider B as an A’-algebra,
and N as an A’-module, by restriction of scalars. Then we obtain a homomorphism
of B-modules

¢% : Ders (B, N) — Der (B, N)

that maps the A-derivation D : B — N to itself considered as an A’-derivation by
restriction of scalars.

(5.9) Theorem. Let ¢ : A — B be an A-algebra and let x : B — C' be a B-algebra.
Moreover let P be a C'-module. We obtain an exact sequence of B-modules

0 0
0 — Derg(C, P) <= Dery (C, P) 2= Der (B, P),

where we consider the C-module Der4(C, P) and Derg(C, P) as B-modules by re-
striction of scalars.

~—

Proof. Tt is clear that ¢ is injective. Moreover we have that Im(°) C Ker(x°
because, when D : C' — P is a B-derivation, we have that (Dx)(g) = D(x(g)) =
for all g € B by Remark (7).

We shall show that Im(p°) = Ker(x"). Let D : C — P in Ker(x?) be an A
derivation, that is, a derivation such that Dy : B — P is zero. For all ¢ € B
and h € C we have that D(gh) = D(x(g9)h) = hD(x(g)) + x(9)D(h) = x(9)D(h).
Consequently D : C' — P is a B-derivation. Hence the image of the A-derivation D
by ¢V is itself considered as a B-derivation.

(5.10) Remark. Let A be a ring and let B and C be A-algebras. Moreover
let x : B — C' be a surjection of A-algebras with kernel b. Every A-derivation
D : B — P into a C-module P induces a B-linear map v = D|b : b — P. In
fact, for all ¢ € B and h € b we have that v(gh) = D(gh) = gD(h) + hD(g) =
x(g9)D(h) + x(h)D(g9) = x(9)D(h) = D(gh) = v(gh). We also see that when g € b
we have that v(gh) = 0. Hence v is zero on the ideal b? and induces a B-module
homomorphism b/b? — P.. Since C = B/b and P are C-modules we obtain a
C-module homomorphism w : b/b%? — P. It is clear the correspondence that sends
D to w gives a B-module homomorphism

)

u : Der (B, P) — Home(b/b%, P)

where Hom¢(b/b2, P) is a B-module via .

(5.11) Theorem. Let x : B — C be a surjection of A-algebras, and let b be the
kernel of x. For every C-module P there is an exact sequence of B-modules

0
0 — Der4(C, P) 2 Der4(B, P) - Home (b/b2, P),
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where u is the map of Remark (5.10).

Proof. We have that \ is injective since  is surjective. Moreover Im(x°) C Ker(u)
because, if D : C'— P is an A-derivation, then the map (Dx)|b : b — P is zero, since
for all h € b we have (Dx)(h) = D(x(h)) = D(0) = 0.

It remains to prove that Im(x°) = Ker(u). Let D : B — P be an A-derivation such
that u(D) = 0. Then D(h) = 0 for all h € b. Hence it follows from Lemma (1.13)
that the A-linear homomorphism D : B — P factors via x : B — C, and an A-linear
homomorphism FE : C'— P. It is easy to verify that since D is an A-derivation the
A-linear homomorphism F is also an A-derivation. Clearly we have that x°(E) = D,
and we have proved the Theorem.

(5.12) Kahler differentials. Let B be an A-algebra. We consider the A-algebra
B ®4 B as a B-module via multiplication by B in the left factor of B ® 4 B. That
is, for all f,g,hin B we let f(g®a h) = fg®a h.

The multiplication B® 4 B — B that maps g ®4 h to gh is a ring homomorphism,
and a B-module homomorphism. We denote the kernel of the multiplication map by
J =13Jp/a- Then we have an exact sequence of B-modules

O—>jB/A—>B®AB—>B—>0.

The B-module Jp/4 is generated by the elements {1 ®4 g — g ®a 1}4ep. In fact if
i1 9i ®a h; with g; and h; in B is in Jp, 4, that is > | g;h; = 0, we have that
S 9i®ahi=> 019 ®ah;—> " ghi®al=3"9(1®ah; —h;®al). We
write!!
54 =T8/4/T5/-
The B-module QIB/A is generated by the classes of the elements {104 9—9g®a1}4en.
Let !!
dpja: B — Q}B/A

be the map that takes an element g € B to the class dp/a(g9) of 1®4 9 —g®a 1 in
Jpa/ ’JQB /A The map dp,4 is A-linear. In fact it is clearly a group homomorphism,
and for f € A and g € B we have that dg,4(fg) is the class in Q}B/A of the element

1@Afg—fg@al=f®ag9—fg®al=f(1®ag—g®al),and thus dg,4(fg) =
fdp/a(g). Moreover we have that dg, is an A-derivation. In fact for g,h in B we

have that dg,4(gh) is the class in 33/,4/32B/A of

1®Agh—gh®A1:g(1®Ah—h®Al)
+h(1®49g—9gR41)+(1®ag9g—9g®R41)(1Rah—h®al).

(5.13) Definition. We call the B-module Q}B/A the Kdhler differentials of the A-
algebra B, and we call the A-derivation dp/4 : B — Q% /A the exterior derivation.
For f € B we call dg,4(f) the differential of the element f.
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(5.14) Remark. We have that the B-module Q} /4 is generated by the elements

dp/a(9)}se. When the A-algebra B is generated by the elements {g, }ocr we have
/ g

that the B-module QlB/A is generated by the elements {dp,a(ga)}acr. In fact, this

follows from Remark (5.4) since dp,4 is a derivation.

(5.15) Proposition. Let B be an A-algebra. The exterior derivation dg/s : B —
Q}B /A has the following universal property:

For every A-derivation D : B — N to a B-module N there is a unique B-linear
homomorphism v : Q}B/A — N such that D = vdp /4.

The map that sends D to v is an isomorphism of B-modules

Der4 (B, N) = Homp(Qp,4, N).

Proof. Since the B-module QL , is generated by the elements {dB/a(9)}geB We have
that if v exists then it is uniquely determined by v(dg,4(g)) = D(g) for all g € B.

To show that v exists we observe that we have an A-bilinear map B x B — N that
sends a pair (g,h) to gD(h). The A-bilinear map gives an A-linear homomorphism
w:B®yg B — N determined by w(g®4 h) = gD(h) for all g, h in B. We see that w
is also B-linear. The homomorphism w is zero on JQB /A because for f,g,h in B we
have

wh(1@af—fR41)(1049—9gR41)) =w(h@afg—gh@af—hfRag+hfgRal)
= hD(fg) —hgD(f) — hfD(g) +hfgD(1) = h(D(fg) — fD(g) — gD(f)) = 0.

Consequently w induces a B-linear homomorphism v : Jp,4/ ’J% /A~ N such that
D = vdp,4. Hence we have proved the first part of the Proposition.

It is clear that the map Ders (B, N) — HomB(Q}B/A,N) that sends D to v is a
B-module homomorphism, and the uniqueness of v implies that it is injective. The
map is surjective because if w : 9113 /A N is a B-module homomorphism we obtain
that wdp,4 : B — N is an A-derivation that maps to w.

(5.16) Remark. The map dg/4 : B — QlB/A is uniquely determined in the sense
that if d : B — () is another A-derivation that has the same universal property, that
is, for every A-derivation D : B — N there is a unique B-module map v :  — N
such that D = wvd, then there is a B-module isomorphism w : QlB A= Q) such that
d = wdp/y. In fact w is obtained by the universality of dp,4 and the universality
of d defines a unique B-module homomorphism v : 3 — Q]lg /A such that vd = dp/a.
We have that d = wvd and dp;4 = vwdp,4 and by the universality of 2 and Q}B/A
we have that wv = idg and vw = idQlB/A, and thus that v and w are inverse maps.

(5.17) Example. Let B = A[ty]acr be the polynomial ring in the variables ¢,, over
the ring A. It follows from Example (5.5) that QF /4 1s the free B-module with basis

{dpja(ta)}acr-
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Let b be an ideal of B, and let C' = B/b. It follows from Example (5.5) that
QE/A is equal to the C-module which is the free C-module Q}B/A ®p C modulo the
C-module generated by the elements ) _; Do(f)dp/a(ta) for all f € B.

(5.18) Functoriality. Let y : B — C be a homomorphism of A-algebras. We
obtain a C-linear homomorphism

XcyB/a i Qpa®8C — Q5 )y (5.18.1)

that is uniquely determined by xc,p/a(dp/a(9) ®B h) = hdc,a(x(g)) for all g in
B and h in C. In fact the A-derivation dg/4q @ C — Qé /A gives an A-derivation
dcjax : B — QE/A, and consequently an A-derivation 1) : Q}B/A — Qlc/A such that
X = ¥dp/a. We obtain the map (5.18.1) by extension of scalars.

Let ¢ : A — B be a ring homomorphism and let C' be an B-algebra that we
consider as an A-algebra by restriction of scalars. We have a C-linear homomorphism

Yc/B/A 3QévA,_*5lé/B

that is uniquely determined by ¢c/p/a(dc/a(h)) = dc/p(h) for all h € C. In fact the
B-derivation do/p : C — Q¢/p is also an A-derivation via ¢ and by the universal
property gives a C-linear map ¢c/p 4 : Qé/A — Qé/B such that oc,p/adc/a =
dcy/B-
(5.19) Lemma. Let B be an A-algebra and let 2 be a B-module. Moreover let
d: B — ) be an A-derivation that satisfies the conditions:

(1) There is a B-linear homomorphism v : () — Q}B/A such that dg/a = vd.

(2) The B-module () is generated by the elements {d(g)}4eB-

Then v is an isomorphism.

Proof. Since d is a B-derivation there is a unique B-linear homomorphism w :
QlB/A — Q such that d = wdp,4. Since the B-module (2 is generated by the elements

{d(g)}4ep it follows that w is surjective. We have that vwdpg/a = vd = dp/a. It
follows from the universality of QF /A that vw = idng/A. In particular we have that
w is injective. Consequently w is an isomorphism and the same is therefore true for
v.

(5.20) Proposition. Let B be an A-algebra and let C' be a B-algebra. We have an
isomorphism of (B ® 4 C')-modules

Qp/a ©aC 5050 0/0 (5.20.1)

that is uniquely determined by mapping the element dg,4(g) ®4 h to the element
dpg,c/c(9®ah) =hdpg,c/c(g®al) forallge B andh € C.
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Proof. The A-algebra structure ¢ : A — C on C gives a (B ® 4 C)-linear homomor-
phism Vg ,c/c/a QJ13®AC/A — leB@AC/C. We obtain a (B ®4 C)-linear homomor-
phism Q}B/A ®p (B®aC)— Q}B®AC/C. It follows from Lemma (2.11) that we have
a canonical (B ® 4 C')-module isomorphism Q}B/A ®Rp (B C) = Q}B/A ®4 C. We
consequently have constructed the (B® 4 C)-linear homomorphism v : Q0 ja®aC —
QlB®AC/C of the Proposition. We have that the A-derivation dp,4 : B — Q}B/A
gives a C-derivation d = dp/q ®aidg : B®a C — Q}B/A ®a C. It is clear that
the (B ®4 C)-module 9}3/,4 ®4 C is generated by the elements {d(g ®4 1)}4cp, and
that dpg ,c/c = vdpg ,c/c- It follows from Lemma (5.19) that the homomorphism
(5.20.1) is an isomorphism.

(5.21) Proposition. Let B be an A-algebra via the ring homomorphism ¢ : A — B.
Moreover let S and T be multiplicatively closed subsets of A, respectively B, such
that ©(S) C T. Then there is an isomorphism of T~ B-modules

QIB/A ®B T_IB;Q;le/S—lA (5211)

that is uniquely determined by mapping dg/a(g) ®a (h/t) to (h/t)dp-1p/s-14(g9/1)
for allg,hin B andt e T.

Proof. Functoriality of the differentials gives homomorphisms of (7'~!B)-modules
Q}B/A @ T 'B — Q%_lB/A and Q%F_IB/A — Q%“—lB/S—lA' We consequently have
constructed the 7~! B-module homomorphism v : Q}B/A R T 'B — Q%“—lB/S—lA
of the Proposition. It follows from Example (5.7) that the A-derivation dg/s : B —
QIB/A gives an S~ A-derivation T 'dg/s : T™'B — T 'Qp/a = Qpa @p T'B
defined by T~ 'dp,a(g/t) = —(g/t*)(dp,a(t)/1)+(dp/a(g)/t) forallg € Bandt € T.
The elements {dg/4(g)}4ep clearly generate the T~ B-module Qp,4 ® T~ B, and
dr-1p/s-14 = vT‘ldB/A. It follows from Lemma (5.19) that the homomorphism
(5.21.1) is an isomorphism.

(5.22) Theorem. Let ¢ : A — B be an A-algebra and let x : B — C be a B-
algebra. We consider C' as an A-algebra by restriction of scalars. There is an exact
sequence of C-modules

Xc/B/A 1 ¥Yc/B/A

Opja®p C ——5 Q54 ——— Q55 — 0. (5.22.1)

Proof. 1t is clear that that (5.22.1) is a complex. Let P be a C-module that we
consider as a B-module by restriction of scalars. We obtain a complex of C'-modules

Home (po/B/AidP)

0—>HOH10(QIC/B,P) HOch(QC/A,P)

Home (xc/B/A>idP)

Home(Qp,4 ®5 C, P).  (5.22.2)
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If follows from Remark (2.19) that we have a canonical x-module homomorphism
HomC(Q}B/A ®pC, P)—=> Homp (Q}B/A, P). Hence it follows from Proposition (5.15)
that the complex is the same as the complex

0 (0]
0 — Derp(C, P) 2= Ders(C, P) 2 Der (B, P) (5.22.3)

which is eact by Theorem (5.9). Since the sequence (5.22.3) is exact for all C-modules
P it follows from Lemma (1.33) that the sequence (5.22.1) is exact.

(5.23) Remark. Let y : B — C be a surjective map of A-algebras with kernel b.
In Remark (5.10) we saw that to every A-derivation D : B — P we can associate a
canonical C-module homomorphism w : b/b% — P. In particular we obtain from the
A-derivation D : B — QIB/A ®p C which maps g € B to dp/a(g9) ®p 1 a C-module
homomorphism

5C/B/A : [‘1/52 — QlB/A ®g C

that is uniquely determined by mapping the class in b/b% of g € B to dp,a(g9) ®5 1
for all g € B.

(5.24) Theorem. Let x : B — C be a surjection of A-algebras and let b = Ker(x).
Then there is an exact sequence of C-modules

XCc/B/A

8
b/b2 MQ}% ®p C ——= Qc/a — 0. (5.24.1)

Proof. 1t is clear that (5.24.1) is a complex of C-modules. Let P be a C-module.
The complex (5.24.1) gives a complex of C-modules

Home (vy,idp)
e ey

0 — Homc (244, P) Home (25,4 ©5 C, P)

Home (u,idp)
B

Home(b/b%, P). (5.24.2)

It follows from Remark (2.19) that we have a canonical isomorphism of y-modules
HomC(QlB/A®B C, P) = Homp (Q}B/A, P). Hence it follows from Proposition (5.15)
that the complex (5.24.2) is the same as the complex

0
0 — Ders(C, P) 2 Der4(B, P) - Homc¢(b/b?, P) (5.24.3)

which is exact by Theorem (5.11). Since the complex (5.24.3) is exact for all C-
modules P is follows from Lemma (1.33) that the complex (5.24.3) is exact.
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(5.25) Example. Let ¢ : A — B be an A-algebra and x : B — C be an A-
algebra homomorphism. We let v : B ®4 C — C be the C-algebra homomorphism
determined by (g ®4 h) = x(g)h for all g € B and h € C. Denote the kernel of 1)
by b. We have that the homomorphism of C'-modules

5C/B®AC/C . b/b2 — QlB®AC’/C ®B®AC C

We shall prove that d¢/pg , c/c is an isomorphism. It follows from Proposition (5.20)
that we have a canonical isomorphism Q}B /A® 4C = Q}B Welles The homomorphism
of C-modules Qpg,c/c — Qg c/c @Beac C that sends dpg,c/c(g ®a h) to
dpg,c/c(g ®ah) @pg.cyc 1 for all g € B and h € C is clearly an isomorphism.
Hence the homomorphism dc/p/4 is the same as a homomorphism of C-modules

b/b®> — Qp/y ©p C (5.25.1)

that sends the class in b/b% of g®4 h € B®4 C to dp/a(g) ®p h for all g € B
and h € C. In order to show that the homomorphism (5.25.1) is an isomorphism we
construct an inverse. Let D : B — b/b? be the map that sends g € B to the class in
b/b2 of the elements g @4 1 —1®4 x(g9) in B®4 C. It is clear that the map D is
A-linear. It is a derivation because

gh®41—1®4 x(gh) =(g®a1)(h®al—-1®a4 x(h))
+(h@al)(g®al-10ax(9)+(g®al1-104x(9))(h®al—g®ax(9)).

From the A-derivation D we obtain a B-linear homomorphism Q}B /A b/b2, and by
extension of scalars we obtain a C-module homomorphism Qp/4 ® C — b/ b2 that
is clearly the inverse of the homomorphism (5.25.1).

The most important application of the Example is when B is a local ring that is
an algebra over a field K and when C' = B/mp = k. We obtain an isomorphism of
K-vector spaces

m/m2 — Qpork/k @Boxk K
where m is the kernel of the multiplication map B ® g k — K.
(5.26) Exercises.
1. Let Ku,v] be a polynomial ring in the two variables u and v over the field K,
and let B = K[u, vy )/(v —u?) and C = Ku, v] 4,/ (v? — u?), where K[u, v](y, v
is the polynomial ring K [u,v] localized in the prime ideal (u,v).
(1

2) Give generators and relations that determine the C-module Qé K

Give generators and relations that determine the B-module Q7 K

)
)
3) Is Q}B/A a free B-module?
)
5) What is the dimension of the (B/mpg)-vector space QlB/K/mBQIB/K?
)

(
(
(4) Is Q¢ 4 a free C-module?
(
(

6) What is the dimension of the (C/m¢)-vector space Qé/K/mCQE/K?
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2. Let A be a ring and let B = Alty,ts,...,t,] be the polynomial ring in the n
variables tq,to,...,t, over A.
(1) Show that Q% /4 is a free A-module of rank 1 generated by the elements
dty,dts, ..., dt,.
(2) Show that the exterior derivative dp,4(f) of an element f € B can be written
uniquely in the form dg/4(f) = (0f/0t1)dt1+(0f /Ot2)dta+- - -+ (0 f /Oty,)dt,,
for uniquely determined elements 0f/0t1,0f/0ts,...,0f/0t, in B.
(3) Show that the map 0/0t; : B — B that sends an element f € B to 0f/0t; is
an A-derivation.
3. Let Klty,ta,...,t,] be the polynomial ring in the variables ¢y, o, ..., t, over the
field K. Moreover let f € Klty,ta,...,t,] be a polynomial without constant term
and with linear term a1t + asto +- - - apt, with a; € K. Let B = Klt1,ta,...,t,]/(f)
be the residue ring of K|[t1,ts,...,t,] with respect to the ideal generated by f.
Determine the dimension of the K-vector space QL /k ®B B /m where m is the
maximal ideal of B generated by the residue classes in B of the variables t1,ts,...,t,.
4. Let A be a ring and let B and C be two A-algebras.
(1) Show that the map ¢ : B — B ®4 C induces a map u : Q}B/A ®a B —
QIB(X)AC/A
(2) Show that the map u together with the corresponding map for the algebra C

defines an isomorphism of B ® 4 C-modules
(QlB/A ®a B) & (QE/A ®a C) — Q}3®AC/A'

5. Let B be an A-algebra, and let Jp,4 be the kernel of the multiplication map
B® 4B — B that maps f®agto fgforall f,gin B. Moreover letd : B — 3B/A/JQB/A
be the A-module homomorphism defined by d(f) =1®4 f — f Qa4 1.

(1) Show that the homomorphism d is an A-derivation.
(2) Show that there is an exact sequence of B-modules

0— jB/A/jQB/A = QlB(X)AB/A ®Be.B B = QlB/A — 0.

(3) Show that there are maps s : QlB®AB/A®B®ABB — Jp/a/b% and ¢ : QlB/A —
Q}3®AB/A ®pg . B such that su and vt are the identiy maps.
6. Let A be aring and B an A-algebra. For all elements D and E in Der 4(B, B) we
let [D, E] = DE — ED. Show that Der4(B, B) with the bracket [,] is a Lie algebra.
That is, show that
(1) The [,] : Dera(B,B) x Ders(B,B) — Der(B,B) defines a product on
Der 4 (B, B) which together with the A-module structure on Der 4(B, B) sat-
isfies all the properties of an A-algebra except commutativity and associativ-

ity.



MODULES 5 109

(2) For all D € Dery(B, B) we have that [D, D] = 0.
(3) For all D, E, F in Der4(B, B) the Jacobi identity holds, that is [[D, E], F| +
[[E, F], D]+ [[F, D], E] = 0.
7. Let A be aring and B an A-algebra. For all elements D and F in Der4 (B, B):
(1) Show that [D, E] = DE — ED is an A-derivation.
(2) Show that for all g, h in B we have

[gD, hE] = gh|D, E] + gD(h)E — hD(g)D.

8. Let B be an A-algebra and let D € Der4(B, B).

(1) Show that C' = {g € B : D(g) = 0} is an A algebra in such a way that the
map C — B defining C as a subset of B is an A-algebra homomorphism.

(2) Let p be a prime number such that DP = 0, and such that pg = 0 for all
elements g € B. Moreover let f € B be such that D(f) = 1. Show that B is
a C-algebra generated by the elements 1, f, ..., fP~1.

(3) Show that B is free module over C' with basis 1, f,..., fP~1.
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1. Sheaves of modules.

(1.1) Notation. We shall follow usual notation and write!! I'(U, F) instead of F(U)
for the sections of a presheaf F over an open subset U.

(1.2) Definition. Let X be a topological space with basis 9, and let F and A
be presheaves of groups, respectively rings, on 8. We say that the presheaf F is an
A-module on B if for every U in B we have that I'(U, F) is a I'(U, .A)-module, and
for every inclusion U C V of open sets belonging to B the map (pr)y; : I'(V, F) —
(U, F) is a map of (pa)y; : T'(V, A) — I'(U, A)-modules. That is, for every pair of
sections s in T'(V, F) and ¢ in I'(V, A) we have that

(pF)0 (ts) = (pa)tr (£)(pF)i (5)-

When A and F are both sheaves we simply say that F is an A-module.

(1.3) Remark. Let X be a topological space and 9B a basis for the topology.
Moreover let A be a presheaf of rings on B and let F be a presheaf of A-modules
on B. For every point z € X the group F, becomes an A,-module. The product
of the class s, of a pair (U,s) with s € I'(U, F), and the class t, of a pair (V1)
with ¢ € T'(V,A) is given by the class t,s, of (U NV, pYv (#)pGar(s)). Tt is clear
that the definition of the product is independent of the choices (U, s) and (V,t) of
representatives of the classes t, and s,.

For every open set U belonging to 8 and every point x € U we have that the map
(p£)Y :T(U, F) — F, is a homomorphism of (p4)¥ : T'(U, A) — A,-modules.

(1.4) Definition. Let X be a topological space with basis B for the topology and
let A be a presheaf of rings defined on B. Moreover let F and G be presheaves defined
on B that are A-modules. A homomorphism u : F — G of presheaves of A-modules
is a homomorphism of presheaves of groups such that for all U belonging to B the
map uy : I'(U,F) — I'(U,G) is a homomorphism of I'(U, .A)-modules. When A is a
sheaf and F and G are A-modules we say that u is a homomorphism of A-modules.
The set of A-module homomorphisms we denote by Hom 4(F,G).!!

(1.5) Remark. Let A be a presheaf of rings on a basis 9B of a topological space X
and let u : F — G be a homomorphism of presheaves of A-modules on 2. Then the
map u, : Fr — G, is an A -module homomorphism.
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(1.6) The direct image. Let ¢ : X — Y be a continous map of topological spaces.
Moreover let A be a presheaf of rings on X and let F be a presheaf of A-modules.
By the definiton of the direct images 1. (.A) and 1, (F) we have for every open subset
V of Y that T'(V, 9. (A)) = T(x~1(V), A) and T'(V, ¢, (F)) = I'(4»=1(V), F). Hence
DV, (F)) is a I'(V, 9. (A))-module. It is clear that these modules, for all open
subsets V' of Y, make 1. (F) into a presheaf of 1, (A)-modules. When A is a sheaf
and F is an A-module we have that 1.(A) is a sheaf and that 1. (F) is a ¢, (A)-
module.

Let u : F — G be an A-homomorphism of presheaves on X. We have that
Yo (u) : Y (F) — 14(G) is a homomorphism of presheaves of A-modules.

(1.7) The inverse image. Let ¢ : X — Y be a continous map of topological
spaces and let B be a basis for the topology of Y. Moreover let B be a presheaf of
rings on B and let G be a presheaf of B-modules on B. For all y € Y the stalk G,
of G at y is a By-module. Consequently the product [], .. Gy) is a [[,cp By(a)-
module for all open subsets U of X. By the definition of the inverse image in Sec-
tion (?) we have that I'(U,v*(B)) is a subring of [ .. By() and that I'(U,¥*(G))
is a subgroup of [] . Gyz). We shall show that the ], .. By()-module struc-
ture on [[, .y Gy(e) induces a I'(U,9*(B))-module structure on I'(U,¥*(G)). Let
(8y@))ecv € T(U,9*(B)) and (tym))zcv € T'(U,¥*(G)). For all x € U there is
a neighbourhood Vj(,y of ¥(x) belonging to B and sections s(z) € I'(Vy(qy),B)
and t(z) € I'(Viy(a),G) such that for all y in a neighbourhood U, of x contained
in UN ¢~ (Vym)) we have that sy = s(x), and ty) = t(x),. We have that
s(x)t(x) € T'(Vy(a),G) and (s(x)t(x))y = s(x)yt(r)y = Sy(y)tyy)- Consequently
(Sy(2)) et (ty@))zct = (Sy(a)ty(a))eer 18 in T'(U,9*(G). and the [[ . By (z)-module
structure on [, .y Gy(a) induces a I'(U,¥*(B))-modules structure on I'(U,¥*(G)).
We easily see that ¥*(G) becomes a 1*(B)-module. In particular the associated
sheaf id§ (G) of G becomes a module over the associated sheaf id3 (B) of B.

When v : G — H is a homomorphism of presheaves of B-modules on the basis B
we have that ¢*(u) : ¥*(G) — ¥*(H) is a homomorphism of ¢*(B)-modules.

(1.8) The tensor product. Let X be a topological space with basis B for the
topology. Moreover let A be a presheaf of rings on 8 and let F and G be presheaves
of A-modules. For every open subset U of X belonging to B we have that T'(U, F)
and I'(U, G) are I'(U, A)-modules. Let I'(U,H) = I'(U,F) ®rw,4) I'(U,G). When
U C V is an inclusion of open sets belonging to B it follows from Lemma (?7) that
we have a map

(P}")‘(§®(pA)¥ (PQ)E

LV, F) @rw,a L'(V,9) I'(U,F) @rw,a I'(U,G).
We thus obtain a presheaf H of A-modules on . The associated sheaf of H we
denote by 'F ® 4 G and call the tensor product of F and G over A. It follows from

Section (1.7) that F ® 4 G is a module over the associated sheaf id% (A) of A.



AFFINE 1 113

(1.9) Lemma. For all points x € X there is a canonical isomorphism of A,-modules

(FR4G)s — Fr @4, Ga-

Proof. For each open set U belonging to B we have maps (pr)V : (U, F) — F,
(pg)Y :T(U,G) — G, and (p4)Y : T (U, A) — A,. Moreover we have a map H(U) —
Fa @4, G» that takes the class of s @ a) t with s € T'(U,F) and t € T'(U,G)
to sy ®a, t;. Hence we obtain a map H, — F, ®4, G, that sends the class of
(U, s@rw,a)t) with s € T'(U, F) and t € I'(U, G) to s, ®4, t.. It is clear that the map
is independent of the choice of representative (U, s ®p(y,4) t) of the class in H,. The
inverse map sends s, ® 4, t, to the class of (UNV, (p£)Tny () @rwnv,a) (09) Ty (1))
when (U, s) represents s, and (V,t) represents t,. The inverse is clearly independent
of the choice of representatives (U, s) and (V,t) of the classes s, respectively t,.

(1.10) Example. We shall show that the presheaf H used in the definition of the
tensor product in Section (1.7) is not necessarily a sheaf. Let X = {zo,x1, 22}
be the topological spaces with open sets 0, X, Uy = {zo}, Uy = {x0, 21}, and Uy =
{z0,z2}. We define a presheaf of rings by I'((, A) = {0}, (X, A) = Z,T'(U1, A) = Z,
(U, A) = Z, T(Up, A) = Z with (p4){; = idz when U # (). Moreover we define a
presheaf of groups by I'(0, F) = (0), ' X, F) = Z, (U, F) = Z/2Z, T'(Us, F) = Z,
[(z0, F) = Z/2Z where (pF){5, is the residue map and the remaining restriction maps
are the identity. Finally let I'(0,G) = {0}, I'(X,G) = Z, I'(U1,G) = Z, T'(U,G) = Z,
I'(Up,G) = Q with restriction maps being the natural inclusions. Then A with the
given restriction maps is a sheaf of rings, and F and G with the given restriction
maps are A-modules.

We let T'(U, H) = T'(U, F) ®rw,a)y L'(U,G) for all open subsets U of X. Then
(X, H) = Z, T(Uy, H) = Z/2Z, T(Uy, H) = Z and T'(Up, H) = {0} and (px )7}, is
the residue map and the remaining projection maps are the identity except those
of the form (pH)gO that are zero. Hence H is not a presheaf. The associated sheaf

F ®4 G has the same sections as H over all open subsets of X except over X where
I'X,F®aG)=12Z/2Z x Z.

(1.11) Restriction and extension of scalars. Let X be a topological space with
a basis ‘B for the topology and let ¢ : A — B be a homomorphism of presheaves
of rings on B. Moreover let F be a presheaf of A-modules and G a presheaf of
B-modules on ‘B.

For every open subset U of 8B we obtain a homomorphism of rings ¢y : I'(U, A) —
I'(U,B), and T'(U,G) is a I'(U, B)-module. By restriction of scalars we have that
['(U,G) becomes a I'(U, A)-module and the map (pr)y; : T(V,G) — T(U,G) is a
(p.a)Y-module homomorphism for each inclusion U C V of open subsets of 8. Hence
G becomes a presheaf of A-modules on 8. We say that G becomes an A-module by
restriction of scalars, and we denote G considered as an A-module by !!g[@].
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For every open subset U of B we obtain, by extension of scalars, a I'(U, B)-
module I'(U, G) ®p(y, 4 T' (U, B). The homomorphism (pr)y; R(pa)Y; (p)y is a (pB) -
homomorphism. It follows that the presheaf H defined in Section (1.7) becomes a
presheaf of B-modules. We say that H becomes a B-module by extension of scalars.
When B is a sheaf it follows from Section (1.7) that F ® 4 B is a B-module. We say
that 7 ® 4 B becomes a B-module by extension of scalars.

(1.12) Direct images on ringed spaces. Let (X,.4) and (Y, B) be two ringed
spaces, and let ¥ = (1,0) : (X,.A) — (Y, B) be a morphism of ringed spaces, that is,
the map v : X — Y is a continuous map of topological spaces and 6 : B — 1, A is
a homomorphism of sheaves of rings on Y. Moreover let F and G be an A-module
respectively a B-module.

We have that the direct image ¥, (F) is a ¥, (A)-module. From the homomorphism
of sheaves of rings 6 : B — 1¥,(A) on Y we obtain, by restriction of scalars, that
¥« (F) becomes a B-module. We denote this B-module by W, (F) and call it the
direct image of F by W.

When v : F — G is a homomorphism of .A-modules on X we have that the homo-
morphism 1, (u) : ¥« (F) — 1.(G) of sheaves of groups is a homomorphism of sheaves
of 1. (A)-modules. Hence, by restriction of scalars 1. (u) becomes a homomorphism
of sheaves of B-modules that we denote by U, (u) : U, (F) — ¥.(G).

We have that V.(idr) = idy,(F), and when v : G — 'H is a homomorphism of
B-modules we have that W, (vu) = W, (v)¥,(u). In other words ¥, is a functor from
A-modules on X to B-modules on Y.

(1.13) Inverse images on ringed spaces. Let (X, .A) and (Y, B) be two ringed
spaces, and let ¥ = (¢,0) : (X, A) — (Y, B) be a morphism of ringed spaces, that is,
the map ¢ : X — Y is a continuous map of topological spaces and 6 : B — ,A is
a homomorphism of sheaves of rings on Y. Moreover let F and G be an A-module
respectively a B-module.

We have that 1*(G) is a ¢*(B)-module. From the adjoint homomorphism 6% :
*(B) — A of the homomorphism 6 : B — 1,4 we obtain, by extension of scalars,
that *(G) ®y=) A is an A-module. We denote this A-module by !'¥*(G) and call
it the inverse image of G by the map W.

When v : G — H is a homomorphism of B-modules on the basis B of the topology
it is clear that the map ¥*(u) : ¥*(G) — ¥*(H) induces a homomorphism

P (u)®yp* (5)ida

P*(G) @y 5y A
that is, a homomorphism of A-modules !!

U*(u) : U¥(G) — U*(H).

P (H) @y=(8) A,

It is clear that U*(idg) = idg-(g), and if wu : F — G is a homomorphism of B-
modules we have that U*(vu) = U*(v)¥*(u). In other words, we have that U* is a
covariant functor from B-modules on B to A-modules on X.
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For every point x € X we have, by Lemma (1.9) applied to the U*(B)-modules
¥*(G) and A, an isomorphism V*(G) = (¢*(G) ®@y+B) A)e == 1V*(G)z Qy=(B), Aa-
Moreover it follows from Lemma (Modules 2.23) that there is a homomorphism of
Az-modules (pg)z @(pp), (1da)z : Gu(z) @By, Az — Y (G)z Ry (B), Az, and from
(Sheaves 2.3) that the latter homomorphism is an isomorphism. Consequently we
have a canonical isomorphism of A,-modules

G(a) OB,y Ac =2 U(G)y = (V7 (G) @y (8) A (1.13.1)

(1.14) Remark. Let ¥ = (¢,0) : (X, A) — (Y,B) be a homomorphism of ringed
spaces. Then U*(B) = A. In fact we have that I'(U, ¢*(B)) is canonically isomorphic
to I'(U,v*(B)) ®rw,y=)) L' (U, A) = T'(U, A) for all open subsets of X belonging to
B.

(1.15) Adjunction. Let (X,A) and (Y,B) be two ringed spaces and let ¥ =
(,0) : (X, A) — (Y,B) be a homomorphism of ringed spaces. Moreover let F be
an A-module and G be a B-module. The adjunction maps pg : B — ¥.(¢*(B))
and o4 : ¥*(¢¥«(A)) — A are homomorphisms of rings. Clearly the adjunction map
pg G — Y. (¥*(G)) of (Sheaves 3.8) is a homomorphism of pg-modules and the
adjunction map o : ¥*(.(F)) — F of (Sheaves 3.8) is a homomorphism of o 4-
modules. Hence we obtain an adjunction map pg : G — ¥, (¥*(G)) of A-modules
and an adjunction map ox : ¥* (WU, (F)) — F of B-modules. We obtain, by extension
and restriction of scalars, an adjunction map

Hom 4 (¥*(G), F) = Homp(G, V. (F))

which is a bijection between A-modules homomorphisms ¥*(G) — F, and B-module
homomorphisms G — W, (F).

(1.16) Kernels and cokernels of homomorphisms of modules. Let X be a
topological space with a basis B for the topology. Moreover let A be a presheaf of
rings on B and let u : F — G be a homomorphism of presheaves of A-modules on B.
Let 'H be the presheaf of Section (Sheaves 2.10) defined by I'(U, H) = Im(uy) and
where (py){; is induced by (pg)y; for all inclusions U C V of open subsets belonging
to B. Clearly H is a presheaf of A-modules. For every open subset U belonging to
B we obtain commutative diagrams of A-modules with exact rows

0 —— Ker(uy) —— I'(V,F) —— T(V,;H) —— 0

Ugl (Pf)gl (PH)EJ
0 —— Ker(uy) —— I'(U,) —— I'(U/H) —— 0,

and
0 —— I'(V,H) —— T'(V,G) —— Coker(uy) —— 0

(pn)‘él (pg)El (T)El

0 —— I'(U;H) —— T'(U,G) —— Coker(uy) —— 0,
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where o}; is induced by (pg)y; and where 7 is induced by (pg)};. Let T'(U, F') =
Ker(uy) and let I'(U, G") = Coker(uy) for all open subsets U belonging to 8. For all
inclusions U C V of open sets belonging to B we let (pz)Y; = o, and (pg/)y; = 7} -
It is clear that " and G, with the restriction maps (pz/){; respectively (pg/)y;, are
presheaves of 4-modules on 8.

Assume that A, F and G are sheaves on 8. It is easy to check that F’ is an A-
module on 9B, and that the inclusions I'(U, F') C I'(U, F) for all open sets belonging
to B make F’ into a subsheaf of F. The surjections I'(U, G) — I'(U, G’) for all open
sets U belonging to 98 define a homomorphism G — G’ of presheaves of A-modules,
and it follows from Lemma (Sheaves 2.12) that the resulting map on stalks G, — G is
surjective for all z € X. The composite of the map G — G’ with pg: : G’ — (idx)*(G’)
gives a homomorphism G — (idx)*(G’), of A-modules, and it follows from Remark
(?) that the the resulting map on stalks G, — (idx)*(G’), is surjective. Hence it
follows from Proposition (Sheaves 2.3) that the map G — (idx)*(G’) is surjective.
We have that the subsheaf Im(u) = (idx)*(H) of G is an A-module, and that the

homomorphism j : Im(u) — G is a homomorphism of .A-modules.

(1.17) Example. Even when A, F and G are sheaves the presheaf G’ of Section
(1.16) is not necessarily a sheaf.

In fact in Example (Sheaves 2.11) the sheaf F is a sheaf of rings. Let F = A.
It is clear that the sheaf G of Example (Sheaves 2.11) is an A-module, and that
u: F — G is a homomorphism of A-modules. We have that I'(0,G’) = {0}, I'(X, G’)
is isomorphic to Z, and I'(U;,G’') = {0} for ¢ = 0,1,2. Hence G’ is not a sheaf.

We note that the presheaf H of Example (Sheaves 2.11) is an A-module. Hence
H is not necessarily a sheaf even when u is a homomorphism of A-modules.

(1.18) Definition. Let X be a topological space with a basis 98 for the topology.
Moreover let A be a sheaf of rings on 8 and let u : 7 — G be a homomorphism of
A-modules. The subsheaf F’ of F defined in Remark (1.16) we call the kernel of u,
and we denote it by !Ker(u). We call the A-module (idx)*(G’) the cokernel of u and
we denote it by !!Coker(u). When u is injective we often write Coker(u) = G/F. An
A-submodule of G is a sheaf of the form Im(u) for some .A-module homomorphism
u: F — G. A submodule of the sheaf of rings A is called an ideal of A.
A sequence of A-modules

Un—1 u
. — n_ln—>fn_”>]:’n+1_>...

we call a complex when Im(u,,_1) C Ker(u,,) for all n, and we say that the complex
is exact if Im(u,—1) = Ker(u,) for all n.

(1.19) Remark. For all points z € X we clearly have an injection Ker(u), C
Ker(u;) of A,-modules contained in F,. This injection is an equality of sets

Ker(u), = Ker(uy,).
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In fact, every element in Ker(u,) is represented by a pair (U, s) where U is open in B,
and s € I'(U, F) is such that uy(s) = 0 and (U, s) represents an element in Ker(u),.
For all points x € X we have a cononical ismorphism of A, -modules

Coker(u,) = Coker(u), (1.19.1)

between quotient modules of G,. In fact, it is clear that we have a surjective A,-
module homomorphism Coker(u,) — Coker(u),. This homomorphism is an isomor-
phism because every element 7 in Coker(u,) is represented by a pair (V,t) where V
is open in B and ¢t € G(V). If r is mapped to zero by (1.19.1) there is an open neigh-
bourhoood U of z belonging to B and contained in V' such that (pg)y; (t) = uy (s) for
a section s € I'(U, F). The pairs (V,t) and (U,uy(s)) represent the same element r
in Coker(u,). Since (U, uy(s)) represents the class of u,(s,) in Coker(u;), and this
class is zero, we have that r = 0, and hence that (1.19.1) is injetive.

(1.20) Proposition. A complex

/7

F L E (1.20.1)

of A-modules is exact if and only if the resulting complex of stalks of A,-modules

/7

Flle Fy e FY (1.20.2)

is exact for all x € X.
In particular we obtain two exact complexes of A-modules

0 — Ker(u) —» F — Im(u) — 0

and
0 — Im(u) — G — Coker(u) — 0.

The homomorphism w is injective if and only if Ker(u) = 0 and surjective if and only
if Coker(u) = 0.

Proof. When the sequence (1.20.1) is exact we have that Im(u'), = Ker(u"), for all
points z € X. Hence it follows from Remark (Sheaves 2.15) and Remark (1.19) that
Im(u) = Ker(u)) and thus that the sequence (1.20.2) is exact.

Conversely, if the sequence (1.20.2) is exact for all points = € X, it follows from
Remark (Sheaves 2.5) and Remark (1.19) that Im(u’), = Ker(u"), for all points z €
X. Hence it follows from Lemma (Sheaves 2.12) that the inclusion Im(u’) C Ker(u")
is an equality. That is, the sequence (1.20.1) is exact.

The last part of the Proposition follows from the two exact sequences of Example
(Modules 1.31) associated to the A,-module map u, : F, — G, and from the
equalities Ker(u), = Ker(u,), Coker(u), = Coker(u,), and Im(u), = Im(u,) of
Remark (Sheaves 2.15) and Remark (1.19).
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(1.21) Proposition. Let ¥ = (¢,0) : (X, A) — (Y,B) be a homomorphism of
ringed spaces and let

0—F 2 52 (1.21.1)

be an exact sequence of A-modules. Then we have an exact sequence of B-modules

U, (u')
—

0— W, (F) v, (F) 2D g, (7 (1.21.2)

Proof. The map F' — Im(w’) induced by v’ is an isomorphism, and the map Im(u’)
is injective. Hence the map uy, : I'(U,F') — I'(U,F) is injective and has image
Im(u')y. Hence, by assumption Im(u') = Ker(u”) and by the definition of Ker(u")
we have that Ker(u")y = Ker(uy;). Hence Im(u')y = Ker(u”)y = Ker(uf,). Hence
we have an exact sequence

0—T(U,F) -5 T(U,F) 5 T(UF")
of I'(U, A)-modules for all open subsets U of X. Hence we have that the sequence

U, (u')v U, (u'")v

0 — I(V, W, (F)) L(V, ¥, (F)) I'(V,¥.(F))

of I'(V, ¥, (A))-modules is exact for all open subsets V' of Y. It follows that W, (u’)
induces an isomorphism F' — Im(W,(u')). Moreover, since I'(V, Ker(¥,(u")) =
Ker (W, (u"))y Ker(V,(u")y), we obtain that Im(¥,(u")) = Ker(¥,(u")). Hence we
have that the sequence (1.21.2) is exact.

(1.22) Proposition. Let ¥ = (¢,0) : (X, A) — (Y,B) be a homomorphism of
ringed spaces and let

0-¢ 5625 g" -0 (1.22.1)

be an exact sequence of B-modules. Then

0 — v*(¢") U gr(g) L gy = 0 (1.22.2)
is an exact sequence of ¥*(B)-modules. In particular

\Ij*(UI) \Ij*(U”)
e _—

*(G') *(G) UH(G") = 0 (1.22.3)

is an exact sequence of A-modules.

Proof. 1t follows from Proposition (1.20) that the sequence (1.22.1) is exact if and
only if the sequence

7
’Uy

0—G, G, % G, —0 (1.22.4)
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is an exact sequence of B,-modules for all y € Y. From Proposition (Sheaves 2.2)

it follows that when the sequence (1.22.4) is exact for all y € Y the sequence of
U*(B),-modules

0 — 9"(G")a U (G)e P*(G")z — 0

is exact for all x € X. It follows from Proposition (1.20) that then (1.22.2) is exact.
From the exatness of the sequence

* P (v ) *
and from Lemma (1.9) we obtain an exact sequence
V(G )e Oy By, Az = V7 (G)z @y (B), Ac — V" (G")e @y~ (B), Az — 0
of A,-modules for all points x € X. That is, we have an exact sequence

of A,-modules for all points z € X. It follows from Proposition (1.20) that the
sequence (1.22.3) is exact.

'l/)*(v/)z 'l/)*(v//)z
_— _—

1/’*(” )I w*(g//)x N 0

\Ij*(’l.)/)z \IJ*(v”)z

(1.23) Direct sums of modules of sheaves. Let X be a topological space with a
basis B for the topology. Moreover let A be a presheaf of rings on B and let {F, }aer
be a collection of presheaves of A-modules. For every open set U belonging to B we
let T(U, F) = @acil'(U, Fa) be the direct sum of the I'(U, A)-modules I'(U, F,,) for
« € I. Moreover, for all inclusions U C V of open sets belonging to B, we let (pz){; :
[(V,F) — I'(U,F) be the map induced by the maps (pz, ) : T(V, Fa) — T(U, F,)
for all @ € I. It is clear that F with the restriction maps (pz)Y; is a presheaf of
A-modules on 8.

For all g € I, and for every open set U belonging to 28 there is a canonical map
U, Fg) — ®acil'(U, Fy) of I'(U, A)-modules. It is clear that these maps, for fixed
G, and for all open sets U belonging to 28, define a canonical map of presheaves of
A-modules

ig:Fg— F.
For every point z € X we have a map (ig)y : (Fg)s — Fu of Az-modules, and
consequently a map of A,-modules

@ael(Fa)az ;faz (1231)

The map (1.23.1) is an isomorphism of .4,-modules. In fact we shall construct the
inverse to the map (1.23.1). Each element in F, is represented by a pair (U, BaecsSqa)
where U is an open set belonging to B and ®acysq € (U, F) = BaciI'(U, Fo),
with s, € I'(U, F,), and where J is a finite subset of I. We map the class of the
pair (U, ®acsSa) in Frp t0 @aci(Sa)r € @aci(Fa)z. It is clear that the resulting
element in ®yc7(Fy), is independent of choise of the representative (U, ®pecsSq) of
the element in F,, and that we obtain a map F, — @acs(Fa)e which is the inverse
of the map (1.23.1).
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(1.24) Example. Even when all the sheaves F,, are A-modules the presheaf F of
Section (7) is not necessarily a sheaf. Let X be the topological space which consists
of the set N of natural numbers with the discrete topology. We let A be the simple
sheaf of rings on X with fiber Z. Moreover, for every n € N we let F,, be the sheaf
on X defined by I'(U, F,,) = Z when n € U and I'(U, F,,) = {0} otherwise, and
where the restriction map (pg,); = idz when n € U and the zero map otherwise.
Clearly F,, is an A-module via the multiplication of I'(U, . A) on T'(U, F,,) defined by
(fi)icuvr = foz.

The presheaf F associated to the collection {F,, }nen in Remark (?) is not a sheaf.
In fact let s, = 1 € I'({n}, F,,) for every member {n} in the open covering {{n}}nen
of X. Then the restriction of s,, and s, to the intersecton {m} N{n} =0 is 0 for all
pairs of integers m,n. However there is no section in I'(X, F) = ®,en(X, F,,) that
restricts to s, on the open set {n} for all n € N.

(1.25) Definition. Let X be a topological space with a basis B for the topology.
Moreover let A be a sheaf of rings on B and let {F, } a1 be a collection of A-modules.
The direct sum of the A-modules F,, is the associated sheaf (idx )*(F) of the presheaf
F defined in Section (1.23) from the collection {Fy }acr. We denote the direct sum
by !®ac1Fa, and the canonical A-module homomorphism we obtain by composing
ig: Fg — F with pr : F — (idx)*(BaecrFa) we denote by !!

hlg : flg — @aejfa.
When F, = G for all a € I we write !!®,c1Fn = G and when I is finite and

consists of n elements we write G (1) — gP.

(1.26) Remark. It is clear that the A-module ®,¢c;F, together with the canonical
maps hg @ Fo — PacrFa is the direct sum of the collection of A-modules {F, }acr
in the category of A-modules. Moreover it follows from Proposition (Sheaves 2.3)
and the isomorphism (1.23.1) that we have a canonical isomorphism of A,-modules

@ael(]:a)m — (@Oéelfa)fb

forallz € X.

(1.27) Lemma. Let (X,.A) be a ringed space and let {F,}acr be a collection of
A-modules. Moreover let hg : F3 — @®ac1Fa be the canonical homomorphism to
factor 3. For every A-modules G there is a canonical A-module isomorphism

Dael(Fa ®4G) == (PaciFa) @4 G (1.27.1)

that composed with the homomorphism hg ® 4 idg : Fg @4 G — (SaciFa) ®a G Is
the canonical homomorphism Fg ® 4 G — ®acr(Fa ®4 G) to factor (§ for all 5 € 1.

Proof. From the universal property of direct sums of .A-modules the maps hg® 4idg :
Fs®@4G — (BaciFa) @4 G for § € I define a canonical homomorphism (1.27.1)
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with the properties described in the Lemma. We must show that the homomorphism
(1.27.1) is an isomorphism. It follows from Proposition (1.20) that it suffices to
prove that the induced map on stalks at x € X is an isomorphism for all x € X. We
saw in Remark (1.26) that up to isomorphisms the map of stalks at a point z € X
is given by the homomorphism @®ucr(Fo @4 G)z — ((BaciFa) @4 G), obtained
from the homomorphisms (hg ®4 idg)s : (Fg @4 G)a — ((BactFa) @4 G), for all
B € I. Moreover it follows from Lemma (1.9) that the latter homomorphism up to
isomorphisms is given by the map @ocr((Fa)z®4,Gz) — (PaciFa)z®a, G obtained
from the homomorphisms (hg); ® .4, idg, : (F3)e @4, Gz — (PaciFa)z @4, Gz It
follows from Remark (1.26) applied to the collection of modules {F, ® 4 G}acr that
the latter map is an isomorphism.

(1.28) Proposition. Let ¥ = (¢,0) : (X, A) — (Y,B) be a homomorphism of
ringed spaces and let {G, }ocr1 be a collection of B-modules. Then there is a canonical
isomorphism of A-modules

Bacr¥V" (Ga) = V" (Pac1Ya) (1.28.1)

such that the composite of the homomorphism (1.28.1) with the canonical homomor-
phism ¥*(Gg) — Bacr¥*(Ga) Is the map V*(hg) : V*(Gg) — V*(BaeciGa), where
hg is defined in Section (1.25).

Proof. For every a € I the canonical homomorphism hg : Gg — @acr¥a gives a
canonical homomorphism V*(hg) : ¥*(Gg) — ¥*(BaecrGa). Consequently we obtain
a canonical homomorphism @®,c;V*(G,) — Y*(PacrGa) that composed with the
canonical homomorphism of A-modules V*(Gg) — @acr¥*(Gq) is U*(hg). We have
thus constructed the homomorphism (1.28.1).

It remains to prove that the homomorphism (1.28.1) is an isomorphism. It fol-
lows from Remark (1.26) and the isomorphism (1.13) that we have canonical iso-
morphisms (@ael‘l’*(ga))x - Baer (\I]*<g)a)m - Bacr <¢*(ga)x Op*(B) g Ax) of
A -modules for each point x € X i, and from Proposition (Sheaves 2.3) we ob-
tain a canonical homomorphism of A,-modules ©ne1(¥*(Ga)er Dw+(B), Az) — Bacr
(ga)w(m)®sw(z)~’4w)' From the isomorphism (1.13.1) and Remark (1.26) we obtain iso-
morphisms U (Dae1Ga)z = (DacrGa)y(c) @By Azr = Dael (Ga)p(a) OB, Az
It is easy to check that via these isomorphisms the homomorphism (1.28.1) induces
the identity on ®aer(Ga)y(e) @B, Az It consequently follows from Proposition
(1.20) that (1.28.1) is an isomorphism.

(1.29) Definition. Let X be a topological space and A a sheaf of rings on X. The
support !Supp(F) of a A-module F is the subset of X consisting of points x where
Fo # 0.

(1.30) Exercises.
1. Let A be aring and let M be an A-module. Moreover let X be a topological space.
For all open non-empty subsets U of X we let I'(U, A) = AY and I'(U, F) = MY,
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and let T'(0, A) = {0}, and T'(0, F) = {0}. For every inclusion U C V of open subsets
of X we define (p4)y; : T'(V, A) — I'(U, A) and (pr)}; : T(V,F) — T'(U, F) as the
restrictions of functions on V' to functions on U. Show that the sheaf F with the
restriction maps (p£)y; is a module over the sheaf A with the restriction maps (p.4)y -

2. Let X be a topological space and let { A, }.cx and {M, }.cx be collections of rings
A, respectively Az-modules M,. Moreover let I'(U, A) = [[, .y Az and I'(U, F) =
[I,c M. for all open subsets U of X. Then I'(U, F) has a natural structure as a
['(U,.A)-module for all open subsets U of X. Let (pa)}; : I'(V, A) — I'(U, A) and
(pF)Y : T(V, F) — I'(U,F) be the projections.

(1) Show that A with the given restrictions maps is a sheaf of rings.
(2) Show that F with the given restriction maps is an .A-module.

3. Let X, with a fixed point zg, be the topological space where the non-empty open
subsets are all subsets of X that contain the point zo. Let {A;}.ex and {M,}rex
be collection of rings A, respectively A,-modules M,. Assume that we for all points
x € X have a ring homomorphism ¢, : A, — A, such that ¢,, = id Agy and a
¢gz-module homomorphism u, : M, — M,, such that u,, = iszo. For all open
subsets U of X let I'(U, A) be the subset of [[ ., A consisting of elements (f;).cv
such that ¢, (fz) = fo, for all z € U, and let I'(U, F) be the subset of [], .. M,
consisting of elements (z;)zcy such that u,(z;) = 2, for all x € U.

(1) Show that for every inclusion U C V of open subsets of X the projections
[Liev Az — [licy Az and [, My — [],cp Mz induce restriction maps
(pa)Y :T(V, A) — (U, A), respectively (pz); : T(V, F) — (U, F).

(2) Show that A with the restriction maps (p4)y; is a sheaf of rings on X and
that F with the restriction maps (pr)y; is an A-module.

(3) Describe the A,-module F, for all points x € X.

(4) Show that all sheaves of rings B, and B-modules G on X, are obtained
from collections {B;}.ex and {N,},ex of rings B, and B,-modules N,
in the same way as A and F are obtained from the collections {A, },cx and

{Mﬂﬁ}mGX-

4. Let X be a topological space and let A be a sheaf of rings on X. Moreover let F
and G be A-modules.

(1) Show that the A-modules F ® 4 A and F are canonically isomorphic.
(2) Show that the A-modules F ® 4 G and G ® 4 F are canonically isomorphic.

5. Let A and B be sheaves of rings on a toplogical spaces X. Moreover let F be an
A-modules and let G be a B-modules. Show that there is a canonical homomorphism
of groups

Hom 4 (F, Gjy)) — Hompg(F ®4 B, G).

6. Let X = {z,y} be the topological space with two point z and y and the discret
topology. Define sheaves of groups F and G by I'( X, F) = Z/6Z, I'({z}, F) = Z/2Z,
I'{y},F) = Z/3Z with the natural residue maps as restrictions, and I'(X,G) =
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Z/6Z, I'({z},G) = Z/3Z, I'({y},G) = Z/2Z with the natural residue maps as re-
strictions. Give F and G a structure as modules over a ring A in such a way that
the presheaf H of Section (7) is different from F ® 4 G.

7. Let X be a topological space with a basis B for the topology. For every open
subset U of X we consider U as a topological space with the topology induced by
that of X, and we let B be the basis for U consisting of open sets V' belonging to
B that are contained in U.

For every presheaf F defined on B we let F|U be the presheaf on By defined
by I'(V, F|U) = T'(V, F) for all V belonging to By and (prw)y = (pr)} for all
inclusions V' C W of open sets belonging to By .

Let A be a presheaf of rings defined on B and let F and G be presheaves of
A-modules defined on 8. We write Hom4(F,G)(U) = Hom 4 (F|U, G|U) for the
group of all homomorphisms of presheaves of A|U-modules from F|U to G|U, for
every open subset U belonging to B.

(1) Show that for all inclusions U C V of open sets belonging to B we have a
canonical map

pl; : Hom 4y (F|V,G|V) — Hom 4 (F|U, G|U)

that maps a homomorphism u : F|V — G|V to the restriction u|U : F|U —
GlU to U.

(2) Show that Hom4(F,G) with the restriction maps pl; : Homa(F,G)(V) —
Hom A (F,G)(U) for all inclusions U C V' of open subsets belonging to B is a
presheaf of A-modules on ‘B.

(3) Show that there is a canonical homomorphism

Homy(A,G) — G.
(4) Show that for all z € X we have a canonical homomorphism of stalks
Homa(F,G)y — Homa, (Fz, Gs)

that maps the class of a pair (U, u), where u : F|U — G|U is a homomorphism
of presheaves, to the map u, : F, — G,.

(5) Show that when A, F and G are sheaves on B then Hom 4(F,G) is an A-
module on ‘B.

(6) Let F and G be A-modules. Assume that there is a neighbourhood U of z
and an exact sequence

A™MU — A"|U — FIU — 0
of A-modules. Show that then the homomorphism

HomA(F, g)x - HomAz (fah gw)
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is an isomorphism.
(7) Let 0 = G' — G — G” be an exact sequence of A-modules, and let F be an
A-module. Show that the sequence of A-modules

0 — Homa(F,G") — Homa(F,G) — Homa(F,G")

is exact.
(8) Let F/ — F — F” — 0 be an exact sequence of .A-modules, and let G be an
A-module. Show that the sequence of A-modules

0 — Homa(F",G) — Homa(F,G) — Homu(F',G)

is exact.

(9) Let X = {xg,x1} be the topological space with open sets {0}, {z¢}, X}, and
let A be the simple sheaf with stalks Z. Moreover let F be the sheaf defined
by I'(X,F) = {0} = T'(0, F) and I'({xo}, F) = Z, and let G be the sheaf
defined by I'(X,G) = Z and I'({zo},G) = (0) = I'(0, G), both with the only
possible restriction maps. Finally let H be the sheaf defined by H()) = {0}
and H(X) = Z = H({xo}) and with (py)X = idz.

(a) Show that F and G are A-modules.
(b) Show that the map

HomA(F,F)a, — Homa, (Fo,, Fr,)

is not injective.
(c) Show that the map

Homa(G, H)z, — Homu, (Ga,, He,)

is not surjective.

8. Let X be a topological space with basis 28 for the topology. Moreover let A be
a presheaf of rings on B and let {F,},er be a collection of presheaves of A-modules
on B. For every open subset U of B we let I'(U, F) = [[,c; I'(U, Fa), and for every

inclusion U C V of open subsets belonging to B we let (pr)}; = HaeI(Pfa)‘[j.

(1) Show that F with the restriction maps (p#)Y; is a presheaf on .A-modules on
B.

(2) For every a € I and every open subset U of 8 we have a projection map
uy ¢ [[ae; T(U, Fo) — T'(U, Fo). Show that the maps uy for all U belonging
to B defines a homomorphism of presheaves of A-modules

pa:H]:a—>]:a.

acl
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(3) Show that F with the projections p,, is a product of the presheaves F, in the
category of presheaves of A-modules.

(4) Show that when A is a sheaf all the presheaves F,, are A-modules then F is
an A-module. We denote this A-module by [],.; Fo and call it the product
of the sheaves F,.

(5) Show that the A-module [ ., Fo together with the projections p,, is a prod-
uct of the A-modules F, in the category of A-modules.

(6) For every z € X and for every o € I we have a map (pa)e : ([[oe; Fa)e —
(Fa)z- Show that these maps, for all a € I, give a map of A,-modules

(H Fa)z = (Fa)a-

a€l

9. Let X be a topological space and let A be a sheaf of rings on X. Moreover let
{Fa}acr be a collection of A-modules.

(1) Show that Supp(®acrFa) = Uacr Supp(Fa).

(2) Is it true that Supp(]],c; Fa) = Uacr Supp(Fa)?
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2. Quasi-coherent modules.

(2.1) Sections. Let (X,0Ox) be a ringed space and let F be an Ox-module. An
Ox-module homomorphism v : Ox — F gives a section s = ux(1) in I'(X, F).
Conversely a section s € I'(X, F) defines an Ox-module homomorphism u : Ox —
F determined on each open subsets U of X, and every section ¢t € I'(U, Ox), by
uy (t) = t(pF)i (s). We call u the homomorphism induced by the section s.

In this way we obtain a bijection between the sections of I'(X, F) and the Ox-
module homomorphisms Ox — F. Let I be a collection of indices. We obtain a
bijection between O x-module homomorphisms w : Og) — JF and families of sections
(Sa)acr of T'(X,F). Under this bijection the homomorphism w : O&{) — F corre-
sponds to the family (uhy)acr where uh, : Ox — F is the composite map of u with

the canonical homomorphisms h, : Ox — O&{) to factor « for all o € I.

(2.2) Definition. Let (X,Ox) be a ringed space and let F be an Ox-module.
We say that a collection of section (s4)acs of I'(X, F) generate F if the resulting
homomorphism (’)g(l) — F is surjective. The sheaf F is generated by global section
over X if it is generated by a collection of sections of I'(X, F). That is, there is a

surjection (’)g) — F for some family I of indices.

(2.3) Remark. It follows from Lemma (7) and Lemma (?) that F is generated by
the collection of sections (84 )aecr With s, € I'(X, F) if and only if the O,-module F,
is generated by the elements (s4), of the collection ((s4)s)acs for all x € X.

(2.4) Example. Not all modules are generated by their global sections.

Let X = {xo,x1} be the topological space with open sets {0, X, {z¢}}. Moreover
let Ox be the simple sheaf with fibers Z, and let F be the submodule of Ox defined
by I'(0, F) = {0} = (X, F), and I'({zo},F) = Z with (pg)y; =0 for all U C V.
Since F(X) = {0} and F,, = Z the Ox-module F can not be generated by global
sections.

(2.5) Definition. Let (X,0Ox) be a ringed space. An Ox-module F is quasi-
coherent if there, for all x € X, is an open neighborhood U of = such that F|U is the

cokernel of a homomorphism Og)\U — (’)g;])\U of Ox-modules for some collections
of indices I and J.
An Ox-algebra A is quasi-coherent if it is quasi-coherent as an O x-module.

(2.6) Example. We have that Ox is quasi-coherent, and every direct sum of quasi-
coherent O x-modules is quasi-coherent.

(2.7) Example. Even residue modules of Ox are not necessarily quasi-coherent.
Let Ox and F be as in Example (2.4). We have that the sections of Ox/F

are given by I'(0, Ox /F) = {0} = T'({z0},Ox /F) and I'(X, Ox /F) = Z. The sheaf

Ox /F is not coherent because if Ox /F were the cokernel of w : (’)gp — Og;]) it follows
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from Theorem (1.20) that we would have an exact sequence Og(l’)xi SN (’)g;])m —

Fu, — 0 for i=1,2. For 7« = 0 we obtain the exact sequence 7 220 7)) 7 0,

and for i = 1 we obtain the exact sequence Z() 215 Z(/) — 0. This is however
impossible since (poy )z, = idz and thus uz, = ug, .

(2.8) Proposition. Let ¥ = (¢,0) : (X,0x) — (Y,Oy) be a homomorphism of
ringed spaces and let G be a quasi-coherent Oy -module. Then the O x-module ¥*(G)
is quasi-coherent.

Proof. Let x be a point of X and let y = ¢ (z). Since the sheaf F is quasi-coherent
there is an open neighbourhood V' of y and an exact sequence of (Oy|V')-modules
Og/])\V — Og,J)|V — F|V — 0. Let U = ¢~YV). Then U is a neighbourhood of x
and it follows from Proposition (1.22) that there is an exact sequence of (U*(Oy)|U)-

modules \P*(Og,]))\U — \If*((’)g,‘]))\U — U*(G)|U — 0. It follows from Proposition
(1.28) that we obtain an exact sequence U*(Oy)D|U — U*(Oy) U — ¥*(G)|U.
Since ¥*(Oy ) = Ox we have that ¥*(G) is quasi coherent.

(2.9) Definition. Let (X, Ox) be a ringed space. An Ox-modules F is of finite
type it there for every x € X is an open neighbourhood U of x such that F|U is
generated by a finite collection of sections of I'(U, F). That is, we have a surjection

(Ox|U)" — FlUof Ox-modules.

(2.10) Example. The sheaf Ox is of finite type. Every quotient module of a sheaf
of finite type is of finite type. A finite direct sum of modules of finite type is of finite
type, and it follows from Lemma (1.9) and Lemma (Sheaves 2.12) that the tensor
product of two modules of finite type is of finite type.

(2.11) Remark. When F is an Ox-module of finite type the support Supp(F)
is a closed subset of X. In fact if x ¢ Supp(F) we have that F, = 0. Since F is
of finite type we can find an open neighbourhood V of x and sections s1, ss,..., s,
in I'(V, F) that generate the Ox ,-module F, for all y € U. Since (s;), = 0 in F,
there is a neighbourhood U; of x contained in V' such that (s;), = 0 for y € U;. Let
U =N U;. Then U is an open neighbourhood of z and F,, = 0 for all y € U, and
thus the complement of Supp(F) is open in X.

(2.12) Definition. Let (X, Ox) be a ringed space. An Ox-modules F is coherent
if it satisfies the following two conditions:

(1) Tt is of finite type.
(2) For every open subset U of X the kernel of each homomorphism O% |U — F|U
of Ox-modules is of finite type.

An Ox-algebra A is coherent if it is coherent as an O x-module.

(2.13) Example. A coherent module is of finite type, and it is quasi-coherent.
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(2.14) Remark. A submodule F of finite type of a coherent sheaf G is coherent.
In fact, every homomorphism O%|U — F gives a map O%|U — G with the same
kernel. Since G is coherent the kernel is of finite type.

(2.15) Theorem. Let (X,Ox) be a ringed space and let

0—-F5G5H—0
be an exact sequence of Ox-modules. When two of the three modules F, G, H are
coherent, then the third module is coherent.

Proof. (1) Assume that the modules G and H are coherent. Let w : O%|U — G
be a surjective Ox-modules homomorphism. We obtain a commutative diagram of
(Ox|U)-modules with exact rows

0 —— Ker((w|U)w) —— oplu U2 wiy — ¢
0 — AU —— U —— HU —— 0,

u|U v|U

where the left vertical homomorphism is induced by w. The left vertical homomor-
phism is surjective, and Ker((v|U)w) is of finite type since H is coherent. Hence F
is of finite type. Since G is quasi-coherent it follows from Remark (2.14) that F is
coherent.

(2) Assume that F and G are coherent modules. Since G is of finite type we have
that H is of finite type. Hence it remains to prove that the second condition of
Definition (2.12) is fulfilled for H.

Let w : O%|U" — H be a homomorphism of (Ox|U)-modules, and let t1, o, ..., 1,
in I'(U’, H) be sections that define w. Since F is of finite type we can find an open
neighbourhood V' of x contained in U’ and a surjective homomorphism r : O%|V —
F. The map v, : G, — H, is surjective. Hence we can, for each point =z € X,
find an open neighbourhood W of = contained in V' and sections si,ss,...,S, in
I'(W,G) such that v, ((s;)z) = (ti) for i = 1,2,...,n. Then the pairs (W, vy (s;))
and (W, (pn)¥:(t;)) define the same class in H,. We can therefore find an open
neighbourhood U of z contained in W such that vy ((pg)W (si)) = (pr)Y (t;) for
i =1,2,...,n. The sections sy, s2,..., s, define a homomorphism s : O%|U — G
such that (w|U) = (v|U)(s|U). Together with (u|U)(r|U) we the homomorphism s
defines a homomorphism ¢ = ((u|U)(r|U) + s) : OR|U @ O%|U — G|U such that we
obtain a comutative of Ox |U-modules with exact rows

0 —— opluv M orueony —2— OLU —— 0

mUl ql 1MUl (2.15.1)

0o —— Flu M7, GlU T o —— o,
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where h is the canonical homomorphism to the first factor and p is the projection to
the second factor. Since G is coherent the kernel of the homomorphism ¢ is of finite
type. Since r|U is surjective this kernel maps by p onto the kernel of the homomor-
phism w|U. Hence the kernel of w|U is finitely generated. We have proved that the
module H satisfies the second condition of Definition (2.12), and consequently that
‘H is a coherent O x-module.

(3) Assume that the modules F and H are coherent. As in the case when F and G
were coherent we can construct a commutative diagram (2.15.1). Since H is assumed
to be coherent, and thus of finite type, we can choose the homomorphism w in the
diagram to be surjective. Then the homomorphism ¢ is surjective hence G is of finite
type.

It remains to prove that the second condition of Definition (2.12) holds for the
module G. Let w : O%|U — G|U be a homomorphism of Ox|U-modules. We
obtain a homomorphism (v|U)w : O%|U — H|U. Since H is coherent there is a
homomorphism s : OR|U — O%|U that maps onto the kernel of (v|U)w. Since
(v|]U)ws = 0 and Ker(v) = Im(u) we have that the image of ws : OR|U — G lies
in Im(u|U). Moreover since F is coherent and is isomorphic to Im(u|U) we have
that Im(u|U) is coherent. Hence Ker(ws) is of finite type. We have that Ker(ws)
is mapped by s : OR|U — O%|U onto Ker(w). Since Ker(ws) is of finite type we
have that Ker(w) is of finite type, and consequently G satisfies the second condition
of (2.12).

(2.16) Corollary. Let u : F — G be a homomorphism of coherent O x-modules.
Then we have that Ker(u), Im(u), and Coker(u) are coherent O x-modules.

Proof. Since u induces a surjection F — Im(u) and F is coherent we have that Im(u)
is of finite type. However, since G is a coherent module, it follows from Remark (2.14)
that Im(u) is coherent. Hence it follows from the exact sequences of Proposition (1.20)
that Ker(u) and Coker(u) also are coherent modules.

(2.17) Remark. Let (X,Ox) be a ringed space and let F and G be coherent Ox-

modules. We have an exact sequence of Ox-modules 0 — F LN FoGg g -0
where h is the canonical map to the first factor, and p is the projection to the second
factor. It follows from Theorem (2.15) that F @& G is coherent.

Assume that F and G are submodules of a coherent O x-modules H. The inclusion
maps F — H and G — H define a canonical O x-modules homomorphism u : F&G —
H. The image of u is called the sum of the submodules F and G and is denoted by
"F 4+ G. Since F @ G is of finite type we have that F + G is of finite type. It
consequently follows from Remark (2.14) that F + G is coherent.

The residue maps H — H/F and H — H/G define a homomorphism of Ox-
modules v : H — H/F @& H/G. The kernel of the map v is called the intersection of
the submodules F and G and is denoted by !!FNG. It follows follows from Theorem
(2.15) that H/F and H/G are coherent. Hence the image of H by v is coherent
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by Corollay (2.16). It follows from Theorem (2.15) that the intersection F N G is
coherent.

In particular we see that when H is coherent then the intersection of two submod-
ules of finite type is coherent.

(2.18) Example. Let (X,0Ox) be a ringed space. Then Ox is not necessarily
coherent, even when X consist of one point. It follows from Remark (2.17) that to
give an example where O is not coherent it suffices to find a ring A and two finitely
generated ideals a and b that have an intersection that is not finitely generated. Then
we can take X = {z} and define Ox by I'(X, Ox) = A.

I order to find such a ring A we consider the polynomial ring K [u,v,tq,ts,...] in
the independent variables u, v,t1,t2,... over a ring K. Let ¢ be the ideal generated
by the elements uv, ut; —vt;, and t;t; fori,5 =1,2,.... Let A= Klu,v,t1,t2,...]/c
and let z,y, and f; be the residue classes of u, v, respectively ¢; for i = 1,2,....
We then have relations zy = 0 = f;f; and o f; = yf; in A for 7,5 = 1,2,.... From
the relations it follows that every element in A can be written uniquely in the form
f(@)+g(y)+ >0~ hi(z)f; where f(u) and h(u) are polynomials in K[u], and g(v)
is a polynomial in K[v] such that g(0) = 0.

We have that z(f(z) + g(y) + >iry hi(x) fi) = xf(x) + >~ hi(z)zf; and that
y(f (@) +g(y) + 2205, hi(@) fi) = yf(0) +yg(y) + 222, hi(x)afi. From these expres-
sions we see that (z) N (y) = (zf1,2f2,...). The ideal (zf1,zf2,...) is not finitely
generated. In fact if Z;nzl hij(x)xf; for i = 1,2,...,n were generators and m is
an integer strictly greater than mj,ma,...,m, then zf/™ can not be in the ideal
(91,92, - --,9n) generated by g1, g2, ..., g, since f;f; = 0.

(2.19) Exercises.

1. Let (X,0x) be a ringed space. Show that when F and G are coherent Ox-
modules then F ®p, G is a coherent O x-module.

2. Let (X,0Ox) be a ringed space. Show that when F and G are coherent Ox-
modules then the Ox-module Homp, (F,G) defined in Excercise (7) is coherent.
3. Let (X,0Ox) be a ringed space. Moreover let F be a coherent Ox-module and
let Z be a coherent ideal in Ox.
(1) Show that there is a canonical homomorphism Z®¢, F — F of Ox-modules.
(2) Show that the image ZF of this homomorphism is coherent.
4. Let (X,Ox) be a ringed space and let F be an Ox-module.

(1) Show that here is a canonical homomorphism of O x-modules
Ox — Homo (F,F)

that maps a section s € I'(U,Ox) to the canonical multiplication by s in
Hom(F|U, F|U) for all open subsets U of X. The kernel of this homomor-
phism is called the annihilator of F.

(2) Show that when Ox and F are coherent Ox-modules then the annihilator is
coherent.
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5. Let (X,Ox) be a ringed space with Ox-coherent, and let F be a coherent O x-
module. Moreover let x € X and let M be an Ox ,-submodule of the stalk F,. Show
that there is an open neighbourhood U of x and a coherent (Ox |U)-submodule G of
F|U such that G, = M.

6. Let X = {x,x1} be the topological space with open sets (), {x¢} and X. Moreover
let Ox be the simple sheaf on X with fibers Z, and let F be the O x-module defined
by T'(0,F) =0 =T(X,F) and I'({x0}, F) = Z and with the restrictions being the
only possible maps.

(1) Is the sheaf Ox quasi-coherent?
(2) Is the sheaf Ox of finite type?
(3) Is the sheaf Ox coherent?

(4) Is the sheaf F quasi-coherent?
(5) Is the sheaf F of finite type?
(6) Is the sheaf F coherent?
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3. Modules and affine schemes.

(3.1) Change of multiplicative subsets. Let ¢ : B — A be a homomorphism of
rings and let 7" and S be multiplicative closed subsets of B, respectively A, such that
o(T) C S. Tt follows from the universal property of localization that the composite
map B — S71A of ¢ : B — A with i : A — S71A, factors via the canonical map
ig : B — T7'B and a unique algebra homomorphism

goS’T T 'B— S71A.

Let N be an B-module and M a A-module, and let u : N — M be a ¢-module
homomorphism. We obtain a unique ¢*7-module homomorphism

uwT:T7'N - S7'M

such that iy,u = uXi%. We have that u™7(x/s) = u(x)/¢(s). It is clear that
the definition of 7 is independent of the choise of representative (z,s) of the
class z/s and it follows from the explicit form of the map that it is a ¢*>7-module
homomorphism.

For every commutative diagram of A-modules

M - N

l lw

’
u

M —— N’

we have a commutative diagram

uST
T-‘M —— S7IN

T_lvl S_le(

T-'M ——— S7'N'.

(u/)S,T
(3.2) Proposition. Let S and T be multiplicatively closed subsets of the ring A.

Assume that there for every element s € S are elements t € T and f € A such that
t = sf. For every A-module M the following assertion shold:

(1) There is a canonical homomorphism of groups!!
pT,S — (pM)T,S . S_lM N T_lM.

(2) When t = sf with s € S and t € T we have that (pyr)1°(2/s) = (fx)/t.
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(3) When s isin S, x,y are in M, and t,t" are in T and t'(tx — sy) = 0 in M we
have that (par)1° (z/s) = y/t in T-1 M.

(4) We have that (ps)™® : S7'A — T—'A is a homomorphism of rings, and
(par) ™% is a (pa)T°-module homomorphism.

(5) We have that (par)®° = idg-1ps, and when R is a multiplicatively closed
subset of A with the property that for every r € R there is an s € S and a
g € A such that s = rg then

)R,S )R,T( )T,S_

(pm = (pu pM

Proof. (1) Let s € S and z € M. By assumption there is at € T and an f € A
such that ¢t = sf. We let (pa)7°(2/s) = (fz)/t. The definition is independent
of the representation ¢t = sf because if ¢/ = sf’ then we have that t'fz — tf'x =
(sf'f —sff')x =0, and hence that (fx)/t = (f'x)/t’. We have proved assertion (1).

(2) Assertion (2) follows from the definition of (pas)T"*

(3) To prove assertion (3) we assume that t'(tz — sy) = 0. By assumption there is
at” € T and an f € A such that ¢ = sf. Then (par)T°(2/s) = (fx)/t". We must
prove that (fz)/t” = y/tin T~'M. However t'(tfx —t"y) = ft'sy—t'sfy = 0. That
is, we have (fx)/t" = y/t in T"1M as we wanted to prove.

(4), (5) The remaining properties are easy to check from the explicit description
of (pa)"% and (par)™".

(3.3) Corollary. Let f,g be elements in the ring A such that D(f) O D(g) in
X = Spec(A). For every A-module M there is a canonical homomorphism!!

Pg.f = (Pr)g s My — M,

such that (pa)g,¢ Is a ring homomorphism, and (par)g,f is a (pa)g, p-module ho-
momorphism. when ¢™ = hf we have that pg ¢(z/f") = h"z/¢g™", and when
g™ (g"x — fPy) = 0 then py s(z/fF) =y/g".

We have that py y = idas,, and for every h € A such that D(f) 2 D(g) 2 D(h)
we have that

Ph,f = Ph,gPg,f-

Proof. If D(f) O D(g) it follows from Proposition (7) that g € v(f). In other words
there is a positive integer n and an h € A such that ¢" = fh. This means that the
multiplicatively closed subsets S = {1, f, f2,...}and T = {1,g,¢? ...} of A satisfy
the condition of the Proposition. Hence the Corollary follows from the Proposition.

(3.4) Corollary. Let p be a prime ideal in A, and let f € A\p. For every A-module
M there is a canonical homomorphism!!

ph = (par)} + My — M,
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such that if g € A and D(f) 2 D(g) we have that
Ph = PhPo.s-

Proof. Since f ¢ p we have that S = {1, f, f2,...} C A\ p. The Corollary therefore
follows from the Proposition with S = {1, f, f2,...,} and T = A\ p.

(3.5) Theorem. Let A be aring and M an A-module. Moreover let f be an element
of A and { fo }aer a family of elements of A such that D(f) = UaerD(fo) in Spec(A).

(1) Let x/f™ € My be such that py, ¢(x/f") = 0 in My, for all « € I. Then
{E/fn =01in Mf.

(2) Let zo/f™ € My, be elements such that for every point x € D(f,) N D(f3)
and every neighbourhood D(f.) of x contained in D(f,) N D(fg) we have
that ps. ¢, (xa/f") = py, 15 (xs/f"?). Then there is an element x/f" € My
such that py, r(x/f") = xo/f" for all o € 1.

Proof. (1) Since D(f) D D(f,) it follows from Proposition (?) that there is a positive
integer m,, and an element g, € A such that f'* = g, f. We have that ps s(x/f") =
(ghz)/fi*™ = 0 in My, . Consequently there is a positive integer g, such that
floglax = 0in M. We multiply the latter equation with f™ and obtain that fP~x =0
for some positive integer p,. It follows from Theorem (7) that there is a finite subset
J of I such that D(f) = UgesD(fz). Choose a positive integer p such that p > pg
for all 8 € J. Then fgx =0 for all g € J. It follows from Theorem (?) that there
is a positive integer m and elements hg € A for 8 € J such that [ =} 5 ; hﬁfg.
Then f™x =0, and consequently z/f™ = 0 in My as we wanted to prove.

(2) We just observed that D(f) = UgesD(fg) for a finite subset J of I. In
order to prove assertion (2) it suffices to prove that there is an element z/f" € Mjy
such that py, r(z/f") = xg/fgﬁ for all § € J. This is because for every a €
I we have that D(f,) N D(f3) can be covered by opens sets of the form D(f,),
such that py s (za/f3%) = pr.5s(x6/f5°) = pp,sapsas(@/ ") = pp,g(x/f7) =

Pfy faPfa,f(z/f™). Hence it follows from part (1) that z/f" = py., r(z/f").
Moreover, when o, 3 are in J we obtain for every D(f,) C D(f,) N D(f3) =

D(fozfﬁ) equahties pf'yyfafﬁpfafﬁvfa(xa/fga) = pf«,fa(xa/fga) = pf«,fg(xﬁ/fgﬁ) =

pfwfafﬁpfaf/@,fﬁ(:Bg/fgﬁ). Hence it follows from part (1) that py, s, 1. (Ta/fo*) =
pfafﬁyfﬁ(xﬁ/fgﬁ) in My, s, for all o, 3 in J, and we can find a positive integer m

such that (fafg)m(fgﬁl’a — flexg) = 0in M for all o, in J. It follows from
Theorem (?) that there is a positive integer n and elements gg € A for g € J such
that f = Zﬁejggf;wmﬁ. Let x = 3 5. ; 95f5 3. Then we have, for all o, 3 in J,
the equalities f' "™z = 3, gpfr e filas = Zﬂejgﬁféwr"ﬁf&"xa = frfra,.
It follows from Proposition (?) that py, r(x/f") = xo/fL~ in My, as we wanted to
prove.



!

b

136 Affine schemes

(3.6) Sheaves associated to modules and rings. Let A be a ring and M an
A-module, and let X = Spec(A). To every open subset D(f) in X we associate the
localized module My. It follows from Proposition (?) that whenever D(f) 2 D(g)
there is a canonical map py, s : My — M, and that we in this way we obtain a presheaf
on the basis {D(f)}sea with restrictions pg 5 : My — M, when D(f) D D(g). It
follows from Theorem (?) that this presheaf is in fact a sheaf on {D(f)}rca. We

denote the associated sheaf on X by /M. Hence it follows from Remark (?) that
F(D(f),M) = My, and in particular that I'(X, ]\7) =T'(D(1), M) =M.

It is clear that M is a sheaf of groups and that A is a sheaf of rings, and it follows
from Proposition (?7) that M is an A-module.

(3.7) Notation. For all points © € X = Spec(A) we let !!M, = M, and we let
Npl : My — M, be the canonical map.

(3.8) Lemma. There is a canonical isomorphism of groups M, — M,, such that the
map pf(f) : M(D(f)) — M, corresponds to the localization map pJ : My — M,.
In particular we obtain a homomorphism !y, : A, — A,. The latter homomor-

phism is an isomorphism of rings, and the isomorphism M, — Mx is an @, -module
homomorphism.

Proof. Let j, = p. We have that M, consist of equivalence classes (D(f),y/f™)
with y/f" € My and f ¢ p. Moreover (D(f),y/f"™) ~ (D(g),2/g™) if there is an
h ¢ p such that pn r(y/f") = pn,g(2/9™) in My, that is when hP(¢g™y — f"z) = 0
in M for some positive integer p. Let M, — Mx be the map that maps y/s with
s ¢ p to the class of (D(s),y/s). The definition is independent of the representative
(y,s) of the class of y/s because if y/s = z/t then there is an r ¢ p such that
r(ty — sz) = 0. Consequently (D(s),y/s) and (D(t), z/t) are both in the same class
as (D(rst), (rty)/(rst)) = (D(rst),(rsz)/(rst)). The map is surjective because the
class represented by (D(f),y/f") is the image of the element y/f™ € M,. It is
also injective because if y/s in M, is mapped to zero, then the pair (D(s),y/s) is
equivalent to the class of (D(t),0) for some t ¢ p. Hence t"y = 0 for some positive
integer n, and thus y/s =0 in M,.

(3.9) Remark. Let u: M — N be a homomorphism of A-modules. It follows from
Proposition (?) that the maps uy : My — Ny for all f € A induce a homomorphism
@: M — N of A-modules. This homomorphism is uniquely determined by @(D(f)) =
uy for all f € A. It follows from Proposition (7) that idy = id3; and that when
v: N — P is a map of A-modules we have that vu = vu. In other words the
correspondence that associates the A-module M to the A-module M is a functor
from A-modules to A-modules.

(3.10) Proposition. The map Homy (M, N) — Homg(l\j, N) that sends u to 1, is
a bijection.
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Proof. We shall show that the map !!I" : Homg(ﬂ, N) — Homu (M, N) wich sends

v:M — N to vpa) : M — N is an inverse of the map of the Proposition. Let
u : M — N be a homomorphism of A-modules. It follows from the definition of u

that I'(u) = @p(1) = u. Hence it remains to prove that v = 1:(\0/) for all A-module

homomorphisms v : M — N. For all f € A we have a commutative diagram

vp(1y=I(v)
SN

M N
(Pﬁ)f,ll l(Pﬁ)f,l
My —2Y N

By the definition of p3; we have that (p3;)r1 = z@ and (pg)r1 = z{v Hence it

follows from (3.1) that vp(s) = I'(v)f, and consequently that v = I'(v).
(3.11) Proposition. Let A be a ring and let

MELNSP

be an exact sequence of A-modules. Then

—

MENZP (3.11.1)

is an exact sequence of A-modules

Proof. For all points x € Spec(A) it follows from Lemma (3.8) that the sequence
(3.11.1) gives rise to an exact sequence M, — N, — P, of A,-modules. It follows

from Lemma (3.8) that MI — N, — P, is exact. Hence it follows from Theorem
(1.20) that the sequence (3.11.1) is exact.

(3.12) Proposition. Let A be a ring and let w : M — N be a homomorphism of
A-modules.

—_——

(1) The A-modules Ker(u), Im(u), and Coker(u) associated to the A-modules
Ker(u), Im(u), respectively Coker(u) are the A-modules Ker(), Im(@), re-
spectively Coker(u).

In particular we have that u is injective, surjective, or bijective, if and only
if u is injective, surjective, respectively bijective.

(2) Let {M,}uoecr be a collection of A-modules. Then there is a canonical isomor-
phism of A-modules

—_—

Dacr Mo 5 Daer M, (3.12.1)

that composed with the canonical homomorphism /ME — Dac Iﬁa is the
homomorphism hg : Mg — M where hg : Mg — ®qe1Mo = M is the
canonical homomorphism to factor [3.
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Proof. (1) It follows from Proposition (3.11), applied to the sequences
0 — Ker(u) - M — Im(u) — 0
0 — Im(u) — N — Coker(u) — 0

obtained in Remark (7) from the factorization M — Im(u) — N of u, that we have
exact sequences

0 — Ker(u) — M — Im(u) — 0 (3.12.2)
0 — Im(u) — N — Coker(u) — 0 (3.12.3)
obtained from the factorization M — Im(u) — N of &. From the sequences (3.12.2)

and (3.12.3) it follows that Ker(u) = Ker(u), Im(u) = Im(u), and Coker(u) =
Coker(u).

The last part of assertion (1) is clear.

(2) The canonical map hg : Mg — > . M, gives a canonical map hg : Mg —

—_—

Y acr Mo of A-modules. Consequently we obtain a homomorphism @,¢ ]j/[\; —

@aciMy. We have thus constructed the map (3.12.1).
It remains to prove that the map (3.12.1) is an isomorphism. For every point z €
Spec(A) it follows from Remark (1.26) and from Lemma (3.8) that we have canonical

isomorphisms (@aGI/M\;)x -5 Paer (M\;)x 5 @aer (My)s, and also the canonical

isomorphims (®acrMa)r —= (BaciMa)r = Bacs (My),. It is clear from Lemma
(3.8) and Proposition (Modules 3.20) that via these isomorphisms the homomor-

phism (3.12.1) gives the identity map on ®,c;(My).. Hence the map (@CXGIE)I —

—~——

@aci(My), is an isomorphism for all z € X. It follows from Theorem (1.20) that
the map (3.12.1) is an isomorphism.

(3.13) Proposition. Let A be a ring and let M and N be A-modules. The A-
module associated to the A-module M @4 N is canonically isomorphic to M @ 7 N.

Proof. We have that the sheaf M ® i N is the sheaf associated to the presheaf F
whose sections over the open subset U of X is ['(U, F) = T'(U, M) Orw.A) (U, N). It
follows from (?) that I'(D(f), F) = My ®a, Ny. However it follows from Proposition
(3.6) and Proposition (?) that we have canonical isomorphisms My ®4, Ny —~~ M ®
A @a, Ny =M @4 Nf 5 M @4 N ®4 A = (M @4 N)j = T(D(f), M @4 N).
We consequently have a canonical isomorphism

T(D(f), F) ==T(D(f), M ®4 N).

It is clear that these isomorphisms for f € A are compatible with the restriction maps

(p]:)gg)) and (PMTé?:N)gEQ for all f,g in A such that D(f) D D(g). Consequently

we have a canonical isomorphism F —- M ® 4 N.
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(3.14) Criteria for quasi-coherence. Let A be a ring and let X = Spec(A).
Moreover let U be an open subset U of X, and let F be an g|U -module. For every
element f € A =T(X, A) we have the two conditions:

a(f,U):

(1) For every section s € I'(D(f) N U, F) there is an integer n > 0 such that f"s
can be extended to a section of I'(U, F). That is, the element f"s is in the
image of (p]:)%(f)mU.

(2) For every section t € I'(U, F) with restriction (p]:)%(f)mU(t) to D(f)NnU
equal to zero there is an integer n > 0 such that f"t =0 in I'(U, F).

(3.15) Lemma. Let A be a ring and let g1, g2, ..., gp be elements in A. Moreover
let X = Spec(A), let U = UY_; D(g;) be the union of the open subsets D(g;) of X,
and let F be an A|U-module.

Assume that the conditons d(f, D(g;)) and d(f, D(gig;)) are fulfilled for all f € A
such that D(f) C D(g;) respectively D(f) C D(gig;) = D(g;) N D(g;) for all i,j =
1,2,...,p. Then the conditions d(f,U) hold for all f € A.

Proof. We first show that the second condition of d(f, U) holds. Let t € I'(U, F) have
restriction equal to zero on D(f)NU. Since D(fg;) € D(g;) and d(fgi, D(g;)) holds
by assumption, we can find integers n; > 0 such that (fg;)"t = 0 in I'(D(g;), F)
for i = 1,2,...,p. We have that the image of g; in A,, = I'(D(g:), A) is invertible.
Consequently f™it =0 in I'(D(g;), F). Let n be an integer greater than or equal to
ni,ng,...,n,. We then have that f"t =0 in I'(D(g;), F) for i =1,2,...,p. Since F
is a sheaf we have that f"t = 0 in I'(U, F). Hence the second condition of d(f,U)
holds.

We next show that the first condition of d(f,U) holds. Let s € T'(D(f) N U, F).
Since D(fg;) C D(g;) and d(fg;, D(g;)) holds by assumption we can find integers n; >
0, and sections s; € I'(D(g;), F) with restriction to D(f) N D(g;) equal to (fg;)™s.
The image of g; in Ay, = I'(D(g:), A) is invertible. Hence we can find a section s; in
I'(D(g;), F) such that s, = g;"'s;. Then the restriction of s; to D(f) N D(g;) is f™s.

Let n be an integer which is greater than or equal to all the ny,ns,...,n,. Then
the restriction of f" "is; = f" "s; to D(f) N D(g;) N D(g;) = D(fgig;) is zero.
Since the second condition of d(f, D(g;g;)) holds when D(fg,g;) € D(g;g;) by as-
sumption, we obtain integers n;; > 0 such that (fg;g,)™ (f" "s; — f"" " s;) is zero
in I'(D(g:95, F). We have that the image of g;g; in Ay, = I'(D(g:9;), A) is invert-
ible. Hence, when m is an integer which is greater or equal to n;; for¢,j =1,2,...,p,
we have that f™(f" ™s; — f" " s;) is zero in I'(D(g:g;), F) = I'(D(g:) N D(g;), F)
for i,7 = 1,2,...,p. Since F is a sheaf we can find a section s’ in T'(U, F) with
restriction f™*t""is; to D(g;) for i = 1,2,...,p. The restriction of f™T" g, to
D(f)ND(g;) is fmtn—ni frig = fmtng Consequently the restriction of s’ to D(f)NU
is equal to f™*"s. Hence the first property of d(f,U) holds.

(3.16) Proposition. Let A be a ring and let X = Spec(A). Moreover let U be a
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compact open subset of X and let F be an (Ox|U)-module. We have equivalently:

(1) The sheaf F is quasi-coherent.
(2) There is an open covering U = Uleli(fi) of U by open sets D(f;) with

fi € A, and Ay,-modules M; such that M;|D(f;) is isomorphic to F|D(f;) for
1=1,2,...,p.

Proof. (1)=-(2) When F is quasi-coherent every point x € U has a neighbourhood
D(f) such that F|D(f) is isomorphic to the cokernel of a map ggc[) — ggc‘]). It follows
from Proposition (7) that such a homomorphism is associated to a homomorphism

u: ASCI) — ASCJ) of A-modules. Hence it follows from Proposition (3.12) that F|D(f)
is associated to the cokernel of u. Since U is compact we can cover it with a finite
number of neighbourhoods of the form D(f). Consequently condition (1) implies
that condition (2) holds.

(2)=(1) Every A-module M is the quotient of a map A() — A() for some set
of indices I and J. It follows from Proposition (3.11) that the resulting sequence

Og(l) — (’)g}]) — M — 0 is exact. Hence every sheaf associated to a module is
quasi-coherent. Condition (1) consequently follows from condition (2).

(3.17) Theorem. Let A be a ring and let X = Spec(A). Moreover let U be a
compact subset of X, and let F be an (Ox|U)-module. We have equivalently:

(1) There is an A-module M such that M\U is isomorphic to F.
(2) The sheaf F is quasi-coherent.
(3) The conditions d(f,U) of Section (?) holds for all f € A such that D(f) C U.

Proof. (1)=-(2) Since the open sets D(f) form a basis for the topology of X and U is
compact it follows that the second condition of Proposition (3.16) is fulfilled. Hence
assertion (2) holds.

(2)=-(3). We shall show that assertion (3) follows from the second condition of
Proposition (3.16), and thus from assertion (2). It follows from Lemma (3.15) that
we may assume that U = D(g) and that F is associated to an A,-module N. In order
to show that the second condition of Proposition (3.16) implies assertion (3) thus we
may replace X by U and A by A,. Hence we assume that U = Spec(A) and that F
is associated to the A-module N.

Let s € I'(D(f), N) = Ny. Then s can be written in the form z/f™ with z € N

and f € A. Then f™s is the restriction to D(f) of the section z in I'(U, N) = N and
we have shown that the first condition of d(f,U) holds.

Let t € ['(U, N) = N be a section that has restriction to D(f) equal to zero. That
is, the image of ¢ by the canonical map @{v : N — Ny =T(D(f), N) is zero. Then
f™t = 0in N for some integer n > 0. Hence we have proved that the second condition

of d(f,U) holds.
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(3)=(1) Let g € A be such that D(g) C U. We note first that the conditions
d(f,D(g)) are fulfilled for the sheaf F|D(g) and all f € A such that D(f) C D(g).
It is clear that the first condition of d(f,U) for all f € A such that D(f) C U
implies that the first condition of d(f, D(g)) holds for all f € A such that D(f) C U.
Moreover when ¢t € I'(D(g), F) is a section with restriction zero to D(f) it follows
from the first condition of d(f,U) that there is a section s € I'(U, ) and an integer
m > 0 such that the restriction of s to D(g) is ¢”*t. Then it follows from the second
condition of d(f, U) that there is an integer n > 0 such that f"¢™t = 0in I'(D(g), F).
Since the image of g in A, is invertible we have that f"t = 0 in I'(D(g), F). Hence
we have proved that the second condition of d(f, D(g)) is fulfilled for all f € A such
that D(f) € U. We have shown that the conditions d(f, D(g)) are fulfilled for all
f € A such that D(f) C D(g). Hence it follows from Lemma (Modules 7) that
d(f,U) holds for all f € A.

Let M = T'(U,F) and let j : U — X be the canonical inclusion. Moreover
let f € A. The image of f in Ay is invertible. Hence it follows from Proposition
(?7) that the restriction map (p]:)%(f)mU : M = T(D(f),F) — T(D(f), j«(F)) =

I(D(f) NU,F) factorizes via the canonical map Zg/[ : M — My and a unique Ay-
module homomorphism

up(s) : My =T(D(f), M) — L(D(f),j«(F)) =T(D(f)NU, F).
It is clear that the maps upy), for all f € A, define a homomorphism of A-modules
w: M — J«(F).

We shall prove that  is an isomorphism. It suffices to prove that up s is an iso-
morphism for all f € A. Let s € I'(D(f) N U, F). It follows from the first condition
of d(f,U) that there is a section z € M = I'(U, F) and an integer n > 0 such that
z restrict to f"s on D(f) NU. That is, we have that up(s)(z/f") = s, and we have
proved that ups) is surjective.

Let z/f™ e My =T'(D(f), M) be in the kernel of up(fy, where z € M =T'(U, F).
Since the image of f in Ay is invertible the restriction of z to D(f)NU is consequently
equal to zero. It follows from the second condition of d(f,U) that there is an integer
n > 0 such that f"z = 0. Consequently we have that z/f" = 0 in M. We have thus
proved that upsy is injective.

(3.18) Proposition. Let A be a ring and let (X,Ox) = (Spec(A), A). Moreover
let U be a compact open subset of X and let F be an (Ox|U)-modules. Consider
the following conditions:

(1) The Ox-module F is coherent.

(2) The Ox-module F is of finite type and coherent.

(3) There is a finitely generated A-module M such that F is isomorphic to M |U.
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Then condition (1) implies condition (2), and condition (2) implies condition (3).
When condition (3) is fulfilled we have that F is of finite type.

Proof. (1)=-(2) It is clear that the first condition implies the second.

(2)=-(3) We have that F is quasi-coherent. Hence it follows from Theorem (3.17)
that there is an A-module N such that F is isomorphic to N |U. for every point
x € U there is an open neighbourhood of x contained in U and a finite collection of
sections in N = I'(U, F) that generate the Ox ,-modules F, for all y € U. Since U
is compact we can find elements f1, fo,..., f,, in A and elements z1, x5, ..., %, in N
such that N, = F, is generated by the classes of x1,22,..., 2, forall y € U.
~_ Let M be the submodule of N generated by the elements 1, zs, ..., z,, and let u :
M|U — F be the composite of the isomorphism N |U = F with the homomorphism

M|U — N|U obtained from the inclusion of M in N. It follows from Proposition
(3.12) that u is injective, and it follows from Proposition (3.12) that w is surjective.
Hence condition (3) holds.

When condition (3) holds we have that F is isomorphic to M for a finitely gener-
ated A-module M. That is, there is a surjection v : A — M for some integer n. It
follows from Proposition (3.12) that @ : A" — M is surjective. Hence F is of finite
type.

(3.19) Exercises.
1. Let Z, be all the rational numbers of the form m/n where n is not divisible by

the prime number p. Describe the ringed space (Spec(Z,)), %)

2. Describe the ringed space (Spec(Z), Z).
3. Let K[u,v] be the polynomial ring in the variables u, v over the field K, and let
A = K|u,v]/(u? uv). Describe the ringed space (Spec(4), A).
4. Let A =7 and let M be the A-module Z/2Z. Describe the (Spec(Z), Z)-module
M.
5. Let A be ring and M an A-module. Show that M = (0) on Spec(A) if and only
if M, = (0) for all points x in Spec(A).
6. Let Z, be the rational numbers of the form m/n where n is not divisible by the
prime number p. Let F be the simple sheaf with fiber Q on Spec(Z,)).

(1) Show that F is a %—module.

(2) Is it true that 7 = M for some Z,)-module M?

7. Let Z,) be the ring of rational numbers of the form m/n where n is not devisible
by the prime number p. Moreover let F be the sheaf on X = Spec(Z,)) defined by
NX,F)={0} and T'({z0},F) = Q.

(1) Show that F is a iz/p)—module.

(2) Is it true that 7 = M for some Z,)-module M?
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8. Is there a ring A such that Spec(A) consists of two points {z,y} and A, = Z and
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4. Affine schemes.

(4.1) Homomorphisms of locally ringed spaces associated to ring homo-
morphisms. Let ¢ : B — A be a homomorphism of rings. We saw in (7) that
we have a continous map %p : Spec(A) — Spec(B) of topological spaces. For ev-
ery g € B it follows from Proposition (?) that “p=1(D(g)) = D(¢(g)). It follows
from the definition of the sheaves of rings A and B that the rings I'(D(g), B) and
I'(D(p(g)), A) are canonically identified with B, respectively A (g).
(2.1) that the homomorphism ¢ induces a canonical homomorphism of rings!!

It follows from
¢ By — Ay,

that is a homomorphism of rings

Pp(g) : I'(D(9), B) — I'(D(p(9)), A).

It is clear that for all inclusions D(f) 2 D(g) of open sets in Spec(B) we have a
commutative diagram

N(D(f), B) 222 T(D(p(f)), A)
(pg)g,fl J((Pg)w(g)»w(f)

I(D(9), B) —— T(D(¢(9)), A).

®D(g)

Since T(D((g)), A) = T(*¢~1(D(g)), A) = T(D(g), (*¢). A) and the sets D(g) with
g € B form a basis for Spec(B) we obtain a homomorphism of sheaves of rings

¢: B — (“p)(A4).
Hence we have a map of ringed spaces!!

® = ("¢, @) : (Spec(A), A) — (Spec(B), B).

It follows from Lemma (?7) and (?7) that (Spec(A), A) and (Spec(B), B) are locally
ringed spaces.
We note that the adjoint map

9535 t(("¢)* By — Ay
of ¢ at the point z on Spec(A) is the same as the localization

ng . B<p($) — Aw
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that we obtain from (2.1) with 7" = A\ j, and S = B\ j,(;). In fact, take an
element h in ((“gp)*é)(p(w) = By(y). Then h = g/t with g,t in B and t € j,(q).
We have that D(t) is an open neighbourhood of ¢(z) in Spec(B) and that ¢p) :
T(D(t), B) — T((%)~1(D(t)), A) is the same as the map ¢' : B, — A,. Con-
sequently we have that a section s in I'(D(t), B) represented by g/t is mapped to
the section &(D(t))(g/t™) in ['((“p)~1(D(t)), A) represented by ¢(g)/¢(t™). In other
words & (s) = ¢(g)/p(t") in Ay
In particular we obtain that @% is a local map of local rings.

(4.2) Definition. A ringed space (X,Ox) is an affine scheme if it is isomorphic
as ringed spaces to (Spec(A), A) for some ring A. The ring I'(X,Ox) which is
canonically isomorphic to A is called the coordinate ring of the affine scheme, and
is sometimes denoted 'A(X). Sometimes we simply say that Spec(A) is an affine

scheme, instead of saying that (Spec(A), A) is an affine scheme. A homomorphism of
affine schemes ¥ = (1,0) : (X,0x) — (Y,Oy) is a local homomorphism of locally
ringed spaces.

(4.3) Remark. Let ¢ : B — A be a homomorphism of rings. We have seen that
it gives a local homomorphism!! ® = (“¢, @) : (Spec(A), A) — (Spec B, B) of locally
ringed spaces. Note that ® determines ¢ uniquely since ¢ = I'(@) : I(Spec(B), B) —
I'(Spec(B), (“¢).(A)) and T(Spec(B), (*¢).(A)) = I(Spec(A), A).

(4.4) Theorem. Let (X,Ox) and (Y, Oy) be two affine schemes. A homomorphism
of ringed spaces ¥ = (¢, 0) : (X,Ox) — (Y, Oy) is a homomorphism of affine schemes

® = (“p,p): (Spec(A), A) — (Spec(B), B) where ¢ : B — A is a homomorphism of
rings, if and only if the map V¥ is a local homomorphism of locally ringed spaces.

Proof. We have already seen in (?) that if ¥ is of the form ® = (¢, ¢) for some ring
homomorphism ¢ : B — A then ¥ is a local homomorphism of locally ringed spaces.

Conversely, assume that U = (¢, 60) is a local homomorphism of locally ringed
spaces. Let B=T'(X,0x) and A =T'(Y, Oy). The homomorphism 6 : Oy — ¥,.Ox
gives a canonical homomorphism of rings

e =T(0) :T(Y,0y) = T'(Y,9.(Ox))

and by the canonical identifications A = I'(X,0x) = I'(Y,¥.(Ox)) and B =
I'(Y, Oy ) a homomorphism of rings

p=T(0): B— A.

We first note that v and “¢ are the same homomorphism X — Y of topological
spaces. This is because the localization 6% : (1*Oy), = Oy, () — Ox,o of the
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adjoint map of 6 gives the commutative diagram

B =T(Y,0y) 2O, p(x,0x) = A
ijswm):f’i(z)l lpf:ijf
By(z) = Oy,p(z) = ¥ (Oy )z - Ox. = Ay

for all z € X. It follows from (?) that the inverse image of (ma), by pX is ja,
and the inverse image of (mp)y ) by pi(x) iS jy(z). Since 6% is local it follows
that o= 1(j,) = ju(2), and consequently that “p(x) = ¢(z) and hence that “p = 1.
Moreover, since the diagram is commutative, it follows from (2.1) that 6% = *
However we saw in (4.1) that ¢ = (@%),. Hence we have that 6% = (), for all
x € X. It follows from the characterization of sheaves that 0% = &*, and thus by
adjunction that 0 = .

(4.5) Remark. The affine schemes with local homomorphisms form a category.

(4.6) Remark. Let ¢ : B — A be a homomorphism of rings. Moreover let g € B
and let f = ¢(g). We saw in (3.1) that we obtain a homomorphism of rings

¢ By — Ay

such that ¢(h/g™) = @(h)/f™ for all h € B and all integers n > 0. Let M be an A-
modules. It follows from section (3.1) used to the natural p-module homomorphism
Mi,) — M that we obtain a homomorphism of ¢9-modules

(Mig))g — My,
or equivalently, by restriction of scalars, an isomorphism of Bj-modules!!

(u9)r (M[¢}>g - (Mf)[cpg]

mapping the element x/g" € (M), to x/f" for all z € M and all integers n > 0.
Since g is invertible in B, it follows from Proposition (7) that we have a natural
Bg-module homomorphism (Mjy)i,e) — (My)), and it is easily checked that this
homomorphism is the inverse homomorphism to (u9),;. Consequently (u9),s is an
isomorphism. When v : M — M’ is a homomorphism of A-modules we obtain a

commutative diagram of B,-modules

(u?)
(Mig))g = (M) o1
v[w]l l(vf)[q,g]
(Miy)g —— (Mp)[p0)
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(4.7) Proposition. Let ¢ : B — A be a homomorphism of rings and let ® =
(“p,p) : (X,0x) — (Y,Oy) be the corresponding homomorphism of affine schemes.
Moreover let M be an A-module. Then there is a canonical isomorphism of Oy -
modules

uns © My 5 &, (M).

For every homomorphism v : M — M’ of A-modules we have that

@*(ﬁ)uM = UM/%

where v is the map associated to the B-modules homomorphism v, : M, — M [’(p}.

When C' is an A-algebra the map uc is a Oy -algebra homomorphism.

Proof. Let g € B and let f = ¢(g). We have identifications I'(D(g), ]\//[\[;]) = (Mig))g

and I'(D(f), M) = My as By respectively Ay-modules. It follows from Remark (4.6)
that we have a ring homomorphism ¢9 : B, — Ay and a Bg-module isomorphism
(u9)pr 2 (Mg))g — (My)(pe) such that (v7)pe1(u?)ar = (u9)arrvp,). We consequently
obtain an isomorphism of I'(D(g), B)-modules

I'(D(g), ]\/4\[;]) =T (% H(D(g)), M)jpa).

These isomorphisms, for varying g € B, clearly define an isomorphism of Oy-modules
up @ My == ®.(M). The equality uppvy, = P«(u)ups follows from the equality
() o) (W) 1 = (u9) arrvgy).
The last part of the Proposition is clear.
(4.8) Remark. Let ¢ : B — A be a homomorphism of rings. Moreover let p be
a prime ideal of A and let ¢ = ¢~ '(p). We saw in section (3.1) that we obtain a
homomorphism of rings
©q 1 Bqg — Ay
such that ¢(h/t) = @(h)/e(t) for all h € B and t € B\ q. Let N be a B-module. It

follows from section (3.1) used to the natural p-module homomorphism N — N®p A
that we otain a homomorphism of p4-modules

Ng — (N ®p Ay,
or equivalently, by extension of scalars, an A,-module homomorphism
ul: Ng®p, Ap — (N @B A)p (4.8.1)

mapping (y/t) ®p, (9/5) to (x ®p, g)/@(t)s for all y € N, s € A\ p and t €
B\ p. It follows from Proposition (Modules) that we have a natural A,-module
homomorphism (N ®p A), — Ngq ®p, A, which is easily checked to be the inverse
of the map (u9)y. Hence the homomorphism (u?)y is an isomorphism.
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When w : N — N’ is a homomorphism of B-modules we obtain a commutative
diagram of Ap-modules

(u)N

(wq®qudAp)l l(w@BidA)p

Nc/| ®Bq Ap R — (N/ XpB A)p

(u) nv

(4.9) Proposition. Let ¢ : B — A be a homomorphism of rings and let & =
(¢, ) : (X,0x) — (Y,Oy) be the corresponding homomorphism of affine schemes.
Moreover let N be a B-module. Then there is a canonical isomorphism of O x-
modules

uy 1 OF(N) == N @5 A. (4.9.1)

For every homomorphism w : N — N’ of B-modules we have that

(w Xp idA)uN = uN/q)*(w). (492)

When C' is a B-algebra we have that uy is a homomorphism of O x-algebras.

Proof. We have a natural homomorphism of B-modules N — (N ®p A)[,] mapping
z € N to z®p 1. In fact for ¢ € B we have that the image of gz is gz ®p 1 =

2 @5 ¢(g9) = ¢(9)(z®5 1). We obtain a homorphism of Oy-modules N — (N®4)g)
It follows from Proposition (4.7) that there is a canonical homomorphism of Oy-

modules N — @*(N/QSB/A). By adjunction (7) we obtain a homomorphism of

Ox-modules uy : @*(ﬁ) — N ®p A. We have thus constructed the map (4.9.1) and
it is clear that the equality (4.9.2) holds.

In order to show that the homomorphism wuj; is an isomorphism it follows from
Theorem (7) that we have to show that the map on stalks (uy ), is an isomorphism for

all z € X. Let y = “p(x). It follows from the definition of ®*(/N) in (?) that we have

an isomorphism ®*(N). — ((“¢)"(N) ®,. 5y A)e, and from Proposition (?) and

a, o%

Proposition (?) we obtain isomorphisms ((%¢ )(N)@(P*(E)A)I e (“@*)(N)xé%*(g)m

A, N, ®p, Az. On the other hand it follows from (?) that (N/<§B/A)x is isomor-
phic to (N ®p A),. Using the explicit formulas for adjunction of (?) and (?) we see
that uy induces the isomorphism N, ®p, A, = (N ®p A), of (4.8.1). Hence we
have proved that uy is an isomorphism.

The last part of the Theorem is clear.

(4.10) Exercises.
1. Let A bering and f an element of A. Show that the ringed space (Spec(Ay), Af)
is isomorphic to the ringed space (D(f), Ogpec(a)|D(f))-
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2. Let A be ring and let X = Spec(A) and Ox = A. We say that the ringed space
(X, Ox) is reduced if the ideal a(U) of nilpotent elements in the ring I'(U, Ox) is (0)
for all open subsets U of X.

(1) Show that the following conditions are equivalent
(1a) For all open subsets U of X the ring I'(U, Ox ) has no nilpotent elements.
(1b) For all points € X the ring (Ox), has no nilpotent elements.

(2) Show that the restriction (poy )y : I'(V,O0x) — I'(U,Ox) induces a restric-
tion map o}, : I'(V,Ox)/a(V) — T(U,Ox)/a(U) for all inclusion U C V of
open subsets of X.

(3) Show that when we let B(U) = I'(U,Ox)/a(U) for all open subsets and let
(pB)Y;, = o for all inclusions U C V of open subsets of X, then B with these
restrictions is a presheaf of rings on X.

(4) Show that the fiber of B at z is equal to A, /aj, where a;, is the ideal of
nilpotent elements in the fiber A;_ .

(5) Let C be the associated sheaf of B. Show that (X,C) is an affine scheme

isomorphic to the affine scheme (Spec(A/a), A/a) where a is the ideal of
nilpotent elements in A.
(6) Show that the affine scheme (X,C) is reduced.

3. Let A be aring and let K be a field. Moreover let X = Spec(A). For every point
x € X we let k(x) = A, /m, be the residue field in the point . Show that there is
a unique correspondence between homomorphisms Spec(K) — X with image x and
ring homomorphisms k(z) — K.

4. Let K be a field and let ¢ : K — A be a K-algebra. Let X = Spec(A), and

for every point z € X we let k(x) = A,/m, be the residue field. Assume that the

u €T . . . . .
composite map K - A, @, K(z) is surjective. Show that there is a unique

correspondence between the morphisms Spec(Ke]) — Spec(A) of affine schemes

such that the composite map Spec(K) — Spec(K|[e]) — Spec(A) comes from the

map A ta, A, BALGR k(x), and homomorphisms Homy . (m,/m2, k(z)).

5. Let A be a ring, and let K be the category of affine schemes with a fixed
homomorphism (X, Ox) — (Spec(A), A) of ringed spaces. Show that the prod-
uct of (Spec(B),/El/and (Spec(C), C) in the category K exists and is equal to
(Spec(B®4 C),B®4 C).
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1. Artinian and noetherian modules.

(1.1) Definition. Let A be aring and M an A-module. The module M is noetherian
if every ascending chain !!M; C My C --- of submodules M,, of M is stable, that is,
there is an n such that M,, = M1 =---.

The A-module M is artinian if every descending chain M; O My D --- of sub-
modules M,, of M is stable, that is, there is an n such that M,, = M,,;1 =---.

(1.2) Example. K be field and M a finitely generated vector space. Then M
is artinian and noetherian. In fact, it follows from Remark (MODULES 1.26) that
when L C L’ is a strict inclusion of subspaces of M then dim(L) < dim(L’). Hence
there can only be ascending or descending chains of finite length in M.

(1.3) Example. The integers Z is a noetherian Z-module. This is because every
ideal of Z is of the form (n) for some integer n, and (m) C (n) means that n divides
m. The module Z is not artinian because (2) D (22) D (23) D --- is an infinite
descending chain of ideals.

(1.4) Example. The polynomial ring Z[t] in the variable ¢ over the integers is
not noetherian as an Z module since it contains the infinite chain Z C Z + Zt C
Z + Zt + Zt> C --- of submodules. It is not artinian either because it contains the
infinite chain (2) D (22) D (23) D -+ of ideals.

(1.5) Example. Fix a prime number p. Let M be the Z-submodule of Q/Z
consisting of all the classes of rational numbers m/n such that p?m/n € Z for some
positive integer ¢q. That is, the classes of the elements m/n where n is a power of
p. We denote by M, the submodule of M generated by the class of 1/p™. Then
M, consists of the p™ elements that are the classes in M of the elements m/p™
for m = 0,1,...,p"!. The modules in the chain M; C My C M3 C ... are the
only proper submodules of M. This is because if L is a proper submodule of M it
contains the class of an element m/p™ with n > 1, and where p does not divide m.
Since p is a prime number that does not divide m there are integers ¢ and r such
that gp™ + rm = 1. Then rm/p™ = —qp™/p"™ + 1/p" = —q + 1/p™. Hence the class
of 1/p™ is in L. It follows that M,, C L, and that L = My, where s is the largest
integer such that My C L. Since we have a chain M; C My C M3 C --- and the
modules M,, are the only proper submodules of M it follows that the Z-module M
is artinian but not noetherian.

151
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(1.6) Lemma. Let A be a ring and M an A-module. The following assertions are
equivalent:

(1) The module M is noetherian.
(2) The collection of submodules of M satisfies the maximum condition.
(3) Every submodule of M is finitely generated.

Proof. (1) & (2) We saw in (TOPOLOGY 1.5) that the assertions (1) and (2) are
equivalent.

(2) = (3) Assume that M satisfies the maximum condition and let L # 0 be a
submodule of M. Denote by !!L the collection of non-zero submodules of L that are
finitely generated. Then L is not empty since Az is in L for all x # 0 in L. Since M
satisfies the maximum condition £ has a maximal element L’. We shall prove that
L = L'. Assume that L' C L. Then there is an element = € L\ L. We have that
Ax+ L' is a finitely generated submodule of L and L’ is contained properly in Ax+L'.
This is impossible because L is maximal in £, and we have obtained a contradiction
to the assumption that L # L’. Hence L = L’ and L is finitely generated.

(3) = (1) Assume that every submodule of M is finitely generated. Let M; C
My C --- be a chain of submodules of M. Then L = U2 M, is a submodule of
M and thus finitely generated. Each finite set of generators of L must be contained
in some M,. Then L = M,, = M,+; = ---. That is, the chain M; C My C --- is
stable.

u

(1.7) Proposition. Let A be a ring and let 0 — M’ = M — M" — 0 be an exact
sequence of A-modules. Then:

(1) The module M is noetherian if and only if the modules M’ and M" are
noetherian.
(2) The module M is artinian if and only if the modules M’ and M" are artinian.

Proof. (1) Assume that M is noetherian. Every chain M{" C M} C ... of submodules
of M" gives rise to a chain v=1(M]) C v=1(M}) C --- of submodules of M. Since
M is noetherian we have that v=*(M}/) = v=*(M]/,,) = - -- for some positive integer
n, and thus M = M), = ---. Every chain M] C M; C --- of submodules
of M’ gives rise to a chain u(M{) C u(M3) C --- in M. Since M is noetherian
u(M)) = u(M, ;) =--- for some positive integer n, and thus M, = My = ---.

Conversely assume that M’ and M" are noetherian, and let M; C My C --- be a
chain of submodules of M. Then v(M;) C v(Ms) C --- is a chain of submodules of
M", and u=t(M;) C u=!(Msz) C --- is a chain of submodules of M’. Since M’ and
M"" are noetherian there is a positive integer n such that v(M,,) = v(M,41) = -+
and u=1(M,) = u=(M,4,) = ---. However, then M,, = M,,,1 = --- since M; is
completely determined by v(M;) and u=1(M;). In fact an element x of M is in M; if
and only if v(x) € v(M;) and there is an z’ € u~!(M;) such that z — u(z’) € M;.

(2) The proof of the second part is analogous to the proof of the first part, with
descending chains instead of ascending chains.
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(1.8) Corollary. Let My, M,,..., M, be A-modules.

(1) If the modules My, Ms, ..., M, are noetherian, then the direct sum @&}, M,
is noetherian.

(2) If the modules My, Ms, ..., M, are artinian, then the direct sum @}, M; is
artinian.

Proof. (1) We shall prove the first assertion of the Corollary by induction on n. It
holds trivially for n = 1. Assume that it holds for n — 1. We clearly have a short
exact sequence 0 — M,, — ® M; — @' 'M; — 0. Tt follows from the induction
hypothesis that 69?:_11 M; is noetherian. The first part of the Corollary hence follows
from the Proposition.

(2) The proof of the second part of the Corollary is similar to the proof of the first
part.

(1.9) Definition. Let !!(0) = My C M; C --- C M,, = M be a chain of submodules
of M. We call n the length of the chain. A chain is a refinement of another chain if we
obtain the second by adding modules to the first. We call a chain (0) = My C M; C
-+ C M,, = M a composition series if the modules My /My, My /My, ..., M, /M, 1
have no proper submodules.

(1.10) Theorem. (The Jordan Theorem) Let A be a ring and M an A-module that
has a composition series. Then all composition series of M have the same length,
and every chain can be refined to a composition series.

Proof. For every submodule L of M that has a composition series we let [/(L)! be
the smallest length of a composition series of L. Let ¢(M) = n and let (0) = My C
My --- C M, = M be a composition series for M.

We shall first show that every submodule L of M has a composition series and
that ¢(L) < (M) for all proper submodules L of M. To see this we consider the
chain (0)=Lo=LNMyC Ly =LNM; C---C L, =LNM, = L of submodules of
L. We have that L;/L;_1 has no proper submodules since, by Lemma (MODULES
1.13), we have an injective map L;/L;—1 — M;/M;_;. Since M;/M;_1 has no proper
submodules either L; = L; 1 or L;/L;—y — M;/M;_; is an isomorphism. Hence,
removing terms where L; 1 = L; from the chain (0) =Ly C Ly C---C L, = L we
obtain a composition series for L. It follows that ¢(L) < ¢(M).

We shall show by induction on ¢ that if ¢(L) = ¢(M) then M; = L; for i =
1,2,...,n. When ¢(L) = ¢(M) all the maps L;/L;—1 — M;/M;_1 are isomorphisms.
In particular M1 = Ll. Assume that Li—l = Mi—1~ Since Li/Li—l — Mi/Mi—l is
an isomorphism we have for each x in M; that there is an element x; in M;_; and
an element y in L; such that © + 1 = y. Then x = y — x1 is in L; since —x is in
M; 1 = L;_1 C L;. Hence we have that L; = M;. In particular we have that L = M.
We have thus shown that when ¢(L) = ¢(M) then L = M. Hence when L is properly
contained in M we have that ¢(L) < ¢(M).

We shall now prove that all composition series of M have the sema length. Let
Ky C Ky C--- C K,;, =M be a chain in M. Then m < ¢(M) because ¢(K;) <
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- < U(K,) = £M). In particular, if (0) C Ky € Ky C --- C K;,, = M is a
composition series we must have that m = ¢(M) since ¢(M) is the length of the
shortest composition series of M. Hence we have proved that all composition series
have the same length.

If m < ¢(M), the chain K1 C Ky C --- C K,, can not be a composition series.
Consequently at least one of the residue modules K1 /(0), K3 /K1, ..., Ky /Kp—1 con-
tains a proper submodule different from (0). Hence we may add one more term to
the chain to obtain a chain of length m 4 1. In this way we can add groups in the
chain until the chain has length n in which case it is a composition series. Hence
every chain can be refined to a composition series.

(1.11) Definition. Let A be a ring and M an A-module. We say that M has
finite length if it has a composition series. The length of M is the common length
(M) = £4(M) of all composition series of M.

(1.12) Example. Let K be a field. A finitely dimensional K-vector space M
has finite length and dimg (M) = fx(M). This is because K has no proper K-
submodules, and thus, if z1,x9,...,x, is a basis for M, then Kx; C Kx1 + Kxo C
- C Kx1+ Kxg + - - -+ Kx, is a composition series.

(1.13) Example. The ring Z/6Z has the composition series (0) C 2Z/6Z C Z/6Z.
Clearly (Z/6Z)/(2Z/6Z) is isomorphic to Z/2Z. There is another composition series
{0} C 3Z/6Z C Z/6Z.

(1.14) Proposition. Let A be a ring and M an A-module. The length of M is
finite if and only if M is an artinian and noetherian A-module.

Proof. If M is of finite length it follows from Theorem (1.10) that all chains in M
are of finite length. Hence M is artinian and noetherian.

Conversely, assume that M is artinian and noetherian. Denote by !!£ be the
collection of submodules L # (0) of M such that there is a chain L = M,, C M,,_1 C
-++ C My = M for some positive integer n where M;_1 /M; has no proper submodules
for each i = 2,3,...,n. Then L is not empty because M belongs to £. Since M is
artinian there is a minimal element L’ in £. If L’ has no proper submodules we have
found a composition series (0) C L' = M,, C M,,_1 C --- C My = M of M and we
have proved the Proposition.

We shall show that L’ can not have proper submodules. Assume to the contrary
that L’ has proper submodules and let !!£’ be the collection of proper submodules of
L'. Since M is noetherian there is a maximal proper submodule M,, . of L. Then
L'/M, 1 has no proper submodules, and thus M, ; C M,, C --- C M} = M is
a chain such that M;_,/M; has no proper submodule for i = 2,3,...,n 4+ 1. Since
M,,+1 C L thisis impossible since L’ is minimal in £. This contradicts the assumption
that L’ has proper submodules and we have proved the Proposition.

(1.15) Proposition. Let A be a ring and 0 — M’ = M % M" — 0 an exact
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sequence of A-modules.

(1) The A-module M is of finite length if and only if the A-modules M’ and M"
are of finite length.
(2) When all the modules are of finite length we have that (M) = ¢(M")+L(M").

Proof. (1) It follows from Proposition (1.7) and Proposition (1.14) that the first part
of the Proposition holds.

(2) To prove the second part of the Proposition we take a composition series
0=Mic M C---C M, =M of M" and a composition series (0) = My C M{ C
- C M/, = M" of M". Then (0) = u(M}) C u(Mj) C --- Cu(M},) =u(M’) =
v H0) = v Y (M) coTH (M) C - o N (M) = v 1 (M”) = M is a composition
series of length n’ + n” for M. In fact the homomorphism u clearly induces an
isomorphism M//M/!_| — u(M])/u(M!_,), and the homomorphism v clearly induces
an isomorphism v=1 (M) /o= (M]" ;) — M]' /M’ ;.

(1.16) Remark. Let ¢ : A — B be a surjection of rings and let N be a B-module

of finite length. Then we have that {g(IN) = £4(N,]). In fact every A-submodule of
N is also a B-submodule.

(1.17) Theorem. (The Holder Theorem) Let A be a ring and let M be an A module
of finite lenght. Two composition series

{O}ZMOCM]_C"'CanM (1.13.1)
and

{0}=M,cM;C---CM, =M (1.13.2)
of M are equivalent, that is, there is a permutation o of the numbers {1,2,... ,n}

such that M ;/My ;-1 is isomorphic to M{/M]_, fori=1,2,...,n.

Proof. We show the Theorem by induction on ¢(M). It is trivially true when ¢(M) =
1. Assume that it holds when ¢(M) =n — 1. If M,_; = M/ _, the Theorem holds
by the induction hypothesis.
Assume that M, _; # M, _,. We choose a composition series {0} = Ly C L; C
o CLypo=M,_10OM _; of M,,_1NM/_;. Then we obtain two composition series
0)=LycLiC---CLp2=M, 1NM,_ ,CM, 1 CM,=M (1.13.3)
0)=LyCcLiC---CLyo=M, 1NM, ,CM, ,CM,=M (1.13.4)
for the module M. Since M/M,_1 and M/M],_, have no proper submodules and
M,,—1 # M] _, it follows from Lemma (MODULES 1.13) that the inclusions M,,_; C
M and M) _, C M induce isomorphisms M,,_1/M,_1 N M} _; — M/M]_, and
M) _,/M,_1NM]_; — M/M,_,. Hence (1.13.3) and (1.13.4) are equivalent com-
position series. The composition series (1.13.1) and (1.13.3) have M,_; in com-
mon. Hence it follows from the induction hypothesis used to the module M,,_; that
the composition series are equivalent. Similarly the composition series (1.13.2) and
(1.13.4) are equivalent since they have M/ _; in common. It follows that (1.13.1) and
(1.13.2) are equivalent composition series, as we wanted to prove.
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(1.18) Exercises.
1. Let L be the submodule of the Z-module Z x Z generated by the elements (2, 3).

(1) Is the residue module (Z x Z)/L noetherian?

(2) Is the residue module (Z x Z)/L artinian?
2. Find all composition series for the module Z/12Z.
3. Let KJt| be the polynomial ring in the variable t over the field K. Find the
composition series of the K|[t]-module K[t]/(t3(t + 1)?).

4. Let A be aring and 0 - My — M; — -+ — M, — 0 be an exact sequence of
A-modules of finite length. Show that > (—1)“/(M;) = 0.

5. Let 0 —5 My 2o My 25 o 224 M, - 0 be a complex of modules of finite
length.
(1) Show that the A-modules H; = Ker(u;)/Im(u;—_1) is of finite length for i =
0,1,...n.

(2) Show that Y7o (~1)/6(M;) = Y0 (~1)"€(H).
6. Let A be a ring and m a maximal ideal. Moreover let M be a finitely generated

A-module.

(1) Show that the A-module M /mM/ is of finite length.
(2) Give an example of a ring A, a prime ideal p of A, and a finitely generated
A-module M such that M/pM is not of finite length.
7. Let M be a noetherian A-module, and let u : M — M be an A-linear surjective
map. Show that u is an isomorphism.
8. Let M be an artinian A-module, and let v : M — M be an A-linear injective
homomorphism. Show that u is an isomorphism.
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2. Artinian and noetherian rings.

(2.1) Definition. A ring A is noetherian, respectively artinian, if it is noetherian,
respectively artinian, considered as an A-module. In other words, the ring A is
noetherian, respectively artinian, if every chain a; C ay C --- of ideal a; in A is
stable, respectively if every chain a; D as D --- of ideals a; in A is stable.

(2.2) Example. Let K[t] be the polynomial ring in the variable ¢ with coefficients in
a field K. Then the residue ring K[t]/(t"™) is artinian and noetherian for all positive
integers n. This is because K[t|/(t™) is a finite dimensional vector space of dimension
n.

(2.3) Example. The ring Z is noetherian, but not artinian. All rings with a finite
number of ideals, like Z/nZ for n € Z, and fields are artinian and noetherian.

(2.4) Example. The polynomial ring Alt1,ts,...] in the variables t1,ta,... over a
ring A is not noetherian since it contains the infinite chain (¢1) C (t1,t2) C -+ of
ideals. It is not artinian either since it contains the infinite chain (¢;) D (£2) D (¢}) D

(2.5) Proposition. Let A be a ring and let M be a finitely generated A-module.

(1) If A is a noetherian ring then M is a noetherian A-module.
(2) If A is an artinian ring then M is an artinian A-module.

Proof. (1) It follows from Proposition (MODULES 1.20) that we have a surjective
map ¢ : A®" — M from the sum of the ring A with itself n times to M. Hence it
follows from Proposition (1.7) that M is noetherian.

(2) The proof of the second part is analogous to the proof of the first part.

(2.6) Corollary. Let ¢ : A — B be a surjective map from the ring A to a ring B.

(1) If the ring A is noetherian then the ring B is noetherian.
(2) If the ring A is artinian then the ring B is artinian.

Proof. (1) Since ¢ is surjective B is a finitely generated A-module with generator
1. Tt follows from the Proposition that B is noetherian as an A-module. Then B is
clearly noetherian as a B-modules.

(2) The proof of the second part is analogous to the proof of the first part.

(2.7) Proposition. Let S be a multiplicatively closed subset of a ring A.

(1) If A is noetherian then S~™!A is noetherian.
(2) If A is artinian then S~ A is artinian.

Proof. (1) It follows from Remark (MODULES 3.13) that every ideal b in the local-
ization S—!A satisfies gos_lA(b)S_lA = b. Every chain b; C by C --- of ideals in
S~1A therefore gives a chain gpgﬁlA(bl) - gogﬁlA(bg) C .- of ideals in A. Since A is
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noetherian there is a positive integer n such that gogllA(bn) = gogllA(an) =
Consequently we have that b,, = b, 11 = ---. Hence S™!A is noetherian.
(2) The proof of the second part is analogous to the proof of the first part.

(2.8) Remark. A noetherian ring has only a finite number of minimal prime ideals.
This is because Spec(A) is a noetherian topological space since the descending chains
of closed subsets of Spec(A) correspond to ascending chains of ideals in A by Remark
(RINGS 5.2). By Proposition (TOPOLOGY 4.25) Spec(A) has only a finite number
of irreducible components. However, it follows from Proposition (TOPOLOGY 5.13)
that the irreducible components of Spec(A) correspond bijectively to the minimal
prime ideals in A.

(2.9) Remark. The radical t4(0) of a noetherian ring A is nilpotent, that is, we
have t4(0)™ = 0 for some integer n. This follows from Remark (RINGS 4.8) because
t4(0) is finitely generated ideal.

(2.10) Theorem. (The Hilbert basis theorem) Let A be a noetherian ring and B a
finitely generated algebra over A. Then B is a noetherian ring.

Proof. Tt follows from Proposition (RINGS 3.6) that we have a surjective homomor-
phism Alty,ts,...,t,] — B of A-algebras from the polynomial ring A[tq,to,...,t,] in
the variables t1,ts, ..., t, over A. Hence it follows from Corollary (2.6) that is suffices
to prove that the polynomial ring A[ty,to, ..., t,] is noetherian. If we can prove that
the polynomial ring C[t] in one variable ¢ over a noetherian ring C' is noetherian, it
clearly follows by induction on n that A[tq,%s,...,t,] is noetherian. Hence it suffices
to prove that A[t] is noetherian.

Let b be an ideal in A[t]. We shall show that b has a finite number of generators.
Let a be the collection of elements f € A such that there is a polynomial fo + fit +
oo fao1t™ 4 ft™ in b. It is clear that a is an ideal in A. Since A is noetherian
we can find generators ¢i1,¢s2,...,9m of a. For every ¢ = 1,2,...,m we can find a
polynomial p;(t) = g0 + giat +---+ gi,di_ﬁdi_l + g;it% in b. Let d = max’™(d;).

For each polynomial f(t) = fo + fit + -+ + fet® in b we can find elements
hi,ho,..., hy in A such that fo = hig1 + hogo + -+ + hmngm. If € > d the poly-
nomial f(t) = hit®" 4 p(t) — hot® %py(t) — - -+ — hypt?~%mp,, () is of degree stricly
less than e. It follows by descending induction on e that we can find polynomials
hi(t), ha(t), ..., hm(t) such that g(t) = f(t) — >_ir; hi(t)pi(t) is of degree strictly
less than d. Since f(t) € b, and all the polynomials p;(t) are in b, we have that
g(t) € b. Hence g(t) is in the A-module M = (A +tA+---+t4"1A)Nb. Tt follows
from Corollary (1.8) and Proposition (1.7) that M is a noetherian module. Hence
we can find a finite number of generators q;(t), g2(t), ..., ¢y (t) of M. Then b will be
generated by the polynomials pi(t), p2(t), ..., pm(t), q1(t), g2(t), ..., g, (t). Hence b is
finitely generated as we wanted to prove. Since all ideals b of B are finitely generated
it follows from Lemma (1.6) that B is noetherian as a module over itself, and hence
noetherian.
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(2.11) Proposition. In an artinian ring all the prime ideals are maximal.

Proof. Let p be a prime ideal. We must show that for each element f € A\ p we
have that Af +p = A. Since A is artinian the chain Af +p D Af%2 +p O --- must
stabilize. Hence there is a positive integer n such that f* = gf"*! + h for some
g € Aand h € p. Hence f"(1 — gf) € p. Since p is a prime ideal and f ¢ p we have
that 1 — gf € p. Hence there is an e € p such that 1 — gf = e. The ideal Af + p
consequently contains the element gf —e = 1 and thus is equal to A is we wanted to
prove.

(2.12) Proposition. Let A be a ring and my, my, - - - different maximal ideals in A.
Then mymsy - - -m,, is a proper submodule of mimsy ---m,_1.

Proof. Since the ideals m; are maximal we can for each ¢ = 1,2,...,n — 1 find an
element f; € m;\m,. Assume that mymy---m,_; = mymy---m,. Then we have that
fifor - fno1 Emmg---my, 1 = mumo ---m,, € m,, which is impossible since m,, is
a prime ideal and f; ¢ m,, for i = 1,2,...,n — 1. This contradicts the assumption
that mymo---m,, = mymy---m,_;. Hence mymsy---m, is a proper submodule of
mmeo:---my,_1.

(2.13) Corollary. An artinian ring has a finite number of maximal ideals.

Proof. 1f it had an infinte number of maximal ideals we could find an infinite sequence
my, my, - - - of different maximal ideals. Then it follows from the Proposition that we
have an infinite chain m; D mymy D --- of ideals in A. This contradicts that A is
artinian. Thus A has only a finite number of maximal ideals.

(2.14) Proposition. In an artinian ring the radical is nilpotent.

Proof. Since A is artinian the sequence of ideals t4(0) D t4(0)2 D --- is stable.
Thus there is a positive integer n such that a :=t4(0)" = t4(0)"*! = ... We shall
prove that a = 0. Assume to the contrary that a # 0. Consider the collection !!B
of ideals b in A such that ab # 0. Then B is not empty since a is in B. Since A
is artinian we have that B contains a minimal element ¢. Then there is an f € ¢
such that af # 0. Since ¢ is minimal in B and (f) C ¢ we must have that ¢ = (f).
We have that (fa)a = fa? = fa # 0 and (fa) C (f) = ¢. By the minimality of
¢ we obtain that (fa) = (f). Hence there is an element g € a such that fg = f.
Hence f = fg = fg? = ---. However, since g € a C t4(0), we have that ¢ = 0 for
some positive integer n. Thus f = 0 which is impossible since af = ac # 0. This
contradicts the assumption that a # 0. Hence a = 0 as we wanted to prove.

(2.15) Lemma. Let A be a ring and let my, my, ..., m,, be, not necessarily different,
maximal ideals in A such that mymsy---m, = 0. Then A is artinian if and only if A
is noetherian.

Proof. We have a chain A =mg D m; D mms O mymomg D --- DO mMy---m, =0
of ideals in A. Let M; = mymg---m;_;/mymy---m; for ¢ = 1,2,...,n. Then each
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M; is an A/m;-module, that is, a vector space over A/m;. Hence M; is artinian if
and only if it is noetherian. For ¢ = 1,2,...,n we have an exact sequence

O—>m1m2---mi—>m1m2---mi_1 —>Mi—>0.

It follows from Proposition (1.7) that myms ---m; and M; are artinian, respectively
noetherian, if and only if myms---m;_; is artinian, respectively noetherian. By
descending induction on ¢ starting with M,, = mims---m,_; we obtain that the
module mymsy - - -m; is artinian if and only if it is noetherian. For ¢ = 0 we obtain
that A is artinian if and only if it is noetherian.

(2.16) Remark. Let A be a local noetherian ring with maximal ideal m, and let
q be an m-primary ideal. Then A/q is an artinian ring. To show this we first note
that m = t(q). Since A is noetherian m is finitely generated, and thus it follows from
Remark (RINGS 4.8) that a power of the maximal ideal in the noetherian local ring
A/q is zero. Hence it follows from Lemma (2.15) that A/q is artinian.

(2.17) Theorem. A ring is artinian if and only if it noetherian and has dimension
0.

Proof. When A is artinian it follows from Proposition (2.11) that dim(A) = 0. It
follows from Corollary (2.13) that the ring A has a finite number of maximal ideals
mp, Mo, ..., m,. We have that mymy---m,, CmyNmyN---Nm, Cty(0). Since t4(0)
is nilpotent by Proposition (2.14) it follows from Lemma (2.15) that A is noetherian.

Conversely assume that A is noetherian of dimension 0. Then every prime ideal is
maximal, and from Remark (2.8) it follows that A has finitely many maximal ideals
mp, Mo, ..., M,. Again mymsy---m, C t4(0). If follows from Remark (RINGS 4.8)
that t4(0) is nilpotent. Hence it follows from Lemma (2.15) that A is artinian.

(2.18) Proposition. An artinian ring is isomorphic to the direct product of a finite
number of local artin rings.

More precicely, when A is an artinian ring the canonical map A — HJL‘GSpeC(A) Aj,
obtained from the localization maps A — A;_ is an isomorphism.

Proof. By Corollary (2.13) we have that Spec(A) consists of a finite number of
points, and by Proposition (2.11) the points are closed. Hence Spec(A) is a dis-
crete topological space. Since Ogpec(a) is a sheaf there is an injective map A =
F(SpeC(A)JOSpeC(A)) - HwESpec(A) Ay, = erspec(A) OspeC(A)7m. However each
point z is open in Spec(A). Hence A;, = I'({z}, Ogpec(a)), and {z} N {y} = 0 when
x # y. It follows that we can glue any collection of sections s, € I'({z}, Ogpec(a))
for x € Spec(A) to a section s € I'(Spec(A), Ogpec(a)). Hence the map A —

HwespeC(A) [TA4;, is also surjective.
(2.19) Exercises.

1. Show that if S is a multiplicatively closed subset of a ring A such that S™'A4 is
noetherian. Then A is not necessarily noetherian.
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2. Let Klty,t2,...] be the polynomial ring in the infinitely many variables t1, to, . . .
over a field K. Morever let K(t1,ts,...) be the localization of K|[t1,ts,...] in the
multiplicatively closed subset of K[t1,ts,...] consisting of all non-zero elements.

(1) Show that K(t1,t2,...) is noetherian.

(2) Let uj,us,... be independent variables over K|t1,ts,...]. Show that the K-
algebra map K[tl,tg, e UL, U2, . ] — K[tl,tg, .. ] Q1 KK[tl,tQ, .. ] that
sends t; to t; ®x 1 and u; to 1 Rk t; is an isomorphism.

(3) Let S be the multiplicatively closed subset of K[t1,ts,...,u1,us, .. .| consist-
ing of all non-zero products fg with f in K[t1,ts,...] and g in K[uj,us,...].
Show that the K-algebra homomorphism of part (3) induces a canonical ho-
momorphism S_lK[tl, to, ..., UL, U, .. ] — K(tl,tg, .. ) QK K(tl, to, ... )

(4) Show that the homomorphism of part (4) is an isomorphism.

(5) Show that the ideal (t; — uy,to —ug, - ) of K[t1,te,...,us,us,...| does not
intersect S.

(6) Show that K (t1,ta,...) ®x K(t1,t2,...) is not Noetherian.

3. Let A aring. Give an example of a ring A that is not noetherian, but is such
that Spec(A) is noetherian.

4. Let M be a noetherian A-module. Show that the ring A/ Ann4 (M) is noetherian.

5. Prove that there is only a finite number of minimal primes in a noetherian ring
A without using properties of the topological space Spec(A).

6. Let A be a ring. We say that two ideals a and b in A are coprime if a +b = A.
Let ai,as,...,a, be ideals of A that are pairwise comprime. We define a map

p:A— ﬁA/ai
i=1

by ©(f) = (Pa/a, (f)sajas(f), -5 0a/a,(f)) for all f e A.

(1) Show that if a and b are coprime, then a” and b™ are coprime for all positive
integers m and n.

) Show that for all ¢ the ideals a; and N;x;ja; are coprime.

) Show that the homomorphism ¢ is a ring homomorphism with kernel N?"_; a;.

) Show that the homomorphism ¢ is surjective.

) Use parts (1), (2), (3), and (4) to prove that an artin ring is the direct product
of a finite number of artinian rings.

7. Let q be a primary ideal in the ring A, and let a and b be ideals in A such that
ab C q. Show that either a C q or there is a positive integer n such that b™ C gq.

8. Let A and B be noetherian local rings and let ¢ : A — B be a local homomor-

phism, that is, we have ¢ ~1(mp) C m4. Assume that the following three conditions
hold:

(1) The induced map A/my — B/mp of residue rings is an isomorphism.
(2) The induced map ms — mp/m% is surjective.
(3) We have that B is a finitely generated A-module via ¢.
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Show that ¢ is surjective.
9. Show that whtn A[t] is noetherian then A is noetherian.

10. Let K][t1,t2,...] be a polynomial ring over the field K in the independent
variables t1,t9,... and let A be the residue ring of K|[t1,ts,...] modulo the ideal
generated by the elements ¢;(t; — 1) for i =1,2,....

(1) Show that all the prime ideals of A are of the form (t; —d1,t3 —da, ...) where
the elements ¢0; are either 0 or 1.

(2) Show that all the prime ideals of A are maximal.

(3) Show that for all prime ideal p of A we have a canonical ring isomorphism
A, =K.

(4) Show that A is not noetherian, but that A, is noetherian for all prime ideals
p of A.
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3. Modules over noetherian rings.

(3.1) Proposition. Let A be a noetherian ring and let M # (0) be an A-module.
Then M has associated prime ideals.
When M is finitely generated there is a chain

)O)ZMnCMn_1C"'CM1CM0=M

of submodules of M such that each quotient M;_, /M; is isomorphic to an A-module
of the form A/p;, where p; is a prime associated to M.

Proof. Let Z be the collection of ideals in A that are annihilators of elements in M.
Then 7 is not empty because it contains the elements Ann(x) for all x in M. Since
A is noetherian there is a maximal element p = Ann(z) of Z. We shall prove that p
is a prime ideal and thus associated to M. Let let f, g be elements in A such that
fg€pand f ¢ p. Then fr # 0 and Annu(fz) O Ag+ p. Since p is maximal we
must have that p = Ann,(fz) and thus that g € p.

To prove the second part we let £ be the collection of submodules of M for which
the Proposition holds. Then L is not empty because it contains the zero module.
Since A is noetherian and M is finitely generated it follows from Proposition (2.5)
that M is noetherian. Thus there is a maximal element L in £. We shall show that
L = M. Assume to the contrary that L # M. Then there is an associated prime
ideal p of M/L. Let p = Ann(y) for some y € M/L, and denote by z an element
of M whose class in M/L is y. We have an isomorphism A/p — Ay = (Az + L)/L.
Since the Proposition holds for L it will consequently hold for Az + L. Hence Az + L
is in £, which is impossible since L is maximal in £. This contradicts the assumption
that L # M. Hence we we must have that L = M, and the Proposition holds for M.

(3.2) Proposition. Let A be a noetherian ring and let M be an A-module. An
element f € A is contained in an associated prime ideal if and only if there is an
element x # 0 in M such that fz = 0.

Proof. Let Ann(x) be an associated prime ideal in A. If f € Ann(z) we have that
x #0and fz=0.

Conversely, assume that fx = 0 for some x # 0. It follows from Proposition (3.1)
that Ax has an associated prime ideal p. Then p = Anny(gx) for some g € A, and
consequently p is associated to M and f € p. Thus f is contained in an associated
ideal.

(3.3) Proposition. Let A be a noetherian ring and let M be an A-module.

(1) The support of M consists of the prime ideals in A that contain an associated
prime.

(2) The intersection Nyegupp(ar)P » Which is thus the intersection of all associated
ideals of M, consists of all elements f € A such that fy; : M — M is locally
nilpotent.
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Proof. (1) Assume that p is in the support of M, that is, we have M, # 0. Then
there is an element € M such that (Ax), # 0. It follows from Proposition (3.1)
that there is a prime ideal q that is associated to the A-module (Az),. Then there
is an element f € A and an element s € A\ p such that q = Ann4((fz)/s). We have
that p O q because, if t € q \ p, then (tfz)/s =0and 0= (1/t)((tfx)/s) = (fz)/s in
(Az),, contradicting that (fx)/s # 0 in (Az),.

To prove the first part of the Proposition we prove that q is an associated prime
ideal of M. Let fi, fo,..., fn be generators for q. Since q is the anninhilator of
the element fz/s in the A-module (Ax), we can find elements sq, S2,...,5, in A\ p
such that s;f;fx = 0in M for i = 1,2,...,n. Consequently we have an inclusion
q € Anng(s182---s,fx). We shall prove the opposite inclusion. Take an element
g € Anna(s182- - spfx). Since s182- - spgfx =0 and s182+- -8, ¢ p, we have that
(9fz)/s = 0 in (Az),. However, then we have that ¢ € q, and we have proved
that ¢ = Annu(sys2---s,fz). Hence the prime ideal q is associated to M. We
have proved that every ideal in the support contains an associated prime ideal. In
Remark (MODULES 4.13) we saw that every associated prime ideal is contained
in the support. Hence every prime ideal that contains an associated ideal is in the
support.

(2) Assume that f € A is not in the intersection of all the prime ideals in the
support. Then there is a prime ideal p of A with M, # 0 and f ¢ p. Let x € M
and s ¢ p be such that x/s # 0 in M,. Since f ¢ p we have that f"z/s # 0 in
M,, and thus f"z # 0 in M for all positive integers n. Consequently f is not locally
nilpotent.

Finally let f € A be an element in the intersection of all the ideals in the support
of M. We shall show that fj; is locally nilpotent. Assume to the contrary that f is
not locally nilpotent. Then there is an # € M such that f™ ¢ Ann(z) for all positive
integers n. It follows from Proposition (RINGS 4.16) that we can find a prime ideal
p that contains Ann(x) but does not contain f. Then we have that (Az), # 0, and
thus p is contained in the support of M. This contradicts the assumption that f isin
the intersection of all ideals in the support. Hence we have proved that f,; is locally
nilpotent.

(3.4) Remark. Let A be a noetherian ring and M a finitely generated A-module.
It follows from Remark (MODULES 4.8) that the locally nilpotent elements are the
elements of t(Ann(M)) and hence it follows from Proposition (3.3) that the radical
t(Ann(M)) of M is equal to the intersection of the prime ideals of the support of M,
or equivalently, to the intersection of the associated ideals of M.

In particular we have that Supp(M) = V(Ann(M)).

(3.5) Proposition. Let A be a noetherian ring and let M be an A-module. The
following assertions are equivalent:

(1) The module M has exactly one associated prime ideal.
(2) We have that M # 0 and for every element f in A either f)y; is injective or
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locally nilpotent.

When the assertions hold the associated ideal of M consists of the locally nilpotent
elements.

Proof. (1) = (2) If there is only one associated prime ideal p it follows from Proposi-
tion (3.3) that when f € p the map fj; is locally nilpotent. Moreover it follows from
Proposition (3.2) that for f ¢ p the map fy; is injective.

(2) = (1) If far is locally nilpotent it follows from Proposition (3.2) that the
element f € A is contained in some associated prime ideal. On the other hand, if f,
is injective, it follows from Proposition (3.2) that f is not contained in any associated
ideal. Hence it follows from Proposition (3.3) that the union of the associated prime
ideals will be equal to their intersection. Hence there can be only one associated
prime ideal for M.

We saw in the proofs of both (1) = (2) and (2) = (1) that when the assertions
of the Proposition holds then the associated ideal consists of the locally nilpotent
elements.

(3.6) Corollary. Let A be a noetherian ring and M a finitely generated A-module.
Moreover let L be a submodule of M. The following conditions are equivalent:

(1) The module M /L has only one associated ideal.
(2) The module L is primary.

When the conditions hold the associated prime ideal of M/L is the prime ideal
belonging to L.

Proof. (1) = (2) Let p be the associated prime ideal of M/L. By the Proposition
and Remark (MODULES 4.8) we have that M # L, and that L is primary and p is
the ideal belonging to L.

(2) = (1) If M # L and L is primary it follows from the Proposition that M /L
has only one associated ideal.

(3.7) Proposition. Let A be a noetherian ring and let M be a finitely generated
A-module. Then every submodule L of Mcan be written as an intersection L =
LiNnLyN---N L, of submodules L; of M such that each module L; is primary.

Proof. Consider the set £ of submodules L of M that can not be written as L =
LiNnLyN---N Ly, with all L; primary. We shall show that £ is empty. Assume to
the contrary that it is not empty. Since M is noetherian it follows that £ then has a
maximal element L. In particular L is not primary. Thus there is an element f € A
such that the homomorphism fys,r, : M/L — M/L is neither injective nor nilpotent.
We therefore obtain a sequence

Ker(faryp) € Ker(fiyn) S -

of non-zero proper submodules of M. Since M is noetherian this sequence must
stop. Assume that Ker(f&/L) = Ker(fgj/i) = --- and let w = f}, ;. We have
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that Ker(u) is a proper submodule of M and that Ker(u) = Ker(u?). Consequently
Ker(u) NIm(u) = (0). In particular Im(u) is different from M /L. Let M; and M, be
the inverse images of Ker(u) respectively Im(u) by the canonical map uy; /g : M —
M/L. Then M; and M contain L and are different from L, and L = M;NMs;. By the
maximality of L we have that the Proposition holds for M; and M5. Consequently
the Proposition holds for L which is impossible since L is in £. This contradicts the
assumption that £ is non-empty, and we have proved the Proposition.

(3.8) Proposition. Let A be a noetherian ring and M a finitely generated A-
module. Write (0) = Ly N Ly N---N L, with L; primary for i = 1,2,...,n, and
assume that for each i we have L; 2 N;x;L;. Then the associated primes of M
coincide with the primes belonging to the primary modules L;.

Proof. We have an injection
M— M/Liy®M/Ly®---M/L,

which sends 2 € N to (un/r(x), upr/(2), ..., upr/n(x)). It follows from Proposition
(MODULES 4.25) that the associated prime ideals of M can be found among the
associated primes of M /Ly, M/Ls, ..., M/L,. We shall show that the prime ideal p;
belonging to L; is associated to M for i =1,2,... n.

We have that L = LoNLsN---NL;_1NL;1q---NL, # (0) by assumption. Since
L =L/LnNL;it follows from Lemma (MODULES 1.13) that we have an injective
A-module homomorphism L — M/L;. It follows from Proposition (3.1) that L
has an associated ideal, and from Corollary (3.6) that this ideal must be p;. From
Proposition (MODULES 4.25) it follows that p; is also associated to M.

(3.9) Proposition. Let A be a noetherian ring. If A is reduced the associated
primes are the minimal prime ideals.

Proof. 1t follows from Proposition (3.3) that every prime ideal contains an associated
prime. Hence every minimal prime ideal is associated.

Conversely let p = Ann(f) be an associated prime ideal of A. In Remark (2.8) we
observed that A has only a finite number of minimal primes pq,ps, -+, p,. Assume
that p is not minimal. Then it follows from Proposition (RINGS 4.22) that we can
find an element ¢t € p\ p; U---Up,. Then fp =0, and consequently ¢tf = 0. Thus
f €pinN---Np,. However the intersection of the minimal prime ideals is the radical of
A and thus f™ = 0 for some integer n. Since A is reduced f = 0, which is impossible
since p = Ann(f). This contradicts the assumption that p is not minimal, and we
have proved that the associated prime ideals are minimal.

(3.10) Exercises.
1. Find the associated prime ideals of the Z-module Z/12Z, and write (0) in Z/12Z
as an intersection of primary modules.
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2. Let K be a field and let K[u,v] be the polynomial ring over K in the independent
variables u, v.

(1) Find the associated prime ideals of the K [u,v]-module M = K|[u, v]/(u?, uv).
(2) Write (0) € M as an intersection of primary modules.

3. Let A be a noetherian ring and let q be a p-primary ideal. Show that p™ C q for
some positive integer n.

4. Let A be a ring. An ideal a of A is irreducible if a = b N ¢ implies that a = b or
that a =c.

(1) Show that a is irreducible in A if and only if (0) is irreducible in the residue
ring A/a.

(2) Show that a is primary in A if and only if (0) is primary in the residue ring
Ala.

(3) Show that when A is a noetherian ring then every ideal in A is the intersection
of irreducible ideals.

(4) Assume that A is noetherian the ideal (0) in A is irreducible. Let fg = 0
with g # 0 in A. Let n be such that Ann(f") = Ann(f"*! = -... Show that
(f")N(g) = 0.

(5) Show that when A is noetherian then every irreducible ideal is primary.

5. Let A be a noetherian ring. Moreover let m be a maximal ideal and q and ideal
contained in m. Show that the following assertions are equivalent:

(1) The ideal q is m-primary.

(2) *(q) =m.
(3) There is a positive integer n such that m™ C q C m.
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Graded rings and dimension

1. Gradings and filtrations.

(1.1) Definition. A ring A is graded if it is the direct sum &2 A, of subgroups
A,, such that A,,A, C A,,4, for all natural numbers m and n. We say that an
A-module M is graded if it is the direct sum !G5 ,M,,! of subgroups M,, such that
A M, C M,,+, for all natural numbers m and n.

The elements in A,, and M,, are called homogeneous of degree n. When z € M
and z = an:1 x, with x,, € M,, we call the elements x1, zs, ..., x,, the homogeneous
components of x. For all negative integers n we let A,, =0 and M,, = 0.

An ideal a of A is homogeneous if a = &2 ja,, with a,, C A,,.

(1.2) Remark. It follows from the definitions that Ay is a ring, and that M, is an
Ap-module for each n. We have that A is an Ag-algebra via the inclusion of Ag in A.
An ideal is homogeneous if and only if it is generated by homogeneous elements.

(1.3) Example. Let A be aring and A[t,].cr be the polynomial ring in the variables
{ta}aer for some index set I. Then the elements t# =[] ., #40) with p € N and
> acr (@) = n generate an A-module (A[ta]acr)n, and Alta]aer is a graded ring
with homogeneous elements (A[to|aer)n of degree n.

Let a C Alta]acs be an ideal such that for each element f = Y 7", f; in a with
fi € A; we have that f; € a. Then a = &)2,a,, with a, = an A4, is a graded
Alto)aer-module. That is, the ideal a is homogeneous. Moreover we have that
Aja= @52 yA;/a; is a graded ring.

(1.4) Example. Let A be aring and a an ideal in A. Then the direct sum !!R4(A) =
@2 ,a" of the ideals a”, with a® = A, is a graded ring where the multiplication of
elements in a™ with elements in a” is given by the multiplication in A. The ring
R4(A) is called the Rees-ring of a, or the Rees-algebra of a when it is considered as
an Ag-algebra.

Let M be an A-module. We have that the direct sum Rq(M) = &5 a" M is an
R4 (A)-module, where the multiplication of the elements of a™ with the elements in
a™M is defined by the operation of A on M.

(1.5) Example. Let A be a ring and a an ideal in A. The direct sum !G4(4) =
@0 ya™/a" ! of the A/a-modules a™/a" !, with a’/a = A/a, is a graded ring. To
define the multiplication we let g,, € a™/a™*! and g, € a™/a"™! be the classes of
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fm € a™, respectively f,, € a”. We define g,,g, € a™"/a™*"*1 as the class of the
element f,,f, € a™T™. It is clear that the definition is independent of the choice of
the representatives f,, and f, of the classes g,,, respectively g,. We call the ring
G4 (A) the graded ring of a, or the graded algebra of a when we consider G4(A) as an
A/a-algebra.

Let M be an A-module, and let G4(M) = &% ;a"M/a" Tt M. Then G4 (M) is an
Gq(A)-module. To define the operation of G (A) on Go(M) we let g € a™/a™*! and
y € a”M/a" 1M be the classes of f € a™ respectively of 2 € a®M. Then we define
the product gy € a™ ™M /a™ " LM as the class of fo € a™*™. It is clear that the
product is independent of the choice of the representatives f and x for the classes in
a™/a™*! respectively a” M /a1 M.

(1.6) Proposition. Let A = &5 A, be a graded ring. The following two condition
are equivalent:

(1) The ring A is noetherian.
(2) The ring Ag is noetherian and A is a finitely generated Ag-algebra.

Proof. (2) = (1) It follows immediately from The Hilbert Basis Theorem (CHAINS
2.10) that, when condition (2) is fulfilled, then condition (1) is fulfilled.

(1) = (2) We have that the ring Ay is isomorphic to the residue ring of A modulo
the ideal Ay = ®952,A4,,. Hence it follows from Corollary (CHAINS 2.6) that Ay is
noetherian.

Since A is noetherian we have that A, is a finitely generated A-module. If we, if
necessary, take all the homogeneous components of a finite set of generators for A,
we obtain homogeneous generators fi, fo, ..., f;, of the A-module A, . Let f; € A,
and write B = Ag[f1, f2,- -, fm]. We shall show that A = B. To show that A = B
it suffices to show that A, C B for all n € N. This is proved by induction on n.
For n = 0 it is clear. Assume that A,,_1 C B. For every element g € A, we have
that g = >, ¢;f; with g; € A,,_,,. Since p; > 0 for i = 1,2,...,m it follows from
the induction assumption that g; € B for ¢ = 1,2, ..., m. Hence we have that g € B
and we have proved that A, C B. Hence we have that A = B, and A is a finitely
generated Ag-algebra.

(1.7) Definition. Let A be a ring and a an ideal of A. Moreover let M be an
A-module. A filtration !! {M,},en of M is a sequence of submodules !!'M = My D
My D My O --- of M. The filtration is an a-filtration if aM,, C M, .1 for all n. We
say that an a-filtration is a-stable if aM,, = M, for all sufficiently large n. For all
sufficiently large n means that there is an integer m such that the property holds for
n > m.

(1.8) Remark. Let M be an A-module and let {M,,},en be an a-stable filtration,
and m an integer such that aM, = M, for n > m. Then we have that M,,,, =
aM,, forn=0,1,....
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(1.9) Example. Let A be a ring and a an ideal in A. Moreover let M be an
a-module. Then we have a filtration M = a°M D aM = a'M D a?M D --- of M.
This filtration is a-stable.

(1.10) Example. Let A be a ring and let a be an ideal in A. Moreover let M be an
A-module and let {M,,},en be an a-filtration. Then the direct sum &5, M,, of the
A-modules M,, is a graded Rq(A) = @52 a"-module. The product of f € a” with
x e M,yis frea™ M, C M,4n,.

(1.11) Example. Let A be a ring and a an ideal of A. Moreover let M be an
A-module, and let { M), },,en be an a-filtration. Then the direct sum &5 M, /M, 11
of the A/a-modules M, /M, is a graded Gq(4) = ® 4a"/a""l-module. The
product of the class in a™/a™*! of f € a™ and the class in M, /M, 1 of x € M,, is
the class in My, /Mpiny1 of fo € My, 4,. Again the definition of the product is
independent of the representatives of the classes of f and z.

When M,, = a”M for n =0, 1,... we obtain that &2 ,a" M /a" 1 M is the G, (A)-
module G4(M) defined in Example (1.5).

(1.12) Lemma. Let A be a ring and a an ideal in A. Moreover let {M,,}nen and
{M] }nen be a-stable filtrations of an A-module M. Then there is a positive integer
m such that

Myyn C M, and M)

m-+n

CM, forn=0,1,....

Proof. Since aM, C M, 1, and aM] C M), we have that a"M C M, and a"M C

M] for n =0,1,.... The filtrations { M, }nen and {M] },en are a-stable. Hence we
can find natural numbers p,p’ in N such that M, , = a"M, and M), , = a"M,

forn > p+p'. Let m = p+ p’. Then we have that M,,,,,, = a”“’/Mp Ca™M C M),
and M), ., =a""PM/, Ca"M C M, forn=0,1,2,....

m—+n

(1.13) Lemma. Let A be a noetherian ring and let a be an ideal in A. Moreover
let M be a finitely generated A-module and let {M,},en be an a-filtration. The
following conditions are equivalent:

(1) The graded Rq.(A)-module &5 M, is finitely generated, where R,(A) =
Dnzod”
(2) The filtration {M,,},enN is a-stable.

Proof. For each m we have that K,, = &' M, is an A-submodule of &5 (M,,.
Since M is a finitely generated A-module and A is noetherian, it follows from Lemma
(CHAINS 1.6) that all the A-modules M,, are finitely generated. Hence we have that
K,, is a finitely generated A-module. The elements of K,, generate the R,(A)-
submodule

Lpn=My®M & & My, ®aMy, ®a’*M,, &

of &7 yM,,. Since K,, is a finitely generated A-module we clearly have that L,, is
a finitely generated Ry(A)-module. We have that Lo C L; C Ly C --- and that
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U oL = @52 M,. Since R4(A) is noetherian by Lemma (CHAINS 1.6) it follows
from Proposition (7) that @22 ,M,, is noetherian if and only if there is an m such
that L,, = L;,+1 = ---. However we clearly have that L,,, = L,,41 = --- if and only
if Myqn, = a"M,, for n =0,1,..., that is, if and only if the filtration {M,, }nen is
a-stable.

(1.14) Theorem. (Artin-Rees) Let A be a noetherian ring and a an ideal in A.
Moreover let M be a finitely generated A-module and let {M,},en be an a-stable
filtration of M. For every submodule L of M we have that {L N M, },en is an
a-stable filtration of L.

Proof. We have that a(L N M,,) C aLaM,, C LN M,;. Hence the filtration {L N
M, }nen of L is an a-filtration, and consequently &2° ((LNM,) is a Rq(A)-submodule
of ®2° o M,,. Since the filtration { M }, e is a-stable it follows from Lemma (1.13) that
@22 M, is a finitely generated Rq(A)-module, and from Proposition (1.6) it follows
that the ring Rq(A) is noetherian. Consequently it follows from Lemma (CHAINS
1.6) that &2 (L N M,,) is a finitely generated Rq(A)-module. Using Lemma (1.13)
once more we see that the filtration {L N M, },en of L is a-stable.

(1.15) Theorem. (Krull) Let A be a noetherian ring and a an ideal of A. Moreover
let M be a finitely generated A-module. Then the submodule Ny, a" M of M consists
of the elements x € M such that (1+ f)x = 0 for some f € a.

Proof. It is clear that an element x € M with the property that there is an f € a
such that (1 + f)z = 0 satisfies the equations * = fr = f?z = ---. Hence we have
an inclusion x € N2, a™ M.

To prove the opposite inclusion we let L = N>2;a" M. It follows from Theorem
(1.14) that {L N a"M},en is an a-stable filtration of L. Hence it follows from
Lemma (1.12) that we can find a positive integer m such that L Na™™"M C a"L
for n = 0,1,.... In particular L N a™™'M C aL. Since L = N>_;a"M C a"M for
n=0,1,... we obtain that L C LN a™T' M C aL. Hence we have that L = aL. It
follows from Theorem (MODULES 1.27) that there is an element f € a such that
(1+ f)L=0.

(1.16) Corollary. Let A be a noetherian local ring with maximal ideal m. Then
A2 m™ = 0.

Proof. 1t follows from the Theorem with a = m that there is an element f € m such
that (14 f) N>, m™ = 0. However we observed in (RINGS 4.17) that 1+ f is a unit
in A. Hence we have that N2, m"” = 0.

(1.17) Proposition. Let A be a noetherian ring and let a be an ideal in A. Moreover
let M be a finitely generated A-module, and let {M,},en be an a-stable filtration
of M.

(1) The ring G4(A) = &> ya"/a™ "1 is noetherian.

(2) The G4(A)-module &2 M,,/M, 1 is noetherian.
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Proof. (1) Since the ring A is noetherian we have that a is a finitely generated
A-module. For every set of generators fi, fa,..., fm of a we have that a”/a"*!
is generated as an A/a-module by the residue classes of the elements f;, fi, - fi.
where i1,12,...,4, are, not necessarily different, integers satisfying 1 < i; < m
for 5 = 1,2,...,m. Denote by g1,92,...,9m the classes in a/a? of the elements
fis f2,- -+, fm- Then we clearly have that G4(A) = (A/a)[g1,92,---,gm], that is, the
A/a-algebra G,(A) is generated by the elements g1, 92, ..., gm. It follows from the
Hilbert Basis Theorem (CHAINS 2.10) that G4(A) is noetherian.

(2) It follows from Proposition (CHAINS 1.7) that M is noetherian. Consequently
M,, is a noetherian A-module for all n. It follows that M, /M, is a noetherian

A/a-module for n = 0,1,.... Since the filtration {M,},en is a-stable it follows
from Lemma (1.12) that there is a positive integer m such that M,,+, C a"M,,
for n = 0,1,.... Hence the G4(A)-module &5 (M, /M, 1 is generated by the el-

ements in &) M, /M,11. Since each module M, /M, 1 is noetherian it follows
from Lemma (CHAINS 1.6) that &) M,,/M,+1 is a finitely generated A/a-module,
and each collection of generators of &' M,,/M,+1 as a A/a-module will generate
@ oM, /My 4+1 as a G4(A)-module. It follows that @52 (M, /M, ;1 is finitely gener-
ated as a G4(A)-module, and consequently noetherian.

(1.18) Exercises.

1. Let A= @2, A, be a graded ring and let M = &2 (M, be a graded A-modules.
A submodule L of M is graded if for every element x = ZZ:O T, in L with z,, € M,
we have that z,, € L.

(1) Show that for every submodule L of M the A-module &5 (L N M,) is a
graded submodule of M.
(2) Show that if L = &2 ,L,, is a graded submodule of M, then L,, = L N M,
(3) Show that a submodule L of M is a graded submodule of M if and only if L
can be generated by homogeneous elements.
(4) Show that for every graded submodule L = &2 L,, of M we have that M /L
is isomorphic to the graded module &5 (M,,/Ly,.
2. Let A = ®2,A, and B = &2, be graded rings. Moreover let ¢ : A — B be
a ring homomorphism such that ¢(A,) C B, for all integers n. We say that ¢ is a
homomorphism of graded rings.
(1) Show that the kernel of ¢ is a graded ideal.
(2) Show that the image of ¢ is a graded ring.
3. Let A = @72, be a graded ring, and let M = ®.2, and N = &2, be graded
A-modules. Moreover let w : M — N be a homomorphism such that there is an
integer m satisfying u(M,,) C N,,+, for all integers n. We say that u is graded of
degree m.

(1) Show that the kernel of u is a graded submodule of M.
(2) Show that the image of u is a graded submodule of N.

4. Let S = @225, and S; = @72 ,S,,. Moreover let ng be a positive integer and
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assume that we for every integer n > ng have a subgroup p, of S,. Consider the
following three conditions

(a) Smpn C Piman for m >0 and n > ng.

(b) For m > ng and n > ng, and for all elements f € S, and g € S,, the relation
fg € pman implies that either f € p,, or g € p,,.

(c) We have that p,, # S,, for at least one integer n > nq.

(1) Show that when p is a homogeneous prime ideal in S that does not contain

— Sy, and such that p,, = p NS, for n > ng, then the conditions (a), (b) and
— (c) hold.
— (2) Assume that the conditions (a), (b) and (c) hold. It follows from (c) that
there is an f € Sy \ pg for some d > ng. Show that for m > ny we have
P ={x € Sn: fr € pmial-
— (3) Under the same assumptions as in part (2), we write
pm ={z € Sy : fr € Prmya}
for all positive integers m. Show that p = &2 op,, is a prime ideal.
— (4) Show that when (a), (b) and (c) hold then there is a unique homogeneous
prime ideal p that does not contain S, and such that p,, = pN S, for all
n > ng.

n 5. Let IS = @22 S, be a graded ring. Moreover let !!Proj(,S) be the homogeneous
prime ideals in S that do not contain S; = #52,S,,. For every homogeneous ideal

n ain S we let 'V, (a) be the prime ideals in Proj(S) that contain a, and for every

n homogeneous element f € S, we let !!D, (f) be the prime ideals in Proj(S) that do
not contain f.

(1) Show that the sets V, (a) for all homogeneous ideals a of S are the closed sets
of a topology on Proj(.S). This topology we call the Zariski topology.

(2) Show that for every homogeneous element f € S the set D, (f) is open in
the Zariski topology, and that the sets D (f) for all homogeneous elements
f € Sy form a basis for the topology.

(3) Let f € S4 be a homogeneous element of S;. We denote by S) the elements
g/ f" in the localization S of S in the multiplicatively closed set {1, f, f2,...}
such that g € Sq,,. Show that Sy is a ring.

(4) Show that there is a map of sets

Yy Dy (f) — Spec(S(y))

that sends a prime ideal to the set of all elements of the form g/f" € Sy
with g € p N San.
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Let go be a prime ideal in S(y). For every positive integer we let

pn:{mESn:xd/f” € qo}-

Show that p = ®;2p,, is a prime ideal in S that does not contain Sy .

Show that the map vy is a homeomorphism of topological spaces, that is, the
map vy is continous and has an inverse that is also continous.

Show that for all homogeneous elements f, g in Sy there is an inclusion of
open sets Dy (fg) € Dy(f) and a homomorphism wyg ¢ @ S(r) — S(sq) of
rings.

Denote by tfq. 5 : Dy(fg) — D4 (f) the continous map coming from the
inclusion D (fg) € D4(f). Show that ("wyg,f)(Vrg) = (¥5)(trg.5)-

Define a sheaf of rings Ox on X = Proj(S) such that for all homoge-
neous elements f, g in S there is an isomorphism of ringed spaces (v, 6y) :
(D+(f),Ox|D+(f)) — (Spec(S(f)),Ospec(5<f))) such that (¢¢,0y) restricted
to Dy (fg) gives the map (17, Or,).
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2. Hilbert polynomials.

(2.1) Definition. Let A be a ring. An additive function !X\ = A4! on finitely
generated A-modules associates to every finitely generated A-module M an integer
A(M) and satisfies the property:

For every exact sequence of finitely generated A-modules

0—-M —-M-—->M'—-0

we have

ANM) = M) + (M.
(2.2) Remark. let M’ = (0) and thus M = M". We see that A\((0)) = 0.

(2.3) Example. It follows from Proposition (CHAINS 1.15) that when A is an
artinian ring the length is an additive function on finitely generated A-modules. In
particular the vector space dimension is an additive function on finite dimensional
vecor spaces.

(2.4) Remark. Let A = &2 A, be a graded ring that is finitely generated as
an Ap-algebra, and let M = @92 ,M,, be a finitely generated A-module. Then each
M,, is a finitely generated Ap-module. In fact when we replace, if necessary, a set
of generators for the Ap-algebra A, and a set of generators for the A-module M
by their homogeneous components, we see that the Agp-algebra A can be generated
by a finite set f1, fo,..., fp of homogeneous elements of A, respectively that the A-
module M can be generated by a finite set =1, x2,..., 2, of homogeneous elements
of M. If f; € A,,, for i = 1,2,...,p and z; € M,, for i = 1,2,...,q we clearly
have that M,, is generated, as an Ag-module, by the elements f;, fi, - - - fi, x; for all
collections of integers i1, 49, ...,%, between 1 and p and and j between 1 and ¢, and
with m;, +my, +---+m; +n; =n.

In particular, it follows from Proposition (1.6) that for any noetherian graded ring
A and finitely generated graded module M, the homogeneous part M,, is finitely
generated over Aq for all n.

(2.5) Definition. Let A = ®2° A, be a graded ring that is finitely generated as
an Ap-algebra, and let M = &7 (M, be a finitely generated A-module. Moreover
let A\ be an additive function on finitely generated Ag-modules. The Poincaré series
of the A-module M is the power series!!

Py(M,t) = i A(M,)t"

in the variable t with coefficients in Z.
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(2.6) Example. Let A = Klt1,ta,...,t,] be the polynomial ring in the variables
ti,t2,...,t, over a field K. Then A = ®:°,A; where A, is the vector space of all ho-
mogeneous polynomials of degree n. Let A\(M) = dimg (M) for all finite dimensional
vector spaces M over K. Then Py(A,t) =00 ("T" Nt =1/(1 —t)™.

n—1

(2.7) Example. Let K|[t1,t2] be the polynomial ring in the variables ¢, %5 over a
field K. Moreover let A = K[t1,t2]/(t2,t1t2) be the residue ring of the polynomial
ring K[t1,t2] modulo the ideal (#3,t1t3), and let u and v be the residue classes of ¢1,
respective to in A. Then u? = 0 = uv and we have that A = K ® (Ku+ Kv) ® Kv?®
Kv3®---. Hence P\(A,t) =1+ 2t + 2+ 3+ = (1 +t—t2)/(1 —t).

(2.8) Example. Let K|[t1,t2] be the polynomial ring in the variables ¢, ts over a
field K. Moreover let A = K[t1,t2]/(t? +t3) be the residue ring of the polynomial
ring K|[t1, 2] modulo the ideal (#? + t2), and let u and v be the residue classes of ¢;
respectively to in A. Then u? +v?> =0 and A = K @ (Ku + Kv) ® (Kuv + Kv?) @
(Kuv? + Kv®) @ ---. Hence Py\(A,t) =1+ 2t +2t2 4+ ... = (1 +1)/(1 —t).

(2.9) Lemma. Let A = &2 ,A,, be a noetherian graded ring and let M = &]'_, M,
be a finitely generated A-module. Moreover let A be an additive function on finitely
generated Ag-modules. For every homogeneous element f € A,, with m > 0 we have
an exact sequence of A-modules

0L MM NS0 ((.)9.1)
where L and N are finitely generated (A/f A)-modules, and
(1 — t™)P\(M, t) = Py(N,t) — t" P\(L, 1). (2.9.2)

Proof. For each integer n > —m we have an exact sequence

0 — L — My 2% Myyin — Nopin — 0 (2.9.3)

where L, and N,,., are defined as the kernel, respectively the cokernel of the map
fare Let L = @22 (L, and N = &2 (N,,. Then L and N are A modules, and we
have an exact sequence (2.6.1). Since M is noetherian by Lemma (CHAINS 1.6) it
follows from Proposition (1.7) that L and N are noetherian A-modules. In particular
it follows from Remark (2.4) that L,, and N,, are finitely generated Ap-modules for
all n. It follows from (2.9.3) that we have equations

AMMpin) — NMp) = MNopin) — MLp) forn=—m,—m+1,....  (2.9.4)

Multiply both sides of (2.9.4) by t™*" for n = —m,—m + 1,..., and sum the right
and left hand sides of the resulting equations. We obtain equation (2.9.2) of the
Lemma.

Finally we note that fL = 0 and fN = 0. Hence L and N are in fact A/fA-
modules.
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(2.10) Theorem. (Hilbert-Serre) Let A be a noetherian graded ring, generated as
an Ag-module by m homogeneous elements of positive degrees p1,pa,...,Pm. More-
over let M be a finitely generated graded A-module, and A\ an additive function on
finitely generated Ag-modules. Then

m

Pa(M,t) = f(t)/ [J(@ - ) (2.10.1)

=1

in the ring Z[[t]] of power series in the variable t over the integers, where f(t) is a
polynomial in Z[t] and 1/(1 — tPi) = 1 4 tPi +¢2Pi 4 ...

Proof. We prove the Theorem by induction on m. When m = 0 we have that A = Ay,
and since M is finitely generated M, = 0 for all sufficiently large n. Consequently
Py(M,t) is a polynomial when m = 0.

Assume that m > 0 and that the Theorem holds for m — 1. Let f1, fa,..., fm be
homogeneous elements of positive degrees p1, po, . .., pm respectively that generate A
as an Agp-algebra. It follows from Lemma (2.9) with f = f,, that

(1 — tP%)Py(M,t) = P\(N,t) — tP» P\(L, 1) (2.10.2)

where L and N are (A/f,,A)-modules. We have that the Ap-algebra A/f,A =
Aolf1, fo, -y fm]/fmA is generated by the residue classes of f1, fo,..., frn—1. It
follows from the induction hypothesis that Py\(N,¢) = g¢(¢)/ ]2, '(1 — tPi) and
Py(L,t) = h(t)/ 1]~ Y(1—tPi), where g(t) and h(t) are polynomials in Z[t]. Equation
(2.10.1) consequently follows from equation (2.10.2).

(2.11) Corollary. Let A be a noetherian graded ring that is finitely generated as
an Ag-algebra by m elements of degree 1. Moreover let M be a finitely generated
graded A-module. Write

Pa(M, 1) = f(8)/(1 =)™ = g(t)/(1 = 1)°

where 0 < p < m and ¢(t) is a polynomial in Z[t] with g(1) # 0. Then there is a
polynomial h(t) in Q[t] of degree p — 1 such that A\(M,,) = h(n) for all sufficiently
large n. Here we define the degree of the zero polynomial as —1.

Proof. When p = 0, that is, when (1 —¢)™ divides f(t) we have that Py(M,t) is a
polynomial. Consequently we have that A(M,,) = 0 when n is larger than the degree
of Py(M,t). Hence the Corollary holds when (1 —¢)™ divides f(t).

Assume that 0 < p < m. Write g(t) = Y% _, g,t™ with g,, € Z. Since 1/(1 —t)P =
S0 o (MFPIN ¢ in Z[[t]), we have that

g(t)/ 1—tp—z Y g (‘Hp_l)t.

n=01i+j=n
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Consequently A(M,) = >, ;_, gi(j;gle) = >, gi("_;lej_l). We write () =
nht(t—1)---(t—n+1)in Q|¢t], and we let h(t) = D> :_g:( . 7). en h(t) is
1/n! 1) in Q d we let h 09i("" ;7). Then h(t) i

a polynomial of degree p — 1 because the coefficient of t*~!is (1/(p— 1)) Y%, 9: =
(1/(p—1)"g(1) # 0. Moreover we have that A(M,,) = h(n) when n > ¢, and we have
proved the Corollary.

(2.12) Definition. Let A = @92 (A, be a graded noetherian ring which is generated
as an Ag-module by elements of degree 1. Moreover let M be a finitely generated
A-module, and let \ be an additive function on finitely generated Ag-modules. The
polynomial !h(t)! in Qt] such that h(n) = A(M,,) for all sufficiently large n is called
the Hilbert polynomial of M with respect to \. We denote by !!d) (M) the degree of
the Hilbert polynomial. Here we define the degree of the zero polynomial as —1.

(2.13) Example. Let K|ti,to,...,t,] be the polynomial ring in the variables
ti1,ta,...,t, over a field K. We saw in Example (2.6) that the Hilbert polynomial

ht)is (TP =1/ (e =D (E+n—1)(t+n—2)-(t+1).

n—1

(2.14) Example. Let A = K[u,v] with u? = 0 = uv be the ring of Example (2.7).
Then the Hilbert polynomial h(t) is equal to 1.

(2.15) Example. Let A = K[u,v] with u? + v? = 0 be the ring of Example (2.8).
Then the Hilbert polynomial h(t) is equal to 2.

(2.16) Lemma. Let A be a noetherian graded ring that is generated as an Ag-
module by elements of degree 1. Moreover let M be a finitely generated A-module,
and let A\ be an additive function on finitely generated Ag-modules. For every homo-
geneous element f € A of positive degree which is M-regular we have that

da(M) = dx(M/fM) + 1.

Proof. Let f be homogeneous of degree m > 0. Since f is M-regular the map
fum + M — M is injective. Hence it follows from the exact sequence (2.9.1) that
L =0, and we obtain from equation (2.9.2) that

(1 — t™)Py\(M,t) = P\(M/fM,1).

Write P\(M,t) = g(t)/(1 — t)P and P\(M/fM,t) = h(t)/(1 — t)? where g(t) and
h(t) are polynomials in Z[t] with g(1) # 0 respectively h(1) # 0. Then (1 —¢™)(1 —
t)9g(t) = (1 —t)Ph(t). Since 1 =t = (1 —t)(1 +t+---+t" ) and 1+t +---+
tm=1)(1) = m # 0 we have that p = g+1. That is, we have d\(M) = dx(M/fM)+1,
and we have proved the Lemma.

(2.17) Exercises.
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1. Let K[u,v] be the ring of polynomials in the independent variables u,v with
coefficients in a field K. Moreover, let S = K|[u, v]/(u?, uv™) be the residue ring of
K[u, v] modulo the ideal (u?, uv™).
(1) Determine the polynomial ¢(¢) in Z[t] and the non-negative integer p such
that
Pr(S,t) = g(t)/(1 — )"

and ¢g(1) # 0, when A = dimg.
(2) Determine the Hilbert polynomial of S with respect to dimg.
2. Let Klu,v] be the ring of polynomials in the independent variables u,v with
coefficients in a field K. Let S = Klu,v]/(u? v™) be the residue ring of K{u,v]
modulo the ideal (u?,v™).
(1) Determine the polynomial ¢(¢) in Z[t] and the non-negative integer p such
that
Pr(5,t) = g(t)/(1 =)

and g(1) # 0, when A = dimg.
(2) Determine the Hilbert polynomial of S with respect to dimg.
3. Let Klty,ta,...,t,] be the ring of polynomials in the independent variables
ti1,ta,...,t, over a field K. Moreover, let f(t1,ts,...,t,) be a polynomial of de-
gree d > 0, and let S = Klt1,to,...,tn]/(f(t1,t2,...,ts)) be the residue ring of
Kl[ty,ta,...,t,] modulo the ideal (f(t1,t2,...,t,)) generated by f(t1,ta,...,t,).
(1) Determine the polynomial ¢(¢) in Z[t] and the non-negative integer p such
that
PA(S;t) = g(t)/(1 = 1)
and ¢g(1) # 0, when A = dimg.
(2) Determine the Hilbert polynomial of S with respect to dimg.

4. Let Klto,t1,...,t,) be the ring of polynomials in the independent variables
to,t1,...,t, with coefficients in a field K with infinitely many elements. For ev-
ery point b = (bg, by, ..., b,) in the cartesian product K"+ of the field K with itself
n+1 times, and for every element x in K we write kb = (kbg, kb1, . .., kb, ). Moreover
for every collection of points a1, as, ..., am, in K™t we write

j(al,ag,...,am) :{fGK[to,tl,...,tn]Z
f(ka;) =0fori=1,2,...,m and all k € K}.

(1) Show that J(a1,as,...,a.) is a homogeneous ideal in K[tg,t1,...,t,].
(2) Show that

dimg (I(aq, az, ..., an)) > max(0, <n —5 d) —m).
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(3) Show that for every non-empty collection !!’P of homogeneous polynomials in
Klto,t1,...,t,] of positive degree the subset

V(P)={be K" : f(b) =0 for all fc P}

of K"t is different from K"*t!.
(4) Show that we can find points a1, as, ..., a,, in K" such that

d
dimK(j(ala agz, ..., am)) - max(O, (ng ) — m)

(5) Let S = Klto,t1,...,tn]/I(a1,a2,...,an). Determine the polynomial ¢(t) in
Z[t] and the non-zero integer p such that

Pr(5,t) = g(t)/(1 = )P

and ¢g(1) # 0, when A = dimg.
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3. Dimension of local rings.

(3.1) Notation. Let Qt] be the polynomial ring in the variable ¢ over the rational
numbers. For each positive integer m we define a polynomial (7;) by

(t)z(ﬂmﬂﬂt—n~-@—ﬂr+n.

m

We let (8) = 1. The polynomial (TZ) has degree m and the coefficient of t™ is 1/m/.
For all integers n we have that (t)(n) = (") is an integer, so all the polynomials

(1;) define a function Z — Z.
Define an operator A on the collections of functions h : Z — Z by

AR(t) = h(t + 1) — h(t) for all f € Q[t].

Then A(()) = ( t ).

t
m m—1

(3.2) Remark. The polynomials (3), (i), e (1;) form a basis for the subspace of

the Q-vector space Q[t] consisting of polynomials of degree at most equal to m.

(3.3) Lemma. Let Q[t] be the polynomial ring in the variable t with coefficients in
Q.
(1) If f(t) € Q[t] is a polynomial of degree m such that f(n) € Z for all sufficiently
large n, there are integers ng,ni, ..., N, such that

sy =na( ) b0 )+

In particular we have that f(n) € Z for all integers n.

(2) Let h : Z — Z be a function such that there is a polynomial g(t) € Q[t] of
degree m — 1 with Ah(n) = g(n) for all sufficiently large n. Then there is a
polynomial f(t) € Q[t] of degree m such that h(n) = f(n) for all sufficiently
large n.

Proof. (1) We shall prove assertion (1) by induction on m. When m = 0 the assertion
clearly holds. Assume that assertion (1) holds for polynomials of degree m — 1. Since
the polynomials (é), (D, cee (;) form a basis for the vector space over Q consisting of
polynomials of degree at most m there are rational numbers ng, n1, ..., n,, such that

ft) =ng (1;) +nq (mt_l) + -+ 4+ n,,. We shall show that the numbers ng,n1,...,nm,

are integers. We have that Af(t) = ng (mt_l) + nq (mt_Q) + -+ nypm_1. Since Af(t)
is of degree at most m — 1 and Af(n) = f(n+ 1) — f(n) is in Z for all sufficiently
large integers n it follows from the induction hypothesis that ng,n1,...,n,,_1 are
integers. Since f(n) € Z for some n, and (7;) isin Z for i = 0,1,..., it follows that

we also have n,, € Z.
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(2) It follows from assertion (1) that g(t) =no(," ) +ni(,," 2) + -+ nyq for
no

some integers mg, Ny, ..., Nym—1. Let k(t) (;L) +nq (m 1) 4+ 4 nm_l(i). Then
k(t) is of degree m and we have that Ak(t) = g(t).

p such that A(h — k)(n) = Ah(n) — g(n) = g(n) — g(n) = 0 when n > p. Hence
there is an integer n,, such that h(n) — k(n) = h(p) — k(p) = n,, when n > p. Let
f(t) = k(t)+n,;,. Then f(¢) is of degree m and we have that f(n) = k(n)+n,, = h(n)
when n > p, and we have proved assertion (2).

onsequently there is an integer

(3.4) Lemma. Let A be a noetherian ring and let M be an A-module. Moreover let
{M, }nen be a filtration on M such that M, /M, is an A-module of finite length
forn=20,1,.... Then

(1) M/M, is of finite length for n = 0,1,....

(2) Forn=0,1,... we have

60 /M) = EM/M,) — €[ Ms)  and 6QI/M,) = 3 €01 /M),

(3) If there is a polynomial g(t) € Q[t] of degree m — 1 such that g(n) =
(M, /M, 1) for all sufficiently large integers n, then there is a polynomial
f(t) € Q[t] of degree m such that f(n) = £(M/M,,) for all sufficiently large

n.
Proof. (1) For each n > 1 we have an exact sequence
0— M,_1/M, — M/M,, — M/M,_1 — 0. (3.4.1)

It follows from Proposition (CHAINS 1.15) by induction on n, starting with My/M; =
M /M, that each M/M,, is an A-module of finite length.

(2) The first equality of assertion (2) follows from the exact sequence (3.4.1) and
Proposition (CHAINS 1.15), and the second equality follows from the first by induc-
tion on n, starting with n = 1.

(3) Let h(n) = £(M/M,,) for n =0,1,..., and let h(n) = 0 for n < 0. It follows
from assertion (2) that Ah(n) = g(n) for all sufficiently large integers. Assertion (3)
consequently follows from assertion (2) of Lemma (3.3).

(3.5) Proposition. Let A be a noetherian local ring with maximal ideal m. More-
over let q be an m-primary ideal in A, and let M be a finitely generated A-module
with a qg-stable filtration {M,, }nen. Then

(1) The A-module M /M, has finite length.

(2) Let m be the least number of generators for q. Then there is a polynomial
g(t) € Q[t] of degree at most m such that g(n) = ¢(M/M,,) for all sufficiently
large n.

(3) The degree deg(g) of the polynomial ¢g(t) and the coefficient of t3°€(9) are
independent of the filtration { M, },eN-.
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Proof. (1) It follows from Remark (CHAINS 2.16) that the ring A/q is artinian.
Moreover it follows from Proposition (1.17) that the ring G4(A4) = &5 q™/q" ™ is
noetherian and that @72 (M, /M, is a finitely generated G4(A)-module. Hence it
follows from Remark (2.4) that the modules M,,/M, 4 are finitely generated A/q-
modules, and hence of finite length as A-modules. Consequently it follows from
Lemma (3.4) that the A-modules M /M, are of finite length.

(2) The classes in q/q? of a set of generators of q generate the A/g-algebra G (A4) =
@2 q™/q" L. Hence it follows from Corollary (2.11) that there is a polynomial f(t)
in Q[t] of degree at most m — 1 such that f(n) = ¢(M, /M, 1) for all sufficiently
large n. It follows from Lemma (3.4) that there is a polynomial ¢(¢) in Q[t] of degree
at most m such that g(n) = ¢(M/M,,) for all sufficiently large n.

(3) Since {q"M},en is a g-stable filtration we obtain a polynomial h(t) in Z[t]
such that h(n) = ¢(M/q"M) for all sufficiently large n. It follows from Lemma
(1.12) that there is a positive integer m such that M, C q"M and q?*"M C M,
forn=20,1,.... Then

glp+n)>h(n) and h(p+n)>g(n) (3.5.1)

for all sufficiently large n. It is easily seen that the equation (3.5.1) for all sufficiently
large n implies that ¢g(¢) and h(t) have the same degree and that the coefficient of
tdes(9) = ¢dea(h) ig the same. Hence all g-stable filtrations have polynomials with the
same degrees as h(t) and the same coefficients of t4°8(%) as h(t).

(3.6) Notation. Let A be a noetherian local ring with maximal ideal m. Moreover
let ¢ be an m-primary ideal and M a finitely generated A-module. We denote by
x4’ (t) the polynomial in Q[t] such that x(n) = £(M/q™ M) for all sufficiently large
n. When M = A we write xq4(n) = Xg‘(n).

(3.7) Proposition. Let A be a noetherian local ring and let q be an ideal that is
primary for the maximal ideal m of A. Then

deg(xq) = deg(Xm)-

Proof. Tt follows from Remark (CHAINS 2.9) that m™ C g for some integer m. Hence
we have that m™” C q" C m™. It follows that

Xm(mn) > Xq (n) = xm(n)

for all sufficiently large integers n. Since xm(t) and x4(t) are polynomials they must
have the same degree.

(3.8) Lemma. Let A be a noetherian local ring and let q be an ideal in A that is
primary for the maximal ideal m. Moreover let M be a finitely generated A-module
and f € A an element that is regular for M. Then

deg(x ™M) < deg(xM) - 1.



l

l

l

!

I

!

l

!

l

!

186 Graded rings and dimension

Proof. Let L = fM and let N = M/ fM. We have a surjective A-module homomor-
phism u : M — N/q™N that is the composite of the canonical maps uy : M — N
and uyn/qgny @ N — N/q"N. The kernel of u is fM + q"M = L+ q"M. As
we saw in Lemma (MODULES 1.13) the homomorphism u induces a surjective
homomorphism v : M/q"M — N/q"N. The kernel of v is (L + q"M)/q"M.
It follows from Lemma (MODULES 1.13) that we have a canonical isomorphism
(L+q*"M)/q"M = L/(LNq"M). Let L,—~>LNq"M. We then have an exact
sequence of A-modules

0— L/L,— M/q"M = N/q"N — 0. (3.8.1)

It follows from Theorem (1.14) that the filtration {L, },en is g-stable. Hence it
follows from Proposition (3.5) that there is a polynomial g(t) € Q[t] such that g(n) =
¢(L/L,,) for sufficiently large integers n. It follows from the exact sequence (3.8.1)
that we have

Xg () = xg" (n) = g(n) (3.82)

for all sufficiently large integers n. Since f is M-regular the map M — L that sends
x to fx is an isomorphism. Moreover, since {L,, },eN is stable and L is isomorphic
to M it follows from Proposition (?) that the polynomials x}/(¢) and g(n) have the

same degree and the same leading coefficient of ¢4°8(9). Hence it follows from (3.8.2)
that deg(quV ) < deg(xé\/" ) and we have proved the Lemma.

(3.9) Lemma. Let A be a local noetherian ring with maximal ideal m. Then
dim(A) < deg(xm(t))-

In particular we have that dim(A) is finite.

Proof. We show the Lemma by induction on m = deg(xm(t)). If m = 0 then ¢(A/m™)
is constant for all sufficiently large integers n. Hence m™ = m"*! for all sufficiently
large integers n. It follows from Nakaymas Lemma (MODULES 1.27) that m™ = 0
for all sufficiently large integers n. Hence it follows from Remark (CHAINS 2.15)
that A is artinian and hence from Proposition (CHAINS 2.17) dim(A) = 0.

Assume that m > 0 and that the Lemma holds for m — 1. Let po Cp1 C--- C pp
be a chain of prime ideals in A. We shall show that p < m. If p = 0 there is nothing
to prove, so we assume that p > 1. Then there is an element f € p; \ pg. Let
B = A/pp and let g be the residue class of f in B. Then g # 0, and since B is an

integral domain by Proposition (RINGS 4.13) we have that g is not a zero divisor in

B. Consequently it follows from Lemma (3.8) that deg(Xg/gB) < deg(xB)-1.

Let M p be the maximal ideal of the local ring B and let m = m 4. The canonical
map ¢p : A — B induces a surjective homomorphism A/m” — B/m’, for all natural
numbers n. Consequently £4(A/m’y) > £4(B/m’) for all natural numbers n and we
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clearly have that £4(B/m%) = £g(B/m%). It follows that deg(xa) > deg(xZ). We
have thus shown that deg(Xﬁ/gB) <deg(x})—1=m—1.
It follows from the induction assumption that dim(B/gB) < deg(Xﬁ/ 95 "and thus

dim(B/gB) < deg(x3) —1=m — 1. (3.9.1)

Let ¢ : A — B/gB be the composite map of the surjection A — B with the canonical
map ¢g/qp : B — B/gB. The image of the chain p; C po C --- C p, by ¢ is a
chain of length p—1 in B/gB. Consequently p—1 < dim(B/gB). Together with the
inequality (3.9.1) we obtain that p < m. Hence dim(A) < deg(xm(t)) as we wanted
to prove.

(3.10) Proposition. Let A be a noetherian local ring with maximal ideal m. Then
there is an m-primary ideal generated by dim(A) elements.

Proof. Let m = dim(A). We shall construct elements f1, fo, ..., f; such that every
prime ideal that contains the ideal (f1, fo,..., fn) = Y.y Afi is of height at least
equal to n for n = 0,1,...,m. The construction is performed by induction on n.
When n = 0 there is nothing to prove. Let n —1 < m, and assume that we have con-
structed f1, fo, ..., fn—1 such that every prime ideal that contains (f1, fo,..., fn—1)
has height at least equal to n—1. If all the prime ideals that contain (f1, fo, ..., fn_1)
have height at least equal to n we can take f,, to be any element in (f1, fo,..., fn_1)-
We therefore assume that there is a least one prime ideal of height n — 1 that con-
tains (f1, f2, ..., fn_1). It follows from Remark (CHAINS 2.8) applied to the ring
A/(f1, f2,-- -, fn_1) that there are finitely many prime ideals that are minimal among
those containing (f1, fa,..., fn—1). Let p1,p2,...,p, be those of the minimal prime
ideals containing (f1, f2, ..., fn—1) that are of height n — 1.

Since ht(p;) =n—1 <n <m = dim(A), and m is the height of the maximal ideal
m we have that all the prime ideals p; are different from m. It therefore follows from
Proposition (RINGS 4.22) that m # U?_;p;. Choose f, € m\ U_p;, and let g be a
prime ideal that contains the ideal (f1, f2,..., fn). Then g contains a prime ideal p
that is minimal among the prime ideals that contain (f1, fa..., fn—1)-

If p = p; for some i we have that q D p because f,, € q\ p. Hence we have that
ht(q) > ht(p) = ht(p;) = n — 1, and thus that ht(q) > n.

If p # p; for all ¢ we have that ht(p) > n since p1,p2,...,p, are all the prime
ideals of height n — 1 among the minimal ideals containing (f1, fo,..., fn—1). Hence
ht(q) > ht(p) > n. We consequently have constructed elements fi, fo,..., f, for
n =1,2,...,msuch that all the prime ideals that contain (f1, fo, ..., fn) have heigth
at least equal to n.

It remains to prove that (f1, fo,..., fm) is an m-primary ideal. Every prime ideal
containing (f1, f2,..., fm) have height at least equal to m = dim(A), and since
m = ht(m) we have that p = m. Hence m is the only prime ideal that contains
(f1, f2,---, fm), and consequently m is the radical of (f1, fa,..., fim). Hence, as we
saw in Example (MODULES 4.3), the ideal (f1, fo, ..., fm) is m-primary.
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(3.11) Lemma. Let A be a local noetherian ring with maximal ideal m. Moreover

let f1, fa,..., fn be elements in m. We have that the elements f1, f2,..., f, generate

the ideal m if and only if their classes in m/m? generate the A/m-vector space m/m?2.
In particular the least number of generators of m is equal to dim 4 /m(m/m2).

Proof. 1t is clear that when f1, fo, ..., f, generate m, then their residue classes gen-
erate m/m? as a A/m-vector space.

Conversely we have that when the residue classes of f1, fo,..., f,, generate the
A/m-vector space m/m? we have that (f1,f2,..., fn) + m> = m. It follows from
Theorem (MODULES 1.27)(3) with L = (fi1, f2,...,fn) and a = m that then

(fl?fQ?"'afn) =m.

(3.12) Theorem. Let A be a noetherian local ring with maximal ideal m. The
following numbers are equal:

(1) The dimension dim(A) of A.
(2) The degree deg(xm(t)) of the polynomial x ().
(3) The least number of generators of an m-primary ideal.

Proof. Let m be the least number of generators of an m-primary ideal. It follows from
Proposition (3.5)(2) that deg(x4(t)) < m. Hence it follows from Proposition (3.7)
that deg(xm(t)) < m. The inequality dim(A) < deg(xm(t)) follows from Lemma
(3.9). Finally the inequality m < dim(A) follows from Proposition (3.10). Hence
dim(A) < dim(xm(t)) < m < dim(A), and we have proved the Theorem.

(3.13) Corollary. Let A be a noetherian local ring with maximal ideal m. Then
dim(A4) < dim 4/ (m/m?)

where dim 4/, (m/m?) is the dimension of the vector space m/m? over the field A/m.
Proof. The Corollary follows immediately from Lemma (3.11) and the Theorem.

(3.14) Corollary. Let A be a noetherian ring and let fi, fo,..., fm be elements
of A. Then every prime ideal that is minimal among the associated ideals of the
A-module A/(f1, fa,..., fm) is of height at most equal to m.

In particular we have that if f is neither a zero divisor nor a unit, then every prime
ideal that is minimal among the prime ideals containing (f) = Af has height 1

Proof. 1t follows from Proposition (CHAINS 3.3) that every prime ideal of A con-
taining (f1, f2, ..., fm) contains an associated prime ideal of B = A/(f1, fa, .-, fm)-
In particular the ideals that are minimal among those that contain (f1, fa,..., fm)
are associated ideals of B. It follows from Remark (7) that there is only a finite
number of associated ideals of B that are minimal among the associated ideals of B.

Let p = Ann(g) with g € B be a prime ideal of A that is minimal among the
associated prime ideals of B. It follows from Proposition (MODULES 3.11) that pA,
is minimal among the prime ideals that contain (fi, fa,..., fm)Ap and thus the only
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prime ideal in A, containing (fi, fo, ..., fm)Ap. Hence it follows from the Theorem
that ht(pA,) = dim(A,) < m. We obtain that ht(p) = ht(pA,) < m. Hence we have
proved the first part of the Corollary.

To prove the last part we use the above observation that the minimal prime ideals
p in A that contain (f) are associated to A/(f). Hence it follows from the first part
that they have height at most equal to 1. If ht(p) = 0 we have that dim(A,) = 0.
It follows from Proposition (CHAINS 2.7) that A, is noetherian and hence it follows
from Theorem (CHAINS 2.17) that it is artinian. Then we have that f™ =0 in A,
for some positive integer m, and thus sf™ = 0 in A for some s ¢ p. Consequently f
is a zero divisor contrary to the assumptions of the Corollary. We have proved the
last part of the Corollary.

(3.15) Corollary. Let A be a noetherian local ring and let f € m be a regular
element of A. Then
dim(A/Af) = dim(A) — 1.

Proof. 1t follows from the Theorem, from Lemma (3.8), and from Proposition (3.7)
that we have an inequality dim(A/fA) < dim(A) — 1.

To prove the opposite inequality we observe that it follows from Proposition (3.10)
that, with dim(A/fA) = m — 1, we can find elements fi, f2,..., fin—1 in A whose
images by the canonical map @4/54 : A — A/fA generate an (m/Af)-primary ideal
in A/Af. It is clear that the ideal (f1, f2,..., fimn—1, f) is m-primary. Hence it follows
from the Theorem that dim(A) > m. Hence dim(A) —1>m —1=dim(A/fA), and
we have proved that dim(A/fA) = dim(A) — 1.

(3.16) Definition. Let A be a local noetherian ring with maximal ideal m. A
parameter system for A is a collection of dim(A) elements that generate an m-primary
ideal.

(3.17) Remark. Let A be aring and let f1, fo,. .., fm, with m = dim(A) be elements
of A. Write q = (f1, f2y--, fm) = >y Afn. We obtain a map

@ (A/D[t1,ta, - . tm] = Gq(A) = ®5Zoq™ /g™ (3.17.1)

from the polynomial ring in the varables t1,ts,...,t,, over A/q to the graded ring
G4(A) by sending the variable ¢; to the class in q/q? of f; for i = 1,2,...,m. It is
clear that the map ¢ is a surjective map of (A/q)-algebras.

(3.18) Lemma. Let A be a local noetherian ring with maximal ideal m. Moreover
let f1, fo,..., fm be a parameter system for A and let q = (f1, fa,..., fm). When
f is a homogeneous element in the polynomial ring Alty,ta, ..., t,]| in the variables
t1,t2, ..., t,y over A which is in the kernel of the map (3.17.1)

0 (A/q)[t1,t2, ..., tm] = G4(A)
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then f has coefficients in m.

Proof. Assume that f has a coefficient that is not in m. It follows from Example
(RINGS 2.16) that f is not a zero divisor in (A/q)[t1,t2,...,tm]. We obtain from
Lemma (2.16) that d¢((A/q)[t1,to, ... tm]/(f)) = de((A/q)[t1,t2, ... tm]) — 1. As
we saw in Example (2.13) we have that ds((A/q)[t1,t2,...,tm]) = m — 1. Since
f is in the kernel of the surjection ¢ we have that ¢ induces a surjective map
(A/q)t1,t2, .. tw]/(f) — G4(A) of graded (A/q)-algebras. Hence we have that
de(Gq(A)) < de((A/q)[t1,t2, ..., tm]/(f)) = m — 2. However it follows from Lemma
(3.4)(3) and Theorem (3.12) that d¢(G4(A)) = deg(xq(A4))—1 =dim(A) -1 =m—1.
This contradicts the assumption that f has a coefficient that is not contained in m,
and we have proved the Lemma.

(3.19) Theorem. Let A be a noetherian local ring with maximal ideal m and let
k = A/m be the residue field. The following conditions are equivalent:

(1) There are generators fi, fo,..., fm of m with m = dim(A) such that the
homomorphism (3.17.1)

0 Rt ta, .. tm] — Gm(A)

is an isomorphism.
(2) We have an equality dim(A) = dimg(m/m?).
(3) The maximal ideal m can be generated by dim(A) elements.
When the conditions hold we have that condition (1) holds for all families of
generators for m with dim(A) elements.

Proof. (1) = (2) when ¢ is an isomorphism the k-vector space kt1+kta+- - -+ Kty is
isomorphc to the k-vector space m/m?. It follows that dimg(m/m?) = m = dim(A).

(2) = (3) Let g1,92,...,9m with m = dim(A) be elements of m whose residue
classes in m/m? form an k-basis. Then it follows from Lemma (3.11) that we have
(91,92, 9m) = m.

(3) = (1) When g1, g2, . . ., gm are generators for m with m = dim(A) we have that
the homomorphism ¢ : K[t1,t2,...,tm] = Gm(A) of (3.17.1) defined by ¢1, g2, .- ., gm
is surjective. It follows from Lemma (3.18) that it is also injective.

The last part of the Theorem was proved in the above three steps.

(3.20) Definition. A local noetherian ring A that satisfies the three conditions of
Theorem (3.20) is called a regular local ring.

(3.21) Proposition. Let A be a local regular ring. Then A is an integral domain.

Proof. Let f,g be non zero elements in A. It follows from Corollary (1.16) that
N> m™ = 0. Consequently we can find natural numbers p, ¢ such that f € mP \
mPTl and ¢ € m? \ m?*tL. Tt follows from Theorem (3.19)(1) that G (A) is an
integral domain. Hence the product in Gy, (A) of the residue classes of f in m?P/mP+1,
respectively g in m?/m?"1! is not zero. That is, the residue class of fg in mP+4¢/mpTa+1
is not zero. Hence fg ¢ mPT9T1 and we have, in particular, that fg # 0.
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(3.22) Theorem. Let A be a local noetherian ring with maximal ideal m.

(1) If A is a regular local ring, then every family of generators f1, fa, ..., fm of
m with m = dim(A) is an A-regular sequence, and the ring A/(f1, fo, ..., fn)

is regular of dimension dim(A) —n for n =0,1,...,m.
(2) If m is generated by a regular A-sequence we have that A is a regular local
ring.

Proof. (1) We prove by induction on n that the ring A/(f1, fa,..., fn) is regular of
dimension dim(A) — n. This is trivial when n = 0. Assume that it holds for n — 1.
Since f1, fo, ..., fm is a family of generators for m with the least number of members
we have that the classes of f,, fnt1,---, fm in A/(f1, fo,..., fn_1) are generators
with the least number of elements for the maximal ideal of A/(f1, f2,..., fn). In
particular we have that f,, is not zero in A/(f1, fo, ..., fn—1)-

It follows from the induction hypothesis that A/(f1, f2,-.., fn_1) is regular of
dimension dim(A) — n + 1, and hence an integral domain by Proposition (3.22).
Then the residue class of f,, in A/(f1, fa,..., fn—1) is not a zero divisor, and it follows
from Corollary (3.15) that dim(A/(f1, f2, ..., fn)) = dim(A/(f1, f2, -y fno1)) —1 =
dim(A) — n. Since the maximal ideal of A/(f1, fa,..., fn) can be generated by the
residue classes of the dim(A) —n = m —n elements f, 11, fni2,.. ., fm it follows from
Theorem (3.20) that A/(f1, fo, ..., fn) is regular. Hence we have proved assertion
(1).

(2) Assume that g1, g2,...,9n is an A-regular sequence that generates m. It fol-
lows from Corollary (3.15) by induction on p that A/(g1,92,...,9p) is of dimension
dim(A) — p for p = 0,1,...,n. Consequently we have that dim(A) > n. It follows
from Theorem (3.12) that m can not be generated by fewer than dim(A) elements.
Hence n > dim(A) and we have that dim(A) = n. Since ¢1,92,...,9n is a set of
generators of m it follows from Theorem (3.19) that A is a regular local ring.

(3.23) Exercises.
1. Let K be a field and let K|[t1,t5] be the polynomial ring in the independent
variables t1, to with coefficients in the field K. Denote by u and v the residue classes
of t1, respectively to, in the residue ring A = K[t1,t2]/(t1 + t2)™.

(1) Determine the dimension of the local ring A, ).

(2) Find a minimal set of generators of an (u, v)A,,,)-primary ideal.
2. Let K be a field and let KJt1,t3] be the polynomial ring in the independent
variables t1, to with coefficients in the field K. Denote by u and v the residue classes
of t1, respectively to, in ther residue ring A = K[t1,t2]/(t2, t1t7").

(1) Determine the dimension of the local ring A, ..

(2) Find a minimal set of generators of an (u, v)A,,,)-primary ideal.
3. Let K be a field and let KJt1,t3] be the polynomial ring in the independent
variables t1, to with coefficients in the field K. Denote by u and v the residue classes
of t1, respectively ¢, in the residue ring A = K[t1,t2]/(t3,t53").

(1) Determine the dimension of the local ring A, ..
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(2) Find a minimal set of generators of an (u, v) Ay, ,)-primary ideal.

4. Let K be field and let K|[t1,to,...] be the ring of polynomials in the independent,
variables tq,to,... with coefficients in K. For each positive integer n write p, =
(t2n717t2n71+1, P ,tQTb_l), and let S — K[t]_, t27 .. .] \ U,'C;O:Opn

(1) Show that p,, is a prime ideal.

(2) Show that S is a multiplicatively closed set.

(3) Show that S~!A is noetherian. In order to prove this you can use that a ring
A is noetherian if every non-zero element is contained in a finite number of
maximal ideals only, and if A, is noetherian for all maximal ideals m of A.
To prove the latter statement you can proceed as follows:

(a) Let a be a non-zero ideal of A, and let my, my,..., m, be the maxi-
mal ideals containing a. Choose an element xzy of a. We denote by
my, Mo, ..., My, Myyq, ..., Mg be the maximal ideals containing xy. Show

that for i =r7+1,7+2,...s we have that m; is not contained in U’_;m;.
(b) With the notation as in part (a). Choose for i = r+ 1,7+ 2,...,s an

element x; in m; \ Ui_ym;. Show that ady, = (o, T1,. .., Ts)Am = An
for all maximal ideals of A that are not among the ideals mq, mg, ..., m,.
(c) Choose elements zsy1,Zsq2,. .., 2T whose images in Ay, generate aAp,

for i = 0,1,...,s. With the notation as in part (a) and (b), let b =
(zo,21,...,x¢). Show that b = a.
(d) Show that it follows from (a), (b) and (c) that A is noetherian.
(4) Determine the height of p,, S~ A.
(5) Determine the dimension of S~!A.

5. Let A be a ring and let p be a prime ideal. Moreover let k(p) = A, /pA,.

(1) Let g be a prime ideal in the polynomial ring A[t] in the variable ¢ over A
such that p = q N A. Show that qA,[t] is a prime ideal in A,[t].
(2) Show that the map that sends q to the image of qA,[t] by the residue map
Aplt] = (Ap/pAy)[t] = w(p)[t] gives a bijection between prime ideals q in A[t]
such that p = qN A, and prime ideals in k(p)[t].
(3) Show that if ¢ C g’ are prime ideals in A[t] such that p = qNA =q'NA, then
we have q = pA[t].
6. Let A be a ring and let A[t] be the ring of polynomials in the variable ¢ with
coeflicients in A.
(1) Show that for every ideal a in A we have that aA[t] N A = a.
(2) Show that for every prime ideal p in A we have that pA[t] is a prime ideal in
Alt].
(3) Show that dim(A) + 1 < dim(A[t]).
(4) Use Exercise (5) to show that

dim(A[t]) < 1+ 2 dim(A).
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7. Let A be a noetherian ring and let p be a prime ideal.

(1) Show that ht(pA[t]) > ht(p).

(2) Let m = ht(p). Show that there are elements f1, fo,. .., fi, in p such that the
ideal (f1, f2,. .., fm)Ap is pA,-primary.

(3) Show that p is minimal among the prime ideals in A that contain the ideal
@ = (f1, for-- s fn):

(4) Show that pA[t] is minimal among the prime ideals in A[t] that contain aA[t].

(5) Show that ht(pA[t]) < ht(p) = m.

(6) Let qo C q1 C --- C g, be prime ideals in A[t], and let p, = q; N A for
i=0,1,...,7. Show that ht(ps) > s.

(7) Assume that we have proper inclusions psy1 C psio C -+ C p,, and that
Ps = Pst1. Show that r —s — 14 ht(ps) < dim(A).

(8) Show that

dim(A[t]) = dim(A) + 1.

8. Let K be a field an let K[u, v] be the polynomial ring in the independent variables
u, v with coefficients in K. Let A be the localization of the ring K[u, v] in the maximal
ideal (u,v). Moreover let B be the localization of the subring K[u,v,v/u] of the ring
of fractions of Ku,v| in the multiplicatively closed set K[u,v]\ (u,v). Denote by m
the maximal ideal of A.

(1) Show that (u,v) = (u,v,v/u)BN A.

(2) Show that ht4(m) = 2.

(3) Show that htp((u,v,v/u)B) = 2.

(4) Show that dim(B/mB) = 1, and in particular that the strict inequality

htp((u,v,v/u)B) < ht 4(m4) + dim(B/mB)

holds.
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Flatness

1. Flatness.

(1.1) Setup. Given a ring A and an A-module M. For each prime ideal P of A
we write kK(P) = Ap/PAp. Let E be a free A—-module of rank r + 1 and eg, ..., e, a
basis of E. Denote by R = Sym 4(E) the symmetric algebra of E over A and write
P(F) = Proj(R) for the r—dimensional projective space over Spec A.

The particular quotient A[z]/(z2) we denote by Ale] where ¢ is the class of the
variable x over A. Moreover we let M[e] = Ale] ®4 M.

(1.2) Definition. Given an A-module M. The module M is flat over A if every

short exact sequence
0—-N —-N-—-N'"—=0

gives rise to a short exact sequence
0—-MUN - MxsN—MxsN"—0.

(1.3) Definition. Given a morphism f: X — S of schemes and an Ox-module
F. We say that F is flat over S if, for every point x of X, we have that F, is a
flat Og, ¢()~module, where the module structure comes from the map f ~10g, flz) =
Ox 2, or equivalently from the composite map Og ¢z) — (f+Ox) @) — Ox,z. The
morphism f s flat if Ox is flat over S.

When f is the identity we say that F is a flat Og—module.

(1.4) Remark. Flatness has the following fundamental properties:

(1) (Long exact sequences) We can break long exact sequences into short exact
sequences. Hence M is flat over A if and only if every exact sequence

.._)N/_)N_)N”_)...
of A—modules gives rise to an exact sequence
o MIAN - NRAN —->Mqg N — ..

(2) (Left exactness) Since the tensor product is right exact ([?], (2.18)) we have
that M is flat over A if every injective map N’ — N of A-modules gives rise
to an injective map M ®4 N’ — M ®4 N".
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(3)

Flatness

(Localization) Let S be a multiplicatively closed subset of A. It follows from
the definition of localization that the localization S~'A of A in S, that S™1A
is a flat A—module.

(Base change) Given a flat A—-module N, and let B be an A-algebra. Then
B ®4 N is a flat B-module. Indeed, for every B—module P we have an
isomorphism P ®p (B®4 N) = P®y N.

(Direct sums) For every set (N;);cr of A—modules and every A—module P we
have an isomorphism P ®4 (®;crN;) = @icr(P @4 N;). Hence @;crN; is
exact if and only if it is exact in every factor N;. We conclude that @&;c;N;
is flat over A if and only if each summand N; is flat over A. It follows in
particular that every free A—module is flat. Moreover, projective A-modules
are flat because they are direct summands of free modules.

(1.5) Lemma. Given an exact sequence

O—M—-N-—=F—0

of A—-modules, where F' is flat. Then the sequence

0—>PRAM—->PRAN—->PR,F—0

is exact for all A—-modules P.

Proof. Write P as a quotient of a free A—module L,

0—K—L—=P—0.

We obtain a commutative diagram

0

l

KoaM —— KA N —— KQq F

l |

0 —— L®aM —— LR®AN —— LQuF

|

P®AM R — P®AN

0

where the upper right vertical map is injective because F' is flat, and the middle left
horizontal map is injective because L is free. A diagram chase gives that P®4 M —
P ® 4 N is injective.
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(1.6) Proposition. Given an exact sequence
0—-F —-F—F'—0
of A—modules with F" flat. Then F is flat if and only if F’ is flat.

Proof. Given an injective map M’ — M. We obtain a commutative diagram

0

J

0 —— M @uF —— M'QQuF —— M @4 F'" —— 0.

| l l

0 —— MR F —— MR F —— M@uF' — 0

The rows are exact to the left by Lemma (1.5), and we have injectivity of the top
vertical map since F" is flat. The Proposition follows from a diagram chase.

(1.7) Lemma. Given an A—module M such that the map
IT@s M —IM

is an isomorphism for all ideals I in A. For every free A—module F' and every injective
map K — F of A-modules we have that

KugM—>F®s M
is injective.
Proof. Since every element in K ® 4 M is mapped into F’ ® 4 M where F' is a finitely
generated free submodule of F' we can assume that F' is finitely generated.
When the rank of F'is 1 the Lemma follows from the assumption. We prove the
Lemma by induction on the rank r of F'. We have an exact sequence 0 — F} — F —

A — 0, where F} is a free rank r — 1 module. Let K1 = K N F} and let K5 be the
image of K in A. We obtain a diagram

0 0

J J

KioaM —— KQq M —— Ky®@®a M —— 0.

l | l

0 —— 1AM —— FOAM —— AQu M

where the right and left top vertical maps are injective by the induction assumption
and it follows from Lemma (1.5) that the lower left map is injective because A is
free. A diagram chase proves that the middle vertical map is injective.
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(1.8) Proposition. An A-module M is flat if and only if the map
I XA M — IM

is an isomorphism for all finitely generated ideals I of A.

Proof. If M is flat the tensor product I ® 4 M — M of the map I — A is injective
so I ®a4 M — IM is an isomorphism.

Conversely, we can assume that I ® 4 M — I M is an isomorphism for all ideals
of A. Indeed, every element of I ® 4 M is contained in J ® 4 M, where J is a finitely
generated ideal, and if J ® 4 M — M is injective and the element is not zero then it
is not mapped to zero by I ® 4 M — M.

Let N’ — N be an injective map and write N as a quotient 0 - K — F — N — 0
of a free A—module F'. Let F’ be the inverse image of N’ in F'. Then we have an
exact sequence 0 — K — F' — N’ — 0, and we obtain a commutative diagram

0

l

KoaM —— FFaM —— N @M —— 0.

J | J

K@AM—> F®AM R — N®AM

It follows from Lemma (1.7) that the top vertical map is injective. A diagram chase
shows that the right vertical map is injective. Consequently M is flat over A.

(1.9) Remark. It follows from Proposition (1.8) that a module over a principal
ideal domain is flat if and only if it does not have torsion.

(1.10) Lemma. Given a map ¢: A — B of rings and let N be a B-module. Then
N is flat over A if and only if N¢ is flat over Ap for all prime ideals P in A and Q)
in B such that ¢o=1(Q) = P.

Proof. Assume that N is flat over A. Since Bg is flat over B the functor that
sends an Ap-module F' to Bg @p (N ®4 F') is exact. However Bg ®p (N ®4 F) =
N ®a F = Ng ®a, F. Consequently the functor that sends the Ap-module F' to
the Ap—module Ng ®4, F'is exact, that is, the Ap—module N is flat.

Conversely, assume that Ng is a flat Ap module for all prime ideals ) in B
with P = ¢71(Q). The functor that sends an A-module F' to the Ap—module Fp
is exact by Note (1.4(3)). Consequently the functor that sends the A-module F
to the Bg-module Ng ®4, Fp is exact. However, we have that Ng ®4, Fp =
Ng @4, (Ap ®4 F) = Ng ®4 F. Hence the functor that sends an A-module F' to
Ng ®4 F is exact. However, the functor that sends an A-module F' to the B-module
N ®4 F is exact if and only if the functor that sends the A-module F' to the Bg—
module Ng ® 4 F' is exact for all prime ideal @) of B. We thus have that N is a flat
A-module.
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(1.11) Note. Given a morphism f: X — S of schemes and a quasi—coherent O x—
module F. It follows from Lemma (1.10) that F is flat over Spec A if and only if
F(U) is a flat A—module for all open affine subsets U of X.

In particular, if F is flat over Spec A, and Uy, ..., U, is an open affine covering of
X, the module F(U;, N---NUj;,) is flat over A for all 0 <ig < --- <1, <7, and Fy
is a complex of flat A—modules.

(1.12) Lemma. Given a regular ([A], (Theorem 11.22)) one dimensional ring A and
a homomorphism p: A — B into a noetherian ring B. Then B is flat over A if and
only if p=1(Q) = 0 for all associated prime ideals Q in B.

In particular, when B is reduced, we have that B is flat over A if and only if
0 1(Q) = 0 for all minimal primes Q of B.

Proof. Assume that B is flat over A and let Q be a prime ideal in B. If P = o= }(Q)
is maximal we have that Ap is a discrete valutation ring ([A] (Proposition 9.2 and
Lemma 11.23)). Let t € PAp be a generator for the maximal ideal. Since t is not a
zero divisor in Ap and B is a flat Ap—module it follows that ¢ is not a zero divisor
in Bg. Consequently @ is not an associated prime in B.

Conversely, assume that ¢ ~1(Q) is zero for all associated primes Q of B. It follows
from Lemma (1.10) that we must prove that Bg is flat over A,-1(g) for all prime
ideals R in B. If ¢7!(R) = 0 we have that A,-1(p) is a field and consequently
that Bg is flat. On the other hand, if P = ¢~1(R) is a maximal ideal we choose
at € ¢ 1(R) that generates the ideal PAp. Since Ap is a principal ideal domain
it follows from Remark (1.9) that it suffices to show that Bp is a torsion free Ap—
module. Since all elements of Ap can be written as a power of ¢ times a unit, this
means that it suffices to prove that t is not a zero divisor in Br. However, if ¢ were
a zero divisor in By it would be contained in an associated prime ideal @) of B since
B is noetherian. This is impossible because t # 0 and, by assumption, p~!(Q) = 0.
Hence t is not zero divisor and we have proved the first part of the Proposition.

The last part of the Proposition follows since in a reduced ring the associated
primes are the minimal primes. Indeed, on the one hand every prime ideal contains an
associated prime so that the minimal primes are associated. Conversely, let () be an
associated prime and Q1, ..., Q, be the minimal primes. Choose a non zero element
a such that a@ = 0. We have that Q C Q1 U---UQ, because if b€ Q\ Q1 U---UQ,
then ab =0 and thus a € @1 N---NQ, = 0, contrary to the assumption that a is not
zero. Hence Q C Q1 U---UQ,, and thus Q C Q; for some i ([A] (Proposition 1.11)).
Hence @Q C @Q; and @ is minimal.

(1.13) Proposition. Assume that A is a regular ring of dimension one. Given a
morphism f: X — Spec A from a noetherian scheme X. Then f is flat if and only if
the associated points of X are mapped to the generic point of Spec A.

In particular, if X is reduced we have that f is flat if and only if the components
of X all dominate Spec A.

Proof. The Proposition is an immediate consequence of Lemma (1.12).
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(1.14) Lemma. Assume that A is noetherian and that M is a finitely generated
A-module. Then M is flat if and only if Mp is a free Ap—module for all prime ideals
P of A.

Proof. 1t follows from Lemma (1.12) that M is flat over A if and only if Mp is flat
over Ap for all primes P of A. Since Mp is flat over Ap if Mp is free over Ap it
follows that when Mp is a free Ap—module for all prime ideals P of A, we have that
M is a flat A—module.

Coversely, assume that M is a flat A—-module. Given a prime ideal P of A. The Mp
is a flat Ap—module. Since M is finitely generated it follows from Nakayama’s Lemma
that we can choose a surjection A% — Mp such that (k(P))" — k(P) ®a, Mp is
an isomorphism of k(P)—vectorspaces. Denote by L the kernel of A% — Mp. Since
A is noetherian we have that L a is finitely generated A-module. However, since M
is flat, we have that x(P) ®4, L = 0. It follows by Nakayamas Lemma that L = 0.
Consequently we have that the map A% — Mp is an isomorphism, and that Mp is
a free Ap—module.

(1.15) Lemma. With the notation of Definition (1.9), assume that the A—-modules
FO Fl ... of the complex F are flat and that H'(F) is a flat A-module for i > p.
Then the A-modules B*(F) and Z*~'(F) are flat for i > p.

Proof. We prove the Lemma by descending induction on p. The Lemma holds for
p > r since Z" = F". Assume that the Lemma holds for p + 1. By the induction
assumption we have that BP*! and ZP are flat. From the sequence (1.9.2) with i = p
and Proposition (1.6) it follows that BP? is flat. Then, from the sequence (1.9.1) with
i = p — 1 and Proposition (1.6) it follows that ZP~! is flat.

(1.16) Theorem. Given a noetherian scheme S and a morphism f: X — S which
is separated of finite type. Let F be a coherent O x—module. Then:

(1) Assume that F is flat over S and that R'f.F = 0 for i > 0. Then f.F is a
flat Og—module.
In particular, if f.JF is coherent, we have that f.F is locally free.
(2) Assume that S = Spec A and that X is a closed subscheme of P(E). If there
is an mq such that f.F(m) is locally free for m > mg, we have that F is flat
over Spec A.
Proof. Both assertions are local on S. Hence we can assume that S = Spec A in

—~——

both cases. Then it follows from the equality (1.7.4) that f.F = H°(X,F). Hence
f«F is a flat Og—module if and only if H°(X, F) is flat over A. The last part of (1)
consequently follows from the first part of Lemma (1.14).

If F is flat over Spec A it follows from Note (1.11) that F(U;, N---NU;,)) is flat
over A, and thus that the complex F;; consists of flat modules. From the assumption
of the Theorem we have that H'(F) = HY(X,F) = 0 for i > 0. It follows from
Lemma (1.15) with p = 1 that Z°(F) = H°(X,F) is flat, and we have proved the
first assertion.



FLATNESS 1 201

By Assumption we have that H°(X, F(m)) = f.F(m)(Spec A) is flat for m > my.
Let N = @y5m, H?(X, F(m)). Then it follows from Setup (2.1) that N is an R/I-

module such that 7 = N, where I C R is an ideal defining X in P(E). We have, with

the notation of Setup (2.1) that F(U;) = N(U;) = ]V(y\:), where y; is the class of e; in
R/I. Tt therefore suffices to prove that N(,,) is flat over A. However, the module N is
a direct sum of flat A—modules, and thus flat over A. Hence the functor which sends
an A-module L to the A—module N ®4 L is exact. We consider N ® 4 L as an R/I—
module, via the action of R/I on N. Since (R/I),, is flat over R/I for all i we have
that the functor that sends an A-module L to the A-module (R/I),, ®r/ry N ®a L
is exact. Hence (R/I),, ®r/ry N = Ny, is a flat A-module. The same is therefore
true for the direct summand N,y of degree zero.

(1.17) Lemma. Given a noetherian integral domain A and an A-algebra B of finite
type. Moreover, given a finitely generated B—module N. Then there is a non—zero
element f € A such that Ny is free over Ay.

Proof. Write B = Aluy, ..., up]. We shall prove the Lemma by induction on h. When
h = 0 we have that A = B. It follows from Lemma (2.6) in the non graded case that
we can choose a filtration N = N, D N,_1 D --- D Ng = 0 by A-modules such that
N;/N;—1 = A/P;, where P; is a prime ideal in A. Since A is an integral domain we
have that the intersection of the non zero primes P; is not zero. Choose a non zero
f € A in this intersection if there is one non zero prime P; and let f = 1 otherwise.
Then (N;/N;_1)y is zero if P; is a non zero prime and isomorphic to Ay when P; = 0.
Consequently we have that Ny is a free Af—module.

Assume that h > 0 and that the Lemma holds for A~ — 1. Choose generators
ni,...,ns for the B-module N and write B’ = Aluy,...,up—1]. Then B = B'[uy].
Moreover, let N’ = B'ny + ---B'ng. We have that N’ is a finitely generated B’'—
module such that BN’ = N. It follows from the induction assumption used to the
A-algebra B’ and the B’-module N’ that we can find an element f’ € A such that
N J’[, is a free Ap—module. It therefore remains to prove that we can find an element
J"" € A such that (N/N’); is a free Ags—module. To this end we write

N/ =N 4+u,N' +---4u. N’
and .
Pi={ne N:u"'n e N/}.

Clearly N/ is a B’-submodule of N and P; a B’-submodule of N’. We obtain a
filtration
N!/N'C Ny/N' C-..C N/N'

of N/N’ by B’~modules N;/N’ such that U; N/ /N’ = N/N’. The B’-linear homomor-

phism N’ — N/, which sends n to u}'n defines an isomorphism N'/P; — N/, /N/
for all 7. Since B’ is noetherian, the sequence Py C P; C --- C N’ must sta-

bilize. That is, among the quotients N; _,/N; there appears only a finite number
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of B’~modules. It follows from the induction assumption that we can find an ele-
ment f” € A such that all the modules (N, /N;)s are free Ays—modules. Hence
(N/N')¢n is a free Apr—module, as we wanted to prove.

(1.18) Proposition. (Generic flatness) Given a morphism f: X — S of finite
type to a noetherian integral scheme S, and let F be a coherent O x—module. Then
there is an open dense subset U of S such that Fy is flat over U.

Proof. We clearly can assume that S is affine. Since f is of finite type we can cover
X with a finite number of open affine subschemes X;. It follows from Lemma (1.17)
that, for each i, there is an open dense affine subset U; of S such that (F|X;)y, is
flat over U;. We can take U to be the intersection of the sets U;.

(1.19) Proposition. Given a morphism f: X — S finite type to a noetherian
scheme S and let F be a coherent Ox-module. Then S is a finite set theoretic
union of locally closed reduced and disjoint subschemes S; such that Fg, is flat over

Si.

Proof. Assume that the Proposition does not hold. Since S is noetherian there is a
closed subscheme T of X which is minimal among the closed subschemes for which
the Proposition does not hold. Let T” be an irreducible component of 7" with the
reduced scheme structure and let V' be an open subset of 7" that does not intersect
the other components of T. Then V'’ is also open in T'. It follows from Proposition
(1.18) that there is an open non—empty subset V' of V' such that Fy is flat over
V. By the induction assumption the complement of V' in T has a stratification, and
together with V' this gives a stratification of 7. This contradicts the assumption that
T has no stratification and we have proved the Proposition.

(1.20) Proposition. Assume that A is a regular ring of dimension one. Let x be
a closed point in Spec A and Y a closed subscheme of p~1(Spec A \ x) which is flat
over Spec A \ x and Y the scheme theoretic closure of Y in P(E) Then Y is the
unique closed subscheme of P(FE) which is flat over Spec A and whose restriction to
p~1(Spec A\ ) is equal to Y.

Proof. Let P be the prime ideal in A corresponding to the point x of Spec A. It
clearly suffices to prove the Proposition for an open affine subset Spec C' of P(E).
Let ¢: A — C be the homomorphism induced by the projection of P(FE).

We have that Spec A \ x = Spec A; where ¢ in P is the generator of PAp. We
have that Spec C N f~1(Spec A \ z) = Spec Coty- Let Cyuyy — B define the closed
subscheme Y N Spec Cy ;) of Spec Cy, ;). The closure of Y N Spec Cy ;) in SpecC' is
defined by the kernel I of the composite map C' — Cy;) — B.

Since A is a principal ideal domain and B is flat, we have that B has no torsion.
Hence the submodule C/I of B has no torsion, and thus C/I is flat over A. We have
proved that the scheme theoretic closure Y of Y is flat over Spec A.

To prove that Y is unique with the given properties we let J be an ideal in C' that
defines a closed subset which is flat over Spec A and whose restriction to Spec Cy )
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is Y. That is, the ring C/J is flat over A and has the same image in C,(;) as I. Then
J C I. It remains to show that I C J. Let ¢ € I. Since I and J have the same image
in Cy ;) we have that t"c € J for some n. Since C/.J is flat over A we have that C/.J
has no A—torsion. Hence ¢ € J and we have that [ = J.

(1.21) Lemma. Given a ring B and a B-module N. Let F' be a B—submodule of
N.Denote by 1: N — N/F the canonical quotient map. Given a homomorphism

p:F'— N/F
of B—modules.
We define
F,={f+ene€ Nle|: f € F and o(f) = —¢(n)}.
Then:

(1) We have that F, is a Ble]-submodule of N[e| whose image in N by the
canonical map y: N[e] — N is F, and N[e|/F, is a flat Ble]-module.

(2) The correspondence which sends ¢ to F,, defines a bijection between the set
Hompg(F, N/F) and the Ble|-submodules F. of N[e|] whose image by vy is F,
and that are such that N[e]/F; is flat over Ble].

Proof. 1t is clear that F, is a Ble]-submodule of N[e| and that the image by ~ is
F. To check that N[e]/F, is flat over Ble] it follows from Proposition (1.8) that it
suffices to check that the map

(¢) ®pie Nlel/F, — N[l /F, (1.21.1)

is injective. Denote by 8: N[e] — Ne]/F, the quotient map. Let f + en € N[e] be
such that e ® B(f + en) is in the kernel of the map (1.21.1). Then ef € F,, and thus
0 =1(f)so f € F. Choose n’ € N such that ¢(f) = —¢(n’). Then f +en’ € F,
and e @ B(f +en) =e R P(f) =e® B(f +en’) = 0. Hence we have proved that the
map (1.21.1) is injective.

Conversely, let F. € N[e] be a Ble]-submodule such that v(F.) = F' and such that
Ne]/F; is flat over Ble|. It follows from Lemma (1.5) that the sequence

0 — B®p) F: = B Nlg] = N — B®p Ne]/F: — 0 (1.21.2)

is exact. The image of the map B ®p F. — N is F, since we have assumed that
~v(F.) = F. Consequently, the middle right map of (1.21.2) induces an isomorphism

p: N/F — B X Ble] N[E]/FE.
We tensor the exact sequence

0— B> Ble] - B—0
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with Ne]/F. over Ble] and obtain an exact sequence

0 — N/F % B®p N[el/F. > N[E]/F. = Ble] ®p( N[el/F-

" N/F % B@p NIel/F. — 0.

Denote by fe: N[e] — N[e]/F. the canonical quotient map and consider N as a
submodule of N[e]. Then n(5:|N) = and 0y = (5| N).

For f € F we have that n8.(f) = ¥(f) = 0. Consequently there is a unique
element ¢ (n) of N/F such that d¢(n) = 5.(f). We then write ¢(f) = 1(n). In this
way we define a B—module homomorphism

p: F'— N/F.

It remains to show that F, = F.

Take f +en € F. C Nle]. Then f € F because y(F.) = F. We have that
0= ﬂs(f + En) = ﬁa(f) + 558(”)' Consequently ﬁa(f) = _Eﬂs(n) = —(S’QZJ(TL), and
thus ¢(f) = —(n), by the definition of ¢. Hence f +en € F,.

Conversely, let f +en € F,. Then again f € F and ¢(f) = —(n), that is

B:(f) = —0v(n). We obtain that G.(f +en) = B.(f) +ef:(n) = =dp(n) +d1p(n) =0
so that f +en € F.. We have thus proved that F, = F_.

(1.10) Exercises.
1.
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2. Flatness of finitely generated modules.

(2.1) Definition. Let A be a ring. For each prime ideal P in A we write x(P) =
A P / PA P.

The following result is one way of formulating the criterion for flatness by equations
(see e.g. [M], Theorem 7.6, p. 49). We shall use this result instead of Lazard’s
Theorem ([Lal], Theorem 1.2, p. 84) asserting that every flat module is the filtering
limit of finitely generated free modules. As was observed by Lazard the results are
indeed equivalent.

(2.2) Lemma. Let A be a ring and M an A-module. The following assertions are
equivalent:

(1) The module M is flat over A.
(2) For any finitely presented module N, that is there is an exact sequence A™ —
A" — N — 0 of A-modules, the map

HOInA(N,A) ®AM—>HOH1A(N,M) (1.2.1)

that sends u ® x to the A-linear map sending y to u(y)z is bijective.

(3) Any A-linear map N — M from a finitely presented A-module N factors
through a finitely generated free A-module.

(4) For every A-module homomorphism u: F — M from a finitely generated free
A-module F', and for every element e in the kernel of u, there is a factorization
u =vf of u via an A-module homomorphism f: F — G into a finitely gener-
ated free A-module G such that f(e) = 0, and an A-module homomorphism
v:G— M.

Proof. For any A-module M the functors Hom 4 (N, A) ® 4 M and Hom 4 (N, M) are
additive and contravariant in N. Since the map (1.2.1) is bijective for N = A it
follows that it is bijective for N = A™.

Assume that M is flat over A. Then the two functors are left exact. It follows that
the map (1.2.1) is an isomorphism for every finitely presented A-module N. Hence
the first assertion implies the second.

Assume that the second assertion holds. Let u: N — M be an A-linear map from
a finitely presented A-module N. Then w is the image by (1.2.1) of an element
S u; @ x; of Homa(N, A) ®4 M. Hence u is the composite of the map N —
A" sending y to (u1(y),...,un(y)), and the map A™ — M sending (ay,...,a,) to
2?21 a;x;. Hence the third assertion follows from the second.

The fourth assertion follows from the third since F'/Ae is finitely presented.

Finally we prove that the last assertion implies the first. We shall show that M is
flat over A by showing that the map I ® 4 M — M is injective for all ideals I of A.
Assume that there is an element x = 2111 a;Qx; witha; € Tandx; e MinI®a M
that maps to zero in M. Let u: ' — M be the A-linear homomorphism from the free
A-module F with basis fi,..., fn, defined by u(f;) = z;, and let y = > 1" a; ® fi.
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Then u(y) = x, and the image e of y by the map i: I ® 4 F — F maps to zero by u.
Hence the last assertion of the Lemma implies that u: FF — M factors via A-module
homomorphisms f: F' — G and v: G — M, where G is a free A-module of finite rank,
and where f(e) = 0. The map j: I ® 4 G — G is injective since G is flat over A. We
have that 0 = f(e) = fi(y) = j(id; ®f)(y) and consequently that (id; ®f)(y) = 0.
Hence we have that x = (id; ®u)(y) = (id; ®v)(id; ®f)(y) = 0.

The following two results are well known (see e.g. Matsumura [M], Theorem 7.10,
p. 51). We include proofs to show how Lemma (1.2) can be used in this situation
instead of the criterion for flatness by equations.

(2.3) Lemma. Let A be a local ring with maximal ideal P and M a flat A-module.
Moreover, let F' be a free A-module and u: F — M an A-linear map. If the residue
map u(P): F/PF — M/PM is injective, then the map u is injective.

Proof. Let e in F' be such that u(e) = 0. We first prove the Lemma when F is
of finite rank. Since M is a flat A-module it follows from Proposition (1.2) that

we have a factorization F £ G % M of u into A-linear maps, where G is a free
A-module of finite rank, and where we have that f(e) = 0. Then u(P) factors via

K(P)®aF EICN K(P)®aG LC#N K(P)®4 M. Since u(P) is injective by assumption,

it follows that f(P) is injective. Our claim follows if we show that F’ L Gis injective.

We fix a basis for F' and G and let the map f be represented by a matrix. Let n be
the rank of F. Since the induced map f(P) is injective, there exist a (n X n)-minor
N (P) of the matrix f(P) which is invertible. It follows that the determinant of the
corresponding square matrix N of f is invertible since det(N) ® 4 K(P) = det(N(P)).
Then there exist a matrix N’ such that N'N is the identity matrix, and we may
construct a map f’: G — F such that f’f is the identity map. Hence f is injective.

Assume that F' has infinite rank. Then the element e is contained in a free A-
submodule F’ of F of finite rank, which is a direct summand of F. Let i: F/ — F
be the inclusion. Then ¢(P) is injective and thus u(P)i(P) = wi(P) is injective. It
follows from the first part of the proof that the map ui: F — M is injective. Hence
ui(e) = u(e) = 0 implies that e = 0 and we have proved the Lemma.

(2.4) Proposition. Let M be a finitely generated flat A-module. Then Mp is a
free Ap-module for all prime ideals P of A.

Proof. Let P be a prime ideal of A. Then Mp is a flat Ap-module. Since M is
finitely generated it follows from Nakayama’s Lemma that we can choose a surjection
u: A} — Mp such that the residue map u(P): K(P)" — k(P) ®, Mp is an isomor-
phism of x(P)-vector spaces. If follows from Lemma (1.3) that A%, — Mp is injective

and hence an isomorphism. Thus Mp is a free Ap-module for all prime ideals P in
A.

(2.5) Proposition. Let M be a finitely generated flat A-module. If there is an
integer d such that
d= dim,{(p)(/ﬁ(P) ®A M) (1.5.1)
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for all prime ideals P of A we have that M is locally free.

Proof. Let P be a prime ideal of A. Let mq,...,m, be a generator set for the A-
module M, and let F' be a free A-module with basis f1,..., fg. Since M is flat it
follows from the Proposition that Mg is a free Ag-module for all prime ideals @ of

A. It follows from (1.5.1) that Mg is of rank d. In particular there is an isomorphism
d

uw:Fp — Mp of Ap modules. Choose elements ¢g; = > ._; a;;f; in Fp such that
u(g;) = 5% for j=1,...,n. Let t be a common denominator of the elements u(f;),
and of the coefficients a;; fori =1,...,dand j = 1,...,n. Then there is a surjective

map v: Fy — M; of A;-modules such that the localization of v at P is equal to u.
Denote by K the kernel of v. For each prime () of A we obtain an exact sequence
0 — Kg — Fg — Mg — 0 of Ag-modules. Since Fg is free of rank d it follows that
Kg = 0 for all primes @ of A;. Consequently we have that K = 0. We thus have
that M; is a free A;-module.

(2.5) Remark. When A is noetherian and M is a finitely generated A-module we
have that if Mp is a free Ap-module, then there is an element ¢ in A not in P such
that M, is a free A;-module. Indeed, in the proof of Corollary (1.5) we constructed
a surjective map v: Fy — M, from a free A;-module of rank equal to the rank of
Mp, whose localization at P is an isomorphism. Hence the localization Kp of the
kernel K of v at P is zero. Since A is noetherian by assumption, we have that K is
finitely generated and thus we can find an element s in A not contained in P such
that Ky = 0. It follows that v,: Fy; — Mg is an isomorphism of Ag-modules. In
particular it follows from Proposition (1.4) that if M is flat, then M is locally free.

With the following example we will show that when A is not noetherian we can
have a finitely generated flat A-module M such that Mp is free for all prime ideals P
of A, but where M is not locally free. In particular it follows that condition (1.5.1)
is necessary in Corollary (1.5).

(2.) Example. 6Let B = k[y1,y2,...] be the polynomial ring in the variables
Y1,Y2, ... over the field k, and let A be the residue ring of B by the ideal generated
by the polynomials y;(y; — 1) for i = 1,2,.... Denote by x; the class of y; in A. Let
P be a prime ideal of A. Then, for each i, the ideal P contains either x; or x; — 1. It
follows that the prime ideals of A are the ideals (z; — 61,22 — d2,...), for all choices
of 01,09, ..., where J;, here and below, will take the values 0 and 1. We obtain in
particular that A/P = k(P) = k.

We note that the ring A is reduced. Indeed, if a polynomial f(y1,...,y,) in B
maps to a nilpotent element in A we must have that f(d1,...,d,) = 0 for all choices
of §1,...,0,. It is easy to show, by induction on n, that this implies that f(y1,...,¥yn)
is in the ideal generated by the elements y1(y1 — 1), ..., Yn(yn — 1). Hence the class
of f(y1,...,yn) in A is zero.

Let P = (x1 — 1,22 — 02,...). Then P is a prime ideal of A. For each i we have
that (z; — 6;)(z; +6; — 1) = 0, and clearly z; +§; — 1 ¢ P. Consequently we have
that the class of x; — §; is zero in Ap. Hence we have that Ap = k(P) = k for all
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prime ideals P in A. In particular any module M over A is flat.

Fix a prime P of A. We have that the A-module M = k(P) is generated by one
element. Moreover we have that Mp = Ap ®4 M = k(P) ®4 M = k(P), and that
Mg =Ag ®a M = k(Q) ®a M = 0 for all prime ideals ) of A different from P.

In Spec A every non-empty open set contains infinitely many points. Indeed, let A
be the ring of a non-empty principal open set in Spec A, where f is the residue class of
the polynomial f(y1,...,y,) in A. Then f(é1,...,0,) # 0 for some 61, ...,d,. Then,
for all choices of §,,41,0n42,..., the prime (x1 —d1,...,%p — On, Tpt1 — Opt1, ... ) IS
in Spec A¢. Since M = x(P) has fiber k at one point and fiber zero at the remaining
points, it follows that M = k(P) can not be locally free.

The condition that M is finitely generated is necessary in Corollary (1.5), even
when A is noetherian, as shown by the following example communicated to us by C.
Walter.

(2.7) Example. Let A = Z be the ring of integers and let M be the Z-submodule
M = {z € Q:v,(x) > —1 for all primes p € Z}

of the rational numbers Q, where v,(z) =d if x = %pd with m and n prime to p. If
P is a maximal ideal of Z corresponding to a prime integer p, we have that Mp =
%Z p. In particular the Z-module M is a flat. Furthermore we have an isomorphism
Q — M ®z Q = M. Hence we have that dim,py(k(P) ®z M) = 1 for all prime
ideals P in the ring Z. However we obviously have that M, = {-%:x € M, m € Z}
is not finitely generated Z,-module for any non-zero integer n. In particular M is
not locally free.

(2.) Example. 8 We shall give another, perhaps more typical, example of a ring
A, together with a flat A-module M, such that Mp is a free Ap-module of rank 1 for
each prime P of A, but such that M is neither a finite, nor a locally free A-module.

Denote by A the product [];.n K of a field K = K; for i € N. Let I be the ideal
in A consisting of elements a = (a;);en with finite support Supp(a) = {i:a; # 0}.
That is, the ideal I is the direct sum @;cnK; of the field K = K; for ¢ € N. Let
M=IaA/I

We first show that the ring A is absolutely flat, that is all A-modules M are flat.
Note that there are no inclusions of prime ideals in A. Indeed, let P be a prime ideal
and let a be an element in A not in P. If a is not a unit in A we let b be an element
in A having support on the complement of Supp(a). Then ab = 0, and consequently
we have b in P. The element a + b is congruent to @ modulo P. We have that a + b
is a unit in A since Supp(a + b) = N, hence a is a unit in A/P. Thus A/P is a field
and all prime ideals are maximal, and minimal.

The ring A is reduced and consequently any fraction ring of A is reduced. In
particular the stalks Ap are reduced for all prime ideals P in A. In our ring A all
prime ideals P are minimal, thus we get that Ap = k(P). Consequently any module
M is flat over A.
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Hence, when we localize the exact sequence
0—-1—-A—A/I -0 (1.8.1)

in a prime ideal P of A we see that we either have that Ip is a free A p-module of rank
1 and (A/I)p = 0, or we have that Ip =0 and (A/I)p is a free Ap-module of rank
1. In both cases we have that Mp = Ap ®4 M = k(P) ®4 M is a free x(P)-module
of rank 1.

We have that [ is not a finitely generated A-module, since the elements of [
otherwise would have support on a finite subset of N. However I is a quotient of M,
so M is not a finitely generated A-module either.

We can tell exactly for which prime ideals P we have that Ip = 0. Indeed, it
is easily seen that there is an inclusion preserving bijection between ideals in A and
filters of N. This correspondence associates to an ideal I of A the ultrafilter consisting
of the complement in N of the support Supp(a) = {i € N:a; # 0} of the elements
a = (a;)ijen of I. Under this correspondance the prime ideals of A correspond to
the ultra filters of N. The trivial ultra filters, that is the ultra filters consisting of
the sets containing a fixed integer, correspond to the maximal ideals consisting of
elements with one fixed coordinate equal to zero.

We have that Ip = 0 exactly when P corresponds to a non-trivial ultra filter.
Indeed, let a = (a;);en be an element of I. Then ab = 0 for all elements b in A whose
support is in the complement of the support of a. Such an element b has cofinite
support, that is, the complement of the support is finite. However, it is easily seen
that an ultra filter is non-trivial if and only if it contains the filter of all cofinite sets.

We have that if P is a prime ideal corresponding to a trivial ultra filter, then
there exist a f not in P such that M; = Iy = A;. The module M is however not
locally free, that is there exist prime ideals P in A such that M is not free for any
f not in P. Indeed if there for each prime ideal P exists fp not in P such that
My, is free, then there exist prime ideals Py, ..., P, such that Y ;" a;fp, = 1, with
ai,...,a, in A. We have that Mp = Ap for all prime ideals P in A. It follows
that My, is a finitely generated A,-module. Let z1,...,z, be elements in M such
that the classes of x1,...,x, generate My, as an Ay, -module for ¢ = 1,... ,m.
Then z4,...,x, generate M as an A-module. In particular we would have that M
is finitely generated, which we have seen is not the case. Thus M is not locally free.

(2.10) Exercises.
1.
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Indeks

1. Indeks.

cartesian product, 1
partially ordered set, 1
upper filtrating, 1
upper directed, 1
chain, 1

finite support, 2
composition, 3
isomorphism, 3
covariant functor, 3
contravariant, 3
product, 3

coproduct, 3
topological space, 5
open, 5

closed, 5
neighbourhood, 5
open covering, 5
trivial topology, 5
discrete topology, 5
induced, 5

basis for the neighbourhoods of, 5
basis for the topology, 5
closure, 5

continous, 5
isomorphism, 5
inverse, 5

metric, 6

irreducible, 9
irreducible components, 9
generic point, 9
compact, 9
Kolmogorov space, 10
Hausdorff space, 10
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abelian group, 11

inverse, 11

subgroup, 11

subgroup, 11

homomorphism, 11

isomorphism, 11

kernel, 11

residue class group, 11

pointwise addition, 12

finite support, 12

direct sum, 12

pointswise, 12

commutative ring with unity, 13
ring, 13

identity, 13

pointwise, 13

formal expressions, 13

degree, 13

polynomial ring in the variable, 13
ring of polynomials in, 13

with coefficients in, 13

pointwise addition, 13

convolution product, 13
convolution product in several variables, 14
polynomial ring in the independent variables, 14
ring of polynomials in the independent variables, 14
ring homomorphism, 14
isomorphism, 14

zero divisor, 14

integral domain, 14

nilpotent, 14

unit, 14

invertible element, 14

inverse, 14

field, 14

local ring, 14

algebra homomorphism, 14
polynomial maps, 15

ideal, 17

finite, 17

ideal generated by the elements, 17
principal ideals, 17



INDEKS 1 213

finite, 17

product, 17

prime ideal, 18

maximal, 18
multiplicatively closed, 21
radical, 21

radical, 21

presheaf, 25

sections, 25

restriction maps, 25
restriction of s to U, 25
sheaf, 25

presheaf, 25

sheaf, 25

constant presheaf, 25
restriction, 26

extension, 26
homomorphism, 26
homomorhism, 26
homomorphism, 26
isomorphism, 26

stalk, 26

stalk, 27

inductive system, 27
direct image, 29

sheaf associated to the presheaf G, 31
takes values in groups, 33
presheaf of groups, 33
takes values in rings, 33
presheaf of rings, 33
sheaf of groups, 33

sheaf of rings, 33
homomorphism of sheaves of groups, 33
homomorphism of sheaves of rings, 33
ringed space, 34
submodule, 35

linear, 35

module homomorphism, 35
kernel, 35

image, 35

direct product, 36
product, 36
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direct sum, 36
submodule of M generated by the elements, 36
elements, 36

generate, 36

linearly independent, 36
free with basis, 36
uniquely, 36

cokernel, 37

sequence, 37

complex, 37

short exact, 37

bilinear, 39



