
Topological spaces

1. Notation and Zorns Lemma.

(1.1) Notation. Let !!I be an index set and !!{Eα}α∈I a collection of sets Eαnn

indexed by I. We denote by !!
∏
α∈I Eα the cartesian product of the sets Eα. Then

elements of
∏
α∈I Eα we denote by !!(gα)α∈I with gα ∈ Eα for all α ∈ I. Whenn

I = {1, 2, . . . , n} we write E1 × E2 × · · · × En for the product.
We can interpret the elements of

∏
α∈I Eα as applications !!ϕ : I → ∪α∈IEαn

from I to the union of the sets Eα such that ϕ(α) ∈ Eα for all α ∈ I. With this
interpretation the relation between the functions ϕ : I → ∪α∈IEα and the elements
(gα)α∈I ∈ ∏α∈I Eα is given by ϕ(α) = gα for all α ∈ I. When all the sets Eα are

equal to the same set E we write !!EI for the cartesian product. That is EI consistsn
of all maps I → E.

When !!{Fα}α∈I is another collection of sets and we have maps !!uα : Eα → Fαnn

for all α ∈ I, we obtain a map of sets !!
∏
α∈I uα :

∏
α∈I Eα → ∏

α∈I Fα defined byn
(
∏
α∈I uα)(gα)α∈I = (uα(gα))α∈I .
Let {Eα}α∈I be a collection of sets and let J be a subset of I. The map

∏
α∈I Eα →∏

β∈J Eβ that sends (xα)α∈I to (xβ)β∈J we call a projection.

(1.2) Definition. A partially ordered set is a set E with a relation !!≤ such that,n

for all !!α, β, γ in E, satisfies the conditions:n

(1) α ≤ α.
(2) If α ≤ β and β ≤ α then α = β.
(3) If α ≤ β and β ≤ γ then α ≤ γ.

The partially ordered set E is upper filtrating or upper directed if there, for all α, β
in E, is a γ in E such that α ≤ γ and β ≤ γ.

Let E be a non-empty partially ordered set. A chain !!F in E is a subset of En
such that for α, β in F we have that either α ≤ β or β ≤ α.

(1.3) Zorns Lemma. Let E be a non-empty partially ordered set. If all chains F
in E have an upper bound in E, that is, there is an element α in E such that β ≤ α
for all β in F , then E has at least one maximal element. In other words, there is a
γ in E such that no element !!δ of E different from γ satisfies γ ≤ δ.n

(1.4) Definition. A partially ordered set E satisfies the maximum condition if
every non-empty subset F has a maximal element, that is, there is an element β ∈ F
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2 Topological spaces

such that α ≤ β for all α ∈ F . It satisfies the minimum condition if every non-empty
subset F has a minimal element, that is, there is an element β ∈ F such that β ≤ α
for all α ∈ F .

(1.5) Lemma. Let E be a partially ordered set. The following conditions are equiv-
alent:

(1) Every increasing chain !!α1 ≤ α2 ≤ . . . is stationary, that is, there is a positiven
integer n such that αn = αn+1 = · · · .

(2) The set E satisfies the maximum condition.

Proof. (1) Assume that E satisfies the maximum condition, and let α1 ≤ α2 ≤ . . .
be a chain in E. If αm is a maximal element for the subset {αn}n∈N we have that
αm = αm+1 = · · · .

(2) Assume that every sequence is stationary, and let F be a subset of E. By
induction on n we can clearly find a sequence α1 < α2 < · · · < αn−1 < αn < . . . ,
which is not stationary.

(1.6) Exercises.
1. Let E be a set and let !!E = {Eα}α∈I be a collection of subsets of E. We writen
Eα ≤ Eβ when Eα is contained in Eβ. Show that E with the relation ≤ is a partially
ordered set.

2. Let E be a set. The set !ZE ! consists of all functions ϕ : E → Z from E to then

integers Z. We denote by !I! the family consisting of all subsets !a! of ZE differentnn

from ZE satisfying the two conditions:

(i) If ϕ ∈ a and χ ∈ ZE then ϕχ is in a.
(ii) If ϕ, χ are in a then ϕ+ χ is in a.

(1) Show that the sets α(F ) = {ϕ ∈ ZE : ϕ(x) = 0 for all x ∈ F} for all non-
empty subsets F of E satisfy conditions (i) and (ii).

(2) Show that when we order I partially by inclusion of the sets a, then I will
contain maximal elements.

3. Let H be the collection of subsets of the set ZN of functions ϕ : N → Z from the
natural numbers !N! to the integers consisting of sets H such that if ϕ and χ are inn
H then ϕ+ χ is also in H.

(1) Show that for all integers n and prime numbers p the set !!Hn,p = {(mi)i∈N :n
p divides mn} is a maximal subset of H.

(2) Show that there are other maximal subsets of B than those of the form Hn,p.

(3) Let !Z(N)! be the subset of ZN consisting of functions with finite support,n

that is ϕ(n) = 0 except for a finite number of natural numbers n. Is Z(N) a
maximal subset of ZN?

4. Let I be a partially ordered upper directed set. An inductive system of sets !!n
{Eα, ραβ}α,β∈I,α≤β consists of a collection of sets {Eα}α∈I , and maps ραβ : Eα → Eβ
for all pairs of elements α, β in I with α ≤ β.
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Let {Eα, ραβ}α,β∈I,α≤β be an inductive system indexed by the partially ordered

upper directed set I. Denote by !!E = ∪α∈I(Eα×{α}) the disjoint union of the setsn

Eα for α ∈ I. We define on E a relation !!∼ by (xα, α) ∼ (xβ, β) if there is a γ ∈ In

satisfying α ≤ γ and β ≤ γ such that ραγ (xα) = ρβγ(xβ).

(1) Show that ∼ is an equivalence relation on E.
(2) Let lim

−→α∈I
Eα = E/∼ be the residue classes of E modulo the equivalence

relation∼, and let uα : Eα → lim
−→α∈I

Eα be the map that sends an element

xα ∈ Eα to the equivalence class of (xα, α). Show that uα = uβρ
α
β when

α ≤ β. We call the module lim
−→α∈I

Eα together with the maps uα the direct

limit of the inductive system. It is often convenient to call lim
−→α∈I

Eα simply

the direct limit of the system.
(3) Show that for every element x in lim

−→α∈I
Eα there is an index α ∈ I and an

xα ∈ Eα such that uα(xα) = x.
(4) Show that if xα ∈ Eα and xβ ∈ Eβ are such that uα(xα) = uβ(xβ) then there

is an index γ ∈ I satisfying α ≤ γ and β ≤ γ such that ραγ (xα) = ρβγ(xβ).
(5) Show that if x and y are elements in E there is an index α ∈ I and xα, yα in

Eα such that uα(xα) = x and uα(yα) = y.
(6) Show that the inductive limit has the following universal property:

For all α ∈ I let vα : Eα → F be maps into a set F such that vα = vβρ
α
β

for all α, β in I with α ≤ β. Then there is a unique map u : lim
−→α∈I

Eα → F

such that vα = uuα for all α ∈ I.
(7) Show that the universal property characterizes the direct limit up to isomor-

phisms. That is, if wα : Eα → G are maps for α ∈ I with the universal
property that for all vα : Eα → F such that vα = wβρ

α
β there is a unique map

w : G→ F satisfyting vα = vuα, then there are unique maps lim
−→α∈I

Eα → G

and G→ lim
−→α

Eα that are inverses.

(8) Let !!{Fα, σαβ }α,β∈I,α≤β be another inductive system of sets. Assume that wen

for every α ∈ I has a map !!uα : Eα → Fα such that uβρ
α
β = σαβuα for all α, βn

in I with α ≤ β. We call the collection {uα}α∈I a map of inductive systems.
We call the collection {uα}α∈I a map of inductive systems.

Show that there is a unique map lim
−→α∈I

uα : lim
−→α∈I

Eα → lim
−→α∈I

Fα such

that lim
−→α∈I

uαρα = σαuα for all α ∈ I, where σα : Fα → lim
−→α∈I

Fα is the

canonical map for the inductive system {Fα, σαβ }α,β∈I,α≤β.
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2. Categories.

(2.1) Definition. A category !!K consists of a collection of objects !!Obj(K) and, fornn

every pair of objects !!A,B a set !!Mor(A,B) of morphisms with the property thatnn

for !!u ∈ Mor(A,B) and !!v ∈ Mor(B,C) there is a composition vu in Mor(A,C) suchnn
that:

(1) For every object A in Obj(K) there is an element !!idA in Mor(A,A) suchn
that u = u idA and u = idB u.

(2) If !!w ∈ Mor(C,D) then w(vu) = (wv)u in Mor(A,D).n

Often we simply say that Obj(K) is a category and we write !!u : A → B instead ofn
u ∈ Mor(A,B). A morphism u : A → B is an isomorphism if there is a morphism
v : B → A such that vu = idA and uv = idB .

(2.2) Example. Let Obj(K) be the collection of all sets, and for every pair of
sets A,B we let !!Mor(A,B) be all maps from A to B. Then Obj(K) with thesen
morphisms form a category called the category of sets.

(2.3) Example. Let E be a partially ordered set under a relation ≤, and let Obj(K)
consist of the elements of E. For two elements α, β in E we let Mor(α, β) consist of
all relations α ≤ β. That is, a morphism α → β is a relation α ≤ β. Then Obj(K)
with the sets Mor(α, β) is a category.

(2.4) Definition. Let K and !!L be categories. A covariant, respectively contravari-n

ant, functor !!F from K to L is a map that associates to every object A in Obj(K)n
an object F(A) of Obj(L) and that to each morphism ϕ : A → B in Mor(A,B)
associates a morphism F(ϕ) : F(A) → F(B), respectively F(ϕ) : F(B) → F(A),
such that:

(1) F(idB) = idF(B).
(2) If χ : B → C is another morphism then F(χϕ) = F(χ)F(ϕ), respectively

F(χϕ) = F(ϕ)F(χ).

We usually simply say that F is functorial in A.
A natural transformation u : F → G of two functors from the category K to the

category L is a map u(A) : F(A) → G(A) for each A ∈ Obj(K) such that for each
morphism ϕ ∈ Mor(A,B) in the category K we have that u(B)F(ϕ) = G(ϕ)u(A).
We say that the natural transformation is an isomorphism if it has an inverse.

Two categories K and L are equivalent if there are functors F and G from K to L,
respectively from L to K, such that GF is isomorphic to the identity idK and FG is
isomorphic to idL.

(2.5) Remark. When F is a functor from the category K to the category L, and
G is a functor from L to the category M we have that the composite GF is a functor
from K to M. Moreover, the identity map on objects and morphisms in the category
K is a functor idK from K to itself. Hence categories with natural transformations
form a category.
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(2.6) Products. Let K be a category and let {Aα}α∈I be a collection of objects in
Obj(K). The product of the objects Aα is an object !!

∏
α∈I Aα in Obj(K) togethern

with a morphism uα :
∏
α∈I Aα → Aα for each α ∈ I such that for every object B

of K and every collection of morphisms vα : B → Aα for all α ∈ I there is a unique
morphism v : B →∏

α∈I Aα such that vα = uαv for all α ∈ I.

(2.7) Example. Let I be an index set. In the category of sets we have that the
product

∏
α∈I Eα of the sets {Eα}α∈I is the product in the categorical sense, that

is, the product in the category of sets.

(2.8) Coproducts. Let K be a category and {Aα}α∈I be a collection of objects
in Obj(K). The coproduct of the objects is an object !!

∐
α∈I Aα in Obj(K) togethern

with a morphism

uα : Aα →
∐

α∈I

Aα

for each α ∈ I such that for every object B of K and every collection of morphisms
vα : Aα → B for all α ∈ I there is a unique morphism v :

∐
α∈I Aα → B such that

vα = vuα for all α ∈ I.

(2.9) Exercises.
1. Let {Eα}α∈I be a collection of sets. Show that the disjoint union E = ∪α∈I(Eα×
{α}) together with the maps uα : Eα → E defined by uα(xα) = (xα, α) for all α ∈ I
is the coproduct in the category of sets.

2. Let E be a set and let Obj(K) consist of all subsets of E. For two subsets A and
B of E we let Mor(A,B) consist of all maps A → B. Show that Obj(K) with the
maps Mor(A,B) is a category.

3. Let E be a set and let Obj(K) consist of all subsets of E. For two subsets A and
B of E we let Mor(A,B) be the inclusion map if A ⊆ B and otherwise be empty.
Show that Obj(K) with the maps Mor(A,B) is a category.

4. Let K be the category of Exercise (3) and let L be the category of Exercise (2).→→
Show that the map F : Obj(K) → Obj(L) defined by F(A) = A for all subsets A of
E, and by F(u) = u for all maps u : A→ B in K is a covariant functor.
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3. Topological spaces.

(3.1) Definition. A topological space is a set !!X together with a collection !!{Uα}α∈Inn
of subsets Uα of X such that

(1) The set X and the empty set ∅ are in the collection {Uα}α∈I .
(2) For every subset !!J of I the union ∪β∈JUβ of the sets in {Uβ}β∈J is in then

collection {Uα}α∈I .
(3) For every finite subset J of I the intersection ∩β∈JUβ of the sets in {Uβ}β∈J

is in the collection {Uα}α∈I .
The sets Uα are called the open sets of X and the complement !!X \ Uα of the openn
sets are called closed. We say that the collection of sets {Uα}α∈I is a topology on X.
Often we simply say that X is a topological space.

Let !!x be a point of X. A subset !!Y of X that contains x is a neighbourhood ofnn
x if there exists an open subset U of X such that x ∈ U ⊆ Y . A collection {Uβ}β∈J
of open sets in X is called an open covering of X if the union of the sets is X, that
is X = ∪β∈JUβ .
(3.2) Example. Let X be a set. The set X with the collection {∅, X} consisting of
the empty set and X itself is a topological space. This topology is called the trivial

topology on X.

(3.3) Example. Let X be a set. The set X with the collection of all subsets of X
is a topological space. This topology is called the discrete topology.

(3.4) Example. Let X be a set. The set X with the collection of sets consisting of
∅ and all the subsets U of X whose complement !!X \U is a finite set is a topologicaln
space. We call this topology the finite complement topology.

(3.5) Remark. Let X be a topological space with open sets {Uα}α∈I . For every
subset Y of X we have that the collection of sets {Uα ∩ Y }α∈I are the open subsets
of a topology on Y . We call this topology on Y the topology induced by the topology
on X, and we say that Y is a subspace of X.

(3.6) Definition. Let X be a topological space and let x be a point of X. A
collection of sets !!B = {Uβ}β∈J consisting of open neighbourhoods Uβ of x is a basisn
for the neighbourhoods of x if there, for every open neighbourhood U of x, is an open
set Uβ belonging to B such that x ∈ Uβ ⊆ U .

A collection of subsets B = {Uγ}γ∈K of X consisting of open sets Uγ of X is a
basis for the topology if the members !!Bx = {U ∈ B : x ∈ U} containing x is a basisn
for the neighbourhoods of x for every point x ∈ X.

(3.7) Example. The collection of all open sets is a basis for the topology on X.

(3.8) Definition. For every subset !!Y of X we denote by !!Y the intersection ofnn

all the closed sets that contain Y . Equivalently Y is the set consisting of all points x
in X such that every open neighbourhood of x contains at least one point of Y . We
call Y the closure of the set Y .
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(3.9) Definition. Let X and Y be topological spaces. A map !!ψ : X → Y is calledn

continuous if the inverse image ψ−1(V ) of every open subset V of Y is open in X.
The map is an isomorphism, or homeomorphism, if there is a continuous map

!!ω : Y → X which is inverse to ψ. That is ωψ = idX and ψω = idY .n

(3.10) Example. Let X be a topological space and Y a subset considered as a
topological space with the induced topology. Then the inclusion map Y → X is
continuous.

(3.11) Example. The set theoretic inverse of a bijecive continuous map ψ : X → Y
is not necessarily bijective. For example the identity map idX : X ′ → X ′′ from
the topological space X ′ with X as underlying set and the discrete topology to
the topological space X ′′ with X as underlying set and trivial topology is always
continous. However, the inverse, which is also idX is not continous if X has more
than one point.

(3.12) Remark. For every topological space X the map idX is continuous. When
ψ : X → Y and ω : Y → Z are continuous maps of topological spaces we have that
ωψ : X → Z is continuous. In other words the topological spaces with continuous
maps form a category, called the category of topological spaces.

(3.13) Remark. Let X be a topological space and let Obj(K) be the collection of
open sets of X. For each pair of open sets U, V in X we let Hom(U, V ) consist of
the inclusion map of U in V if U is contained in V , and otherwise let Hom(U, V ) be
empty. Then Obj(K) with these morphisms form a category.

(3.14) Exercises.
1. Let X be a set and let X = U0 ⊃ U1 ⊃ U2 ⊃ · · · be a sequence of subsets.

(1) Show that the sets ∅ and {Un}n∈N are the open sets of a topology of X.
(2) Show that if ∩n∈NUn 6= 0 the set ∩n∈NUn is not open in X.

2. Let X be a set and let x0 be an elements of X.

(1) Show that X with the collection of all subsets of X that contain x0 is a
topological space.

(2) Show that X has a basis for the topology with open sets consisting of 1 or 2
elements.

(3) Find the closed points of X.

3. Let Y = {y,X} be the disjoint union of a point y and the underlying set X of
a topological space with open sets {Uα}α∈I . Show that Y with the family of sets
{y, Uα}α∈I is a topological space.

4. Let X and Y be topological spaces and ψ : X → Y a map.

(1) Show that when X has the discrete topology then ψ is continuous.
(2) Show that when Y has the trivial topology then ψ is continuous.

5. Give another example than (?) of a continuous bijective homomorphism ψ : X →→
Y of topological spaces which is not an isomorphism.
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6. Let X and Y be topological spaces and B a basis for the topology on Y . Show
that a map ψ : X → Y is continuous if and only if the inverse image of every open
set belonging to B is open in X.

7. Let X be a set and let B = {Uα}α∈I be a family of subsets Uα with the property
that for every pair of sets Uα, Uβ in the family B and every point x ∈ Uα ∩Uβ there
is a Uγ in B such that x ∈ Uγ ⊆ Uα ∩ Uβ. Let U be the family of all subsets U of X
such that for every point x ∈ U there is a Uα in B such that x ∈ Uα ⊆ U .

(1) Show that X with the family of sets U is a topological spaces.
(2) Show that the sets of B form a basis for the topological space of part (1).→

8. Let X and Y be topological spaces and let !!V be the collection of subsets of then
cartesian product X×Y of the form U ×V , where U is open in the X and V is open
in Y .

(1) Show that X×Y with the sets !!U which consists of all the unions of the setsn
in V form a topological space. We call this topology the product topology on
X × Y .

(2) Show that the projection !!π : X×Y → X defined by π(x, y) = x is continuousn
when X × Y has the product topology.

(3) Assume that X and Y have the finite complement topology. Show that in
most cases the finite complement topology on X × Y is different from the
product topology.

9. Let X = Z. An arithmetic progression consists of numbers of the form !!Vp,q =n
{pn+ q : n ∈ Z} where p and q are integers, and p 6= 0.

(1) Show that for every integer m we have that Vp,q = Vp,mp+q.
(2) Let p′, p′′, q′, q′′ be natural numbers. Show that for every number n in Vp′,q′ ∩

Vp′′,q′′ there are natural numbers p, q such that n ∈ Vp,q ⊆ Vp′,q′ ∩ Vp′′,q′′ .
(3) Show that the collection of all subsets of Z that are arithmetic progressions

satisfy the conditions of Exercise (6), and consequently is the basis for a→
topology on X.

(4) Show that all the arithmetic progressions Vp,q are closed in the topology of
part (3).→

(5) Let Y be the union of all the sets Vp,0 where p is a prime number. Show that
X \ Y = {−1, 1} and that {−1, 1} is not open in X.

(6) Use part (4) and (5) to prove that there exists infinitely many prime numbers.→→
10. Let X be a set with a metric, that is, for each pair of points x, y of X there is
a real number d(x, y) such that for all elements x, y, z of X we have:

(1) d(x, y) ≥ 0.
(2) d(x, y) = 0 if and only if x = y.
(3) d(x, y) = d(y, x).
(4) d(x, z) ≤ d(x, y) + d(y, z).

Let U consist of all sets U with the property that for every point x of U there is a
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real number εx such that the set {y ∈ X : d(x, y) < εx} is contained in U .

(1) Show that X with the family U is a topological space.
(2) Show that for each point x of X the sets Ux,n = {y ∈ X : d(y, x) < 1/n} for

all natural numbers n form a basis for the neighbourhoods of x.



TOPOLOGY 4 11

4. Irreducible sets.

(4.1) Definition. A topological space X is irreducible if X is non-empty, and if any
two non-empty open subsets of X intersect. Equivalently X is irreducible if X 6= ∅
and X is not the union of two closed subsets different from X. A subset Y of X is
irreducible if it is an irreducible topological space with the induced topology.

(4.2) Proposition. Let X be a topological space.

(1) A subset Y of X is irreducible if and only if the closure Y is irreducible.
(2) Every irreducible subset Y of X is contained in a maximal irreducible subset.
(3) The maxmial irreducible subsets of X are closed, and they cover X.

Proof. (i) The first claim follows easily from the observation that every open subset
that intersects Y also intersects Y .

(ii) Let Y be an irreducible subset of X, and let !!I be the family consisting ofn

all irreducible subsets of X that contain Y . For every chain !!J = {Zα}α∈I in I wen
have that Z = ∪α∈IZα is irreducible. This is because, when U and V are open sets
that intersect Z there are α and β in I such that U ∩Zα and V ∩Zβ are non-empty.
Since J is a chain we have that either the sets U ∩Zα and V ∩Zα, or the sets U ∩Zβ
and V ∩ Zβ , are non-empty. In particular (U ∩ Z) ∩ (V ∩ Z) is non-empty. Since
all chains have maximal elements it follows from Zorns Lemma that I has maximal
elements.

(iii) The third claim is an immediate consequence of assertions (1) and (2).→→
(4.3) Definition. The maximal irreducible subsets of X are called the irreducible

components of X.

(4.4) Example. The irreducible components of the topological space with the trivial
topology is X itself.

(4.5) Example. The irreducible components of the topological space X with the
discrete topology are the points of X.

(4.6) Example. The topological space X with the finite complement topology is
irreducible exactly when X consists of infinitely many points, or consists of one point.

(4.7) Example. Let x be a point of the topological space X. Then the closure

!!{x} is irreducible.n

(4.8) Definition. Let X be an irreducible topological space. If there is a point x

in X such that X = {x} we call x a generic point of X.

(4.9) Definition. A topological space X is compact if every open covering {Uα}α∈I
has a finite subcover, that is, there is a finite subset J of I such that X = ∪β∈JUβ .
(4.10) Example. The topological space X with the trivial topology is compact.
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(4.11) Example. The topological space X with the discrete topology is compact
if and only if the set X is finite.

(4.12) Example. The topological space X with the finite complement topology is
compact.

(4.13) Definition. The combinatorial dimension, or simply the dimension, of a
topological space X is the supremum of the length n of all chains

X0 ⊂ X1 ⊂ · · · ⊂ Xn

of irreducible closed subsets Xi of X. We denote the dimension of X by dim(X).
Let Y be a closed irreducible subset of X. The combinatorial codimension, or

simply the codimension, of Y in X is the supremum of the length n of all chains

Y = X0 ⊂ X1 ⊂ · · · ⊂ Xn

of irreducible closed subsets Xi of X. We denote the codimension of Y in X by
codim(Y,X).

(4.14) Example. The topological space X with the trivial topology has dimension
0.

(4.15) Example. The topological space with the discrete topology has dimension
0.

(4.16) Example. Let X = {x0, x1} be the topological space consisting of two points
and with open sets {∅, X, {x0}}. Then X has dimension 1.

(4.17) Remark. Let X be a topological space and {Xα}α∈I its irreducible compo-
nents. Then dim(X) = supα∈I dim(Xα).

(4.18) Remark. For every subset Y of X with the induced topology we have that
dim(Y ) ≤ dim(X). This is because when Z is closed and irreducible in Y , then the
closure Z of Z in X is irreducible by Proposition (4.2), and since Z is closed in Y we→
obtain that Z ∩ Y = Z.

(4.19) Remark. A topological space X is noetherian if the open subsets of X
satisfy the maximum condition. That is, every chain of open subsets of X has a
maximal element. Equivalently the space X is noetherian if the closed subsets of X
satisfy the minimum condition. That is, every chain of closed subsets have a minimal
element. A space is locally noetherian if every point x ∈ X has a neighbourhood that
is noetherian.

(4.20) Example. The topological space X with the trivial topology is noetherian.

(4.21) Example. The topological space X with the discrete topology is noetherian
exactly when the space consists of a finite number of points.
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(4.22) Example. A topological space with the finite complement topology is noe-
therian.

(4.23) Remark. Let X be a noetherian topological space. Then every subspace Y
of X is noetherian. This is because a chain {Zα}α∈I of closed subsets in Y gives a
chain {Zα}α∈I of closed subsets in X, where Zα is the closure of Zα in X. We have
that Zα ∩ Y = Zα and consequently that when Zα ⊂ Zβ then Zα ⊂ Zβ .

(4.24) Remark. A noetherian topological space X is compact. This is because
if {Uα}α∈I is an open covering of X without a finite subcovering we can find, by
induction on n, a sequence of indices α1, α2, . . . , αn, . . . in I such that Uα1

⊂ Uα1
∪

Uα2
⊂ Uα1

∪ Uα2
∪ Uα3

⊂ · · · . Hence X is not noetherian.

Conversely, if every open subset of X is compact, then X is noetherian. This is
because if X is not noetherian then we can find an infinite sequence of open subsets
U1 ⊂ U2 ⊂ · · · of X. Then the union ∪∞

n=1Un is an open subset of X with a covering
{Un}n∈N that does not have a finite subcovering.

(4.25) Proposition. A noetherian topological space X has only a finite number
of distinct irreducible components X1, X2, . . . , Xn. Moreover we have that X is not
contained in ∪i6=jXj for i = 1, 2, . . . , n.

Proof. Let I be the collection of all closed subsets of the topological space X for
which the Lemma does not hold. Assume that I is not empty. Since X is noetherian
the collection I then has a minimal element Y . Then Y can not be irreducible, so
Y is the union Y = Y ′ ∪ Y ′′ of two closed subsets Y ′, Y ′′ different from Y . By
the minimality of Y the sets Y ′ and Y ′′ both have a finite number of irreducible
components. Consequently Y can be written as a union of a finite number of closed
irreducible subsets. It follows from Proposition (4.2) that Y has only a finite number→
of irreducible components. This contradicts the assumption that I is not empty.
Hence I is empty and the Proposition holds.

If i is such that Xi ⊆ ∪i6=jXj we have that Xi is covered by the closed subsets
Xi ∩Xj for i 6= j. Since Xi is irreducible it follows that Xi must be contained in one
of the Xj , which contradicts the maximality of Xi.

(4.26) Exercises.

1. Find the generic points of the topological space X with the trivial topology.
Let X with a distinguished element x0 be the topological space with open subsets

consisting of all subsets that contain x0.

(1) Find the irreducible subsets of X.
(2) Find the generic point of all the irreducible subsets.

2. A topological space X is called a Kolmogorov space if there for every pair x, y
of distinct points of X is an open set which contains one of the points, but not the
other. Show that when X is a Kolmogorov space which is irreducible and has a
generic point, then there is only one generic point.
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3. A topological space is called a Hausdorff space if there for every pair of distinct
points x, y of X are two open disjoint subsets of X such that one contains x and the
other contains y. Determine the irreducible components of a Hausdorff space.

4. Let X be an irreducible topological space, and f : X → Y a continuous map to
a topological space Y .

(1) Show that the the image f(X) of X is an irreducible subset of Y .
(2) Show that if x is a generic point of X, then f(x) is a generic point of f(X).

5. Let X be an irreducible topological space. Show that all open subsets are irre-
ducible.

6. Let X = N be the natural numbers and let U be the collection of sets consisting
of X, ∅ and the subsets {0, 1, . . . , n} for all n ∈ N.

(1) Show that X with the collection of sets U is a topological space.
(2) Show that the topological space of part (1) is irreducible.→
(3) Show that the topological space of part (1) has exactly one generic point.→
(4) What is the dimension of X?



Rings

1. Groups.

(1.1) Definition. An abelian, or commutative, group !!G is a set with an additionn
+ that to every pair of elements x, y of G associates an element x+ y of G satisfying
the following properties:

(1) There is an element 0 in G such that 0 + x = x+ 0 = x for all x in G.
(2) For every x in G there is an element y in G such that x+ y = y + x = 0.
(3) For all elements x, y, z of G we have that (x+ y) + z = x+ (y + z).
(4) For every pair of elements x, y of G we have x+ y = y + x.

(1.2) Remark. The element 0 of part (1) is unique because if 0′ + x = x+ 0′ = x→
for all x in G then 0′ = 0′ + 0 = 0. We call 0 the zero element of the group G.

The element y in part (2) is also unique for if x+y′ = y′+x = 0 then y′ = y′+0 =→
y′ + (x+ y) = (y′ + x) + y = 0 + y = y. We call the element y = y′ the inverse of x
and write it −x.
(1.3) Example. The integers !!Z, the rational numbers !!Q, the real numbers !!R,nnn

and the complex numbers !!C are abelian groups under addition. On the other handn

the natural numbers !!N is not a group since all elements do not have an inverse.n

The non-zero rational, real and complex numbers !!Q∗ = Q \ {0}, !!R∗ = R \ {0}nn

respectively !!C∗ = C \ {0} are groups under multiplication. On the other hand then
non-zero integers do not form a group under multiplication because all elements do
not have an inverse under multiplication.

(1.4) Definition. A subgroup !!H of G is a subset of G such that for every pair x, yn
of elements in H we have that x+ y ∈ H and −x ∈ H.

(1.5) Remark. A subgroup H of G is a group under the addition induced by the
addition on G.

(1.6) Example. Each group in the sequence Z ⊆ Q ⊆ R ⊆ C is a subgroup of the
following group. The same is true for the sequence Q∗ ⊆ R∗ ⊆ C∗.

(1.7) Definition. A map !!u : G → H from a group G to a group H is a groupn

homomorphism, or a homomorphism of groups, if for all pairs !!x, y of elements of Gn
we have

u(x+ y) = u(x) + u(y).

15
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A homomorphism of groups is an isomorphism if it has an inverse, or equivalently if
it is bijective. The inverse is then automatically a homomorphism.

(1.8) Example. Let u : G → H be a homomorphism of groups. The set {x ∈
G : u(x) = 0} of all elements that are mapped to zero in H is a subgroup of G.
Moreover the image {u(x) : x ∈ G} of the elements of G by u is a subgroup of
H. The homomorphism u is injective if and only if {0} = {x : u(x) = 0} because
u(x) = u(y) if and only if u(x− y) = 0.

(1.9) Remark. Let G be a group. Then idG is a group homomorphism. Moreover,
if u : F → G and v : G → H are group homomomorphisms then vu : F → H is a
group homomorphism. In other words the groups with group homomorphisms form
a category. We call this category the category of groups.

(1.10) Residue class groups. Let H be a subgroup of an abelian group G. When
x, y are elements of G such that x−y ∈ H we write !!x ≡ y (mod H). It is clear thatn
the relation ≡ (mod H) defines an equivalence relation on G, and we say that x is
equivalent to y modulo H. The collection of equivalence classes we denote by !!G/H.n
There is a unique way of defining an addition onG/H such thatG/H becomes a group
and the canonical map !!uG/H : G → G/H becomes a homomorphism of groups.n
The addition on G/H is given by uG/H(x) + uG/H(y) = uG/H(x+ y) for all pairs of
elements x, y of G. It is clear that the definition of multiplication is independent of
the choice of representatives x and y for the classes uG/H(x), respectively uG/H(y).
We call the group G/H the residue class group of G with respect to H.

The canonical homomorphism uG/H : G → G/H is surjective and H = {x ∈ G :
uG/H(x) = 0}.
(1.11) Definition. Let u : G → H be a homomorphism of groups. We call
the sub-group !!Ker(u) = {x ∈ G : u(x) = 0} the kernel of u, and the sub-groupn

!!Im(u) = {u(x) : x ∈ G} of H the image of u. The group H/ Im(u) is called then
cokernel of u.

(1.12) Operations on groups. Let {Gα}α∈I be a family of abelian groups Gα.
The cartesian product

∏
α∈I Gα becomes an abelian group under pointwise addition.

That is, for elements (xα)α∈I and (yα)α∈I we define the sum by (xα)α∈I +(yα)α∈I =
(xα + yα)α∈I .

We denote by !!⊕α∈IGα the subset of
∏
α∈I Gα consisting of the elements (xα)α∈In

with finite support, that is the elements (xα)α∈I such that xα = 0 except for finitely
many α. It is clear that the addition on

∏
α∈I Gα induces an addition on ⊕α∈IGα,

and that ⊕α∈IGα with the induced addition becomes a subgroup of
∏
α∈I Gα. We

call this subgroup the direct sum of the groups Gα for α ∈ I. When I = {1, 2, . . . , n}
we write ⊕α∈IGα = G1 ⊕G2 ⊕ · · · ⊕Gn.

When all the groups Gα are isomorphic to the same group G we denote the direct
sum by !!G(I). Then G(I) is the subgroup of GI consisting of functions ϕ : I → Gn
such that ϕ(α) = 0 except for a finite number of α ∈ I.
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Let (xα)α∈I be an element of G(I). We shall write !!
∑
α∈I xα for the sum

∑
β∈J xβn

for every finite subset J of I such that xα = 0 when α ∈ I \ J .
Let {Gα}α∈I be a family of subgroups of a group G. It is clear that the intersection

∩α∈IGα of the groups Gα is a subgroup of G. Then the intersection of the subgroups
of G that contain the groups Gα for α ∈ I is a group that we denote by

∑
α∈I Gα. It is

the smallest group that contains all the subgroups Gα, and it is clear that
∑
α∈I Gα

consists of all the elements of the form
∑
β∈J xβ for all finite subsets J of I and

elements xβ ∈ Gβ for β ∈ J . That is, the group
∑
α∈I Gα consists of all elements of

the form
∑
α∈I xα with xα ∈ Gα for all α ∈ I and where xα = 0 except for a finite

number of indices α ∈ I.

(1.13) Remark. The product
∏
α∈I Gα and sum ⊕α∈IGα of a collection of groups

{Gα}α∈I are the product, respectively coproduct in the categorical sense, that is, the
product and co-product in the category of groups.

(1.14) Exercises.
1. Show that all the subgroups of the integers Z are of the form mZ = {mn : n ∈ Z}
for some integer m.

2. Let !ζn = cos(2π/n) + i sin(2π/n)! where i is the complex number
√
−1.n

(1) Show that !!µn = {ζin : i ∈ Z} is an abelian group under multiplication ofn
complex numbers.

(2) Show that the abelian groups µn and Z/nZ are isomorphic groups.
(3) Are all abelian groups with n elements isomorphic?

3. Let G and H be abelian groups, and Hom(G,H) the set of all group homomor-
phism from G to H. We define an addition on the set Hom(G,H) pointwise, that is
the sum u + v of two group homomorphism u : G → H and v : G → H is defined
by (u + v)(x) = u(x) + v(x). Show that Hom(G,H) is an abelian group under this
addition.

4. Let {Gα, ραβ}α,β∈I,α≤β be an inductive system of groups such that the maps ραβ
are group homomorphisms.

(1) Show that then lim
−→α∈I

Gα has a unique structure of group such that the

canonical maps ρα are group homomorphisms for all α ∈ I.
(2) Let {Hα, σ

α
β }α,β∈I,α≤β be another inductive system, and let uα : Gα → Hα,

for α ∈ I be a map of inductive systems.
Show that the resulting map lim

−→α∈I
uα : lim

−→α∈I
Gα → lim

−→α∈I
Hα is a group

homomorphism.

5. Let n be a natural number. Find all group homomorphisms Z/nZ → Z.
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2. Rings.

(2.1) Definition. A commutative ring with unity, which we simply call a ring below,
is an abelian group !!A under an addition +, that also has a multiplication whichn
associates to each pair of elements f, g in A an element fg in A that satisfies the
following properties for all elements !!f, g, h of A:n

(1) There is a unit element 1 = 1A in A such that 1f = f1 = f .
(2) f(gh) = (fg)h.
(3) f(g + h) = fg + fh and (f + g)h = fh+ gh.
(4) fg = gf

(2.2) Example. The integers Z, the rational numbers Q, the real numbers R, and
the complex numbers C are all rings.

(2.3) Example. Let n be a positive integer and let !!Z/nZ be the residue group ofn
the integers modulo the subgroup nZ. We use the canonical homomorphism uZ/nZ :
Z → Z/nZ to give a multiplication on Z/nZ by uZ/nZ(p)uZ/nZ(q) = uZ/nZ(pq) for
all integers p and q. This multiplication makes the group Z/nZ into a ring.

(2.4) Example. Let E be a set and A a ring. We define addition and multiplication
on the set AE of all maps from E to A pointwise, that is for all maps ϕ : E → A
and χ : E → A we define the sum by (ϕ+ χ)(x) = ϕ(x) + χ(x) and the product by
(ϕχ)(x) = ϕ(x)χ(x) for all x ∈ E. With the pointwise addition and multiplication
AE becomes a ring.

(2.5) Polynomials in one variable. Let A be a ring. A formal expression of the
form !!f(t) = f0 + f1t + · · · + fmt

m, where m is a natural number and where then
elements f0, f1, . . . , fm are in A, we call a polynomial. The set of all polynomials we
denote by A[t]. When fm 6= 0 we call m the degree of the polynomial f(t), and we
let fi = 0 for i > m. Two polynomials f0 + f1t+ · · ·+ fmt

m and g0 + g1t+ · · ·+ gnt
n

are equal when they are identical, that is when fi = gi for i = 0, 1, . . . .
We define addition of the polynomials (f0 + f1t+ · · ·+ fmt

m) and (g0 + g1t+ · · ·+
gnt

n) in A[t] by

(f0+f1t+· · ·+fmtm)+(g0+g1t+· · ·+gntn) = (f0+g0)+(f1+g1)t+· · ·+(fp+gp)t
p,

where p = max(m,n), and we define multiplication of the polynomials by

(f0 +f1t+ · · ·+fmtm)(g0 +g1t+ · · ·+gntn) = f0g0 +(f0g1 +f1g0)t+ · · ·+fmgntm+n.

With this addition and multiplication A[t] becomes a ring which we call the poly-

nomial ring in the variable t over A, or the ring of polynomials in t with coefficients

in A.
Instead of introducing polynomials by the somewhat vague notion of formal ex-

pressions we can be more precise and define the polynomial ring as the set A(N)
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with pointwise addition and convolution product. That is, the sum of two func-
tions ϕ : N → A and χ : N → A is the function ϕ + χ : N → A defined by
(ϕ + χ)(n) = ϕ(n) + χ(n) for all !!n in N, and their product !!ϕχ : N → A is de-nn

fined by (ϕχ)(n) =
∑
p+q=n ϕ(p)χ(q) for all n in N. It is clear that A(N) with this

addition and product is a ring. Let t ∈ A(N) be the function defined by t(1) = 1,
and t(n) = 0 for n 6= 1. For each natural number n we have that tn(n) = 1, and
tn(m) = 0 for m 6= n, where tn is the convolution product of t with itself n times. It
follows that every function ϕ : N → A with finite support can be written uniquely
as ϕ =

∑∞
n=0 ϕ(n)tn. Hence we have a bijection between A(N) and the polynomial

ring A[t] which maps
∑∞

n=0 ϕ(n)tn considered as a function N → A, to the same
element

∑∞
n=0 ϕ(n)tn considered as a formal expression A[t]. Easy calculations show

that this bijection is an isomorphism of rings.

(2.6) Power series rings. Let A be a ring. We define the sum of two elements in
AN pointwise. That is, the sum ϕ + χ of two elements ϕ : N → A and χ : N → A
is defined by (ϕ + χ)(n) = ϕ(n) + χ(n) for all n ∈ N. It is clear that under this
addition AN becomes an abelian group.

Moreover, we define a convolution product, by ϕχ(n) =
∑
p+q=n ϕ(p)χ(q). It is

easily checked that the group AN with this product becomes a ring. We denote this
ring by !!A[[t]]. The ring A[[t]] we call the power series ring in the variable t overn
A, or the ring of power series in the variable t with coefficients in A. We call the
elements of A[[t]] power series in the variable t.

Every element ϕ : N → A in A[[t]] is determined by the family (ϕ(0), ϕ(1), . . . ) of
its values. In analogy with Example (2.5) we write→

(f0, f1, f2, . . . ) = f0 + f1t+ f2t
2 + · · · ,

where the expression f0 + f1t+ f2t
2 + · · · is just a formal way of writing the function

ϕ : N → A given by ϕ(n) = fn. With this notation, addition and multiplication of
power series take the form

(f0 +f1t+f2t
2 + · · · )+(g0 +g1t+g2t

2 + · · · ) = (f0+g0)+(f1 +g1)t+(f2 +g2)t
2+ · · ·

and

(f0 + f1t+ f2t
2 + · · · )(g0 + g1t+ g2t

2 + · · · )
= f0g0 + (f1g0 + f0g1)t+ (f2g0 + f1g1 + f0g2)t

2 + · · ·
analogously to the expressions in Example (2.5).→

Let t = t1 : N → A be the map given by t(1) = 1 and t(n) = 0 when n 6= 1. Then
tn(n) = 1 and tn(m) = 0 when m 6= n. Addition and multiplication on AN clearly
induces an addition and multiplication on the subset A(N). With this addition and
multiplication the subgroup A(N) of AN becomes the polynomial ring A[t] as defined
in Example (2.5). The elements of A[t] are exactly the elements in A[[t]] of the form→
f0 + f1t+ f2t

2 + · · ·+ fmt
m for some elements f0, f1, . . . , fm in A. This explains the

use of formal expansion f0 + f1t+ f2t
2 + · · · for power series.
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(2.7) Polynomials in several variables. Let A be a ring. We defined in Example
(?) the polynomial ring B = A[u] in the variable u over A. Similarly we can define→
the ring B[v] = A[u][v] in the variable v over B. Changing the notation we obtain in
the same way a ring A[v][u]. It is clear that there is a bijection between A[u][v] and
A[v][u] mapping u to v and v to u, and that this bijection preserves addition and
multiplication. We therefore can identify the two rings and write A[u, v] = A[u][v] =
A[v][u]. By induction on n we can thus define the polynomial ring A[t1, t2, . . . , tn] in
the variables t1, t2, . . . , tn over A for every natural number n.

(2.8) Polynomials in an arbitrary set of variables. We can use the inductive
procedure of Section (2.7) to define polynomial rings in any finite set of variables. In→
analogy with Section (2.5) we prefer however to define polynomial rings directly in→
terms of functions.

Let I be an index set. We define an additon on N(I) pointwise, that is, the sum
µ + ν of two functions !!µ : I → N and !!ν : I → N is defined by (µ + ν)(α) =nn

µ(α) + ν(α) for all α ∈ I. We consider I as a subset of N(I) identifying α ∈ I with
the function that maps α to 1 and all other elements in I to 0, and we write 0 for
the element of N(I) that maps all α ∈ I to 0.

Let A[tα]α∈I be the set of maps N(I) → A with finite support. We define addition
on A[tα]α∈I pointwise and multiplication by convolution. That is the sum and product
f + g, respectively fg, of two functions !!f : N(I) → A and !!g : N(I) → A with finitenn
support is given by:

(f + g)(µ) = f(µ) + g(µ), and (fg)(µ) =
∑

µ=ν+π

f(ν)g(π)

for all µ ∈ N(I). It is clear that A[tα]α∈I becomes a ring with this addition and
multiplication. The unit element 1 is defined by 1(µ) = 1 if µ = 0 and 1(µ) = 0 if
µ 6= 0. We call this ring the polynomial ring in the variables tα over A, or the ring

of polynomials in the variables tα with coefficients in A.
For every α ∈ I we have a map tα : N(I) → A defined by tα(α) = 1 and tα(µ) = 0

for µ 6= α. We have for every integer nα that tnαα (β) = 0 when β 6= nαα and
tnαα (nαα) = 1, where tnαα is the product of tα with itself nα times in the convolution

product. For every µ ∈ N(I) we let !!tµ =
∏
α∈I t

µ(α)
α =

∏
α∈J t

µ(α) for every finiten
subset J of I such that µ(α) = 0 for α ∈ I \ J . Then tµ(ν) is equal to 1 when
ν =

∑
α∈I µ(α)α and otherwise is equal to 0. Consequently we have that every

element f : N(I) → A in A[tα]α∈I with finite support can be written uniquely in the
form f =

∑
µ∈N(I) f(µ)tµ.

(2.9) Remark. When I = {1, 2, . . . , n} we have that Example (2.7) and Example→
(2.8) give the same ring A[tα]α∈I = A[t1, t2, . . . , tn].→
(2.10) Definition. A subring B of a ring A is a subgroup of A that contains the
unit 1A of A, with the property that for every pair f, g of elements in B the product
fg is in B.
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(2.11) Remark. A subring B of A is a ring under the addition and multiplication
induced by the addition and multiplication of A, and with the same unit as that of
A.

(2.12) Example. Each ring in the sequence Z ⊆ Q ⊆ R ⊆ C is a subring of the
following ring.

(2.13) Example. The polynomial ring A[t] in the variable t over the ring A is a
subring of the power series ring A[[t]] in the variable t over A when we identify a
polynomial f0+f1t+· · · fntn in A[t] with the power series f0+f1t+· · · fntn+0tn+1+
0tn+2 + · · · .
(2.14) Definition. A ring homomorphism, or a homomorphism of rings, !!ϕ : A→n
B from a ring A to a ring B is a map such that, for all elements f, g in A, the
following properties hold:

(1) ϕ(f + g) = ϕ(f) + ϕ(g) .
(2) ϕ(fg) = ϕ(f)ϕ(g).
(3) ϕ(1) = 1.

A homomorphism ϕ is an isomorphism if it has an inverse. Equivalently a homomor-
phism is an isomorphism if it is bijective. The inverse is then automatically a ring
homomorphism.

(2.15) Remark. Let ϕ : A→ B and !!χ : B → C be homomorphism of rings. Thenn
idA and χϕ : A → C are ring homomorphisms. In other words, the rings and their
homomorphisms form a category. We call this category the category of rings.

(2.16) Example. The homomorphism uZ/nZ : Z → Z/nZ defined in Example (2.3)→
is a ring homomorphism by definition.

(2.17) Example. Let A be a ring and g an element in A. The map A[t] → A
which to a polynomial f(t) = f0 + f1t + · · · + fnt

n associates the element f(g) =
f0 + f1g + · · ·+ fng

n is a ring homomorphism.

(2.18) Definition. An element f in a ring A is a zero divisor if f 6= 0 and there
is an element g 6= 0 in A such that fg = 0. A ring where all elements are non-zero
divisors is called an integral domain.

A nilpotent element in A is an element f such that fn = 0 for some natural number
n. We call the ring reduced when it has no non-zero nilpotent elements.

We call an element f in A a unit, or an invertible element, if there is an element
g in A such that fg = 1. The element g is unique, for if g′ is another element such
that fg′ = 1 then g′ = g′(fg) = (g′f)g = g. We call the element g = g′ the inverse

of the element f and denote it by !!f−1.n
If 1 6= 0 in A and all non-zero elements in A are units we call A a field.

(2.19) Example. Let p and q be prime numbers. In the ring Z/(pn) all the elements
in the ideal (p)/(pn) are nilpotent. All other elements are invertible. This is because,
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for any integer m, we can find integers r and s such that rm+ sp = 1. We have that
Z/(p) is a field.

In the ring Z/(pq) all non zero elements in the ideals (p)/(pq) and (q)/(pq) are
zero divisors. The ring is reduced. All the elements that are not contained in the
ideal (p)/(pq) or (q)/(pq) are invertible. This is because, for any integer m, we can
find integers r and s such that rm+ spq = 1.

(2.20) Example. Let f(t) = f0 + f1t+ · · ·+ fnt
n be a polynomial in the variable t

with coefficients in the ring A. When f(t) is a zero-divisor in A[t] there is an element
h ∈ A such that hf(t) = 0. In order to prove this we let g(t) = g0 + g1t+ · · · + gpt

p

be a non-zero polynomial of minimal degree in t with coefficients in A such that
f(t)g(t) = 0. We first prove by descending induction on q that fqg(t) = 0 for
q = 0, 1, . . . , n. Assume that we have shown that fq+1g(t) = fq+2g(t) = · · · =
fng(t) = 0 for some integer q satisfying 0 ≤ q ≤ n. Then we have that f(t)g(t) =
(f0 + f1t + · · · + fqt

q)g(t) = 0. However, then we have that fqgp = 0. In particular
we have that fqg(t) is of degree at most p − 1 and fqg(t)f(t) = 0. It follows from
the minimality of the degree of g(t) that fqg(t) = 0. We have thus proved that
fqg(t) = 0 for q = 0, 1, . . . , n. Consequently we have that fqgp = 0 for q = 0, 1, . . . , n,
and consequently that gpf(t) = 0.

In particular we have that if f(t) has one coefficient that is not a zero-divisor in
A then f(t) is not a zero divisor in A[t].

We can generalize the above Example to several variables. Let A[t1, t2, . . . , tn]
be the ring of polynomials in the independent variables t1, t2, . . . , tn with coeffi-
cients in A. When f(t1, t2, . . . , tn) is a zero-divisor in A[t1, t2, . . . , tn] there is an
element h in A such that hf(t1, t2, . . . , tn) = 0. In fact, write f(t1, t2, . . . , tn) =∑
µ∈I fµt

µ(1)
1 t

µ(2)
2 · · · tµ(n)

n with fµ in A, where I is a finite subset of Nn. We choose

an integer m which is strictly larger than all the coordinates µ(1), µ(2), . . . , µ(n) of
µ, for all µ in I. Then all the numbers µ(1)+µ(2)m+ · · ·+µ(n)mn−1 for µ in I are
different. We have that

f(t, tm, . . . , tm
n−1

) =
∑

µ∈I

fµt
µ(1)+µ(2)m+···+µ(n)mn−1

and we can use the first part of the example to conclude that there is an element
h in A such that hfµ = 0 for all µ ∈ I. Hence we have that hf(t1, t2, . . . , tn) =∑
µ∈I hfµt

µ(1)
1 t

µ(2)
2 · · · tµ(n)

n = 0 as asserted.

(2.21) Operations on rings. Let {Aα}α∈I be a collection of rings. As we saw in
(?) the product

∏
α∈I Aα is in a natural way an abelian group. We define a product→

on
∏
α∈I Aα by (fα)α∈I(gα)α∈I = (fαgα)α∈I . With this multiplication the product∏

α∈I Aα becomes a ring.

(2.22) Remark. The product
∏
α∈I Aα of a collection of rings {Aα}α∈I is a product

in the categorical sense. In other words
∏
α∈I Aα is the product in the category of

rings.
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(2.23) Notation. Let A be a ring and let {fα}α∈I be a collection of elements in

A. For every element µ ∈ N(I) we write !!fµ =
∏
α∈I f

µ(α)
α =

∏
α∈J f

µ(α)
α for everyn

finite subset J of I such that µ(α) = 0 for all α ∈ I \ J .

(2.24) Exercises.

1. Let A be a ring. Determine all ring homomorphisms Z → A.

2. Determine the units in the ring Z of integers.

3. Let A be a ring and let P(AA) be the subset of AA of polynomial maps, that is
maps ϕ : A→ A with the property that there exists a natural number n and elements
f0, f1, . . . , fn in A such that ϕ(g) = f0 + f1g + · · ·+ fng

n for all g in A.

(1) Show that the ring structure of AA with pointwise addition and multiplication
induces a ring structure on P(AA).

(2) Show that there is a natural surjective ring homomorphism A[x] → P(AA)
sending x to the identity map A→ A.

(3) Give an example where the map of part (2) is not an isomorphism.→
4. Show that there are no ring homomorphisms C → R from the complex to the
real numbers.

5. Show that the rational numbers Q, the real numbers R, and the complex numbers
C are fields.

6. Let !K! be a field.n

(1) Determine all the units in the polyomial ring K[t] in the variable t over K.
(2) Show that every homomorphism K → A of rings is injective.

7. Let {Aα}α∈I be a family of rings. Moreover, let ⊕α∈IAα be the group which is
the direct sum of the rings Aα considered as groups.

(1) Show that the multiplication on
∏
α∈I Aα induces a multiplication on the sum

⊕α∈IAα.
(2) Show that ⊕α∈IAα with addition and multiplication induced from

∏
α∈I Aα

is not a ring.

8. Let {Aα, ραβ}α,β∈I,α≤β be an inductive system of rings such that the maps ραβ are
ring homomorphisms for all α ≤ β.

(1) Show that the group lim
−→α∈I

Aα has a unique product that makes the group

lim
−→α∈I

Aα into a ring, in such a way that the canonical maps ρα : Aα →
lim
−→α∈I

Aα are ring homomorphisms.

(2) Let {Bα, σαβ }α,β∈I,α≤β be another inductive system of rings, and let ϕα :
Aα → Bα for α ∈ I be a map of inductive systems, where each ϕα is a ring
homomorphism.

Show that the resulting map lim
−→α∈I

ϕα : lim
−→α∈I

Aα → lim
−→α∈I

Bα is a ho-

momorphism of rings.
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9. Let G be an abelian group. We define an addition on the set Z ×G by (m,x) +
(n, y) = (m+ n, x+ y), and a multiplication by (m,x)(n, y) = (mn, nx+my).

(1) Show that Z ×G with this addition and multiplication is a ring.
(2) Find all the zero divisors in Z ×G.
(3) Find all the nilpotent elements of Z ×G.

10. Let p be prime number and let Z(p) be all rational numbers of the form m/n

such that p does not divide n. Show that !Z(p)! is a ring.n

11. Let A be a ring and let f, g be elements of A.

(1) Assume that f is a unit and that g is nilpotent. Show that the element f + g
is a unit.

(2) Assume that f and g are nilpotent. Show that the element f + g is nilpotent.
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3. Algebras.

(3.1) Definition. Let A be a ring. An A-algebra is a ring B with a fixed ring
homomorphism ϕ : A → B. For simplicity we often say that ϕ : A → B is an A-
algebra. In cases when it is unnecessary to refer explicitely to ϕ, it is more convenient
to say that B is an A-algebra. When ϕ is injective we often identify A with its image.

An A-algebra ψ : A→ C is a subalgebra an A-algebra ϕ : A→ B if C is a subring
of B and ψ(f) = ϕ(f) for all f in A.

Let ϕ : A → B and χ : A → C be two A-algebras. An A-algebra homomorphism,
or a homomorphism of A-algebras, is a ring homomorphism ψ : B → C such that
χ = ψϕ.

(3.2) Example. All rings A are Z-algebras under the unique homomorphism Z → A
that maps n to the sum n1A of the unit of A with itself n times. A ring homomorphism
is the same as a Z-algebra homomorphism.

(3.3) Example. The polynomial ring A[tα]α∈I in the variables tα over A, for α in
an index set I, is canonically an A-algebra under the ring homomorphism ϕ : A →
A[tα]α∈I that maps f ∈ A to the constant polynomial f . That is, to the polynomial
N(I) → A mapping 0 to f and the other µ ∈ N(I) to 0. The homomorphism ϕ is
clearly injective and we identify A with its image.

(3.4) Example. The power series in t with coefficients in A is canonically an
A-algebra under the ring homomorphism ϕ : A → A[[t]] that maps f ∈ A to the
constant power series. That is, to the power series that maps 0 to f and all the other
natural numbers to 0. The homomorphism ϕ is clearly injective. We identify A with
its image.

With the ideantification of Example (2.?) we have that A[t] is a subalgebra of→
A[[t]].

(3.5) Notation. Let ϕ : A→ B be an A-algebra. When the reference to ϕ is clear
we write fg = ϕ(f)g in B when f ∈ A and g ∈ B.

(3.6) Proposition. Let ϕ : A→ B be an A-algebra, and let {hα}α∈I be a collection
of elements of B. Then there is a unique homomorphism

A[tα]α∈I → B

of A-algebras that maps tα to hα for all α ∈ I.

Proof. Since every element f in A[tα]α∈I can be written in a unique way in the
form f(t) =

∑
µ∈N(I) f(µ)tµ, where only a finite number of the f(µ) are different

from zero and where tµ =
∏
α∈I t

µ(α)
α , it is clear that an A-algebra homomorphism

ϕ : A[tα]α∈I → B is uniquely determined by the equations ϕ(tα) = hα for all α
in I. Moreover it follows that we can define a map ϕ : A[tα]α∈I → B of sets by
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ϕ(f) =
∑
µ∈N(I) f(µ)hµ, where hµ =

∏
α∈I h

µ(α)
α . This map satisfies the relation

ϕ(tµ) = hµ for all µ ∈ N(I), and consequently we have that ϕ(tα) = hα for all α ∈ I.
It remains to prove that ϕ is a homomorphism of A-algebras. To this end let

f(t) =
∑
µ∈N(I) f(µ)tµ and g(t) =

∑
µ∈N(I) g(µ)tµ be elements of A[tα]α∈I , and let

e be an element of A. The following three sets of equalities express that ϕ is a
homomorphism of A-algebras:

ϕ(f + g) = ϕ(
∑

µ∈N(I)

f(µ)tµ +
∑

µ∈N(I)

g(µ)tµ) = ϕ(
∑

µ∈N(I)

(f(µ) + g(µ))tµ)

=
∑

µ∈N(I)

(f(µ) + g(µ))hµ =
∑

µ∈N(I)

f(µ)hµ +
∑

µ∈N(I)

g(µ)hµ = ϕ(f) + ϕ(g),

ϕ(ef) = ϕ(e
∑

µ∈N(I)

f(µ)tµ) = ϕ(
∑

µ∈N(I)

ef(µ)tµ)

=
∑

µ∈N(I)

ef(µ)hµ = e
∑

µ∈N(I)

f(µ)hµ = eϕ(f),

ϕ(fg) = ϕ(
∑

µ=ν+π

f(ν)g(π)tµ)

=
∑

µ=ν+π

f(ν)g(π)hµ =
∑

ν∈N(I)

f(ν)hν
∑

π∈N(I)

g(π)hπ = ϕ(f)ϕ(g).

(3.7) Remark. Let B be an A-algebra via the homomorphism ϕ : A → B, and
let {gα}α∈I be a collection of elements in B. It follows from Proposition (3.6) that→
we have a unique homomorphism ϕ : A[tα]α∈I → B defined by ϕ(tα) = gα. Since
A[tα]α∈I is an A-algebra it follows that the image of ϕ is an A-algebra. The image
consists of all elements in B of the form

∑
µ∈N(I) fµg

µ with fµ ∈ A and where only
a finite number of the fµ are non-zero.

(3.8) Definition. Let B be an A-algebra via the homomorphism ϕ : A→ B, and let
{gα}α∈I be a collection of elements in B. We denote by A[gα]α∈I the A-algebra in B
consisting of the elements of the form

∑
µ∈N(I) fµg

µ =
∑
µ∈N(I) ϕ(fµ)g

µ with fµ ∈ A,

and where only a finite number of the fµ are different from 0. The algebra A[gα]α∈I
is called the A-algebra generated by the elements {gα}α∈I . When B = A[gα]α∈I we
say that B is generated by the elements {gα}α∈I , and the elements gα are called the
generators of B as an A-algebra. We say that B is a finitely generated A-algebra, or
that the homomorphism ϕ is of finite type, if B = A[g1, g2, . . . , gn] for some elements
g1, g2, . . . , gn of B.

(3.9) Example. Let A be a ring and A[tα]α∈I the polynomial ring in the variables
{tα}α∈I over A. Then A[tα]α∈I is an A-algebra which is generated by the variables
tα for α ∈ I. It is finitely generated if exactly when the set I is finite.
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(3.10) Exercises.
1. Let B and C be A-algebras and ϕ : B → C a surjective map of A-algebras. Show
that when B is of finite type then C is of finite type.

2. Let B be a finitely generated A-algebra and C a finitely generated B-algebra.
Show that C is a finitely generated A-algebra.

3. Show that an A-algebra B is of finite type if and only if there is a surjective map
A[t1, t2, . . . , tn] → B of A-algebras.

4. Show that Q is not of finite type as a Z-algebra.

5. Let A[u, v] be a polynomial ring in the variables !u, v! over the ring A.n

(1) Show that all the elements of A[u, v] of the form
∑
m≤n fmnu

mun with fmn ∈
A and where only a finite number of of the fmn are non-zero, form an A-
algebra.

(2) Is the A-algebra of part (1) of finite type?→
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4. Ideals.

(4.1) Definition. An ideal !a! in a ring A is a subgroup of A such that for alln
elements f in A and g in a we have that fg ∈ a.

(4.2) Notation. Let {fα}α∈I be a family of elements fα in the ring A. We denote
by !!(fα)α∈I =

∑
α∈I Afα the subset of A consisting of all sumsn

∑

β∈J

gβfβ

for all finite subsets J of I with gβ ∈ A. It is clear that (fα)α∈I =
∑
α∈I Afα is an

ideal in A, and that it is the smallest ideal of A that contains the elements fα for all
α ∈ I.

When there is only one element f in the family we have that (f) = Af , the set of
all elements gf with g in A.

(4.3) Definition. We call (fα)α∈I =
∑
α∈I Afα the ideal generated by the elements

fα for α in I. The ideals of the form Af are called principal ideals.

(4.4) Example. The kernel Ker(ϕ) = {f ∈ A : ϕ(f) = 0} of a ring homomorphism
ϕ : A→ B is an ideal in A.

(4.5) Residue class rings. Let a be an ideal in the ring A. The residue class
group A/a of (?) has a unique multiplication that makes !!A/a into a ring in such a→n
way that the canonical homomorphism!!n

ϕA/a : A→ A/a

becomes a homomorphism of rings. This multiplication is defined by the equalities
ϕA/a(f)ϕA/a(g) = ϕA/a(fg) for all elements f, g in A.

(4.6) Lemma. Let a be an ideal in the ring A and let ϕA/a : A → A/a be the

canonical homomorphism. The image ϕA/a(b) of an ideal !!b that contains a is ann
ideal in A/a. Moreover the correspondence that maps b to ϕA/a(b) gives a bijection
between ideals in A that contain a and the ideals in A/a.

Proof. It is clear that ϕA/a(b) is an ideal in A/a and that ϕ−1
A/a(ϕA/a(b)) ⊇ b. More-

over it is clear that the inverse image by ϕA/a of an ideal in A/a is an ideal in A that
contains a.

To prove that the correspondence of the Lemma is a bijection it therefore suffices
to prove the inclusion ϕ−1

A/a(ϕA/a(b)) ⊆ b. Let f ∈ ϕ−1
A/a(ϕA/a(b)). Then we have

that ϕA/a(f) = ϕA/a(g) for some g ∈ b. Consequently we have that f − g is in the
kernel a of ϕA/a, that is f = g + h for some h ∈ a. Since both g and h are in b we
have that f ∈ b as we wanted to prove.
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(4.7) Operations on ideals. Let {aα}α∈I be a family of ideals in the ring A. The
intersection ∩α∈Iaα of the ideals aα is an ideal in A. The smallest subgroup

∑
α∈I aα

of A that contains all the groups aα is clearly an ideal of A. It is the smallest ideal
containing all the ideals aα, and it consists of the elements of the form

∑
β∈J fβ with

fβ ∈ aβ for all finite subsets J of I.

Let a1, a2, . . . , an be ideals in A. We denote by a1a2 · · · an the smallest ideal
containing all products of the form f1f2 · · · fn with fi ∈ ai for i = 1, 2, . . . , n. The
ideal a1a2 · · · an we call the product of the ideals a1, a2, . . . , an. It is clear that the
product consists of all finite sums of elements of the form f1f2 · · ·fn with fi ∈ ai for
i = 1, 2, . . . , n.

(4.8) Remark. Let f1, f2, . . . , fm be nilpotent elements in the ring A, and let a be
the ideal generated by these elements. Then there is an integer n such that an = 0.
This is because the elements of an are sums of product of n elements on the form
g1f1 + g2f2 + · · ·+ gmfm with gi ∈ A. However, the product of n such elements is a
sum of elements of the form gfn1

1 fn2
2 · · · fnmm with g ∈ A and n1 +n2 + · · ·+nm = n.

When we choose an integer p such that f pi = 0 for i = 1, 2, . . . ,m we have that
fn1
1 fn2

2 · · · fnmm = 0 when n = n1 + n2 + · · · + nm and n ≥ mp. Consequently we
obtain that an = 0 when n ≥ mp.

(4.9) Definition. An ideal !!p in the ring A is a prime ideal if it is different from A,n
and if f, g are elements in A such that if fg ∈ p, then f ∈ p or g ∈ p. Equivalently
we have that an ideal p is prime if for each pair of elements f, g in A that are not in
p we have that fg is not in p.

An ideal !!m of A is maximal if it is different from A and it is not contained inn
any ideal in A different from A and m. A ring with only one maximal ideal is called
a local ring. We shall denote by m = mA the maximal ideal in a local ring A. A
homomorphism ϕ : A → B of local rings is called local if it maps the maximal ideal
in A to the maximal ideal in B, or equivalently if we have ϕ−1(mB) = mA.

(4.10) Example. The prime ideals in Z are the ideals (p) = pZ generated by the
prime numbers p, and the ideal (0). We have that the maximal ideals are those
generated by the prime numbers.

(4.11) Example. Let p be a prime number and let Z(p) be the rational numbers of
the form m/n where p does not divide n. Then the ideal p = pZ(p) generated by p is
a prime ideal which is maximal, and (0) is a prime ideal. There are no other maximal
ideals in Z(p) because if q is an ideal that is not contained in p it must contain an
element m/n such that p divides neither n nor m. However, then m/n is invertible
in A and therefore generates the ideal A. Thus q = A. Hence Z(p) is a local ring.

(4.12) Example. Let K be a field. The ideals of the form (t1, t2, . . . , tm) =∑m
i=1K[t1, t2, . . . , tn]ti of the polynomial ring K[t1, t2, . . . , tn] are prime ideals, and

(t1, t2, . . . , tn) is maximal.
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(4.13) Proposition. Let a be an ideal in A.

(1) The ideal a is prime if and only if the ring A/a is an integral domain.
(2) The ideal a is maximal if and only if the ring A/a is a field.

Proof. (1) Let ϕA/a : A → A/a be the canonical homomorphism. Then f is not in

a if and only if ϕA/a(f) is not zero in A/a. Hence assertion (1) follows from the→
equality ϕA/a(f)ϕA/a(g) = ϕA/a(fg) valid for all pairs of elements f, g of A.

(2) We have that a is maximal if and only if Af + a = A for all elements f /∈ a.
However the equality Af + a = A is equivalent to the existence of an element g of A
such that gf + h = 1 for some element h ∈ a, that is the existence of an element g
such that ϕA/a(g)ϕA/a(f) = 1. Hence a is maximal if and only if ϕA/a(f) is a unit
in A/a for all f ∈ A \ a.

(4.14) Definition. A non-empty subset !!S of a ring A is called multiplicativelyn
closed if it contains 1 and for every pair s, t of elements in S the product st lies in S.

(4.15) Example. Let A be a ring and let p be a prime ideal. Then A \ p is a mul-
tiplicatively closed subset of A. Let f ∈ A. Then {1, f, f 2, . . .} is a multiplicatively
closed subset of A. We also have that the collection of all elements of A different
from 0 that are not zero divisors is a multiplicatively closed subset of A.

(4.16) Lemma. Let a be an ideal in a ring A and let S be a multiplicatively closed
subset of A that does not intersect a. Then there is a prime ideal p in A that contains
a and that does not intersect S.

Moreover, every ideal in the ring A which is different from A is contained in a
maximal ideal.

Proof. Let !!I be the set of all ideals in A that contain a and that do not intersectn
S. We order the elements of I by inclusion. For every chain {aα}α∈I of elements in
I the union a = ∪α∈Iaα of the ideals aα clearly is an ideal in A which is different
from A and does not intersect S. Hence every chain in I has a maximal element.
It follows from Zorns Lemma that the set I contains a maximal element p. When
S = {1} we have that p is a maximal ideal in A.

It remains to prove that p is a prime ideal. Let f and f ′ be elements in A that
are not in p. We must show that ff ′ is not in p. Since p is maximal in I the ideals
fA+ p and f ′A+ p of A both intersect S. Hence there are elements g, g′ in A, h, h′

in p, and s, s′ in S such that fg+h = s and f ′g′ +h′ = s′. Since ss′ ∈ S the product
(fg + h)(f ′g′ + h′) is not in p. Since h and h′ both are in p, we therefore have that
ff ′ can not be in p, as we wanted to prove.

(4.17) Remark. Let A be a ring and m an ideal in A. Then A is a local ring with
maximal ideal m if and only if all elements in A \ m are invertible in A.

It is clear that if all the elements of A \ m are invertible then m is maximal and
A can not have other maximal ideals than m. Conversely if A is a local ring with
maximal ideal m and f ∈ A\m, then f must be invertible. In fact, if f is not invertible
we can by Lemma (?) find a maximal ideal containing f , and thus different from m.→
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(4.18) Proposition. Let a be an ideal in the ring A. The intersection of all prime
ideals that contain a is equal to the set of nilpotent elements {f ∈ A : fnf ∈
a for some natural number nf} of A.

In particular the nilpotent elements of A form an ideal of A.

Proof. If fn ∈ a we have have that f is contained in all the prime ideals that contain
a and hence in the intersection of all these ideals.

It remains to prove that, if f is an element in A such that fn is not in a for
any positive integer n, then f is not in some prime ideal containing a. However,
when fn is not in a for any positive integer n the ideal a does not intersect the
multiplicatively closed subset {1, f, f 2, . . .} of A. It follows from Lemma (4.2) that→
we can find a prime ideal p of A containing a that does not intersect S, as we wanted
to prove.

(4.19) Definition. Let A be a ring and let E be a subset of A. We write !!r(E) =n
rA(E) = {f ∈ A : fnf ∈ E for some natural number nf}. Let a be an ideal in A.
The ideal r(a) we call the radical of a, and the ideal r(0) = rA(0) we call the radical

of A.

(4.20) Example. When p is a prime ideal of the ring A we have that r(pn) = p for
all positive integers n. It is clear that p ⊆ r(pn). Conversely, if f /∈ p we have that
fm /∈ p for all natural numbers m. In particular fm /∈ pn for all natural numbers m.
That is, we have that f /∈ r(pn).

(4.21) Remark. Let a be an ideal in the ring A and let ϕA/a : A → A/a be the

canonical homomorphism. Then rA(a) = ϕ−1
A/a(rA/a(0)). This is because for f ∈ A

we have that fn ∈ a if and only if ϕA/a(f)n = 0.

(4.22) Proposition. Let A be a ring and let p1, p2, . . . , pn be prime ideals in A.

(1) If a is an ideal of A such that a ⊆ ∪ni=1pn, then a ⊆ pi for some i.
(2) If a1, a2, . . . , an are ideals in A and p is a prime ideal of A such that ∩ni=1ai ⊆ p,

then ai ⊆ p for some i.

Proof. (1) We show assertion (1) by induction on n. For n = 1 the assertion is→
clear. Assume that assertion (1) holds for n − 1. If a ⊆ ∪j∈Jpi for some subset→
J of {1, 2, . . . , n} with less than n elements assertion (1) follows by the induction→
hypothesis. We prove assertion (1) by showing that if a is is not contained in the
union of the ideals p1, . . . , pi−1, pi+1, . . . , pn for any i, then a can not be contained in
∪ni=1pi. In fact we can then find, for each i, an element fi ∈ a ∩ pi such that fi /∈ pj
when i 6= j. Then

f1 · · · fi−1fi+1 · · · fn =

{
/∈ pi

∈ pj j 6= i

Hence exactly one term in the sum f =
∑n
i=1 f1 · · · fi−1fi+1 · · · fn is not in pj , and

thus f /∈ pj for j = 1, 2, . . . , n. Since f ∈ a we can not have that a ⊆ ∪ni=1pi.
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(2) If ai 6⊆ p for all i we can find an fi ∈ ai\p for i = 1, 2, . . . , n. Then we have that
f1f2 · · ·fn ∈ a1a2 · · · an ⊆ ∩ni=1ai. On the other hand we have that f1f2 · · · fn /∈ p,
which contradicts the assumption that ∩ni=1ai ⊆ p.

(4.23) Exercises.
1. Let K be a field and let K[t] be the polynomial ring in the variable t over K.

(1) Find all non-zero divisors in the residue class ring k[t]/(t2).
(2) Find all the units in the residue class ring k[t]/(t2).

2. Let n be a positive integer.

(1) Determine for which integers n the ring Z/nZ is an integral domain.
(2) Determine for which integers n the ring Z/nZ is a field.

3. Let Z[t] be the polynomial ring in the variable t over Z.

(1) Show that (2, t2 + 1) is a maximal ideal.
(2) Is the ideal (t+ 3, t2 + 2) a maximal ideal?

4. Let K be a field, and let K[u, v] be the polynomial ring in the independent
variables u, v over K. Show that K[u, v]/(v2 − u3) is an integral domain.

5. Let K be a field and let I be an infinite set.

(1) For each β ∈ I we let aβ = {(fα)α∈I : fβ = 0}. Show that the ideals aβ are
maximal ideals in KI .

(2) Show that there are other maximal ideals than the ideals aβ for β ∈ I.

6. Let p be a prime number and let Z(p) be the ring of rational numbers of the form
m/n such that p does not divide n. Let m be the maximal ideal pZ(p) of Z(p). Show
that the residue ring Z(p)/m is canonically isomorphic to Z/(p).

7. Let A[t] be the polynomial ring in the variable t with coefficient in A and let p

be a prime ideal in A. Show that the set pA[t] of all polynomials with coefficietns in
p form a prime ideal in A[t].

8. Let K[u, v] be the polynomial ring in the two variables u and v over the field K.
Is the union (u) ∪ (v) of the two ideals (u) and (v) of K[u, v] an ideal?

9. Show that if A is a ring such that 1 6= 0 then A has minimal prime ideals.

10. Let K be a field an let K[t] be the ring of polynomials in the variable t over K.
Moreover, let A = K[t]/(t2(t− 1)3).

(1) Determine the radical of A.
(2) Determine the prime ideals of A whose intersection is the radical of A.

11. Let K be a field and let K[u, v] be the ring of polynomials in the variables u, v
with coefficients in K. Moreover, let A = K[u, v]/(u2, uv).

(1) Find the radical of A.
(2) Determine the prime ideals of A whose intersection is the radical of A.

12. Let A be a ring and let a and b be ideals in A.

(1) Show that if a ⊆ b then r(a) ⊆ r(b).
(2) Show that r(r(a)) = r(a).
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13. Let A be a ring. Show that the following assertions are equivalent:

(1) Every element in A is either a unit or is nilpotent.
(2) The ring A has exactly one prime ideal.
(3) The ring A/r(0) is a field.

14. Let D[u, v, w] be the polynomial ring in the variables u, v, w over a field K.
Moreover, let a = (u, v) and b = (v, w). Is the set {fg : f ∈ a, g ∈ b} an ideal?

15. Let A be a local ring. Show that if f is a non-zero element in A that is nilpotent,
that is f2 = f , then f is a unit in A.
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5. The Zariski topology.

(5.1) Notation. Let A be a ring. We denote by !!Spec(A) the set consisting ofn

all prime ideals in A. For every subset E of A we denote by !!V (E) the subset ofn
Spec(A) consisting of all prime ideals that contain E.

Let f be an element of A. We write !!D(f) = Spec(A) \ V (f) for the set of primen
ideals not containing f .

It is often useful to distiguish between the prime ideals of A and the elements of
the set Spec(A). We therefore denote by !!jx the prime ideal corresponding to then
element x of Spec(A).

(5.2) Remark. Let E and F be subsets of a ring A.

(1) If E ⊆ F then V (F ) ⊆ V (E).
(2) Let a be the ideal generated by the elements of E. Then V (a) = V (E).

The inclusion V (a) ⊆ V (E) follows from the first Remark. To prove the
opposite inclusion we take a prime ideal p that does not contain a. Then it
can not contain all elements of E. Consequently p does not contain E, and
V (E) ⊆ V (a) as we claimed.

(5.3) Proposition. Let A be a ring.

(1) We have that V (0) = Spec(A), and V (1) = ∅.
(2) For every collection {aα}α∈I of ideals aα in A we have that

⋂

α∈I

V (aα) = V (
∑

α∈I

aα).

(3) Let a1, a2, . . . , an be ideals in A. Then

V (a1) ∪ V (a2) ∪ · · · ∪ V (an) = V (a1a2 · · ·an).

Proof. (1), (2) The assertions (1) and (2) are easily checked.→→
(3) If we can prove the third assertion for n = 2, we can prove it for any n by

induction on n. To prove the assertion for n = 2 we observe that the inclusion
V (a1)∪ V (a2) ⊆ V (a1a2) is obvious. We shall prove the opposite inclusion. Let p be
a prime ideal that contains neither a1 nor a2. Then we can find elements f1 ∈ a1 \ p

and f2 ∈ a2 \ p. Since the ideal p is prime it follows that f1f2 is not in p. Hence p

does not contain the ideal a1a2 and we have proved that V (a1a2) ⊆ V (a1) ∪ V (a2).

(5.4) The Zariski topology. It follows from Proposition (5.3) that the collection→
of subsets X \ V (a) of Spec(A) for all ideals a in A makes Spec(A) into a topological
space with open sets X \ V (a). The closed sets of the topology are the sets V (a) for
all ideals a in A, or equivalently the sets V (E) for all subsets E of A.

The sets of the form D(f) for f ∈ A are open, and the collection of open sets
{D(f)}f∈A is a basis for the topology of Spec(A). In fact we take an open subset
U = X \ V (a) in X and x ∈ U . That is a 6⊆ jx. Then there is an element f ∈ a \ jx.
Hence x ∈ D(f) and D(f) ⊆ X \ V (a) = U .
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(5.5) Example. When A is a field the topological space Spec(A) consists of the
point corresponding to the ideal (0) of A.

(5.6) Example. We have that Spec(Z) consists of the closed points corresponding
to prime numbers of Z, and the generic point corresponding to the ideal (0).

(5.7) Example. Let p be a prime number and Z(p) the ring of rational numbers
of the form m/n where p does not divide n. Then Spec(Z(p)) consists of the closed
point corresponding to the maximal ideal pZ(p), and the generic point corresponding
to the ideal (0) of Z(p).

(5.8) Remark. Under the correspondence that maps a point x ∈ Spec(A) to the
prime ideal jx in A, the closed points correspond to the maximal ideals. In fact
the points in the closure {x} of x in Spec(A) correspond to the prime ideals of A
containing jx.

(5.9) Remark. Let a be an ideal in the ring A. Then the bijection between
ideals in the residue ring A/a and the ideals of A containing a, via the canoni-
cal homomorphism ϕA/a : A → A/a descibed in Section (?), gives a bijection be-→
tween Spec(A/a) and V (a). We give V (a) the topology induced from the topology
on Spec(A). Then the bijection is an isomorphism of topological spaces because
D(ϕA/a(f)) in Spec(A/a) corresponds to D(f) in Spec(A) for all f ∈ A.

(5.10) Maps. Let ϕ : A → B be a homomorphism of rings. For every prime ideal
q in B we have that ϕ−1(q) is a prime ideal in A. Consequently we obtain a map of
topological spaces !!aϕ : Spec(B) → Spec(A).n

(5.11) Proposition. Let ϕ : A→ B be a homomorphism of rings. For each ideal a

of A we have that aϕ−1(V (a)) = V (ϕ(a)).
In particular aϕ−1(D(f)) = D(ϕ(f)) for all f ∈ A, and aϕ is a continuous map of

topological spaces.

Proof. For x ∈ SpecB we have that aϕ(x) ∈ V (a) if and only if ϕ−1(jx) ⊇ a, that
is, if and only if jx ⊇ ϕ(a). However jx ⊇ ϕ(a) if and only if x ∈ V (ϕ(a)). Hence
aϕ(x) ∈ V (a) if and only if x ∈ V (ϕ(a)) and we have proved the first assertion. The
last assertions follow from the first since D(f) = Spec(A) \ V (f).

(5.12) Remark. Let a and b be ideals in the ring A. We have that V (a) = V (r(a))
and V (a) ⊆ V (b) if and only if b ⊆ r(a). In fact r(a) is the intersection of all prime
ideals of A containing a. We have, in particular that V (a) = V (b) if and only if
r(a) = r(b).

(5.13) Proposition. Let A be a ring and a an ideal in A. The closed subset V (a)
of the topological space Spec(A) is irreducible if and only if the radical r(a) of A is
a prime ideal.

In particular the correspondence that maps a prime ideal p to the irreducible
closed subset V (p) of Spec(A) is a bijection between the prime ideals of A and the
irreducible closed subsets of Spec(A).
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Proof. It follows from the isomorphism of topological spaces between Spec(A/a) and
V (a) of Remark (5.9), and from Remark (4.21) that it suffices to consider the par-→→
ticular case when a = 0.

The topological space Spec(A) is irreducible if and only if, for each pair of elements
f, g in A we have that D(f) 6= ∅ and D(g) 6= ∅ implies that D(fg) = D(f)∩D(g) 6= ∅.
It follows from Proposition (4.18) that D(h) = ∅ for an element h ∈ A if and only→
if h is nilpotent, that is, if and only if h ∈ r(0). Hence Spec(A) is irreducible if and
only if f /∈ r(0) and g /∈ r(0) implies that fg /∈ r(0). That is, Spec(A) is irreducible
if and only if r(0) is a prime ideal.

(5.14) Proposition. Let ϕ : A → B be a homomorphism of rings. For every ideal

b in B we have that aϕ(V (b)) = V (ϕ−1b).

Proof. It is clear that aϕ(V (b)) ⊆ V (ϕ−1b), and consequently that we have an

inclusion aϕ(V (b)) ⊆ V (ϕ−1b). To prove the opposite inclusion we take a point

x /∈ aϕ(V (b)). Then there is a neighbourhood D(f) of x for some f ∈ A that does not
intersect aϕ(V (b)), that is f /∈ jx and f ∈ ϕ−1(jy) for all y ∈ V (b). Hence ϕ(f) ∈ jy
for all y ∈ V (b), that is, the element ϕ(f) is in r(b). However, then ϕ(fn) ∈ b

for some positive integer n, and thus fn ∈ ϕ−1(b). Since fn /∈ jx we have that

jx 6⊇ ϕ−1(b), that is x /∈ V (ϕ−1(b)). We obtain the inclusion V (ϕ−1(b)) ⊆ aϕ(V (b))
that we wanted to prove.

(5.15) Definition. Let A be a ring. The dimension of A is the dimension of the
topological space Spec(A). That is, the dimension of A is the supremum of the length
n of the chains p0 ⊃ p1 ⊃ · · · ⊃ pn of prime ideals pi in A. We denote the dimension
of A by dim(A). For every prime ideal p of A the height of p in A is the codimension
of the irreducible subset V (a) of Spec(A). That is, the height of p is the supremum
of the lengths n of the chains p = p0 ⊃ p1 ⊃ · · · ⊃ pn of prime ideals pi of A. We
denote the height of p by ht(p) = htA(p). When there exists arbitrary long chains
we say that A has infinite dimension.

(5.16) Example. We have that dim(Z) = 1.

(5.17) Example. Let p be a prime number and Z(p) the ring of rational numbers
of the form m/n such that p does not divide n. Then dim(Z(p)) = 1.

(5.18) Example. When A is a field dim(A) = 0.

(5.19) Example. Let K[t1, t2, . . . ] be the polynomial ring in the infinitely many
variables t1, t2, . . . over K. Then the dimension of K[t1, t2, . . . ] is infinite because
there is an infinite chain (t1) ⊂ (t1, t2) ⊂ · · · of prime ideals (t1, t2, . . . , tn) =∑n
i=1K[t1, t2, . . . ]ti.

(5.20) Theorem. Let {fα}α∈I be a family of elements in A, and let f ∈ A.

(1) We have that D(f) ⊆ ∪α∈ID(fα) if and only if f ∈ r(
∑
α∈I Afα).

(2) (Partition of unity) When D(f) ⊆ ∪α∈ID(fα) there is a finite subset J of
I with the property that for every family !!{nβ}β∈J of positive integers nβn
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there is a positive integer n and a family {gβ}β∈J of elements gβ of A such
that

fn =
∑

β∈J

f
nβ
β gβ.

(3) The open subset D(f) of Spec(A) is compact.

Proof. (1) We let a =
∑

α∈I Afα be the ideal generated by the elements fα for all
α ∈ I. We have that D(f) ⊆ ∪α∈ID(fα) if and only if every prime ideal p that
does not contain f does not contain fα for some α ∈ I. That is, if and only if
every prime ideal that contains the elements fα for all α ∈ I also contains f . Hence
D(f) ⊆ ∪α∈ID(fα) if and only if f ∈ r(a).

(2) When D(f) ⊆ ∪α∈ID(fα) we have that f ∈ r(a). Consequently there is a
positive integer n and a finite subset J of I such that fn =

∑
β∈J fβhβ with hβ ∈ A

for all β in a finite set J . Hence f ∈ r((fβ)β∈J) and it follows from assertion (1)→
that D(f) ⊆ ∪β∈JD(fβ). However D(fβ) = D(f

nβ
β ) for all positive integers nβ.

Consequently D(f) ⊆ ∪β∈JD(f
nβ
β ), and using assertion (1) once more we obtain the→

inclusion f ∈ r((f
nβ
β )β∈J) which is equivalent to the equality of assertion (2).→

(3) When D(f) is covered by a family {Uα}α∈I of open sets, we can cover each Uα
with open sets of the form D(g) for some g ∈ A. To show that D(f) is compact it
therefore suffices to prove that when D(f) ⊆ ∪α∈ID(fα) there is a finite subset J of
I such that D(f) ⊆ ∪β∈JD(fβ). However, this we verified in the proof of assertion
(2).→

(5.21) Exercises.

1. Show that the space Spec(A) is Kolmogorov.

2. Find all the closed sets subset of the topological space Spec(Z).

3. Let Z(p) be the ring of all rational numbers of the form m/n such that p does
not divide n. Let x0 and x1 be the points of Spec(Z(p)) corresponding to the prime
ideals (0), respectively pZ(p), of Z(p), and let x be the point of Spec(Q).

(1) Find all the open and closed subsets of the topological space Spec(Z(p)).
(2) Let aϕ : Spec(Q) → Spec(Z(p)) be the continuous map corresponding to the

inclusion Z(p) ⊆ Q. Describe the image of x by aϕ.
(3) Let ψ : Spec(Q) → Spec(Z(p)) be the map defined by ψ(x) = x1. Show that

ψ is continuous, but does not come from a ring homomorphism Z(p) → Q.

4. Let G be a group. What is the dimension of the ring Z×G with additon defined
by (m,x) + (n, y) = (m + n, x + y), and multiplication defined by (m,x)(n, y) =
(mn,my + nx)?

5. Let K be a field and let A = K[t1, t2, . . . , tn] be the polynomial ring in the
variables t1, t2, . . . , tn over K. Denote by a the ideal generated by the elements titj
for i, j = 1, 2, . . . , n. Determine the dimension of the ring A/a.
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6. Let K be a field and let A = Kn be the product of the field K with itself n times.

(1) Describe Spec(A).
(2) What is the dimension of Spec(A)?

7. Let A = Zn be the cartesian product of the ring Z with itself n times.

(1) Describe Spec(A).
(2) What is the dimension of Spec(A)?

8. A topological space X is connected if there is no non-empty subset of X different
from X. Let A be a ring and let X = Spec(A). Show that the following assertions
are equivalent:

(1) The space X = Spec(A) is not connected.
(2) There are elements f and g in A such that fg = 0, f 2 = f , g2 = g, and

f + g = 1.
(3) The ring A is isomorphic to a direct product B × C of two rings B and C.

9. Let A be a ring and let f ∈ A. Show that the open subset D(f) of Spec(A) is
empty if and only if f is nilpotent in A.
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Sheaves

1. Sheaves.

(1.1) Presheaves and sheaves. Let X be a topological space and B a basis for
the topology. A presheaf !!F on B consists of a set F(U) for each subset U of Xn
belonging to B, and for every inclusion U ⊆ V of subsets of X belonging to B a map
!!n

ρVU = (ρF)VU : F(V ) → F(U)

such that for all inclusions U ⊆ V ⊆W of sets belonging to B we have:

(1) ρUU = idF(U).

(2) ρWU = ρVUρ
W
V .

We call the elements in F(U) sections of F over U . The maps ρVU we call restriction
maps, and for a section s ∈ F(V ) over V we call ρVU (s) the restriction of s to U .

The presheaf F is called a sheaf on B if we for all collections {Uα}α∈I of subsets
Uα of X belonging to B with union U = ∪α∈IUα belonging to B have:

(F1) For every pair of sections s, t in F(U) such that

ρUUα(s) = ρUUα(t)

for all α ∈ I, we have that s = t.
(F2) For every collection {sα}α∈I of sections sα ∈ F(Uα) that satisfy the condition

ρUαV (sα) = ρ
Uβ
V (sβ)

for all α, β in I, and all V belonging to B with V ⊆ Uα∩Uβ , there is a section
s in F(U) restricting to Uα for all α ∈ I, that is,

ρUUα(s) = sα

for all α ∈ I.

A presheaf, or sheaf, that is defined on all the open subsets of X is called a presheaf

respectively a sheaf on X.

(1.2) Remark. If follows from property (F1) that the section s of property (F2)→→
i unique. Moreover from the equality ∅ = ∅ ∪ ∅ is follows from property (F2) for→
sheaves that when not all the F(U) with U belonging to B are empty we have that
F(∅) consists of exactly one element.

43
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(1.3) Remark. A presheaf is the same as a contravariant functor from the category
of open sets of X, with inclusions as maps, to the category of sets.

(1.4) Example. Let X be a topological space and E a set. Let F(U) = E for
all non-empty open subsets U of X, and let ρVU = idE for all inclusions U ⊆ V of
non-empty open subsets of X. Then F is a presheaf that we call the constant presheaf

with fiber E. This presheaf is not necessarily a sheaf. If there are two disjoint non-
empty subsets U and V of X and there are two different elements s and t in E, there
can be no section in F(U ∪ V ) = E which maps to s and t by the restriction ρU∪V

U

respectively ρU∪V
V .

(1.5) Example. Let X and Y be be topological spaces. For every open subset U
of X we let F(U) be all continuous maps U → Y , and for each inclusion U ⊆ V of
open subsets of X we let ρVU be the map that takes a continuous map ϕ : V → Y to
its restriction ϕ|U : U → Y to U . Then F with the maps ρVU is a sheaf on X.

(1.6) Example. Let X be a topological space and let {Ex}x∈X be a collection of
sets. For every open subset U of X we let F(U) =

∏
x∈U Ex, and for every inclusion

U ⊆ V of open subsets of X we let ρVU :
∏
x∈V Ex → ∏

x∈U Ex be the projection.

Then F with the maps ρVU is a sheaf on X.

(1.7) Example. Let F be a presheaf on X and let W be an open subset of X.
We define a presheaf F|W on W by (F|W )(U) = F(U) for all open subsets U of X
contained in W , and take (ρF|W )VU = (ρF)VU for all inclusions U ⊆ V of open subsets
of X contained in W .

When F is a sheaf on X we have that F|W is a sheaf on W . We call F|W the
restriction of F to W .

(1.8) Example. Let X be a topological space and let Y be a closed subset. We
give Y the topology induced by the topology on X. Let G be a presheaf on Y . We
define a presheaf F on X by F(U) = G(U ∩ Y ) for every open subset U of X, and
(ρF)VU = (ρG)V ∩Y

U∩Y for all inclusions U ⊆ V of open subsets of X.
When G is a sheaf we have that F is a sheaf. We call F the extension of G to X.

(1.9) Definition. Let X be a topological space and F and G presheaves defined on
a basis B of the topology. A homomorphism !!u : F → G of presheaves is a map !!nn

uU : F(U) → G(U)

for each subset U of X belonging to B, such that if U ⊆ V is an inclusion of subsets
of X belonging to B then the diagram

F(V )
uV−−−−→ G(V )

(ρF )VU

y
y(ρG)VU

F(U) −−−−→
uU

G(U)
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commutes.
A homomorphism of sheaves, or a homomorphism from a presheaf to a sheaf on

B, is a homomorphism of presheaves, when we consider the sheaves as presheaves.
When B consists of all open sets in X we say that u is a homomorphism of presheaves
on X. All homomorphisms u : F → G of sheaves, or presheaves, on X we denote by
Hom(F ,G).

An isomorphism of sheaves is a homomorphism u : F → G that has an inverse.
Equivalently the maps uU for all U in B are isomorphisms. The inverses of the maps
uU then define a homomorphism of sheaves G → F .

(1.10) Remark. Let u : F → G and v : G → H be homomorphisms of presheaves
on B. Then idF and vu : F → H are homomorphisms of presheaves on B. In other
words the presheaves on B together with the homomorphisms of presheaves on B

form a category. Hence the sheaves defined on B also form a category.

(1.11) Stalks. Let X be a topological space and B a basis for the topology on X.
Moreover, let F be a presheaf on B. For every point x of X we define the stalk !!Fxn
of F at x by:

Take !!Rx to be the family of all pairs (U, t) where U is a neighbourhood of xn

belonging to B, and t ∈ F(U). We define a relation !!∼ on Rx by (U, s) ∼ (V, t) ifn
there is an open neighbourhood W of x belonging to B contained in U ∩V such that
ρUW (s) = ρVW (t). It is clear that ∼ is an equivalence relation on Rx. We define Fx as
the equivalence classes !!Rx/∼ of Rx modulo the relation ∼.n

For every neighbourhood U of x belonging to B we have a canonical map!!n

ρUx = (ρF )Ux : F(U) → Fx
that takes a section s of F(U) to the class of (U, s) in Fx. We write !!ρUx (s) = sx andn
call sx the germ of the section s at x.

For every inclusion U ⊆ V of open neighbourhoods of x belonging to B we have

ρVx = ρUx ρ
V
U .

When F is a sheaf on B we let Fx be the stalk of F when F is considered as a
presheaf.

When u : F → G is a homomorphism of presheaves on B we obtain for each point
x in X a map of stalks!!n

ux : Fx → Gx
by mapping the class sx of a pair (U, s) where U is a neighbourhood of x belonging
to B and s ∈ F(U) to the class of (U, uU (s)) in Gx. It is clear that the map is
independent of the choice of representative (U, s) of the class sx, and that for all U
belonging to B and for all x ∈ U we have that

ux(ρF)Ux = (ρG)Ux uU .

(1.12) Example. Let X be a topological space and let E be a set. When F is the
presheaf defined in Exercise (?) we have that Fx = E for all x ∈ X.→
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(1.13) Example. Let X be a topological space and let W be an open subset of
X. Moreover let F be a sheaf on X and F|W the restriction of F to W defined in
Example (?). Then (F|W )x = Fx for all x ∈ W .→
(1.14) Example. Let X be a topological space and let Y be a closed subset of
X. Moreover let G be a presheaf on Y and F the extension of G to X defined in
Excercise (?). Then Fx = G(∅) for all x ∈ X \ Y and Fx = Gx for all x ∈ Y .→
(1.15) Characterization of sheaves. Let X be a topological space and let B be
a basis for the topology. Moreover let F be a presheaf on B. For every open subset
U belonging to B we let

πU : F(U) →
∏

x∈U

Fx

be the map that takes s to (sx)x∈U . The following assertions are equivalent:

(1) The presheaf F is a sheaf.
(2) We have

(i) The maps πU are injective for all open subsets U belonging to B.
(ii) The image of F(U) by πU consists exactly of the elements (sx)x∈U of∏

x∈U Fx with the property that for each x ∈ U there is a neighbourhood
Ux of x belonging to B contained in U , and a section s(x) ∈ F(Ux) such
that sy = s(x)y for all y ∈ Ux.

(2) ⇒ (1) With the notation of property (F1) for sheaves we have that sx = tx for→
all x ∈ Uα, and consequently sx = tx for all x ∈ U . Since πU is injective by property
(i) we have that s = t. Hence the property (F1) for sheaves holds.→

We shall prove that property (F2) of sheaves holds. With the notation of property
(F2) for sheaves we have that (sα)x = (sβ)x for all x contained in an open set V→
belonging to B and contained in Uα ∩ Uβ. Hence (sα)x = (sβ)x for all x ∈ Uα ∩ Uβ.
We can therefore define an element (sx)x∈U ∈∏x∈U Fx by sx = (sα)x for any α such
that x ∈ Uα. Then (sx)x∈U is in πU (F(U)) by property (ii) because for each x ∈ U
we can take Ux = Uα and take s(x) = sα ∈ F(Ux) for any α such that x ∈ Uα. Then
sy = (sα)y = s(x)y for all y ∈ Ux = Uα. Finally ρUUα(s) = sα since the projection of
s = (sx)x∈U by

∏
x∈U Fx → ∏

x∈Uα
Fx is (sx)x∈Uα = ((sα)x)x∈Uα = sα. Hence we

have proved that property (F2) for sheaves holds.→
(1) ⇒ (2) Let F be a sheaf. We first prove that property (i) of assertion (2) holds.→→

If s and t are sections of F(U) such that sx = tx for all x ∈ U , then, for each x ∈ U ,
there exists a neighbourhood Ux of x contained in U such that ρUUx(s) = ρUUx(t). Since

the sets Ux for all x ∈ U cover U it follows from property (F1) for sheaves that s = t.→
Hence property (i) holds.→

The images by πU of the sections of F(U) satisfy property (ii) of assertion (2)→→
since for s ∈ F(U) we can take Ux = U and s(x) = s for all x ∈ U .

Conversely let (sx)x∈U ∈ ∏
x∈U Fx satisfy the condition of (ii), We shall show

that (sx)x∈U is in the image of πU . By property (F1) of sheaves we then have→
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ρUxUx∩Ux′ (s(x)) = ρ
Ux′
Ux∩Ux′

(s(x′)) for all x, x′ in U . Hence ρUxV (s(x)) = ρ
Ux′
V (s(x′)) for

all neighbourhoods V belonging to B and contained in Ux ∩ Ux′ and it follows from
property (F2) for sheaves that there is an s ∈ F(U) such that ρUUx(s) = s(x) for all→
x ∈ U . It follows that ρUx (s) = ρUxx ρUUx(s) = ρUxx (s(x)) = sx for all x ∈ U . Hence
πU (s) = (sx)x∈U as we wanted to prove.

(1.16) Remark. When F is a sheaf on B we shall we shall always identify F(U)
with its image by the map πU : F(U) →∏

x∈U Fx, for all open subsets U of X .

(1.17) Remark. Let u : F → G be a map of sheaves defined on B. For every open
set U belonging to B we obtain a map

∏
x∈U ux :

∏
x∈U Fx → ∏

x∈U Gx. It is clear
that this map induces the map uU : F(U) → G(U). In particular the map u : F → G
is determined by the maps ux : Fx → Gx for all x ∈ U .

(1.18) Remark. Let X be a topological space with a basis B of the topology, and
let F be a presheaf on X. We denote by F|B the restriction of F to B. That is
for each inclusion U ⊆ V of open sets belonging to B, we let (F|B)(U) = F(U) and
(ρF|B)VU = (ρF)VU . For all x ∈ X we have a canonical bijection i : (F|B)x → Fx
which maps the class in (F|B)x of a pair (U, s) with U belonging to B to the class in
Fx of the same pair. To prove that the map i is a bijection we define its inverse. Let
sx be an element in Fx which is the class of a pair (V, s) where V is a neighbourhood
of x and s ∈ F(V ). Since B is a basis for the topology there is a neighbourhood U
of x belonging to B with U ⊆ V . We map sx to the class of the pair (U, (ρF)VU (s)) in
(F|B)x. It is clear that the map is independent of the choice of the pair (V, s) and
of U , and that the map is the inverse of i.

Let G be another presheaf on X and let u : F → G be a homomorphism of
presheaves. We let u|B : F|B → G|B denote the homomorphism of presheaves
defined by (u|B)U = uU for all U belonging to B. Clearly (u|B)x = ux for all
x ∈ X.

(1.19) Exercises.
1. Let !!E, F and G be three sets. A sequence !!nn

E
u−→ F

v
⇒
w
G→ 0

is exact if u is injective, if vu = wu, and if for every element y ∈ F that satisfies the
equation v(y) = w(y) there is an element x ∈ E such that u(x) = y.

Let X be a topological space and let F a presheaf on X. For every open set U of
X and covering {Uα}α∈I of U :

(1) Show that the restrictions ρUUα define a natural map !!F(U)
u−→∏

α∈I F(Uα).n

(2) Show that the restictions ρUαUα∩Uβ and ρUαUβ∩Uα for all α, β define two natural

maps !!
∏
α∈I F(Uα)

v
⇒
w

∏
α,β∈I F(Uα ∩ Uβ).n
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(3) Show that F is a sheaf if and only if the sequence of sets

F(u)
u−→
∏

α∈I

F(Uα)
v
⇒
w

∏

α,β∈I

F(Uα ∩ Uβ)

is exact.

2. Let X be a topological space and E a set. We let F(∅) = {∅} and for all other
open subsets U of X we let F(U) = EU be all maps U → E, and for all inclusions
U ⊆ V of open subsets of X we let ρVU be the map that takes a function ϕ : V → E
to its restriction ϕ|U : U → E.

(1) Show that F is a sheaf on X.
(2) Show that there is a natural inclusion E ⊆ Fx for all x ∈ X
(3) Fix a point x ∈ X and let Y be the intersection of all open sets in X that

contain x. Show that there is a canonical map Fx → EY .
(4) Is the map of part (3) always an isomorphism?→

3. Let X be a topological space. Define F(U) on all open subsets U of X by
F(X) = Z and F(U) = {0} for all U different from X.

(1) Show that F with the only possible group homomorphisms ρVU : F(V ) →
F(U) is a presheaf on X.

(2) Is F a sheaf on X?

4. Let X be a topological space. Define F(U) for all open subsets U of X by
F(∅) = {0}, F(X) = {0}, and F(U) = Z for all the other open sets U of X. For
each inclusion U ⊆ V of open subsets of X let ρVU : F(V ) → F(U) be the identity
map when U ⊆ V are different from ∅ and X and otherwise the only possible group
homomorphism.

(1) Show that F with these maps is a presheaf on X.
(2) Is F a sheaf on X?

5. Let X be a topological space and let x1, x2, . . . , xn be closed points. Moreover
let G1, G2, . . . , Gn be groups. For each open subset U of X we let F(U) = Gj1 ×
Gj2 × · · · × Gjm when U contains the points xj1 , xj2 , . . . , xjm and no other of the
points x1, x2, . . . , xn. When U ⊆ V is an inclusion of open sets we let ρVU : F(V ) =
Gi1 ×Gi2 × · · · ×Gil → Gj1 ×Gj2 × · · · ×Gjm = F(U) be the natural projecton.

(1) Show that F is a presheaf on X.
(2) Describe the stalk Fx of F for all x ∈ X.
(3) Is F a sheaf on X?

6. Let X be a set and let X = U0 ⊃ U1 ⊃ U2 ⊃ · · · be a sequence of subsets Un
strictly contained in each other. Give X the topology consisting of the open sets
∅ and {Un}n∈N. Let {En}n∈N be a collection of sets and {ρn}n∈N a collection of
maps ρn : En → En+1. For all n ∈ N we write F(Un) = En, and for all m,n in N
with n ≤ m we let ρnm : F(Un) → F(Um) be the identity on En when m = n and
ρm−1
m · · ·ρn+1

n+2ρ
n
n+1 when n < m.

(1) Show that F with the restriction maps ρnm for all n ≤ m is a presheaf.
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(2) Show that the presheaf F of part (1) is a sheaf when F(∅) = {∅}.→
(3) Find the stalks of F over the points of ∩n∈NUn, when En = E and ρn = idE

for all n ∈ N.

7. let X be a topological space with a basis B for the topology. For every open
subset U of X we consider U as a topological space with the topology induced by
that of X, and we let BU be the basis for U consisting of open sets V belonging to
B that are contained in U .

For every presheaf F defined on B we let F|U be the presheaf on BU defined by
(F|U)(V ) = F(V ) for all V belonging to BU and (ρF|U )WV = (ρF )WV for all inclusions
V ⊆W of open sets belonging to BU .

Let F and G be sheaves defined on B. For every open subset U belonging to B we
write Hom(F ,G)(U) = Hom(F|U,G|U) for the set of all presheaf homomorphisms
from F|U to G|U .

(1) Show that for all inclusions U ⊆ V of open sets belonging to B we have a
canonical map

ρVU : Hom(F|V,G|V ) → Hom(F|U,G|U)

that maps a homomorphism u : F|V → G|V to the restriction u|U : F|U →
G|U to U .

(2) Show that Hom(F ,G) with the restriction maps ρVU : Hom(F ,G)(V ) →
Hom(F ,G)(U) for all inclusions U ⊆ V of open subsets belonging to B is
a presheaf on B.

(3) Show that for all x ∈ X we have a canonical map of stalks

Hom(F ,G)x → Mor(Fx,Gx)
that maps the class of a pair (U, u), where u : F|U → G|U is a homomorphism
of presheaves, to the map ux : Fx → Gx, and where Mor(Fx,Gx) is the
collection of maps from Fx to Gx.

(4) Show that when F and G are sheaves on B then Hom(F ,G) is a sheaf on B.
(5) Let X = {x0, x1} be the topological space with open sets {∅, {x0}, X}. More-

over let F be the sheaf defined by F(X) = (0) = F(∅) and F({x0}) = Z,
and let G be the sheaf defined by G(X) = Z and G({x0}) = (0) = G(∅), both
with the only possible restriction maps. finally let H be the sheaf defined by
H(∅) = 0, H(X) = Z = H({x0}), and with (ρH)X{x0}

= idZ.

(a) Show that the map

Hom(F ,F)x1
→ Mor(Fx1

,Fx1
)

is not injective.
(b) Show that the map

Hom(G,H)x1
→ Mor(Gx1

,Hx1
)

is not surjective.
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8. Let X be a topological space with open sets {Un+1}n∈N and ∅ where X = U1 ⊃
U2 ⊃ · · · . Define a sheaf F on X by F(Ui) = {n ∈ N : n < i}, and with restriction

maps (ρF)UiUj = idN |F(Ui) for i ≤ j. Then we have that Fx = N for all x ∈ ∩∞
n=1Un.

Let G be the simple sheaf with stalk N. Moreover let H be the sheaf defined by
H(Ui) = {x ∈ Q : x < (1/i)} and with (ρH)UiUj = x when x ∈ Ui and (ρH)UiUj = 0

when x /∈ Ui for i ≤ j.

(1) Show that for all v ∈ Hom(F|Ui,G|Ui) we have that vx(n) = 0 when n ≥ i,
and x ∈ ∪∞

n=1Un.
(2) Show that when x ∈ ∩∞

n=1Un there is no element in Hom(F ,G)x that maps
to idZ : Fx → Gx by the map

Hom(F ,G)x → Mor(Fx,Gx)
in Excercise (?).→

(3) Show that for all x ∈ ∩∞
n=1Un we have that Hx = 0.

(4) Show that we have homomorphisms of sheaves u : H → G defined by uUn :
H(Un) → G(Un) that sends 0 to 0 and all other elements in H(Un) to 1.

(5) Show that we have a homomorphism of sheaves v : H → G that sends all
elements in H(Un) to 0.

(6) Show that u and v induce different elements in Hom(H,G)x.
(7) Show that the map

Hom(H,G)x → Mor(Hx,Gx)
in Excercise (?) is not injective when x ∈ ∩∞

n=1Un.→
9. Let X = {x0, x1} be the topological space with open sets ∅, X, {x0}. Moreover
let F be the sheaf on X defined by F(∅) = {0},F(X) = Z and F({x0}) = Z/2Z ⊕
Z/2Z, and with the restrictions maps beeing zero except for ρX{x0}

which sends n to

(uZ/2Z(n), 0).

(1) Show that Hom(F ,F)x1
= Hom(F ,F).

(2) Show that Mor(Fx1
,Fx1

) = Mor(Z,Z).
(3) Show that there does not exist a homomorphism of sheaves u : F → F such

that uX(0) = 0 and uX(2) = 1.
(4) Show that the map

Hom(F ,F)x1
→ Mor(Fx1

,Fx1
)

defined in Excercise (?) is not surjective.→
(5) Show that there is a homomorphism of sheaves v : F → F such that vX =

idF(X) and v{x0}(m,n) = (m, 0) for all m,n in Z/2Z.
(6) Show that the map v is different from the identity map.
(7) Show that the map

Hom(F ,F)x1
→ Mor(Fx1

,Fx1
)

defined in Excercise (?) is not injective.→
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10. Let X be a topological space with basis B for the topology. Moreover let
{Fα}α∈I be a collection of presheaves on B. For every open subset U of B we let
F(U) =

∏
α∈I Fα(U), and for every inclusion U ⊆ V of open subsets belonging to B

we let (ρF)VU =
∏
α∈I(ρFα)VU .

(1) Show that F with the restrictions (ρF )VU is a presheaf on B.
(2) For every α ∈ I and every open subset U of B we have a projection map

(pα)U :
∏
α∈I Fα(U) → Fα(U). Show that the maps (pα)U for all U belonging

to B define a homomorphism

pα :
∏

α∈I

Fα → Fα

of presheaves.
(3) Show that F with the projections pα is a product of the presheaves Fα in the

category of presheaves.
(4) Show that when all the presheaves Fα are sheaves then F is a sheaf. We

denote this sheaf by
∏
α∈I Fα and call it the product of the sheaves Fα.

(5) Show that the sheaf
∏
α∈I Fα together with the projections pα is a product

of the sheaves Fα in the category of sheaves.
(6) For every x ∈ X and for every α ∈ I we have a map (pα)x : (

∏
α∈I Fα)x →

(Fα)x. Show that these maps, for all α ∈ I, give a map

(
∏

α∈I

Fα)x →
∏

α∈I

(Fα)x.

(7) Assume that X has a sequence X = U0 ⊃ U1 ⊃ U2 ⊃ · · · of subsets Un
strictly contained in each other. Then the set X is a topological space with
the collection {∅, {Un}n∈N} as open sets. For every p ∈ N we let Fp,n = Z
for n ≤ p and Fp,n = (0) for n > p. Moreover we let (ρp)

m
n : Fp,m → Fp,n

be idZ for all m,n, p in N such that m ≤ n ≤ p and otherwise zero. We
denote by Fp the sheaf on X such that Fp(Un) = Fp,n for all n ∈ N and with

restricions (ρFp)
Um
Un

for all m,n in N with m ≤ n.
Let F be the simple sheaf with stalk Z.

(a) For all p ∈ N we have a map sp : F → Fp of sheaves given by (up)Un :
F(Un) → Fp(Un) which is the identity on Z when n ≤ p and otherwise
zero. Show that this defines a map of sheaves

F →
∏

p∈N

Fp

such that F(Un) → (
∏
p∈N Fp)(Un) is injective for all n ∈ N.

(b) Show that the map

Fx → (
∏

p∈N

Fp)x
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is injective for all x ∈ X.
(c) Show that for all points x ∈ ∩n∈NUn we have that (Fp)x = 0, and that∏

p∈N(Fp)x = (0).

(d) Show that the map

(
∏

p∈N

Fp)x →
∏

p∈N

(Fp)x

is not injective.
(8) Let Gp,n = Z when n > p and Gp,n = (0) when n ≤ p. Moreover let

(σp)
M
n : Gp,m → Gp,n be the identity for all m,n, p in N such that p < m ≤ n,

and otherwise zero. We denote by Gp the sheaf defined by Gp(Un) = Gp,n and

with restriction maps (ρGp)
Um
Un

= (σp)
m
n for all m,n in N with m ≤ n.

(a) Show that for all x ∈ ∩n∈NUn we have that (Gp)x = Z, and that
(σp)

m
n = idZ when p < m ≤ n.

(b) Show that all sections (sp)p∈N in (
∏
p∈N Gp)(Un) satisfy sp = 0 for

n ≤ p.
(c) Show that the element (xp)p∈N ∈∏n∈N(Gn)x with xp = 1 for all p can

not be in the image of

(
∏

p∈N

Gp)x →
∏

p∈N

(Gp)x.

11. Let X be a topological space with open sets ∅ and {Un}n∈N where X = U0 ⊃
U1 ⊃ · · · . Moreover let F be the sheaf defined by F(Un) = NUn and with restriction

maps ρUnUm(s) = s|Um for all s ∈ F(Un) and m ≥ n. Let Fn = F for n = 0, 1, 2, . . .
and let sn ∈ F(X) be the function defined by sn(x) = 1 when x ∈ Un and sn(x) = 0
when x 6∈ Un. Moreover let s ∈ F(X) be defined by s(x) = 1 for all x ∈ X.

(1) Show that for all x ∈ ∩∞
n=0Un we have that ρXx (sn) = ρXx (s) in Fx.

(2) Show that the elements (sn)n∈N and (s)n∈N in
∏∞
n=0 Fn(X) do not have the

same class in (
∏∞
n=0 Fn)x.

(3) Show that the map

(
∞∏

n=0

Fn)x →
∞∏

n=0

(Fn)x

of Exercise (?) is not injective.→
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2. Direct and inverse images.

(2.1) The direct image. Let X and Y be two topological spaces and ψ : X → Y
a continuous map. Moreover let F be a presheaf on X. We define a presheaf !!ψ∗(F)n
on Y as follows:

For each open subset V of Y we let ψ∗(F)(V ) = F(ψ−1(V )), and for each inclusion
V ⊆W of open sets of Y we let

ρWV = (ρψ∗(F))
W
V = (ρF )

ψ−1(W )
ψ−1(V )

: F(ψ−1(W )) → F(ψ−1(V )).

It is clear that ψ∗(F) is a presheaf on Y , and that when F is a sheaf on X then
ψ∗(F) is a sheaf on Y . We call ψ∗(F) the direct image of F by ψ.

It is clear that when u : F → G is a homomorphism of presheaves on X we obtain
a homomorphism ψ∗(u) : ψ∗(F) → ψ∗(G) of presheaves on Y defined for each open
subset V in Y by ψ∗(u)V = uψ−1(V ).

We have ψ∗(idF ) = idψ∗(F), and when v : G → H is another homomorphism

of presheaves on X then ψ∗(vu) = ψ∗(v)ψ∗(u).!! In other words, we have that ψ∗n
is a functor from presheaves, respectively sheaves, on X to presheaves, respectively
sheaves, on Y .

For all x in X we have a canonical map of stalks:!!n

ψx = (ψF)x : ψ∗(F)ψ(x) → Fx (2.1.1)

that takes the class of the pair (V, t), where V is an open neighbourhood of ψ(x) and
t ∈ ψ∗(F)(V ) = F(ψ−1(V )), to the class in Fx of the pair (ψ−1(V ), t). It is clear
that the map (ψF)x is independent of the choice of the representative (V, t) of the
class tψ(x). Let V be an open subset of Y and U an open subset of ψ−1(V ). We
clearly have that

(ρF)Ux (ρF)
ψ−1(V )
U = (ψF )x(ρψ∗F )Vψ(x).

When u : F → G is a homomorphism of presheaves we have that ux(ψF)x =
(ψG)x(ψ∗(u))ψ(x).

When ω : Y → Z is a continuous map of topological spaces then (ωψ)∗(F) =
ω∗(ψ∗(F)), and (idX)∗(F) = F .

(2.2) The inverse image. Let ψ : X → Y be a continuous map of topological
spaces X and Y , and let B be a basis for the topology on Y . For each presheaf G
defined on B we define a sheaf !!ψ∗(G) on X as follows:n

For every open subset U of X we let ψ∗(G)(U) be the subset of the product∏
x∈U Gψ(x) that consists of the collections !!(tψ(x))x∈U with the property:n

For every point x ∈ U there exists a neighbourhood !!Vψ(x) of ψ(x) belonging ton

B, a section !!t(x) ∈ G(Vψ(x)), and an open neighbourhood !!Ux of x contained innn

U ∩ ψ−1(Vψ(x)) such that for all y ∈ Ux we have tψ(y) = t(x)ψ(y) = (ρG)
Vψ(x)

ψ(y) (t(x)).
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It is clear that for every inclusion U ⊆ V of open sets on X the projection∏
x∈V Gψ(x) →

∏
x∈U Gψ(x) induces a map

ρVU = (ρψ∗(G))
V
U : ψ∗(G)(V ) → ψ∗(G)(U),

and that ψ∗(G), with these maps, is a presheaf on X.

We have that ψ∗(G) is a sheaf on X.

To see that ψ∗(G) is a sheaf we let U be an open subset of X, and we let {Uα}α∈I
be an open covering of U . A section t = (sψ(x))x∈U in ψ∗(G)(U) ⊆ ∏

x∈U Gψ(x) is

completely determined by the values sψ(x) for all x ∈ U . Since ρUUα is given by the
projection

∏
x∈U Gψ(x) →

∏
x∈Uα

Gψ(x) two sections of ψ∗(G)(U) that have the same

restriction to ψ∗(G)(Uα) for all α ∈ I must be equal. Thus property (F1) for sheaves→
is satisfied by the presheaf ψ∗(G).

Let sα ∈ ψ∗(G)(Uα) be a section on Uα for all α ∈ I such that sα and sβ have
the same restriction to Uα ∩ Uβ for all α, β in I. For each α ∈ I we have that
sα = ((tα)ψ(x))x∈Uα ∈ ψ∗(G)(Uα) for some (tα)ψ(x) ∈ Gψ(x), and since the restriction
of sα and sβ to Uα∩Uβ are equal we have that (tα)ψ(x) = (tβ)ψ(x) for all α, β in I and
all x ∈ Uα ∩ Uβ . Hence we can define tψ(x) ∈ Gψ(x) by tψ(x) = (tα)ψ(x) for any α ∈ I
such that x ∈ Uα. We thus obtain an element s = (tψ(x))x∈U ∈ ∏x∈U Gψ(x). Since
(tψ(x))x∈Uα = ((tα)ψ(x))x∈Uα ∈ ψ∗(G)(Uα) for all α ∈ I it follows from the definition

of ψ∗(G)(U) that s = (tψ(x))x∈U ∈ ψ∗(G)(U). It also follows that ρUUα(s) = sα. Hence

we have proved that property (F2) for sheaves is satisfied for the presheaf ψ∗(G). We→
have thus proved that ψ∗(G) is a sheaf.

It follows from the definition of ψ∗(G) that for all subsets W of Y that belong to
B there is a map

G(W ) → ψ∗(G)(ψ−1(W )) = ψ∗(ψ
∗(G))(W )

that takes a section t in G(W ) to the section (tψ(x))x∈ψ−1(W ) in ψ∗(G)(ψ−1(W )).

These maps define a homomorphism of presheaves on B: !!n

ρG : G → ψ∗(ψ
∗(G)). (2.2.1)

When u : F → G is a homomorphism of presheaves on B the maps
∏
x∈U uψ(x) :∏

x∈U Fψ(x) →
∏
x∈U Gψ(x) for each open set U in X induce a homomorphism ψ∗(u) :

ψ∗(F) → ψ∗(G) of presheaves on X. We have that ψ∗(idG) = idψ∗(G), and when
v : G → H is another homomorphism of presheaves on B we have that ψ∗(vu) =
ψ∗(v)ψ∗(u). In other words ψ∗ is a functor from presheaves on B to sheaves on X.

Let ω : Y → Z be a continuous map of topological spaces, and H a presheaf
defined on a basis of Z. Then we have that (ωψ)∗(H) = ψ∗(ω∗(H)).

For every point x in X we obtain from the homomorphism (2.2.1) and the homo-→
morphism (2.1.1) a map !!→n

(ιG)x = (ψψ∗(G))x(ρG)ψ(x) : Gψ(x) → ψ∗(G)x

that takes the class of a pair (W, t) where W is a neighbourhood of ψ(x) belonging
to B and t ∈ G(W ) to the class of (ψ−1(W ), (tψ(x))x∈ψ−1(W )) in ψ∗(G)x.
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(2.3) Proposition. The map (ιG)x = (ψψ∗(G))x(ρG)ψ(x) : Gψ(x) → ψ∗(G)x is a
bijection.

Proof. We construct the inverse of the map (ιG)x. Let sx be an element in ψ∗(G)x.
Then sx is the class of a pair (Ux, (t(x)ψ(y))y∈Ux), where t(x) ∈ G(Vψ(x)) for a neigh-
bourhood Vψ(x) of ψ(x) belonging to B, and where Ux is a neighbourhood of x

contained in U ∩ ψ−1(Vψ(x)). We map sx to t(x)ψ(x). It is clear that this map is
independent of the representative (Ux, (t(x)ψ(y))y∈Ux), and of Vψ(x).

(2.4) Remark. We have two descriptions of the inverse image ψ∗(G) of G by ψ.
Firstly it follows from the definition of ψ∗(G) that for all U belonging to B we have
that ψ∗(G)(U) ⊆ ∏x∈U Gψ(x). Secondly since ψ∗(G) is a sheaf it follows from Remark

(?) that ψ∗(G)(U) ⊆ ∏
x∈U ψ

∗(G)x. From the first description we can write every→
section s ∈ ψ∗(G)(U) on the form s = (tψ(x))x∈U with tψ(x) ∈ Gψ(x), and from

the second we have that s = (sx)x∈U where sx = (ρψ∗G)Ux (s) ∈ (ψ∗G)x. The two
descriptions are linked by the formula

(ιG)x(tψ(x)) = sx

for all x ∈ U .
When v : G → H is a homomorphism of presheaves on B we have that

ψ∗(v)x(ιG)x = (ιH)xvψ(x).

(2.5) Definition. Let G be a presheaf defined on a basis B of the topological space
Y . The sheaf (idY )∗(G) on Y is called the sheaf associated to the presheaf G. It comes
with the canonical homomorphism

ρG : G → (idY )∗(G) = (idY )∗(idY )∗(G).

(2.6) Remark. Let G be a presheaf defined on a basis B of the topological space Y .
It follows from Proposition (?) that the map (iG)y : Gy → (idY )∗(G)y is the identity→
map on Gy.

For every open subset V of Y we have that (idY )∗(G)(V ) ⊆ ∏y∈V Gy. It follows

from the definition of the associated sheaf (idY )∗(G) and the characterization (?) of→
sheaves that G is a sheaf on B if and only if the homomorphism (ρG)V : G(V ) →
(idY )∗(G)(V ) is an isomorphism for all open subsets V of X belonging to B.

When G is a sheaf on B we have that G(V ) and (idY )∗(G)(V ) is the same subset
of
∏
y∈V Gy for all open sets V belonging to B.

(2.7) Example. Let X be a topological space and let E be a set. The associated
sheaf to the constant presheaf with fiber E has fiber E at all poins. We call the
associated sheaf the simple sheaf with fiber E.
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(2.8) Proposition. Let ψ : X → Y be a continuous map of topological spaces and
let B be a basis for Y .

(1) When G is a presheaf defined on Y , and G|B its restriction to B, we have
that ψ∗(G|B) = ψ∗(G).

(2) When u : G → H is a homomorphism between presheaves on Y we have that
ψ∗(u) = ψ∗(u|B).

Proof. (1), (2) We have that ψ∗(H)(U) is determined, as a subset of
∏
x∈U Hψ(x),

by conditions on arbitrarily small neighbourhoods Ux of x contained in ψ−1(Vψ(x))

for an arbitrarily small neighbourhood Vψ(x) of ψ(x). Hence part (1) and (2) follow→→
immediately from the definitions of ψ∗(G|B) < ψ∗(G), ψ∗(u) and ψ∗(u|B).

(2.9) Adjunction. For every presheaf G on B we saw in (?) that we have a→
homomorphism of presheaves

ρG : G → ψ∗(ψ
∗(G)).

On the other hand we have, for every sheaf F on X, a homomorphism of sheaves:!!n

σF : ψ∗(ψ∗(F)) → F .

In order to define σF we take an open neighbourhood U of X and a section s ∈
ψ∗(ψ∗(F))(U). For every point x ∈ U there is an open neighbourhood Vψ(x) of ψ(x),

a section t(x) ∈ ψ∗(F)(Vψ(x)) = F(ψ−1(Vψ(x))), and an open neighbourhood Ux of x

contained in U∩ψ−1(Vψ(x)) such that sy = (ιψ∗(F))y(t(x)ψ(y)) for all y ∈ Ux, as we ob-

served in Remark (2.2.3). Let s(x) = (ρF )
ψ−1(Vψ(x))

Ux
(t(x)) ∈ F(Ux). Since F is a sheaf→

it follows from Remark (1.?) and Remark (?) that the section s(x) of F(Ux) is deter-→→
mined uniquely by s(x)y = (ρF )Uxy (ρF)

ψ−1(Vψ(x))

Ux
(t(x)) = (ψF )y(ρψ∗(F))

Vψ(x)

ψ(y) (t(x)) =

(ψF )y(t(x)ψ(y)), and therefore by sy = (ιψ∗(F))y(t(x)ψ(y)) for all y ∈ Ux. Hence
the sections s(x) for all x ∈ U define a section σF (s) ∈ F(U). It is clear that the
definition of σF (s) is independent of the choices of Vψ(x), t(x) and Ux for x ∈ U .

Let F be a sheaf on X and G a presheaf on B. For every homomorphism of
presheaves !!u : G → ψ∗(F) on B we obtain a homomorphism !!nn

u] = σFψ
∗(u) : ψ∗(G) → F

of presheaves on B. In order to describe u] explicitely let s ∈ ψ∗(G)(U) be a section
of ψ∗(G) over an open neighbourhood U of X. For every point x ∈ U there is an
open neighbourhood Vψ(x) of ψ(x) belonging to B, a section t(x) ∈ G(Vψ(x)), and a

neighbourhood Ux of x contained in U ∩ ψ−1(Vψ(x)) such that sy = (ιG)y(t(x)ψ(y))

for all y ∈ Ux. Then u]U (s) ∈ F(U) is determined as a subset of
∏
x∈U Fx by

u]U (s)x = (ψF )xuψ(x)(t(x)ψ(x)) for all x ∈ U .
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For every homomorphism !!v : ψ∗(G) → F of sheaves on X we obtain a homomor-n

phism !!n

v[ = ψ∗(v)ρG : G → ψ∗(F)

of presheaves on B. In order to describe v[ explicitely we let t ∈ G(V ) be a section over
a subset V of Y belonging to B. Let s be the section of ψ∗(G)(ψ−1(V )) determined
by sx = (ιG)xtψ(x) for all x ∈ ψ−1(V ). Then we have that v[V (t) ∈ ψ∗(F)(V ) =

F(ψ−1(V )) is determined as a subset of
∏
x∈ψ−1(V ) Fx by the equalities v[(t)x =

vx(sx) for all x ∈ ψ−1(V ).

It follows from the explicit expression for u] and v[ that (u])[ = u and (v[)] = v.
We have thus shown:

The map

HomX(ψ∗(G),F) → HomY (G, ψ∗(F)) (2.9.1)

that takes v : ψ∗(G) → F to v[ : G → ψ∗(F) is a bijection. The inverse map takes
u : G → ψ∗(F) to u] : ψ∗(G) → F .

In particular we obtain, for every presheaf G defined on a basis B of Y and for
every homomorphism w : G → H to a sheaf H on Y , a unique homomorphism
w] : (idY )∗(G) → H of sheaves such that w = w]ρG .

(2.10) The image of homomorphisms of sheaves. Let X be a topological space
with a basis B for the topology. Moreover let u : F → G be a homomorphism of
presheaves on B. For every open set U belonging to B we let !!H(U) = Im(uU ). It isn
clear that for every inclusion U ⊆ V of open sets belonging to B the restriction map
(ρG)VU : G(V ) → G(U) induces a restriction map (ρH)VU : H(V ) → H(U), and that H
with these restriction maps becomes a presheaf on B. Moreover it is clear that the
surjections F(U) → H(U) and the inclusions H(U) → G(U) induce homomorphisms!!n

v : F → H

respectively!!n

i : H → G

of presheaves on B.

We write!!n

w = ρHv : F → (idX)∗(H).

When G is a sheaf on B it follows from Remark (?) that the homomorphism i induces→
a homomorphism!!n

j = i] : (idX)∗(H) → G

of sheaves on B such that i = jρH. We then have that u = iv = jρHv = jw.
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(2.11) Example. Even when the homomorphism u : F → G is a homomorphism
of sheaves the presheaf H of Section (2.?) does not have to be a sheaf.→

Let X = {x0, x1, x2} be the topological space with open sets ∅, X, U0 = {x0}, U1 =
{x0, x1}, U2 = {x0, x2}. The constant presheaf F on X with fiber Z is in this case a
sheaf, and thus equal to the simple sheaf with fiber Z.

Let G be the sheaf defined by G(∅) = {0}, G(X) = Z ⊕ Z, and G(Ui) = Z for

i = 0, 1, 2, and with restrictions (ρG)UiU0
= idZ, and (ρG)XUi the projection on the i’the

factor, for i = 1, 2.
It is clear that the map u : F → G given by uX : Z → Z⊕Z with uX(n) = (n, n),

by u∅ = id{0}, and where uUi = idZ for i = 0, 1, 2, is a homomorphism of sheaves.
We have that H(∅) = {0}, H(X) is isomorphic to Z, H(U0) = {0}, and H(Ui) = Z
for i = 1, 2. Then H is not a sheaf because sections of H(U1) = Z and H(U2) = Z
that are represented by different integers can not come from a section of H(X).

(2.12) Lemma. Let X be a topological space with a basis B of the topology, and
let u : F → G be a homomorphism of presheaves defined on B.

(1) If uU : F(U) → G(U) is injective for all open sets U belonging to B we have
that the map ux : Fx → Gx is injective for all x ∈ X.

(2) If uU : F(U) → G(U) is surjective for all open sets U belonging to B we have
that the map ux : Fx → Gx is surjective.

(3) If F and G are sheaves on B and the map ux : Fx → Gx is injective for all
x ∈ X, then we have that uU : F(U) → G(U) is injective for all open sets U
belonging to B. In particular, the homomorphism u induces an isomorphism
F ∼−→H.

(4) If F and G are sheaves on B and the map ux : Fx → Gx is surjective for all
x in X, then we have that jU : (idX)∗(H)(U) → G(U) is an isomorphism for
all open sets U belonging to B. That is, the homomorphism u induces an
isomorphism (idX)∗(H) ∼−→G.

In particular we have that when F and G are sheaves, then u : F → G is an isomor-
phism if and only if the induced map on stalks ux : Fx → Gx is an isomorphism for
all points x ∈ X.

Proof. (1) Let sx and tx be elements in Fx such that ux(sx) = ux(tx). We can
find a neighbourhood V of x belonging to B and sections s, t in F(V ) such that
(ρF)Vx (s) = sx and (ρF )Vx (t) = tx. Then (V, uV (s)) and (V, uV (t)) have the same class
in Gx. Consequently there is a neighbourhood U of x belonging to B and contained
in V such that (U, (ρG)VU (uV (s))) = (U, (ρG)VU (uV (s))). That is (U, uU ((ρF)VU (s))) =
(U, uU ((ρF)VU (t))). Since uU is injective by assumption we have that (ρF )VU (s) =
(ρF)VU , and consequently that sx = tx. Hence we have proved that ux is injective.

(2) Let tx ∈ Gx. Then there is an open neighbourhood U of x and t ∈ G(U) such
that (ρG)Vx (t) = tx. Since uU is surjective we can find a section s ∈ F(U) such that
uU (s) = t. Then ux(sx) = tx and we have proved that ux is surjective.

(3) Since the maps ux for x ∈ X are injective, we have an injective map
∏
x∈U ux :
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∏
x∈U Fx → ∏

x∈U Gx. It follows from Remark (?) that it suffices to prove that if→
(sx)x∈U lies in F(U) then (ux(sx))x∈U lies in G(U). However it follows from the
characterization on sheaves that if (sx)x∈U ∈ F(U) then there is, for every x ∈ X,
a neighbourhood Ux of x belonging to B and a section s(x) ∈ F(Ux) such that
sy = s(x)y for all y ∈ Ux. Let t(x) = uUx(s(x)). Then t(x) ∈ G(Ux) and for all
y ∈ Ux we have that t(x)y = uy(s(x)y) = uy(sy). From the characterization (?) of→
G(U) as a subset of

∏
x∈U Gx it follows that (ux(sx))x∈U ∈ G(U).

(4) Since H(U) ⊆ G(U) for all U belonging to B it follows from part (?) that→
ix : Hx → Gx is injective for all x ∈ X. It follows from the definition of the
homomorphism j that the isomorphism

∏
x∈U ix :

∏
x∈U Hx →∏

x∈U Gx induces the
map jU : (idX)∗(H)(U) → G(U) for every open set U belonging to B. Hence jU is
injective.

In order to show that jU is also surjective we choose a section (tx)x∈U in G(U)
with tx ∈ Gx. We shall show that (tx)x∈U is contained in (idX)∗(H)(U) when
(idX)∗(H)(U) is considered as a subset of

∏
x∈U Hx ⊆ ∏

x∈U Gx. It follows from

the characterization of sheaves (?) that we, for each x ∈ U , can find an open neigh-→
bourhood Ux of x belonging to B and a section t(x) ∈ G(Ux) such that ty = t(x)y for
all y ∈ Ux. We have that H(Ux) ⊆ G(Ux), and since ix : Hx → Gx is surjective we can
find a neighbourhood Vx of x belonging to B and a section s(x) ∈ H(Vx) such that
tx is the class of (Vx, s(x)) when we consider s(x) as a section of G(Vx). Since tx is
also the class of (Ux, t(x)) we can find a neighbourhood Wx of x belonging to B, and

contained in Ux ∩ Vx such that (ρH)VxWx
(s(x)) = (ρG)UxWx

(t(x)) in H(Wx) ⊆ G(Wx).
Consequently we have found a neighbourhood Wx of x belonging to B and a sec-
tion r(x) = (ρH)VxWx

(s(x)) in H(Wx) such that ty = t(x)y = (ρG)Wx
y (ρG)UxWx

(t(x)) =

(ρH)Wx
y (ρH)VxWx

(s(x)) = (ρH)Wx
y (r(x)) = r(x)y for all y ∈Wx. Consequently we have

that (tx)x∈U lies in (idX)∗(H)(U) and we have shown that jU is surjective.

(2.13) Definition. Let X be a topological space with a basis B for the topology.
Moreover let u : F → G be a homomorphism of sheaves on B. The sheaf (idX)∗(H)
is called the image of u and is denoted by !!Im(u) or by !!u(F). A sheaf is a subsheafnn
of G if it is of the form Im(u) for some homomorphism u : F → G of sheaves.

We identify Im(u)x with a subset of Gx via jx and Im(u)(U) with a subset of G(U)
via the inclusion

∏
x∈U jx :

∏
x∈U Im(u)x →∏

x∈U Gx.
The homomorphism u is injective if w : F → Im(u) is an isomorphism, and it is

surjective if j : Im(u) → G is an isomorphism. When u is injective we sometimes
write !!Im(u) = u(F).n

(2.14) Remark. Let u : F → G be a homomorphism of presheaves on B. It
follows from Lemma (?) that for all x ∈ X the map vx : Fx → Hx is surjective and→
ix : Hx → Gx is injective. Because of the inclusions H(U) ⊆ G(U) for all U belonging
to B, it is natural to identify Hx with a subset of Gx via the homomorphism ix.

When F and G are sheaves it follows from Remark (?) that→
wx : Fx → Im(u)x
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is surjective, and that

jx : Im(u)x → Gx

is injective.

(2.15) Remark. It follows from Lemma (?) that a homomorphism u : F → G of→
sheaves on B is injective if and only if uU : F(U) → G(U) is injective for all open
sets U belonging to B, or equivalently, if and only if ux : Fx → Gx is injective for all
x ∈ X. Moreover it follows from Lemma (?) that the homomorphism u is surjective→
if and only if jU : Im(u)(U) → G(U) is surjective for all open sets U belonging to B,
or equivalently, if and only if ux : Fx → Gx is surjective for all x ∈ X.

In particular it follows from Lemma (?) that the homomorphism w : F → Im(u)→
is surjective, and from Lemma (?) that j : Im(u) → G is injective. Since u = jw and→
wx is surjective we have that

Im(ux) = Im(jx) = Im(u)x

as subsets of Gx, for all x ∈ X.

(2.16) Exercises.

1. Let X be a topological space and let Y be a closed subset of X. Denote by
ι : Y → X the inclusion map. For every sheaf G on Y , describe the stalks of ι∗(G) at
all points of X.

2. Let X be the topological space with two points x and Y with open sets {∅, X, Y }.
Moreover, let ι : Y → X be the inclusion map. For every sheaf G on Y describe the
sheaf ι∗(G) and its stalks.

3. Let X be a topological space with the discret topology. For each open subset U
of X that contains at least two points let F(U) = Z and let F(U) = 0 otherwise.
When U ⊆ V is an inclusion of open sets in X we let ρVU = idZ if U contains at least
two points and otherwise be 0.

(1) Show that F is a presheaf on X.
(2) Describe the associated sheaf (idX)∗(F) of F .

4. Let Y be a topological space and X = {y} the topological space that consist of
a closed point y of Y . Moreover let ψ : X → Y be the inclusion map and let G be a
sheaf on Y .

(1) Describe the sheaf ψ∗(G).
(2) Describe the map ρG : G → ψ∗(ψ

∗(G)).

5. Let X be a topological space and let ψ : X → Y be the map into a topological
space Y consisting of a single point. Moreover let F be a sheaf on Y .

(1) Describe the sheaf ψ∗(F).
(2) Describe the map σF : ψ∗(ψ∗(F)) → F .
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6. Let ψ : X → Y be a continuous map of two topological spaces X and Y . Moreover
let F and G be sheaves on X, respectively Y .

(1) Which map ψ∗(ψ∗(F)) → F corresponds to the identity map ψ∗(F) → ψ∗(F)
by adjunction?

(2) Which map G → ψ∗(ψ
∗(G)) corresponds to the identity map ψ∗(G) → ψ∗(G)

by adjunction.

7. Let X be a topological space with the discrete topology, and let {Gx}x∈X be a
collection of commutative groups.

(1) Let F(X) = (0) and F(U) =
∏
x∈U Gx for all non empty open subsets U of

X different from X. Moreover let ρXU be the zero map, and let ρVU be the
projection when U ⊆ V and U 6= ∅ and V 6= X. Show that F is a presheaf
and describe the associated sheaf.

(2) Let F(X) =
∏
x∈X Gx and let F(U) = (0) for all open subsets U of X

different from X. For all inclusions U ⊆ V of open sets in X different from
X we let ρVU be the zero map and we let ρXX = idX . Show that F(X) is a
presheaf and describe the associated sheaf.

8. Let X be a topological space. Moreover let F(X) = Z and let F(U) = (0) for all
other open subsets of X.

(1) Show that F with the restriction maps that are zero is a presheaf.
(2) Describe the associated sheaf.

9. Let X be a topological space and let {Gx}x∈X be a collection of commutative
groups. Moreover let F(X) = (0) and let F(U) =

∏
x∈U Gx for all open subsets

of X different from X. Define the restriction maps ρVU : F(V ) → F(U) to be the
projections for all inclusions U ⊆ V of open subsets of X with V 6= X, and otherwise
to be the zero map.

(1) Show that F with the restriction maps ρVU is a presheaf.
(2) Describe the associated sheaf.

10. Let X and Y be topological spaces where Y has the discrete topology. Moreover
let F be the constant presheaf with fiber Y , and let G be the sheaf where G(U)
consists of all continous maps U → Y for all open subsets U of X and the restrictions
(ρG)VU : G(V ) → G(U) sends ϕ : V → Y to its restriction ϕ|U : U → Y for all
inclusions U ⊆ V of open subsets of X.

Show that G is the sheaf associated to the presheaf F .

11. Let F be a preshaf on the topological space X. Morover let Y = ∪x∈X(Fx, x)
be the disjoint union of the fibers Fx of F for all x ∈ X. We have a map ϕ : Y → X
defined by mapping the pair (sx, x) with sx ∈ Fx to x. For every open subset U in
X, and every section s ∈ F(U) we have a map sU : U → Y that maps x to the pair
(sx, x). This map satisfies the equation πsU = idU . The maps s : U → Y such that
πs = idU are called sections of π over U .

(1) Let {Vα}α∈J be the collection of all subsets of Y such that s−1
U (Vα) is open
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in U for all open subsets U of X and all sections s ∈ F(U). Show that Y is
a topological space with the collection {Vα}α∈J as open sets.

(2) Show that the map π is continous for this topology on Y .
(3) For every open subset U of X we let G(U) be the collection of all continous

sections of π over U , that is, the continous maps ϕ : U → Y such that
πϕ = idU , and let (ρG)VU be the restriction of functions on V to functions on
U . Show that G is a sheaf.

(4) Show that G is the associated sheaf of F .

12. Let X be a topological space and let G be an abelian group. Fix a point x ∈ X.
Let G(U) = G if x ∈ U and let G(U) = (0) otherwise. Moreover define the restriction
maps to be (ρG)VU = idG if x ∈ U , and otherwise to be zero.

(1) Show that G is a presheaf on X.

(2) Describe the fiber of G at each point in the closure {x} of x in Y .

(3) Show that if ι : {x} → X is the inclusion map and F is the simple sheaf on

{x} with fiber G, then G = ι∗(F).

13. Let X be a topological space with the discrete topology and let {Gx}x∈X be
a collection of commutative groups. For each open subset U of X we let F(U) =∏
x∈U Gx, and for every inclusion of open sets U ⊆ V of X we let ρVU : F(V ) → F(U)

be the projection. Moreover, for every point x ∈ X and every open set U of X we
let ixU : Gx → F(U) be the map that sends z ∈ Gx to (zy)y∈U ∈ F(U) with zx = z
and zy = 0 when x 6= y. Fix a point x′ ∈ X. For each open set U of X we define a

map uU : F(U) → F(U) by uU = ix
′

U ρ
U
x when x′ ∈ U and uU = 0 otherwise.

(1) Show that F with the restrictions ρVU is a sheaf on X.
(2) Find the fiber Fx of F at x.
(3) Show that every sheaf G on X with fiber Gx = Gx is equal to F .
(4) Show that u : F → F is a homomorphism of sheaves.
(5) Let K(U) = Ker(uU ) for all open subsets U of X. Show that K with the

restriction maps (ρK)VU induced by the maps ρVU is a sheaf.
(6) Let G(U) = Im(uU ) for all open subsets U of X. Show that G with the

restriction maps (ρG)VU induced by the maps ρVU is a presheaf.
(7) Let H(U) = Coker(uU ) for all open subsets U of X. Show that H with the

restriction maps (ρH)VU induced by the maps (ρG)VU is a presheaf.
(8) Is the presheaf G always a sheaf?
(9) Is the presheaf H always a sheaf?
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3. Sheaves of groups and rings.

(3.1) Definition. Let X be a topological space and let B be a basis for the topology.
Moreover let !F ! and !A! be presheaves defined on B. We say that F takes values innn
groups, or is a presheaf of groups, on B if for every subset U of X belonging to B we
have that F(U) is a group, and for every inclusion U ⊆ V of subsets of X belonging
to B the map (ρF)VU : F(V ) → F(U) is a group homomorphism. Similarly we say
that A takes values in rings, or is a presheaf of rings on B, if A(U) is a ring, and
(ρA)VU is a homomorphism of rings for all inclusions U ⊆ V of sets belonging to B.

When F and A are sheaves on B we say that F is a sheaf of groups, respectively
that A is a sheaf of rings, on B if they are presheaves of groups, respectively rings,
when considered as presheaves on B.

(3.2) Remark. It follows from Remark (?) that for a sheaf of groups F we have→
that F(∅) = (0).

(3.3) Stalks. Let F and A be presheaves of groups, respectively rings, defined on
a basis B of the topological space X. For every point x in X the stalk Fx has a
natural structure as a group in such a way that the map (ρF)Ux : F(U) → Fx is a
group homomorphism, and Ax has a natural structure as a ring in such a way that
the map (ρA)Ux is a ring homomorphism for all neighbourhoods U of x belonging to
B. In order to define the addition on Fx, and the multiplication on Ax we let sx
and tx in Fx be the classes of pairs (V, s) and (W, t) where V and W belong to B,
and s ∈ F(V ) and t ∈ F(W ). Then there is a neighbourhood U of x belonging to
B contained in V ∩W . We define the sum sx + tx of sx and tx as the class in Fx
of the pair (U, (ρF)VU (s) + (ρF)WU (t)). It is clear that the definition is independent of
the choice of the representatives (V, s) and (W, t) of the classes sx and tx and of U .
Moreover it is clear that Fx with the addition becomes a group in such a way that
(ρF)Ux is a homomorphism of groups. When s ∈ A(V ) and t ∈ A(W ) we define the
product sxtx of sx and tx as the class of the pair (U, (ρA)VU (s)(ρA)WU (t)) in Ax. It
is clear that the definition is independent of the choice of the representatives (V, s),
(W, t) of sx and tx, and of U . Moreover it is clear that Ax with the given addition
and multiplication becomes a ring in such a way that (ρA)Ux is a homomorphism of
rings.

(3.4) Definition. Let F and !G! be presheaves of groups on a basis B of then
topological space X. A homomorphism u : F → G of presheaves is a homomorphism

of presheaves of groups on B if for every subset U of X belonging to B we have
that uU : F(U) → G(U) is a group homomorphism. Let A and !B! be presheaves ofn
rings defined on B. We have that a homomorphism ϕ : A → B of presheaves is a
homomorphism of presheaves of rings on B if for every subset U of X belonging to
B we have that ϕU : A(U) → B(U) is a homomorphism of rings.

When A, B, F and G are sheaves of rings respectively groups we say that the
homomorphisms are homomorphisms of sheaves of groups respectively rings. A sheaf
of rings B together with a homomorphism ϕ : A → B we call an A-algebra.
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(3.5) Remark. We easily see that if u and ϕ are homomorphisms of groups, re-
spectively rings, then the map of stalks ux : Fx → Gx, respectively ϕx : Ax → Bx,
are homomorphisms of groups, respectively rings for all x ∈ X.

(3.6) The direct image. Let ψ : X → Y be a continuous map of topological
spaces and F a presheaf of groups on X. The direct image ψ∗(F) is then a presheaf
of groups on Y . In fact, for every inclusion V ⊆ W of open subsets of Y we have

that ψ∗(F)(V ) = F(ψ−1(V )) is a group, and (ρF)
ψ−1(W )
ψ−1(V )

is a group homomorphism.

Hence (ρψ∗(F))
W
V = (ρF)

ψ−1(W )
ψ−1(V )

is a group homomorphism. When A is a presheaf of

rings we have that the direct image ψ∗(A) is a presheaf of rings. In fact ψ∗(A)(V ) =

A(ψ−1(V )) is a ring and (ρψ∗(A))
W
V = (ρA)

ψ−1(W )
ψ−1(V )

is a homomorphism of rings for

all open subsets V , and all inclusions V ⊆W of open subsets of Y .

For every point x of X the map (ψF )x : ψ∗(F)ψ(x) → Fx is a homomorphism of
groups, and the map (ψA)x : ψ∗(A)ψ(x) → Ax is a homomorphism of rings.

When u : F → G is a homomorphism of presheaves of groups on X we have that
ψ∗(u) : ψ∗(F) → ψ∗(G) is a homomorphism of presheaves of groups. In fact, for
every open subset U of V , the map ψ∗(u)U comes from a homomorphism of groups
uψ−1(U) : F(ψ−1(U)) → G(ψ−1(U)).

When ϕ : A → B is a homomorphism of presheaves of rings we have correspond-
ingly that ψ∗(ϕ) : ψ∗(A) → ψ∗(B) is a homomorphism of presheaves of rings.

(3.7) The inverse image. Let ψ : X → Y be a continuous map of topological
spaces, and let B be a basis for Y . Moreover let G be a presheaf of groups on B

and B a presheaf of rings on B. The inverse image ψ∗(G) of G is a sheaf of groups
on X and ψ∗(B) is a sheaf of rings on X. In fact, we shall verify that for every
open subset U of X the group structure on

∏
x∈U Gψ(x) induces a group structure on

ψ∗(G)(U). Let (sψ(x))x∈U and (tψ(x))x∈U be elements of
∏
x∈U Gψ(x) that belong to

the subset ψ∗(G)(U). Then there is an open nieghbourhood Vψ(x) of ψ(x) belonging
to B and s(x), t(x) in G(Vψ(x)) such that for all y in a neighbourhood of x contained

in U ∩ ψ−1(Vψ(x)) we have that sψ(x) = s(x)y and tψ(y) = t(x)y. We have that
s(x) + t(x) ∈ G(Vψ(x)) and (s(x) + t(x))y = s(x)y + t(x)y = sψ(y) + tψ(y). Hence
(sψ(x))x∈U + (tψ(x))x∈U = (sψ(x) + tψ(x))x∈U = (s(x)x + t(x)x) = (s(x) + t(x))x.
Hence we have that (sψ(x))x∈U + (tψ(x))x∈U is contained in ψ∗(G)(U) as we wanted
to verify.

Moreover, for every inclusion U ⊆ V of open subsets of X we have that the
projection

∏
x∈V Gψ(x) →

∏
x∈U Gψ(x) is a group homomorphism that induces a group

homomorphism (ρψ∗(G))
V
U : ψ∗(G)(V ) → ψ∗(G)(U). Similarly the ring structure on∏

x∈U Bψ(x) induces a ring structure on ψ∗(B)(U), and the projection
∏
x∈V Bψ(x) →∏

x∈U Bψ(x) is a ring homomorphism inducing a ring homomorphism (ρψ∗(B))
V
U :

ψ∗(B)(V ) → ψ∗(B)(U), for every inclusion U ⊆ V of sets belonging to B. For every
x ∈ X we have that the map (ιG)x : Gψ(x) → ψ∗(G)x is a group homomorphism, and
the map (ιB)x : Bψ(x) → ψ∗(B)x is a ring homomorphism.
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(3.8) Adjunction. Let F and A be sheaves of groups, respectively rings, on X,
and let G and B be presheaves of groups, respectively rings, on Y . The adjunction

maps ρG : G → ψ∗(ψ
∗(G)) and σF : ψ∗(ψ∗(F)) → F are both homomorhism of

presheaves of groups, and ρB and σA are homomorphisms of presheaves of rings.
Consequently the adjunction HomX(ψ∗(G),F) → HomY (G, ψ∗(F)) of (3.9.1) and→
HomX(ψ∗(B),A) → HomY (B, ψ∗(A)) induce bijections between the subset consisting
of homomorphisms of presheaves of groups, respectively of presheaves of rings.

(3.9) Definition. A ringed space is a pair consisting of a topological space X and
a sheaf of rings A. We shall often denote a ringed space by !(X,OX)! where OXn
is the sheaf of rings on the topological space X. The stalk of OX at a point x of
X we denote by OX,x. A homomorphism (ψ, θ) : (X,A) → (Y,B) of ringed spaces
consists of a continuous map ψ : X → Y of topological spaces and a homomorphism
θ : B → ψ∗(A) of sheaves of rings. We say that (X,A) is a local ringed space if Ax

is a local ring for all x ∈ X. A local homomorphism of local ringed spaces (ψ, θ) :
(X,A) → (Y,B) is a homomorphism of ringed spaces such that (θ)]x : ψ∗(B)x → Ax

maps the maximal ideal in ψ∗(B)x = Bψ(x) to the maximal ideal in Ax for all x ∈ X.

(3.10) Remark. The ringed spaces with morphism form a category, as does the
locally ringed spaces with local homomorphisms.

(3.11) Exercises.
1. Let X be a topological space and G an abelian group. For every non-empty open
subset U of X we let F(U) = GU be all maps U → G. Let F(∅) = {0}. For every
inclusion U ⊆ V of open subsets of X we define ρVU : F(V ) → F(U) to be the map
that takes a section s : V → G to its restriction s|U : U → G. Show that F with the
maps ρVU has a natural structure as a sheaf of groups.

2. Let X be a topological space and A a ring. For every non-empty open subset U of
X we let A(U) = AU be all maps U → A. For every inclusion U ⊆ V of open subsets
of X we define ρVU : A(V ) → A(U) to be the map that takes a section s : V → A to
its restriction s|U : U → A. Let A(∅) = {∅}. Show that A with the maps ρVU has a
natural structure as a sheaf of rings.

3. LetX = {x0, x1} have the topology with open sets ∅, X, {x0}. We let A(x) = Z(p),

A(x0) = Q, and F(∅) = {0}. Moreover, we let ρXx0
: Z(p) → Q be the inclusion map.

(1) Show that A is a sheaf and that the pair (X,A) is a local ringed space.
(2) Let Y = {y0} and let B be the sheaf B(Y ) = Q on Y . Moreover let ψ : Y → X

be the map that takes y0 to x0. Show that there is a unique homomorphism
of sheaves of algebras A → ψ∗(B) which is the identity on Q over {x0}, and
the inclusion Z(p) → Q on X.

(3) Show that the map of part (2) is a local map of local ringed spaces.→
(4) Let ψ : Y → X be the map that takes y0 to x1. Show that there is a map of

sheaves of rings A → ψ∗(B) which is the inclusion Z(p) → Q on X and the
zero map Q → {0} on {x0}. Show that this is not a local homomorphism of
local ringed spaces.
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4. Let X be a topological space and let F be a sheaf of groups on X. Show that for
every open subset U of X, and every section s ∈ F(U) we have that the set consisting
of x ∈ U such that sx = 0 is open in X.



Modules

1. Modules.

(1.1) Definition. Let A be a ring. An A-module is an abelian group !!M and ann

operation of A on M which to !!f ∈ A and !!x ∈ M gives a product fx ∈ M suchnn
that for all f, g in A and x, y in M we have:

(1) 1x = x.
(2) (f + g)x = fx+ gx.
(3) f(x+ y) = fx+ fy.
(4) f(gx) = (fg)x.

(1.2) Remark. An operation of A on M , or a product of the elements of A with
the elements of M , is the same as a map A×M →M .

(1.3) Example. Every abelian group G is a Z-module under the multiplication that
to a positive integer n and an element x ∈ G associates the sum nx = x+x+ · · ·+x
of x with itself n times, and (−n)x = −nx = −x− x− · · · − x is the sum of −x with
itself n times. We let 0x = 0.

(1.4) Example. Let A be a ring. Multiplication on A makes A into an A-module.

(1.5) Definition. Let A be a ring and M an A-module. A submodule !!L of M isn
a subgroup of M such that for all f in A and x ∈ L we have fx ∈ L.

We say that a submodule L of M is properly contained in M if L is different from
M , and that L is a proper submodule of M if it is non-zero and properly contained
in M .

(1.6) Remark. LetM be anA-module and L a submodule. The A-module structure
on M induces an A-module structure on L.

(1.7) Example. Consider the ring A as a module over itself. A subgroup a of A is
an ideal if and only if a is a submodule of A.

(1.8) Definition. Let A be a ring and M and N two modules. A map !!u : M → Nn
is A-linear or an A-module homomorphism if, for all f ∈ A and x, y in M , we have:

(1) u(fx) = fu(x).
(2) u(x+ y) = u(x) + u(y).

An A-module homomorphism is an isomorphism if it has an inverse, or equivalently if
it is bijective. The set theoretic inverse is then automatically a homomorphism of A-
modules. We denote the A-module homomorphisms from M to N by HomA(M,N).

67
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(1.9) Remark. We know that HomA(M,N) is a group under the addition that
takes u : M → N and v : M → N to the homomorphism (u+v) : M → N defined by
(u+ v)(x) = u(x) + v(x) for all x ∈ M . The ring A operates on HomA(M,N) by the
product that takes f ∈ A and u to fu defined by (fu)(x) = f(u(x)) for all x ∈ M .
It is clear that the group HomA(M,N) becomes an A-module under this operation.

(1.10) Remark. Let u : M → N and !!v : N → P be A-module homomorphisms.n
Then idM and vu : M → P are A-module homomorphisms. In other words, the
A-modules with A-linear homomorphisms form a category. We call this category the
category of A-modules.

(1.11) Residue modules. Let M be an A-module and L a submodule. The A-
module structure on M induces a unique A-module structure on the residue group
M/L such that the canonical homomorphism !!uM/L : M → M/L is an A-modulen
homomorphism. The multiplication of an element f ∈ A with the residue class
uM/L(x) of an element x ∈ M is defined by fuM/L(x) = uM/L(fx). It is clear that
the definition is independent of the choice of representative x of the class uM/L(x).

(1.12) Example. Let A be a ring and u : M → N a homomorphism of A-modules.
The kernel Ker(u) = {x ∈ M : u(x) = 0} of u is a submodule, and the image

Im(u) = {u(x) : x ∈ M} is a submodule of N . The cokernel N/ Im(u) of N is an
A-module under the multiplication defined by fuN/ Im(u)(y) = uN/ Im(u)(fy) for all
f ∈ A and y ∈ N .

(1.13) Lemma. Let A be a ring, and let u : M → N be a homomorphism of
A-modules. Moreover let L be a submodule of M .

(1) The homomorphism u factors via the canonical map uM/L : M → M/L and
an A-linear homomorphism v : M/L → N if and only if u(L) = 0. When v
exists it is unique.

(2) If v exists, then it is injective if and only if L = Ker(u).

Proof. (1) Assume that v exists. Then, for each x ∈ L, we have u(x) = vuM/L(x) =
v(0) = 0. Conversely, if u(L) = 0 we can define the homomorphism v : M/L →
N by v(uM/L(x)) = u(x). The homomorphism v is independent of the choice of
representative x of the class of uM/L(x). In fact if uM/L(x) = uM/L(y) we have that
x−y ∈ L and consequently that u(x) = u(x−y+y) = u(x−y)+u(y) = 0+u(y) = u(y).
Finally, since uM/L is surjective, we have that v is uniquely determined by the relation
u(x) = v(uM/L(x)).

(2) Since u(x) = v(uM/L(x)) we have that Ker(v) = 0 if and only if u(x) = 0 is
equivalent to uM/L(x) = 0. However we have that uM/L(x) = 0 if and only if x ∈ L.

(1.14) Lemma. Let N be an A-module and L,M two submodules. Then there is
an isomorphism L/(L∩M) → (L+M)/M of A-modules which maps the class of an
element x ∈ L in L/(L ∩M) to the class of x in (L+M)/M .
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Proof. It is clear that the map L/L ∩M → (L+M)/M is well defined and gives an
A-module homomorphism. The homomorphism is injective because the class of x is
mapped to zero in (L + M)/M exactly when x ∈ M and thus x ∈ (L ∩M). It is
surjective because every class in (L+M)/M is represented by an element x ∈ L.

(1.15) Operations on modules. Let A be a ring and !!{Mα}α∈I a collectionn

of A modules Mα. The direct product !!
∏
α∈IMα of the groups Mα becomes an A-n

module when we define the product of f ∈ A and (xα)α∈I ∈
∏
α∈IMα by f(xα)α∈I =

(fxα)α∈I . We call the A-module
∏
α∈IMα the direct product of the modules Mα.

We have a canonical projection
∏
α∈IMα → Mβ for all β ∈ I. We have that

pβ((xα)α∈I) = xβ.

The direct sum !!⊕α∈IMα of the groups Mα for α ∈ I becomes an A-submodulen
of the product

∏
α∈IMα. We call the A-module ⊕α∈IMα the direct sum of the A-

modules Mα. The direct sum comes with a canonical homomorphism hβ → ⊕α∈IMα

to factor β for all β ∈ I. We have that hβ(x) = (xα)α∈I with xβ = x and xα = 0
when α 6= β.

More generally, if !!{Aα}α∈I is a collection of rings Aα and {Mα}α∈I is a col-n
lection of Aα-modules Mα we have that

∏
α∈IMα becomes an (

∏
α∈I Aα)-module

when we define the product of (fα)α∈I ∈ ∏
α∈I Aα and (xα)α∈I ∈ ∏

α∈IMα by
(fα)α∈I(xα)α∈I = (fαxα)α∈I . The direct sum ⊕α∈IMα becomes a sub (

∏
α∈I Aα)-

module of
∏
α∈IMα.

When all the modules Mα are submodules of the same A-module M the sum∑
α∈IMα of the groups Mα is an A-submodule of M . It is the smallest submodule

of M containing the submodules Mα for α ∈ I. We have that
∑
α∈IMα consists of

all sums
∑
β∈J xβ for all finite subsets J of I and all xβ ∈Mβ for β ∈ J .

When I = {1, 2, . . . , n} we write !!M1 ×M2 × · · ·×Mn for the direct product andn

!!M1 ⊕M2 ⊕ · · · ⊕Mn for the direct sum of the modules M1,M2, . . . ,Mn.n

(1.16) Remark. The direct product
∏
α∈IMα with the canonical projections pβ :∏

α∈IMα → Mβ and the direct sum ⊕α∈IMα with the canonical homomorphism
hβ : Mβ → ⊕α∈IMα are the product, respectively coproduct, in the category of
A-modules. That is the direct product and direct sum of a collection of modules is a
product, respectively a coproduct, in the categorical sense.

(1.17) Definition. Let M be an A-module and let {xα}α∈I be a family of elements
in M . The sum

∑
α∈I Axα of the submodules Axα of M we call the submodule of M

generated by the elements xα. When x =
∑
β∈J fβxβ with fβ ∈ A and where J is a

finite subset of I we say that x is a linear combination of the elements xα.

We say that the elements {xα}α∈I generate M when M =
∑
α∈I Axα. A module

that is generated by a finite number of elements is called finitely generated.

The elements {xα}α∈I are linearly independent if a relation
∑
β∈J fβxβ = 0 with

fβ ∈ A and where J is a finite subset of I implies that fβ = 0 for all β ∈ J . A
relation

∑
β∈J fβxβ = 0 is called a linear relation between the elements xα.
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The module M is free with basis {xα}α∈I if the set {xα}α∈I generates M and
consists of linearly independent elements.

(1.18) Remark. The elements {xα}α∈I in the A-moduleM are linearly independent
if and only if each element x of the module

∑
α∈I Axα can be expressed uniquely

on the form x =
∑
α∈I fαxα with fα ∈ A where at most a finite number of the

fα are different from 0. In fact if every such expression is unique, we have that∑
β∈J fβxβ = 0 =

∑
β∈J 0xβ for a finite subset J of I implies that fβ = 0 for

all β ∈ J . Conversely if the elements xα are linearly independent two expressions∑
α∈I fαxα = x =

∑
α∈I gαxα for x with fα and gα in A where at most a finite

number of the fα and gα are different from zero imply that
∑
α∈I(fα − gα)xα = 0

and consequently that fα = gα for all α ∈ I.

(1.19) Example. Let A be a ring and I a set. For each α ∈ I we denote by e(α) the
element (eβ)β∈I in A(I) with eα = 1 and eβ = 0 when α 6= β. Then A(I) is a free A-

module with basis {e(α)}α∈I . In fact the elements {e(α)}α∈I generate A(I) because
the coordinates of an element (fα)α∈I in A(I) satisfy fα = 0 except for at most a
finite number of α ∈ I, and consequently (fα)α∈I =

∑
α∈I fαe(α). Moreover the

elements e(α) for α ∈ I are linearly independent because a relation
∑
α∈I fαe(α) = 0

with fα ∈ A and at most a finite number of the fα different from zero implies that
(fα)α∈I =

∑
α∈I fαe(α) ∈ A(I) is 0. That is fα = 0 for α ∈ I. We call the basis

{e(α)}α∈I the canonical basis of A(I).

(1.20) Proposition. Let M be a free A-module with basis {xα}α∈I . Moreover let
N be an A-module and let {yα}α∈I be elements in N . There is a unique A-module
homomorphism u : M → N such that u(xα) = yα for all α ∈ I.

Proof. Since the elements {xα}α∈I generate M every element x ∈M can be written
as x =

∑
β∈J fβxβ where J is a finite subset of I and fβ ∈ A. If u exists we have

that u(x) =
∑
β∈J fβu(xβ) and the conditions u(xα) = yα for α ∈ I determine u

uniquely.
Every element x in M can be written uniquely as x =

∑
α∈I fαxα where fα ∈ A

and with at most a finite number of the fα different from zero. Consequently we
can define a map u : M → N by u(x) =

∑
α∈I fαyα. We have that u is A-linear

for if x′ =
∑
α∈I f

′
αxα with the f ′

α ∈ A and at most a finite number of the f ′
α

different from zero we obtain that u(x + x′) = u(
∑
α∈I(fα + f ′

α)xα) =
∑
α∈I(fα +

f ′
α)yα =

∑
α∈I fαyα +

∑
α∈I f

′
αyα = u(x) + u(x′). Moreover for f ∈ A we have that

u(fx) = u(
∑
α∈I ffαxα) =

∑
α∈I ffαyα = f

∑
α∈I fαyα = fu(x).

(1.21) Definition. When A is a field we call an A-module an A-vector space, and
the elements of M we call vectors. We also say that the vector space is defined over

K. A submodule of M is called a subspace.

(1.22) Theorem. LetM 6= 0 be a vector space over a fieldK. Moreover let {xα}α∈J
be generators for M such that {xα}α∈H with H ⊆ J are linearly independent vectors.
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Then there is a collection I of indices with H ⊆ I ⊆ J such that {xα}α∈I is a basis
for M .

In particular every vector space has a basis.

Proof. Let I be the collection of subsets I ′ of J containing H such that the vectors
{xα}α∈I′ are linearly independent. We have that I is not empty since it contains
H. Every chain in I has a maximal element. In fact let !!{I ′β}β∈G be a chain ofn
subsets I ′β in I. Then the collection of elements ∪β∈G{xα}α∈I′β consists of linearly

independent elements since linear relations between the elements {xα}α∈J involve
only a finite number of these elements. It follows from Zorns Lemma that I contains
a maximal subset I.

Let L be the subspace generated by the linearly independent vectors {xα}α∈I . We
shall prove that L = M . Assume to the contrary that L ⊂ M . Since the elements
{xα}α∈J generate M there must then be an index β ∈ J \ I such xβ ∈ M \ L. We
shall prove that then the vectors {xβ} ∪ {xα}α∈I are linearly independent. This is
impossible since I is maximal in I, and thus contradicts the assumption that L ⊂M .
To prove that the vectors {xβ} ∪ {xα}α∈I are linearly independent we observe that
a relation fxβ +

∑
α∈I fαxα = 0 with f, fα in A where at most a finite number of

the fα are different from zero, implies that f 6= 0 since the xα for α ∈ I are linearly
independent. Hence we have the equality xβ = −∑α∈I(fα/f)xα, which is impossible
since xβ /∈ L. This contradicts the assumption that L ⊂ M . We have proved that
M = L and thus that the first assertion of the Theorem holds.

The second part follows since we can take {xα}α∈J to be the collection of all
vectors in M , and H to be empty.

(1.23) Proposition. Let M 6= 0 be a vector space defined over a field K. Moreover
let {xα}α∈I be a basis for M , and let {yγ}γ∈J be a collection of linearly independent
vectors. Then there is an injective map of sets !!ι : J → I such that {xα}α∈I\ι(J) ∪n
{yγ}γ∈J is a basis for M .

In particular, when M is a finitely generated over K, the least number n of gen-
erators of M is equal to the largest number of linearly independent elements of M ,
and n is equal to the number of elements of any basis of M .

Proof. Let !!L be the collection of all pairs (L, ι) consisting of a subset L of J andn
an injective map of sets ι : L → I, and where {xα}α∈I\ι(L) ∪ {yγ}γ∈L is a basis for
M . Then L is not empty because it contains the empty set. We order the elements
in L by (L′, ι′) ≤ (L′′, ι′′) if L′ ⊆ L′′ and ι′′|L′ = ι′. Since every element in M can be
expressed as a linear combination of a finite number of basis elements we have that
every chain in L has a maximal elements. It follows from Zorns Lemma that L has
a maximal elements (L, ι). To prove the first part of the Proposition it suffices to
show that L = J . Assume to the contrary that L ⊂ J . Choose an element δ ∈ J \L.
Then we have that yδ =

∑
α∈I\ι(L) fαxα +

∑
γ∈L gγyγ where fα and gγ are in A and

at most a finite number for the fα and gγ are different from zero. Since the elements
{yγ}γ∈J are linearly independent we have that there there is a β ∈ I \ ι(L) such that
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fβ 6= 0. Then xβ = f−1
β (yδ −

∑
α∈I\{ι(L)∪{β}} fαxα −∑γ∈L gγxγ). It follows that

{yγ}γ∈L∪{δ} ∪ {xα}α∈I\{ι(L)∪{β}} is a basis for M . Hence the pair (L ∪ {δ}, ιδ) with
ιδ(δ) = β and ιδ|L = ι is in L and it is strictly greater than the pair (L, ι). This
is impossible since (L, ι) is maximal in L, and therefore contradicts the assumption
that L ⊂ J . Hence L = J and we have proved the first part of the Proposition.

Let x1, x2, . . . , xn be a set of generators of M with the least number n of elements.
It follows from Proposition (?) that we can find a subset of {x1, x2, . . . , xn} which is→
a basis for M . Since the elements of a basis generate M and n is the minimal number
of elements in a system of generators we have that x1, x2, . . . , xn is a basis. Hence
it follows from the first part of the Proposition that any set of linearly independent
elements has at most n elements. In particular any basis for M has at most n
elements. However, every basis for M generates M and thus has at least n elements
by the minimality of n. Hence each basis has exactly n elements. We have proved
the last part of the Proposition.

(1.24) Proposition. Let M 6= 0 be a finitely generated free A-module. Then all
the bases of M have the same number of elements as the least number of generators
for M .

Proof. Let {xα}α∈I be a basis for the A-module M . Choose a maximal ideal m of A.
The classes zα of xα in the A/m-vector space N = M/mM for all α ∈ I is a basis ofN .
In fact a relation between the elements zα is the same as a relation

∑
α∈I fαxα ∈ m

with fα ∈ A and at most a finite number of the fα different from zero, and where
fα ∈ A \m whenever fα 6= 0. That is, we have

∑
α∈I fαxα =

∑
α∈I gαxα with all the

gα ∈ m and at most a finite number of the gα different from zero. Since the elements
{xα}α∈I is a basis for M we must have that fα = gα for α ∈ I. But this is impossible
unless fα = 0 for all α because fα /∈ m when fα 6= 0, and gα ∈ m.

Let y1, y2, . . . , yn be a set of generators of M with the least number of elements.
Then the classes of y1, y2, . . . , yn in N generate N . Since the {zα}α∈I is a basis
for N it follows from Proposition (?) that the set I is finite and has at most n→
elements. Since the elements {xα}α∈I for α ∈ I is a basis for M by assumption and
in particular generate M we have that I has at least n elements. Hence I contains
exactly n elements, and we have proved the Proposition.

(1.25) Definition. Let M 6= 0 be a finitely generated free A-module. The common
number of elements of the bases for M is called the rank of M and denoted rk(M) =
rkA(M). When K is a field and N is a finitely generated vector space over K the
rank of N is called the dimension of N and written dimK(N). We let rkA(0) = 0
and dimK(0) = 0.

(1.26) Remark. Let L be a subspace of a finitely generated vector space M over a
field K. Then L is finitely generated and if L is a proper subspace then dimK(L) <
dimK(M). This is because every basis of L can be extended to a basis of M .
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(1.27) Theorem. (Nakayamas Lemma) Let A be a ring and let a be an ideal of A.
Moreover let M be a be finitely generated A-module. The following assertions hold:

(1) When M = aM there is an f ∈ a such that (1 + f)M = 0.
(2) When M = aM and a is contained in all the maximal ideals of A we have

that M = 0.
(3) When L is a submodule of M such that M = L+ aM , and a is contained in

all the maximal ideals of A, then we have that M = L.

Proof. (1) We show assertion (1) by induction on the least number of generators→
for the module M . When M has one generator the assertion is clear. Assume that
assertion (1) holds for all modules that can be generated by n − 1 elements, and→
assume that M has n generators x1, x2, . . . , xn. The residue module M/Axn can be
generated by n− 1 elements and a(M/Axn) = aM + Axn/Axn = M + Axn/Axn =
M/Axn. Hence it follows from the induction assumption that there is an elements
g ∈ a such that (1 + g)(M/Axn) = 0, that is, such that (1 + g)M ⊆ Axn. It
follows that there are elements g1, g2, . . . , gn−1 in A such that (1 + g)xi = gixn
for i = 1, 2, . . . , n − 1. Since aM = M we can find elements h1, h2, . . . , hn in a

such that xn = h1x1 + h2x2 + · · · + hnxn. We obtain that (1 + g)(1 − hn)xn =
(1+g)h1x1+(1+g)h2x2+· · ·+(1+g)hn−1xn−1 = g1h1xn+g2h2xn+· · ·+gn−1hn−1xn.
Let fn = (1 − g)(1 − hn) − g1h1 − g2h2 − · · · − gn−1hn−1 − 1. Then we have that
fn ∈ a and (1 + fn)xn = 0. Similarly we can find elements f1, f2, . . . , fn−1 in a such
that (1 + fi)xi = 0 for i = 1, 2, . . . , n− 1. Let f = (1 + f1)(1 + f2) · · · (1 + fn) − 1.
Then f ∈ a and (1 + f)M = 0, and we have proved assertion (1).→

(2) It follows from assertion (1) that there is an element f ∈ a such that (1+g)M =→
0. When a is contained in all maximal ideals of A the element 1+f is a unit in A. In
fact if 1 + f is not a unit there is a maximal ideal m in A containing 1 + f . However
this is impossible since f ∈ M such that 1 + f ∈ m implies that 1 ∈ m. Since 1 + f
is a unit there is an element g ∈ A such that g(1 + f) = 1, and we obtain that
M = g(1 + f)M = 0, as we wanted to prove.

(3) We have that a(M/L) = (aM + L)/L = M/L. It follows from assertion (2)→
that M/L = 0, that is, we have M = L.

(1.28) Lemma. Let A be a ring and M an A-module. Moreover let
∑n
j=1 fijxj = 0

be equations in M for i = 1, 2, . . . , n, with fij ∈ A and xj ∈ M for i, j = 1, 2, . . . , n.
Then there are equations

∑n
j=m gijxj = 0 in M for i = m,m + 1, . . . , n, where

the elements gij are sums of elements of the form ±∏n
i,j=1 f

nij
ij with

∑n
i,j=1 nij =

2m−1. Moreover it is only the coefficients gii for i = 1, 2, . . . , n where the sums
contain products of the form ±∏n

i=1 f
nii
ii , and in gii there is exactly one such term

f2m−2

11 f2m−3

22 · · · f(m−1)(m−1)fii.

Proof. We prove the Lemma by induction on m. The Lemma clearly holds for m = 1.
Assume that it holds for m − 1. Then we have equations

∑n
j=m−1 hijxj = 0 for

i = m−1,m, . . . , n where the coefficients hij are as described in the Lemma. Multiply
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both sides of the equation
∑n
j=m−1 h(m−1)jxj = 0 with hp(m−1), and both sides of the

equation
∑n
j=m−1 hpjxj = 0 with h(m−1)(m−1). Subtract the first equation from the

second for p = m,m + 1, . . . , n. We obtain the equations
∑n
j=m(h(m−1)(m−1)hpj −

hp(m−1)h(m−1)j)xj = 0 for p = m,m + 1, . . . , n. It is clear that the coefficients
gij = h(m−1)(m−1)hij − hi(m−1)h(m−1)j are of the form described in the Lemma.

(1.29) Theorem. Let A be a ring and let a be an ideal. Moreover let M be a
finitely generated A-module and u : M →M an A-module homomorphism such that
u(M) ⊆ aM . Then there are elements f1, f2, . . . , fn in a such that the endomorphism

un + f1u
n−1 + · · ·+ fn : M →M

defined by (un+f1u
n−1 + · · ·+fn)(x) = un(x)+f1u

n−1(x)+ · · ·+fnx, for all x ∈M ,
is equal to zero.

Proof. We have that the polynomial ring A[t] in the variable t over A operates on
M by (g0t

n + g1t
n−1 + · · · + gm)(x) = g0u

n(x) + g1u
n−1(x) + · · · + g0x, for all

g0, g1, . . . , gn in A and x in M . It is clear that under this action M becomes an
A[t]-module. The Proposition states that we can find elements f1, f2, . . . , fn in a

such that (tn + f1t
n−1 + · · ·+ fn)(x) = 0 for all x ∈M .

Let x1, x2, . . . , xm be generators for the A-module M . Then we have that txi =∑m
j=1 fijxj with fij ∈ a for i, j = 1, 2, . . . ,m, and thus we have equations

∑m
j=1(tδij−

fij)xj = 0 for i = 1, 2, . . . ,m, where δii = 1 and δij = 0 when i 6= j. We apply Lemma
(?) to these equations with A[t] instead of A and with m instead of n. We obtain→
an equation gmmxm = 0 where gmm is the sum of terms ±∏m

i,j=1(tδij − fij)
mij with∑

i,j=1m mij = 2m−1. From the description of the coefficient gmm in The Lemma we
see that all the terms are polynomials in t with all their coefficents in a except the

term (t− f11)
2m−2

(t− f22)
2m−3 · · · (t− f(m−1)(m−1))(t− fmm). We obtain that gmm

is a polynomial of the form gmm(t) = t2
m−1

+ hm1t
2m−1−1 · · ·+ hm2m−1 with hij ∈ a,

and whose product with xm is 0.
Renumbering the generators x1, x2, . . . , xm we see that for each i we have a poly-

nomial gii(t) = t2
m−1

+ hi1t
2m−2−1 + · · · + hi2m−1 with coefficients hij ∈ a whose

product with xi is 0. Then g11g22 · · · gmm = tn + f1t
n−1 + · · · + fn is a polynomial

with coefficients in a whose product with all the elements of M is 0.

(1.30) Definition. Let {Mn}n∈Z be a sequence of A modules Mn, and let un :
Mn →Mn+1 for all n ∈ Z be A-module homomorphisms. We say that!!n

· · · →Mn−1
un−1−−−→Mn

un−→Mn+1 → · · ·

is a complex of A-modules if Im(un) ⊆ Ker(un+1) for all n ∈ Z. The complex is exact

if Im(un) = Ker(un+1) for all n ∈ Z. If there are integers p or q such that Mn = 0

for n > p or n < q we often write the terms!! · · · up−2−−−→ Mp−1
up−1−−−→ Mp → 0, orn

!!0 →Mq
uq−→Mq+1

uq+1−−−→ · · · only.n
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An exact complex of A-modules!!n

0 →M → N → P → 0

is said to be short exact.

(1.31) Example. Let u : M → N be an A-module homomorphism. We obtain two
short exact sequences:

0 → Ker(u) →M → Im(u) → 0

and

0 → Im(u) → N → Coker(u) → 0.

(1.32) Remark. Let v : M ′ → M and w : N → N ′ be homomorphisms of A-
modules. We obtain an A-module homomorphism

HomA(v, w) : HomA(M,N) → HomA(M ′, N ′)

that maps u : M → N to wuv : M ′ → N ′. The correspondence that maps an
A-module M to the A-module HomA(M,N) for fixed N is clearly a contravariant

functor from A-modules to A-modules. Similarly the functor the correspondence
that maps an A-module N to HomA(M,N) for fixed M is a covariant functor from
A-modules to A-modules.

(1.33) Lemma. We have

(1) Let

L
u−→M

v−→ N → 0 (1.33.1)

be a complex of A-modules. The complex is exact if and only if the complex

0 → HomA(N,P )
HomA(v,idP )−−−−−−−−→ HomA(M,P )

HomA(u,idP )−−−−−−−−→ HomA(L, P ) (1.33.2)

is exact for all A-modules P .
(2) Let

0 → L
u−→M

v−→ N (1.33.3)

be a complex of A-modules. The complex is exact if and only if the complex

HomA(P,L)
HomA(idP ,u)−−−−−−−−→ HomA(P,M)

HomA(idP ,v)−−−−−−−−→ HomA(P,N) → 0 (1.33.4)

is exact for all A-modules P .
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Proof. It is clear that if (1.33.1) and (1.33.3) are exact complexes then (1.33.2),→→→
respectively (1.33.4), are exact complexes.→

To prove the converse implications we assume that (1.33.2) is exact for all P .→
First we let P = N/ Im(v). The canonical homomorphism uN/ Im(v) : N → N/ Im(v)
maps to zero in HomA(M,N/ Im(v)). Since HomA(idP , u) is injective by assumption
we obtain that uN/ Im(v) = 0, that is N/ Im(v) = 0. Hence N = Im(v), and v is
surjective.

Secondly let P = M/ Im(u). The canonical homomorphism uM/ Im(u) : M →
M/ Im(u) maps to zero in HomA(L,M/ Im(u)). Since the sequence (1.33.2) is exact→
by assumption there is an A-modules homomorphism w : N → M/ Im(u) such that
uM/ Im(u) = wv. In particular the kernel Ker(v) of v is contained in the kernel

Im(u) of uM/ Im(u). However Im(u) ⊆ Ker(v) since (1.33.1) is a complex. Hence→
Im(u) = Ker(v), and we have proved that (1.33.1) is exact.→

Similar reasoning gives that if (1.33.4) is exact for all A-modules P then (1.33.3)→→
is exact.

(1.34) Proposition. Let

0 −−−−→ M ′ u−−−−→ M
v−−−−→ M ′′ −−−−→ 0

w′

y w

y w′′

y

0 −−−−→ N ′ −−−−→
u′

N −−−−→
v′

N ′′ −−−−→ 0

(1.34.1)

be a commutative diagram of A-modules with exact horizontal sequences. Then there
is a natural exact sequence of A-modules!!n

0 −→ Ker(w′)
u0

−→ Ker(w)
v0

−→ Ker(w′′)
d−→

Coker(w′)
(u′)1−−−→ Coker(w)

(v′)1−−−→ Coker(w′′) −→ 0

where u0, v0 are induced by the restrictions of u and v respectively, and (u′)1, (v′)1

are induced by u′ respectively v′.

Proof. We first define the homomorphism d. Let x′′ ∈ Kerw′′. Choose an x ∈ M
such that v(x) = x′′. Then we have that v′w(x) = w′′v(x) = w′′(x′′) = 0. Since
the bottom horizontal sequence is exact there is a unique element y′ ∈ N ′ such that
w(x) = u′(y′). We take d(x′′) to be the class of y′ in N ′/ Im(w′). The definition
of d is independent of the choice of x. In fact, since the top horizontal sequence
of diagram (1.34.1) is exact, we have that v(x1) = x′′ and w(x1) = u′(y′1) with→
x1 ∈ M and y′1 ∈ N ′. In particular v(x − x1) = v(x) − v(x1) = x′′ − x′′ = 0,
and since the top horizontal sequence is exact we have that x − x1 = u(x′) for
some x′ ∈ M ′. Then w(x) − w(x1) = w(x − x1) = wu(x′) = u′w′(x′), and thus
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u′(y′) = w(x) = w(x1) + u′w′(x′) = u′(y′1) + u′w′(x′) = u′(y′1 + w′(x′)). Since u′

is injective we have y′ = y′1 + w′(x′). Thus y and y1 belong to the same class in
N ′/ Im(w′).

Simple calculations show that the sequence is exact.

(1.35) Exercises.
1. Let A be a ring and let M,M ′ and M ′′ be A-modules. We have defined what

it means that a sequence of sets M ′ → M ⇒ M ′′ is exact and what it means that

a sequence of A-modules 0 → M ′ → M → M ′′ → 0 is exact. Give the connection
between the two notions of exactness.

2. Show that the polynomial ring A[t] in the variable t with coefficients in the ring
A is a free A-module with basis {1, t, t2, . . .}.
3. Let M be an A-module. Define the sum and product of the elements in the
cartesian product A × M by (f, x) + (g, y) = (f + g, x + y), and (f, x)(g, y) =
(fg, gx+ fy). Show that A ×M with this sum and product is a ring which is an
A-algebra under the map A → A ×M that sends f ∈ A to (f, 0) in A ×M . We
denote this A-algebra by A[M ].

4. Let A 6= 0 be a ring and denote by An the direct sum n times of the A-module A
with itself. Assume that u : M → An be a surjection of A-modules. Show that there
is a submodule L of M such that M is isomorphic to the A-module L⊕ Ker u.

5. Let {Mα, ρ
α
β}α,β∈I,α≤β be an inductive system of A modules.

(1) Show that the group lim
−→α∈I

Mα has a unique structure of an A-module such

that the canonical homomorphisms ϕβ : Mβ → lim
−→α∈I

Mα of groups are all

A-module homomorphisms.
(2) Let {Nα}α∈I be another family of A-modules, and let {uα}α∈I be a map of

the inductive systems. Show that the resulting map lim
−→α∈I

uα : lim
−→α∈I

Mα →
lim
−→α∈I

Nα is an A-module homomorphism.

6. Let A 6= 0 be a ring and let An be the direct sum of the A-module A with itself
n times. Let u : Am → An be an A-linear map.

(1) Show that for every ideal a of A the map u induces a canonical A-linear
map ua : (A/a)m → (A/a)n that sends (uA/a(f1), uA/a(f2), . . . , uA/a(fm)) to
uA/a(u1(x)), uA/a(u2(x)), . . . , uA/a(un(x))) for all x = (f1, f + 2, . . . , fm) in
Am, where we have written u(x) = (u1(x), u2(x), . . . , un(x)).

(2) Show that if u : Am → An is surjective then m ≥ n.
(3) Show that if u is surjective and injective then m = n.

7. Let A be a ring and let M 6= 0 be a free A-module of finite rank. Moreover let
{xα}α∈I be a collection of elements of M .

(1) Is it true that when the elements {xα}α∈I generate M then we can find a
subset J of I such that the elements {xβ}β∈J form a basis for M?
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(2) Is it true that when the elements {xα}α∈I are linearly independent then there
is a set K containing I and elements {xγ}γ∈K that form a basis for M?

8. Let I be an infinite set, and let A be a ring. For each α ∈ I we let e(α) =
(eβ)β∈I ∈ AI be the element given by eα = 1 and eβ = 0 when α 6= β.

(1) Are the elements {e(α)}α∈I linearly independent in AI?
(2) Are the elements {e(α)}α∈I generators for the A-module AI?

9. Let · · · →Mn−1
un−1−−−→Mn

un−→Mn+1 → · · · be a complex of A-modules Mn.

(1) Show that we obtain complexes 0 → Ker(un) →Mn −→ Coker(un−1) → 0 for
n ∈ Z.

(2) Show that the complexes of (1) are exact for all n ∈ Z if and only if the

complex · · · →Mn−1
un−1−−−→Mn

un−→Mn+1 → · · · is exact.

10. Show that when K is a field and when

0 →M0 →M1 → · · · →Mn → 0

is an exact sequence of finitely generated K-vector spaces, then
∑n
i=0 dimK(Mi) = 0.
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2. Tensor products.

(2.1) Definition. Let A be a ring and let M , N and P be A-modules. A map
!!b : M ×N → P from the direct product of M and N to P is called A-bilinear if wen
for all elements x, x′ in M , y, y′ in N and f in A have:

(1) b(fx, y) = fb(x, y) = b(x, fy).
(2) b(x+ x′, y) = b(x, y) + b(x′, y).
(3) b(x, y + y′) = b(x, y) + b(x, y′).

(2.2) Construction of tensor products. We saw in (?) that the the A-module→
A(M×N) is free and has a canonical basis consisting of the family {e(x, y)}(x,y)∈M×N

where e(x, y) = (e(x′,y′))(x′,y′)∈M×N with e(x,y) = 1 and e(x′y′) = 0 if (x, y) 6= (x′, y′).

Let L be the submodule of A(M×N) generated by the elements

e(x+ x′, y)− e(x, y) − e(x′, y),

e(x, y + y′) − e(x, y)− e(x, y′),

e(fx, y)− fe(x, y),

e(x, fy)− fe(x, y),

(2.2.1)

for all elements x, x′ in M , y, y′ in N and f in A. Moreover let !!n

M ⊗A N = A(M×N)/L,

and let uM⊗AN : A(M×N) → M ⊗A N be the canonical homomorphism. We denote
the residue class of e(x, y) in M ⊗A N by !!x⊗A y. It follows from the definition ofn
the A-module M ⊗A N that M ⊗A N is generated as an A-module by the elements
of the form x⊗A y for all x ∈M and y ∈ N , and that we have relations

(x+ x′) ⊗A y = x⊗A y + x′ ⊗A y, x⊗A (y + y′) = x⊗A y + x⊗A y′,
fx⊗A y = f(x⊗A y) = x⊗A fy. (2.2.2)

Finally we let !!n
bM⊗AN : M ×N →M ⊗A N

be the homomorphism defined by bM⊗AN (x, y) = x⊗A y.
(2.3) Remark. It follows from the equalities (2.2.2) that if M and N are generated→
as A-modules by the elements {xα}α∈I respectively by {yβ}β∈J then the A-module
M ⊗A N is generated by the elements {xα ⊗A yβ}(α,β)∈I×J .

(2.4) Proposition. Let M , N and P be A-modules. The canonical homomorphism
bM⊗AN : M×N →M⊗AN is A-bilinear and it has the following universal property:

If b : M ×N → P is an A-bilinear map, then there is a unique A-linear homomor-
phism u : M ⊗A N → P such that b = ubM⊗AN .
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Proof. Since bM⊗AN (x, y) = x⊗A y for all (x, y) ∈M ×N , the bilinearity of the map
bM⊗AN follows from the relations (2.2.1).→

The homomorphism u is unique when it exists, because the A-module M ⊗A N
is generated by the elements x ⊗A y for all (x, y) ∈ M × N , and u(x ⊗A y) =
u(bM⊗AN (x, y)) = b(x, y).

In order to show the existence of u we observe first that it follows from Proposition
(?) that there is an A-linear homomorphism v : A(M×N) → P defined by v(e(x, y)) =→
b(x, y) for all (x, y) ∈ M × N where {e(x, y)}(x,y)∈M×N is the canonical basis for

A(M×N). Since the map b is A-bilinear it follows that v is zero on the submodule L.
Hence it follows from Proposition (?) that v factors via an A-linear homomorphism→
uM⊗AN : A(M×N) →M⊗AN and an A-linear homomorphism u : M⊗AN → P . We
have that b(x, y) = v(e(x, y)) = u(uM⊗AN (e(x, y))) = u(x ⊗A y) = u(bM⊗AN (x, y)).
Hence we have that b = ubM⊗AN .

(2.5) Remark. The universal property determines bM⊗AN : M × N → M ⊗A N
uniquely, up to an A-module isomorphisms. In fact if c : M × N → T is a bilinear
map of A-modules such that for each A-bilinear map b : M×N → P there is a unique
homomorphism u : T → P with b = uc, then the universal properties for bM⊗AN and
c define unique A-linear homomorphisms v : M ⊗A N → T and w : T → M ⊗A N
such that b = vbM⊗AN and bM⊗AN = wb. Hence b = vwb and bM⊗AN = wvbM⊗AN ,
and again by uniqueness v and w must be inverses.

(2.6) Definition. The module M ⊗A N is called the tensor product of M and N .

(2.7) Example. When p and q are different prime numbers we have that Z/pZ⊗Z

Z/qZ = 0. In fact, it follows from the Euclidian algorithm that we can find an integer
n such that nq ≡ 1 (mod p). Hence, when we denote by n the class of an integer n
in Z/pZ and Z/qZ, we have that 1 ⊗Z 1 = nq ⊗Z 1 = n⊗Z q = 0 in Z/pZ ⊗Z Z/qZ.

On the other hand we have that Z/pZ ⊗Z Z/pZ is isomorphic to Z/pZ, because
for all integers m and n, we have that m⊗Z n = 1⊗Zmn. Hence the homomorphism
Z/pZ ⊗Z Z/pZ → Z/pZ that maps m ⊗Z n to mn is an isomorphism with inverse
mapping m to 1 ⊗Z m.

(2.8) Multilinear maps. Let A be a ring and let M1,M2, . . . ,Mn be A-modules.
A map !!n

m : M1 ×M2 × · · · ×Mn → P

is A-multilinear if for all f ∈ A and xi, x
′
i in Mi for i = 1, 2, . . . , n we have that

m(x1, . . . , xi + x′i, . . . , xn) = m(x1, . . . , xi, . . . , xn) +m(x1, . . . , x
′
i, . . . , xn)

m(x1, . . . , fxi, . . . , xn) = fm(x1, . . . , xi, . . . , xn)

for i = 1, 2, . . . , n. An analogous construction to that giving the tensor product of
two modules will give the tensor product !!M1 ⊗A M2 ⊗A · · · ⊗A Mn of the mod-n

ules M1,M2, . . . ,Mn and an A-multilinear homomorphism !!mM1⊗AM2⊗A···⊗AMn
:n
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M1×M2×· · ·×Mn →M1⊗AM2⊗A · · ·⊗AMn with the universal property that if m :
M1×M2×· · ·×Mn → P is an A-multilinear map then there is a unique A-linear homo-
morphism u : M1⊗AM2⊗A· · ·⊗AMn → P such thatm = umM1⊗AM2⊗A···⊗AMn

. The
universal property again determines M1 ⊗AM2 ⊗A · · · ⊗AMn up to an A-module
isomorphism. We denote the image of the elements (x1, x2, . . . , xn) by the homomor-
phism mM1⊗AM2⊗A···⊗AMn

by !!x1 ⊗A x2 ⊗A · · · ⊗A xn.n

(2.9) Maps of tensor products. Let u : M → N and u′ : M ′ → N ′ be homo-
morphisms of A-modules. We obtain a map b : M × M ′ → N ⊗A N ′ defined by
b(x, x′) = u(x) ⊗A u(x′) for all x ∈ M and x′ ∈ M ′. It is clear that the map b is
A-bilinear. Consequently we obtain an A-linear homomorphism !!n

u⊗A u′ : M ⊗AM ′ → N ⊗A N ′.

When v : N → P and v′ : N ′ → P ′ are A-linear homomorphisms we clearly have
that:

(v ⊗A v′)(u⊗A u′) = vu⊗A v′u′.

(2.10) Remark. For fixed N we have that the correspondence that sends an A-
module M to M ⊗A N is a covariant functor from the category of A-modules to
the category of A-modules. Similarly for fixed M the correspondence that sends the
A-module N to M ⊗A N is a covariant functor between the same categories.

(2.11) Lemma. Let M,N and P be A-modules.

(1) We have an isomorphism of A-modules M ⊗AA→M that is uniquely deter-
mined by mapping x⊗A f to fx for all f ∈ A and x ∈M .

(2) We have an isomorphism of A-modules (M ⊗A N) ⊗A P → M ⊗A N ⊗A P
that is uniquely determined by mapping (x⊗A y) ⊗A z to x⊗A y ⊗A z.

Proof. (1) The map M ×A→M that takes (x, f) to fx is A-bilinear. Consequently
there is an A-linear homomorphism M ⊗A A→M that maps x⊗A f to fx. We also
have an A-linear homomorphism M → M ⊗A A that maps x to x ⊗A 1. It is clear
that the two homomorphisms are inverses of each other.

(2) For every element z in P we have a map M ×N →M ⊗A N ⊗A P that takes
(x, y) to x⊗Ay⊗Az. This map is clearly A-bilinear. Consequently there is an A-linear
homomorphism uz : M ⊗A N →M ⊗A N ⊗A P that maps w to uz(w) = w ⊗A z. In
particular it maps x⊗A y to x⊗A y⊗A z. The map (M ⊗AN)×P →M ⊗AN ⊗A P
that takes (w, z) to uz(w) is clearly A-bilinear. Consequently we have an A-linear
homomorphism (M ⊗A N) ⊗A P → M ⊗A N ⊗A P that maps (x ⊗A y) ⊗A z to
x⊗A y⊗A z. We also have a map M ×N ×P → (M ⊗AN)⊗A P that takes (x, y, z)
to (x ⊗A y) ⊗A z. This map is clearly A-multilinear, and thus defines an A-linear
homomorphism M⊗AN⊗AP → (M⊗AN)⊗AP . The two homomorphisms between
(M ⊗A N) ⊗A P and M ⊗A N ⊗A P are clearly inverses of each other.
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(2.12) Proposition. Let {Mα}α∈I be a collection of A-modules, and let N be an
A-module. Then there is an isomorphism of A-modules

u : (⊕α∈IMα) ⊗A N ∼−→ ⊕α∈I (Mα ⊗A N)

that is uniquely determined by u(xα ⊗A y) = xα ⊗A y for all xα ∈ Mα and y ∈ N .

Proof. It is clear that u is unique if it exists.
We have a map (⊕α∈IMα) × N → ⊕α∈I(Mα ⊗A N) that takes (

∑
α∈I xα, y) to∑

α∈I xα⊗A y for all
∑

α∈I xα ∈ ⊕α∈IMα and y ∈ N . This map is clearly A-bilinear
and thus defines an A-linear homomorphism u : (⊕α∈I)Mα⊗AN → ⊕α∈I(Mα⊗AN).

To show that u is an isomorphism we shall construct the inverse homomorphism.
For each α ∈ I we have a map Mα × N → (⊕α∈IMα) ⊗A N which takes (xα, y) to
xα⊗A y for all xα ∈Mα and y ∈ N . The map is clearly A-bilinear. Consequently we
obtain an A-linear homomorphism Mα⊗AN → (⊕α∈IMα)⊗AN for all α ∈ I. From
the categorical definition of the sum of modules we have an A-linear homomorphism
⊕α∈I(Mα ⊗A N) → (⊕α∈IMα) ⊗A N . It is clear that the latter homomorphism is
the inverse of u.

(2.13) Corollary. Let M be a free A-module with basis {xα}α∈I , and let N be
an A-module. Then every element in M ⊗A N can be written uniquely on the form∑
α∈I xα ⊗A yα with yα ∈ N , and with yα = 0 except for at most a finite number of

the α ∈ I.

Proof. Since M is free it is isomorphic to the direct sum ⊕α∈IAxα via the homomor-
phism that maps

∑
α∈I fαxα in M to

∑
α∈I fαxα in ⊕α∈IAxα. It follows from the

Proposition that M ⊗AN is isomorphic to ⊕α∈I(Axα⊗AN). We have that the map
A→ Axα that sends f to fxα is an isomorphism. Hence it follows from Lemma (?)→
that Axα⊗AN is isomorphic to N . Hence M ⊗AN is isomorphic to ⊕α∈IN and we
have proved the Corollary.

(2.14) Proposition. Let

M ′ u′

−→M
u′′

−→M ′′ → 0

be an exact sequence of A-modules. For every A-module N the sequence

M ′ ⊗A N u′⊗AidN−−−−−−→M ⊗A N u′′⊗AidN−−−−−−→M ′′ ⊗A N → 0

is exact.

Proof. Since u′′ is surjective and M ′′⊗AN is generated by the elements x′′⊗A z with
x′′ ∈M ′′ and z ∈ N we have that u′′ ⊗A idN is surjective. Moreover, since u′′u′ = 0,
it is clear that Im(u′ ⊗A idN ) ⊆ Ker(u′′ ⊗A idN ).

It remains to prove that Im(u′ ⊗A idN ) = Ker(u′′ ⊗A idN ). Let L = Im(u′ ⊗A
idN ). It follows from Proposition (?) that we have an A-linear homomorphism→
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u : (M ⊗A N)/L → M ′′ ⊗A N that maps the class of x ⊗A z to u′′(x) ⊗A z, and
that we have an equality L = Ker(u′′ ⊗A idN ) if and only if the homomorphism u is
injective. To prove injectivity of u it suffices to prove that there is a homomorphism
v : M ′′ ⊗A N → (M ⊗A N)/L such that vu is the identity on (M ⊗A N)/L. In
order to prove the existence of v we let b : M ′′ × N → (M ⊗A N)/L be the map
that takes (u′′(x), z) to the class of x ⊗A z for all x ∈ M and z ∈ N . The map b
is well defined if u′′(x) = u′′(y) we have that x − y is in the kernel of u′′, and thus
x− y = u′(x′) for some x′ ∈M ′. Then we have that x⊗A z = y⊗A z+u′(x′)⊗A z =
y ⊗A z + (u′ ⊗A idN )(x′ ⊗A z), and consequently x⊗A z and y ⊗A z have the same
class in (M ⊗A N)/L. It is clear that b is A-bilinear. Hence we obtain an A-linear
homomorphism v : M ′′ ⊗A N → (M ⊗A N)/L. Since the A-module M ⊗A N is
generated by elements of the form x ⊗A z, it suffices, in order to prove that vu is
the identity homomorphism, to check that vu is the identity on the classes of the
elements x ⊗A z. However the class of x ⊗A z is mapped by u to u′′(x) ⊗A z and
v(u′′(x) ⊗A z) = x⊗A z.
(2.15) Remark. We express the conclusion of the Proposition by saying that the
tensor product is exact to the right or right exact. It is not left exact because the

homomorphism Z
2−→ Z given by multiplication by 2 is an injection of Z-modules. It

follows from Proposition (?) that Z ⊗Z Z/2Z = Z/2Z. However the homomorphism→
Z⊗Z (Z/2Z)

2Z⊗ZidZ/2Z−−−−−−−−→ Z⊗Z (Z/2Z) is zero because 2Z⊗Z idZ/2Z = idZ ⊗Z2Z/2Z =
0.

(2.16) Tensor products of algebras. Let A be a ring and let ϕ : A → B and
χ : A → C be A-algebras. Moreover let N be a B-module and P a C-module. We
consider N and P as A-modules the product gy = ϕ(g)y and gz = χ(g)z for all
g ∈ A, y ∈ N and z ∈ P . We have a map

B × C ×N × P → N ⊗A P

which takes (g, h, y, z) to gy ⊗A hz. It is clear that this map is A-multilinear. Con-
sequently we obtain an A-linear homomorphism

B ⊗A C ⊗A N ⊗A P → N ⊗A P.

Using Lemma (?) repeatedly we obtain an A-module isomorphism (B⊗AC)⊗A(N⊗A→
P ) → B ⊗A C ⊗A N ⊗A P which maps (g ⊗A h) ⊗A (y ⊗A z) to g ⊗A h ⊗A y ⊗A z.
Consequently we have an A-module homomorphism (B⊗AC)⊗A(N⊗AP ) → N⊗AP
that gives an A-bilinear map

(B ⊗A C) × (N ⊗A P ) → N ⊗A P

that takes ((g⊗A h), (y⊗A z)) to gy⊗A hz. We have thus defined an operation of the
tensor product B⊗AC on the group N ⊗A P such that the product of

∑m
i=1 gi⊗A hi
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and
∑n
i=1 yi ⊗A zi, with gi ∈ B, hi ∈ C, yj ∈ N and zj ∈ P for i = 1, 2, . . . ,m and

j = 1, 2, . . . , n, is given by
(

m∑

i=1

gi ⊗A hi
)(

n∑

i=1

yi ⊗A zi
)

=
m∑

i=1

n∑

j=1

giyj ⊗A hizj . (2.16.1)

It follows from Formula (2.16.1) that when B = N and C = P the group B⊗AC with→
this product is a ring with unit 1⊗A 1, and that N ⊗A P becomes a B⊗AC-module.
It is easy to see that the homomorphism

ψ : A→ B ⊗A C (2.16.2)

defined by ψ(f) = ϕ(f)⊗A1 = 1⊗Aχ(f) is a ring homomorphism which gives B⊗AC
a natural structure as an A-algebra.

(2.17) Restriction and extension of scalars. Let A be a ring and let ϕ : A→ B
be an A-algebra. Moreover let M be an A-module and N a B-module.

We obtain an operation of A on the group N by defining the product of f ∈ A and
y ∈ N by fy = ϕ(f)y. It is easy to check that N with this operation by A becomes
an A-module. We say that N is an A-module via the A-algebra structure on B and
denote this A-module by !!N[ϕ]. The A-module N[ϕ] we call the A-module obtainedn
from the B-module N by restriction of scalars to A.

The tensor product M ⊗A B has a natural structure as an A-module when the
product of f ∈ A with x⊗A g ∈M ⊗AB is given by f(x⊗A g) = fx⊗A g = x⊗A fg.
As we saw in Section (2.16) the group M ⊗AB has a natural structure as a (A⊗AB-→
module, and consequently by Lemma (?) a structure as a B-module. The product→
of g with

∑n
i=1 xi ⊗A hi is defined by

g

(
n∑

i−1

xi ⊗A hi
)

= ug

(
n∑

i=1

xi ⊗A hi
)

=

n∑

i=1

xi ⊗A ghi.

It is easy to verify that M⊗AB with this product becomes a B-module. We say that
M ⊗A B is the B-module obtained from the A-module M by extension of scalars to
B.

Let v : M ⊗A B → N be a homomorphism of B-modules. The composite of v
with the homomorphism M →M ⊗A B that maps x ∈ M to x⊗A 1 gives a map of
A-modules M →M[ϕ]. Hence we have defined a map

HomB(M ⊗A B,N) → HomA(M,N[ϕ]). (2.17.1)

This map is a bijection. To construct an inverse we let u : M → N be a homomor-
phism of groups such that u(fx) = ϕ(f)u(x) for all f ∈ A and x ∈ M . That is, u is
an A-module homomorphism u : M → N[ϕ]. Then the A-bilinear map M × B → N
that takes (x, g) to ϕ(g)u(x) = gu(x) for all g ∈ B and x ∈ M gives an A-linear ho-
momorphism M ⊗AB → N that maps x⊗A g to gu(x). If follows from the definition
of the B-module structure on M ⊗A B that this is a B-module homomorphism, and
it is clear that it gives an inverse to the map (2.17.1).→
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(2.18) Definition. Let ϕ : A → B be an A-algebra, and let M be an A-module,
and N a B-module. A homomorphism of groups u : M → N is compatible with the

algebra structure ϕ, or is a ϕ-module homomorphism if for all f ∈ A and x ∈ M
we have u(fx) = ϕ(f)u(x). Equivalently we have that u is compatible with ϕ if
u : M → N[ϕ] is a homomorphism of A-modules.

(2.19) Remark. It is clear that the map (2.17.1)→

HomA(M,N[ϕ])
∼−→ HomB(M ⊗A B,N)

is a ϕ-module isomorphism.

(2.20) Remark. Let ϕ : A→ B be an A-algebra. Moreover let M be an A-module
and N a B-modules. We have an ϕ-module isomorphism

M ⊗A N[ϕ]
∼−→ (M ⊗A B) ⊗B N (2.20.1)

which is uniquely determined by mapping x ⊗A y to (x ⊗A 1) ⊗B y for all x ∈ M
and y ∈ N . The inverse homomorphism of (2.20.1) maps (x⊗A g) ⊗B y to x⊗A gy→
for all g ∈ B, x ∈ M and y ∈ N . In fact we have an A-bilinear map M × N[ϕ] →
(M ⊗A B) ⊗B N[ϕ] which takes (x, y) to (x⊗A 1) ⊗B y. This map gives an A-linear
homomorphism M ⊗A N[ϕ] → (M ⊗A B) ⊗B N .

To define the inverse homomorphism we consider the B-bilinear map (M ⊗AB)×
N → M ⊗A N that maps (

∑n
i=1 xi ⊗A gi, y) to

∑n
i=1 xi ⊗A giy for all xi ∈ M ,

gi ∈ B and y ∈ N . We obtain a B-linear homomorphism (M ⊗A B) ⊗B N →
M ⊗A N . The latter homomorphism defines, by restriction of scalars, the inverse of
the homomorphism (2.20.1).→

It is clear that the map (2.20.1) is compatible with ϕ.→
(2.21) Remark. Let M be a free A-module with a basis {xα}α∈I and let ϕ :
A → B be a homomorphism of rings. Then M ⊗A B is a free B-module with basis
{xα ⊗A 1}α∈I . This follows immediately from Corollary (?).→
(2.22) Example. Let ϕ : A → B be a homomorphism of rings, and let A[t] and
B[t] be the polynomials rings in the variable t with coefficients in A, respectively B.
Then there is an isomorphism A[t] ⊗A B → B[t] uniquely determined by mapping
f(t)⊗A g to f(t)g for all f(t) ∈ A[t] and g ∈ B. The existence and the uniqueness is
clear. That the homomorphism is an isomorphism follows from Corollary (?).→
(2.23) Lemma. Let ϕ : A → B be an A-algebra. Moreover let N and N ′ be
B-modules. Then we have a canonical ϕ-module homomorphism N[ϕ] ⊗A N ′

[ϕ] →
N ⊗B N ′ which maps y ⊗A y′ to y ⊗B y′.

In particular, if M and M ′ are A-modules and u : M → N and u′ : M ′ → N ′ are
ϕ-module homomorphisms we have a natural ϕ-module homomorphism

u⊗ϕ u′ : M ⊗AM ′ → N ⊗B N ′
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that maps x ⊗A x′ to u(x) ⊗B u′(x′). When v : N → P and v′ : N ′ → P ′ are χ-
module homomorphisms for a B-algebra χ : B → C we have that (vu) ⊗χϕ (v′u′) =
(v ⊗χ v′)(u⊗ϕ u′)
Proof. We have a map N[ϕ]×N ′

[ϕ] → N⊗BN ′ that takes (y, y′) to y⊗B y′. This map

is A-bilinear because, for all f ∈ A, we have that (fy, y′) = (ϕ(f)y, y′) maps to the
element ϕ(f)y⊗B y′ = y ⊗B ϕ(f)y′ which is also the image of (y, ϕ(f)y′) = (y, fy′).
The remaining properties for A-bilinearity are clearly satisfied. Hence we obtain an
A-module homomorphism N[ϕ] ⊗A N ′

[ϕ] → N ⊗B N ′. It is clear from the explicit

descrition of the map that it is a ϕ-module homomorphism.
For the last part we take the composite of the homomorphism N[ϕ] ⊗A N ′

[ϕ] →
N ⊗B N ′ with the natural homomorphism M ⊗AM ′ → N[ϕ] ⊗A N ′

[ϕ] of A-modules

coming from u⊗A u′. The composite homomorphism u⊗ϕ u′ : M ⊗AM ′ → N ⊗BN ′

maps x⊗A x′ to u(x) ⊗B u(x′), and is therefore a ϕ-module homomorphism.

(2.24) Exercises.
1. Show that there is a canonical isomorphism M ⊗A N → N ⊗AM of A-modules.

2. Let A be a ring and let M be an A-module. Show that for all ideals a of A there
is a canonical isomorphism between M ⊗A (A/a) and M/aM .

3. Let ϕ : A→ B be an A-algebra, and let A[tα]α∈I and B[tα]α∈I be the polynomial
rings in the variables tα over A respectively B. Show that A[tα]α∈I⊗AB is canonically
isomorphic to B[tα]α∈I .

4. Let A[u] be the polynomial ring in the variable u over the ring A 6= 0, and let
A[[t]] be the power series ring in the variable t over A.

(1) Show that there is a homomorphism of rings A[u] ⊗A A[[t]] → A[u][[t]],
uniquely determined by mapping f ⊗A g to fg for all f ∈ A[u] and g ∈ A[[t]].

(2) Show that the homomorphism in (1) is injective.
(3) Show that the homomorphism in (1) is not surjective.

5. Let A be a ring and let a be an ideal in A. Moreover let M be an A-module.

(1) Show that the A/a-module M ⊗A A/a is canonically isomorphic to the A/a
module M/aM .

(2) Show that the ring (A/a) ⊗A (A/a) is canonically isomorphic to A/a.
(3) Show that the let A/a-module (A/a)⊗A a is canonically isomorphic to a/a2.

6. Let {Mα}α∈I be a family of A-modules, and N an A-module. Show that
⊕α∈I(Mα ⊗A N) is isomorphic to (⊕α∈IMα) ⊗A N .

7. Is the tensor product C⊗R C of the complex numbers over the rational numbers
a local ring?
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3. Localization.

(3.1) Construction. Let S be a multiplicatively closed subset of the ring A. For
every A-module M we define a relation !!∼ on the cartesian product M × S byn
(x, s) ∼ (y, t) if there is an element r ∈ S such that r(tx− sy) = 0 in M . It is clear
that the relation ∼ is reflexive, that is x ∼ x, and symmetric, that is x ∼ y implies
that y ∼ x. It is transitive because if (x, s) ∼ (x′, s′) and (x′, s′) ∼ (x′′, s′′) there are
elements t, t′ in S such that t(s′x− sx′) = 0 and t′(s′′x′ − s′x′′) = 0. Then we have
that tt′s′(s′′x−sx′′) = tt′s′s′′x− tt′s′sx′′ = t′s′′tsx′− tst′s′′x′ = 0, and consequently
that (x, s) ∼ (x′′, s′′).

Let !!S−1M = M × S/∼ be the residue classes of M × S modulo the equivalencen
relation ∼. The class of the element (x, s) we denote by x/s. There is a canonical
map!!n

iSM : M → S−1M

defined by iSM (x) = x/1.

On the set S−1M there is a unique addition such that S−1M becomes a group and
such that the canonical map iSM is a group homomorphism. The sum of two elements
x/s and y/t in S−1M is defined by x/s + y/t = (tx + sy)/st. We have that the
addition is independent of the choice of representative (x, s) for the class x/s because
if x/s = x′/s′ there is an element r ∈ S such that r(s′x− sx′) = 0. Consequently we
have that r(s′t(tx+ sy) − st(tx′ + s′y)) = t2rs′x+ rs′tsy − rst2x′ − rsts′y = 0, and
thus (tx+ sy)/st = (tx′ + s′y)/s′t. Symmetrically the addition is independent of the
choice of representative (y, t) of the class y/t. It is easily checked that S−1M with
this addition becomes an abelian group with 0 = 0/1.

We define the product of an element f/s ∈ S−1A with an element x/t ∈ S−1M
by (f/s)(x/t) = (fx)/(st). A simple calculation shows that the multiplication is
independent of the choice of representatives (f, s) and (x, t) of the classes f/s, re-
spectively x/t. In particular we obtain a multiplication on S−1A and it is easily seen
that this multiplication toghether with the group structure on S−1A makes S−1A
into a ring. Moreover, with this ring structure the above operation of S−1A on S−1M
makes S−1M into a (S−1A)-module.

The canonical map!!n

iSA : A→ S−1A

that maps an element f in A to f/1 is a ring homomorphism.

(3.2) Definition. We call S−1M the localization of M by the multiplicative set S.

(3.3) Proposition. Let A be a ring and S a multiplicatively closed subset. More-
over, let M be an A-module and N an S−1A-module. For every homomorphism

u : M → N[iSM ]
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of A-modules there is a unique S−1A-module homomorphism

v : S−1M → N[iSM ]

such that u = viSM .
The canonical map iSA : A→ S−1A has the universal property:
For every homomorphism of rings ϕ : A → B where ϕ(s) is invertible in B for

every element s ∈ S, there is a unique ring homomorphism χ : S−1A→ B such that
ϕ = χiSA.

Proof. If v exists we have, for all x ∈ M and s ∈ S, that v(x/s) = v((1/s)iSM(x)) =
(1/s)v(iSM(x)) = (1/s)u(x). Hence v is uniquely determined if it exists.

To show that v exists we let v(x/s) = (1/s)u(x) for all x ∈ M and s ∈ S. This
definition is independent of the choise of representative (x, s) for the class x/s because
if x/s = y/t with y ∈ M and t ∈ S there is an r ∈ S such that u(r(tx − sy)) =
ru(tx − sy) = 0. Hence we have that r(t(u(x) − su(y)) = 0 in N and consequently
that u(x)/s = u(y)/t in the S−1A-module N . It is clear that v is an S−1A-module
homomorphism and that u = viSM .

Finally when ϕ : A → B is a ring homomorphism such that ϕ(s) is invertible in
B for all s ∈ S we have that B is an S−1A-module by the multiplication (f/s)g =
ϕ(f)ϕ(s)−1g for all f/s ∈ S−1A and g ∈ B. It is easily checked that the definition is
independent of the representative (f, s) of the element f/s and that B becomes an
S−1A-module. Hence it follows from the first part of the Proposition that we have a
map χ : S−1A→ B of S−1A-modules, and it is clear that χ is a ring homomorphism.

(3.4) Remark. The universal property characterizes iSA : A → S−1A up to an
isomorphism of rings. In fact let ψ : A → T be a homomorphism of rings with the
same universal property as iSA. That is, for each homomorphism of rings ϕ : A → B
with ϕ(s) invertible in B for all s ∈ S there is a unique homomorphism τ : T → B
such that ϕ = τψ. Then the universal properties give unique ring homomorphisms
ω : S−1A → T and τ : T → S−1A such that ωiSA = ψ and τψ = iSA. Hence we have
that iSA = τωiSA and ψ = ωτψ. By unicity, we obtain that τ and ω are inverse maps.

(3.5) Example. Let S = Z \ {0}. Then S−1Z are the rational numbers Q.

(3.6) Example. Let A be a ring and S a multiplicatively closed subset of A con-
taining 0. Then S−1A = 0.

(3.7) Example. Let A = Z/6Z and let S = {1, 2, 22, . . . }. Then we have that
S−1A = Z/3Z. The map iSA : Z/6Z → Z/3Z coincides with the canonical residue
map of Z/6Z modulo the ideal 3Z/6Z. In particular we have that iSA is not injective.

(3.8) Remark. Let A be a ring and let S be a multiplicatively closed subset that
consist of non-zero divisors different from 0. Then the map iSA : A → S−1A is
injective. We often identify A with its image by iSA. When A is an integral domain
and S = A \ {0} we have that S−1A is a field.
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(3.9) Definition. The total quotient ring, or total fraction ring of a ring A is the
localization S−1A of A in the multiplicative set S consisting of all non-zero divisors
different from 0. When A is an integral domain we call the field S−1A the quotient

field, or field of fractions of A.

(3.10) Notation. Let f be an element of A. The set S = {1, f, f 2, . . . , } is a
multiplicatively closed subset of A. We write !!S−1M = Mf . Let p be a prime idealn

of A. Then the set T = A \ p is a multiplicatively closed subset of A. We write !!n

T−1M = Mp. The Ap-module Mp is called the localization of M at p. Moreover we

write iSM = ifM and iTM = ipM .

(3.11) Proposition. Let A be a ring and S a multiplicatively closed subset. For
every prime ideal p in A that does not intersect S we have that !!pS−1A = {f/s ∈n

S−1A : f ∈ p} is a prime ideal in S−1A. The correspondence that maps p to pS−1A
is a bijection between the prime ideals in A that do not intersect S and the prime
ideals of S−1A. The inverse correspondence associates to a prime ideal q in S−1A
the ideal (iSA)−1(q) in A.

Proof. Let q be a prime ideal in S−1A. It is clear that (iSA)−1(q) is a prime ideal in
A that does not intersect S.

Let p be a prime ideal in A that does not intersect S. If (f/s)(g/t) ∈ pS−1A there
is an r ∈ S such that rfg ∈ p. Since r /∈ p we have that f or g are in p, and thus
that f/s or g/t is in pS−1A. Moreover we have that (iSA)−1(pS−1A) = p since, if
iSA(f) = g/t with g /∈ p, then there is an r /∈ p such that r(tf − g) = 0 in A. We
obtain that rtf /∈ p, and thus that f /∈ p.

It remains to prove that if p = (iSA)−1(q) then pS−1A = q. However it is clear
that pS−1A ⊆ q. Conversely if f/s ∈ q we must have that f ∈ p.

(3.12) Corollary. Let p be a prime ideal in the ring A. Then the localization Ap

of A at p is a local ring with maximal ideal pAp.

Proof. In this case S = A \ p so p is maximal among the ideals in A that do not
intersect S.

(3.13) Remark. Let b be an ideal in S−1A and let a = (iSA)−1(b). Then, b =
aS−1A = {f/s ∈ S−1A : f ∈ a, s ∈ S}. It is clear that aS−1A ⊆ b. Conversely, when
f/s ∈ b we have that f/1 ∈ b and consequently f ∈ a. Hence f/s = (f/1)(1/s) ∈
aS−1A.

(3.14) Proposition. There is a canonical isomorphism of S−1A-modules

M ⊗A S−1A→ S−1M (3.14.1)

that is uniquely determined by mapping x ⊗A (f/s) to (fx)/s for all f ∈ A, s ∈ S
and x ∈M .
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Proof. It follows from the explicit description of the map (3.14.1) that it is a map of→
S−1A-modules if it exists.

To prove the existence we consider the map M × S−1A → S−1M that maps
(x, f/s) to (fx)/s. It is clear that this map is A-bilinear. Consequently we obtain
an A-linear map M ⊗A S−1A → S−1M that maps x ⊗A f/s to (fx)/s. It is clear
that this map is an (S−1A)-homomorphism.

In order to show that the map is an isomorphism we construct an inverse S−1M →
M⊗AS−1A by mapping x/s to x⊗A1/s. The latter map is independent of the choice
of representative (x, s) of the class of x/s. In fact if x/s = y/t there is an r ∈ S
such that r(tx − sy) = 0 in A. We obtain that x ⊗A (1/s) = x ⊗A ((rt)/(rst)) =
rtx⊗A (1/(rst)) = rsy ⊗A (1/(rst)) = y ⊗A ((rs)/(rst)) = y ⊗A (1/t).

It is clear that the two maps are inverses of each other.

(3.15) Homomorphisms. Let S be a multiplicatively closed subset of A, and
let u : M → N be a homomorphism of A-modules. There is a canonical map of
S−1A-modules:!!n

S−1u : S−1M → S−1N

that maps x/s to u(x)/s for all s ∈ S and x ∈ M . The map is independent of the
choice of representative (x, s) of the class x/s because if x/s = y/t there is an r ∈ S
such that r(tx− sy) = 0, and thus u(x)/s = u(y)/t. It follows from the explicit form
of S−1u that it is an S−1A-module homomorphism.

(3.16) Remark. When v : N → P is a homomorphism of A-modules we have that
S−1(vu) = S−1vS−1u, and S−1 idM = idS−1M . In other words, the correspondence
that maps an A-module M to the (S−1A)-module S−1M is a covariant functor from
A-modules to (S−1A)-modules.

(3.17) Notation. Let f be an element of A and let S = {1, f, f 2, . . . , }. Moreover
let p be a prime ideal of A, and let T = A \ p. For every homomorphism u : M → N
we write !!uf = S−1u and !!up = T−1u. Moreover we write the canonical mapsnn

!!iSA = ifA and !!iTA = ipA.nn

(3.18) Proposition. Let A be a ring and S a multiplicatively closed subset. More-
over let

0 →M ′ u−→M
v−→M ′′ → 0

be an exact sequence of A-modules. Then the sequence

0 → S−1M ′ S−1u−−−→ S−1M
S−1v−−−→ S−1M ′′ → 0

is an exact sequence of S−1A-modules.

Proof. We first show that S−1u is injective. If x′ ∈M ′ and s ∈ S, and S−1u(x′/s) =
u(x′)/s = 0 there is a t ∈ S such that u(tx′) = tu(x′) = 0. Since u is injective we
have that tx′ = 0 and consequently x′/s = 0.
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It is clear that we have an inclusion Im(S−1u) ⊆ Ker(S−1v). We will show that
the opposite inclusion holds. Let x/s ∈ Ker(S−1v), that is v(x)/s = 0. Then there
is a t ∈ S such that v(tx) = tv(x) = 0. Since Im(u) = Ker(v) there is an x′ ∈ M ′

such that u(x′) = tx. Consequently S−1u(x′/(st)) = u(x′)/(st) = (tx)/(st) = x/s,
and thus x/s ∈ Im(S−1u).

Finally it is obvious that S−1v is surjective.

(3.19) Remark. We paraphrase Proposition (3.17) by saying that the functor S−1→
is exact.

(3.20) Proposition. Let A be a ring and let S be a multiplicatively closed subset.
Moreover let {Mα}α∈I be a collection of A-modules. Then there is a canonical
isomorphism of A-modules

⊕α∈IS−1Mα
∼−→S−1(⊕α∈IMα) (3.20.1)

such that the composite of the map (3.20.1) with the canonical map vβ : S−1Mβ →→
⊕α∈IS−1Mα to factor β is the localization S−1uβ : S−1Mβ → S−1(⊕α∈IMα) of the
canonical map uβ : Mβ → ⊕α∈IMα to factor β.

Proof. The canonical map uβ : Mβ → ⊕α∈IMα gives a map S−1uβ : S−1Mβ →
S−1(⊕α∈IMα) and by the universal property of direct products we obtain the map
⊕α∈I(S−1Mα) → S−1(⊕α∈IMα) of (3.20.1).→

To show that the map is an isomorphism we construct the inverse. The canonical
maps Mα → S−1Mα for α ∈ I define a homomorphism ⊕α∈IMα → ⊕α∈IS−1Mα.
Consequently it follows from Proposition (3.3) that we have a canonical homomor-→
phism S−1(⊕α∈IMα) → ⊕α∈IS−1Mα and it is clear that this map is the inverse of
the map (3.20.1).→
(3.21) Proposition. Let A be a ring and let M be an A-module. The following
conditions are equivalent:

(1) M = {0}.
(2) Mp = {0} for all prime ideals p of A.
(3) Mm = {0} for all maximal ideals m of A.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are clear.
(3) ⇒ (1) Let x ∈M and let ax = {f ∈ A : fx = 0}. It is clear that ax is an ideal

in A. We shall show that ax = A, and hence in particular that 1x = x = 0. Assume
to the contrary that ax 6⊆ A. Then there is a maximal ideal m of A that contains ax.
Since Mm = 0 we can find an element s ∈ A\m such that sx = 0. Then s ∈ ax which
is impossible since ax ⊆ m. This contradicts the assumption that ax 6⊆ A. Hence we
have proved that ax = A for all x ∈M and consequently that M = 0.

(3.22) Proposition. Let A be a ring and u : M → N an A-linear homomorphism.
The following conditions are equivalent:

(1) u is injective, respectively surjective.



92 Modules

(2) up is injective, respectively surjective, for all prime ideal p of A.
(3) um is injective, respectively surjective, for all maximal ideals m of A.

Proof. We prove the equivalence of the conditions for injective maps:

(1) ⇒ (2) It follows from Proposition (?) that condition (2) follows from conditon→→
(1).→

(2) ⇒ (3) This implication is clear.

(3) ⇒ (1) Let L = Ker(u). When um is injective it follows from Proposition (?)→
that Lm = 0 for all maximal primes m of A. Hence it follows from Proposition (?)→
that L = 0 and thus that u is injective.

Similar arguments show the equivalence of the assertions for surjective maps.

(3.23) Corollary. Let f 6= 0 be an element of A. We have:

(1) If f is not a zero divisor in A then f/1 is not a zero divisor in the localization
Ap of A in p for all prime ideals p of A.

(2) If f/1 is not a zero divisor in Am for all maximal ideals m of A then f is not
a zero divisor in A.

Proof. We have that f is not a zero divisor in A if and only if the multiplication
map fA : A → A is injective, and f/1 is not a zero divisor in Ap if and only if the
multiplication map (f/1)Ap

: Ap → Ap is not injective. Hence the Corollary follows
from the Proposition.

(3.24) Exercises.

1. Let K be a field and let K[u, v] be the polynomial ring in the variables u, v with
coefficients in K. Moreover let A = K[u, v]/(uv).

(1) Show that the ideal p = (u)/(uv) is a prime ideal in A.
(2) Describe the localization Ap.

2. Let M and N be A-modules and let S be a multiplicatively closed subset of A.
Show that the S−1A-modules S−1(M⊗AN) and S−1M⊗S−1AS

−1N are canonically
isomorphic.

3. Let f be a nilpotent element in A, and M an A-module. Determine Mf .

4. For every f ∈ A and every prime ideal p of A we let f(p) be the image of f by the

composite map A
ipA−→ Ap

ϕAp/mp−−−−−→ Ap/mp. Show that f(p) = 0 for all prime ideals p

if and only if f is contained in the radical r(A) of A.

5. Let ϕ : A → B be a homomorphism of rings, and let S be a multiplicatively
closed subset in A.

(1) Show that T = ϕ(S) is a multiplicatively closed subset of B.
(2) Show that there is a canonical isomorphism between the S−1A-modules T−1B

and S−1B = B ⊗A S−1A.
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6. Let A be a ring and p a prime ideal.

(1) Show that if the local ring Ap has no nilpotent elements different from zero
for all prime ideals p in A then A has no nilpotent elements different from
zero.

(2) Is it true that if A has no nilpotent elements different from zero then Ap has
no nilpotent elements different from zero for all prime ideals p of A?

7. Let M be a finitely generated A module, and let S be a multiplicatively closed
subset of M . Show that S−1M = 0 if and only if there is an element s ∈ S such that
sM = 0.

8. Let !!P be the set of all prime number in Zn

(1) Show that the map Z → ∏
p∈P Z/pZ that sends an integer n to (n, n, . . . ) is

injective.
(2) Show that for all injective maps u : G → H of groups the map u ⊗Z idQ :

G⊗Z Q → H ⊗idZ
Q is injective.

(3) Show that (
∏
p∈P Z/pZ) ⊗Z Q is not zero

(4) Show that (
∏
p∈P Z/pZ) ⊗Z Q is not isomorphic to

∏
p∈P(Z/pZ ⊗Z Q).

9. Let A be a ring and S a multiplicatively closed subset. Moreover let M be an
A-module. Describe the kernel of the A-module homomorphism M → M ⊗A S

−1A
that maps x ∈M to x⊗A 1.

10. Let A 6= 0 be a ring and u : Am → An an A-linear map. Moreover let p be a
minimal prime ideal in A.

(1) Let f1, f2, . . . , fm be elements in p. Show that the ideal b in Ap generated by
the elements f1/1, f2/1, . . . , fn/1 is nilpotent, that is, we have bm = (0) for
some positive integer m.

(2) Let p be the integer such that bp 6= (0) and bp+1 = (0) in Ap. Show that for
all elements f ∈ bp we have that fs 6= 0 for all s ∈ A \ p, and that fift = 0
for some t ∈ A \ p for i = 1, 2, . . . ,m.

(3) Show that if u is injective then the map

up : (A/p)m → (A/p)n

is injective, where the A/p-module homomorphism up is defined by

up((uA/p(f1), uA/p(f2), . . . , uA/p(fn))

= (uA/p(u1(x)), uA/p(u2(x)), . . . , uA/p(un(x)))

for all x = (f1, f2, . . . , fm) in Am and where u(x) = (u1(x), u2(x), . . . , un(x))
in An.

(4) Show that when u is injective then m ≤ n.
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4. Annihilators, associated ideals and primary modules.

(4.1) Notation. Let M be an A-module, and let E and F be subsets of M . We
write!!n

(E : F ) = (E : F )A = {f ∈ A : fx ∈ E for all x ∈ F}.
When E or F consists of one point x, respectively y, we write!! (x : F ) = ({x}, F ),n
respectively (E : y) = (E : {y}). Moreover we write r((E : F )) = r(E : F ) = rA(E :
F ).

For every element f ∈ A we let !!fM : M → M be the A-module homomorphismn
defined by fM (x) = fx for all x ∈M .

(4.2) Remark. It is clear that when E is a submodule of M we have that (E : F )
is an ideal in A.

(4.3) Definition. Let M be an A-module. For each element x ∈ M we write
!!Ann(x) = AnnA(x) = (0 : x), and call the ideal Ann(x) the annihilator of x. Then

annihilator of M is the ideal !!Ann(M) = AnnA(M) = (0 : M).n

(4.4) Example. Let a be an ideal in A. Consider A/a as an A-module via the
canonical map ϕA/a. Then AnnA(A/a) = a.

(4.5) Remark. Let M be an A-module. For all x ∈ M we have an isomorphism
A/Ann(x) → Ax of A-modules that send the class in A/Ann(x) of f ∈ A to fx. In
particular we have an injection A/Ann(x) →M .

(4.6) Example. Let K be a field and let A = K[u, v] be the polynomial ring in two
variables u, v over K. Moreover, let M = K[u, v]/(u2, uv). Then AnnA(u) = (u, v)
and AnnA(v) = (u).

(4.7) Definition. Let M be an A-module and f ∈ A. The homomorphism fM is
nilpotent if there is a positive integer nf such that f

nf
M = 0, that is, if f ∈ r(Ann(M)).

We say that fM is locally nilpotent if there for every element x ∈ M is a positive
integer nx such that fnxM (x) = fnxx = 0, that is, f ∈ ∩x∈M r(Ann(x)).

An element f ∈ A is M -regular, or regular for M , if the map fM : M → M is
injective. When M = A we simply say that f is a regular element of A. A sequence
of elements f1, f2, . . . , fn of A is M -regular if fi is (M/(f1, f2, . . . , fi−1)M)-regular
for i = 1, 2, . . . , n.

(4.8) Remark. When M is finitely generated we have that fM is nilpotent if and
only if it is locally nilpotent.

(4.9) Remark. The A-regular elements of A are the non-zero divisors of A different
from 0.

(4.10) Definition. Let M be an A-module. A prime ideal p in the ring A is
associated to M if p = Ann(x) is the annihilator of an element x in M . The support

!!Supp(M) of the module M is the set of prime ideals p in A such that Mp 6= 0.n
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(4.11) Example. Let K be a field and let A = K[u, v] be the polynomial ring in
the variables u, v over K. Moreover let M = K[u, v]/(u2, uv). We have that the
ideals (u, v) and (u) are associated to the A-module M . They are the only ideals
associated to M since (u, v) and (u) are the only prime ideals in A that contain the
annihilator Ann(M) = (u2, uv).

(4.12) Example. Let A be a ring and let a ⊆ A be an ideal. Then the support of
the A-module A/a is the set V (a) of prime ideals of A containing a.

(4.13) Remark. Let A be a ring and let p be a prime ideal of A. For each elements
x ∈ M we have that (Ax)p 6= 0 if and only if Ann(x) ⊆ p. It follows that the
associated ideals of the A-module M are contained in the support of M . In fact if
p = Ann(x) is associated to M then (Ax)p 6= 0, and consequently it follows from
Proposition (3.18) that Mp 6= 0.→
(4.14) Remark. When M is a finitely generated A-module we have that the
support Supp(M) of M is a closed subset of Spec(A). In fact choose generators
x1, x2, . . . , xn of M . If p /∈ Supp(M) we have Mp = 0. Consequently there are ele-
ments s1, s2, . . . , sn in A\p such that sixi = 0 for i = 1, 2, . . . , n. Let f = s1s2 · · ·sn.
Then f /∈ p and fxi = 0 for i = 1, 2, . . . , n. Hence, for each prime ideal q not con-
taining f , we have that Mq = 0. That is, the open set D(f) is a neighbourhood of p

such that for q ∈ D(f) we have that Mq = 0. Hence the complement of Supp(M) is
open in Spec(A).

(4.15) Example. When M is not finitely generated it is not always true that
Supp(M) is closed. For example, let P be an infinite set of prime numbers of Z such
that there are infinitely many prime numbers of Z that are not contained in P. Then
the support of the Z-module ⊕p∈PZ/pZ is equal to P, which is neither closed, nor
open, in Spec(Z).

(4.16) Definition. Let M be an A-module and let L be a submodule of M . The
radical of L is the ideal rM (L) = rA(L : M).

(4.17) Remark. When a is an ideal of A, the radical of a as a module coincide
with the radical of the ideal a in the ring A.

(4.18) Remark. We have that rM (L) = rM/L(0).

(4.19) Definition. Let M be an A-module. A submodule L of M is primary if the
map fM/L : M/L→M/L is either injective, or nilpotent for all elements f ∈ A. An
ideal a in A is primary if it is primary considered as an A-module.

(4.20) Remark. Clearly an ideal a of A is primary if and only if fg ∈ a and g /∈ a

implies that fn ∈ a for some integer n.

(4.21) Lemma. If L is a primary submodule of an A-module M we have that the
radical rM (L) of L is a prime ideal in A.
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Proof. When fg ∈ rM (L) and f /∈ rM (L) we have that fnM/Lg
n
M/L = (fg)nM/L = 0

for some positive integer n. Since L is primary and f /∈ rM (L) we have that fnM/L :

M/L→M/L is injective. Consequently we have that gnM/L = 0, or equivalently that

g ∈ rM (L).

(4.22) Definition. Let M be an A-module and L a primary submodule of M . The
prime ideal rM (L) is called the prime ideal belonging to the submodule L. We say
that L is rM (L)-primary.

(4.23) Example. Let A be a ring. An ideal a whose radical rA(a) is maximal is
primary. This is because the image of r(a) by the canonical map ϕA/a : A → A/a is
the radical rA/a(0) of A/a. When r(a) is maximal the same is true for rA/a(0). The
ring A/a is local and the only prime ideal is rA/a(0) because rA/a(0) is contained
in every prime ideal of A/a. For every element f ∈ A we consequently have that
fA/a : A/a → A/a is an isomorphism when f /∈ r(a) and is nilpotent when f ∈ r(a).

In particular we have that every power of a maximal ideal in A i primary.

(4.24) Example. It is not true that powers of prime ideals necessarily are pri-
mary. In Example (?) the image of the prime ideal (u) of K[u, v] by the canon-→
ical map ϕK[u,v]/(u2,uv) : K[u, v] → K[u, v]/(u2, uv) is a prime ideal q such that

q2 = 0. However the ideal (0) in K[u, v]/(u2, uv) is not primary. In fact the map
vK[u,v]/(u2,uv) : K[u, v]/(u2, uv) → K[u, v]/(u2, uv) is not injective since the class of

u maps to zero, and it is not nilpotent since vn /∈ (u2, uv) for all positive integers n.

(4.25) Proposition. Let M be an A-module M , and let L be a submodule of M .

(1) Every prime ideal associated to the module L is associated to the module M .
(2) The associated primes ideals of the module M are associated to either the

module L or to the module M/L.

Proof. (1) The first assertion is clear.

(2) Let p be associated to M . Then p = Ann(x) for some x ∈ M . If Ax ∩ L = 0
we have that p is associated to M/L. If Ax ∩ L 6= 0 we choose a non zero element
y = fx with f ∈ A. Then p = Ann(y) because, on the one hand p ⊆ Ann(y), and on
the other hand g ∈ Ann(y) for some g ∈ A implies that gf ∈ p. Since f /∈ p we have
that g ∈ p.

(4.26) Exercises.

1. Let A be a ring and S a multiplicatively closed subset. What is the relation
between the associated prime ideals of an A-modules M and those of the S−1A-
module S−1M?

2. Let L and M be submodules of an A-module P .

(1) Show that (L : M) = Ann((L+M)/L).
(2) Show that Ann(L+M) = Ann(L) ∩ Ann(M).
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3. Let N be an A-module, and let L and M be submodules. Prove the following
four assertions:

(1) rA(rN (M)) = rN (M).
(2) rN (L ∩M) = rN (L) ∩ rN (M).
(3) rN (M) = A if and only if M = L.
(4) rN (L+M) = rA(rN (L) + rN (M)).

4. Let S be a multiplicatively closed subset of the ring A. Moreover, let P be an
A-module and M and N submodules. Show that S−1(M : N) = (S−1M : S−1N).

5. Let A be a ring and M a finitely generated A-module. Show that we have
Supp(M) = V (Ann(M)) in Spec(A).

6. Let A be a ring and let S be a multiplicatively closed subset. Moreover let q be
a primary ideal and let p be the prime ideal belonging to q.

(1) Show that the ideal q instersects S if and only if the ideal p instersects S.
(2) Show that when the ideal q does not intersect S then S−1q is a primary ideal

in S−1A and that the prime ideal S−1p belongs to S−1q.

7. Show that the ideal (4, t) in the polynomial ring Z[t] in the variable t over the
integers is primary. Find the prime ideal that belongs to (4, t).

8. Let A[t] be the polynomial ring in the variable t over the ring A. For each ideal a in
A we write a[t] for the subset of A[t] consisting of all polynomials f0+f1t = · · ·+fntn
with coefficients f0, f1, . . . , fn in A.

(1) Show that a[t] is the smallest ideal in A[t] that contains the ideal a.
(2) Show that if p is a prime ideal in A then p[t] is a prime ideal in A[t].
(3) Show that if a is a p-primary ideal in A, then a[t] is p[t]-primary ideal in A[t].
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5. Differentials.

(5.1) Definition. Let A be a ring and let B be an A-algebra. Moreover, let N
be a B-module that we consider as an A-module via restriction of scalars. An A-
derivation from B to N is an A-linear homomorphism D : B → N such that for all
g, h in B we have!!n

D(gh) = gD(h) + hD(g). (5.1.1)

The collection of all A-derivations from B to N we denote by DerA(B,N).

(5.2) Remark. We have that D(1) = 0 because D(1) = D(1 ·1) = 1D(1)+1D(1) =
2D(1). Consequently, when ϕ : A→ B is the algebra structure, we have for all f ∈ A
that D(ϕ(f)) = D(ϕ(f)1) = ϕ(f)D(1) = 0 for all f ∈ A.

For every element g ∈ B and every natural number n we have that D(gn) =
ngn−1D(g). This is easily shown by induction on n. When g ∈ B is an invertible
element we have that D(g−1) = −g−2D(g). In fact, when we take the derivative of
both sides of the equality gg−1 = 1 we obtain that gD(g−1) + g−1D(g) = 0.

(5.3) Remark. We have that DerA(B,N) is a B-module. The sum D + E of two
A-derivations D : B → N and E : B → N is defined by (D + E)(h) = D(h) + E(h)
for all h ∈ B, and the product gD of D with an element g ∈ B is defined by
(gD)(h) = gD(h). It is easy to check that D + E and gD are derivations and that
the sum and product make DerA(B,N) into a B-module.

(5.4) Remark. When the A-algebra B is generated by elements {gα}α∈I we have
that an A-derivation D : B → N to a B-module N is determined by the values D(gα)
for all α ∈ I. This follows by repeated application of the derivation rule (5.1.1) to→
expressions of the form

∏
β∈J g

nβ
β for a finite subset J of I, and with gβ ∈ B and

nβ ∈ N.

(5.5) Example. Let A[tα]α∈I be the polynomial ring in the variables tα over the
ring A. For each α ∈ I there is a unique A-derivation Dα : A[tα]α∈I → A[tα]α∈I
determined by Dα(tα) = 1 and Dα(tβ) = 0 when α 6= β. For every finite subset
J of I, and nβ ∈ N the derivation Dα maps the monomial

∏
β∈J t

nβ
β to 0 if α /∈ J

and to nαt
nα−1
α

∏
β∈J\{α} t

nβ
β when α ∈ J . It is clear that for every derivation D :

A[tα]α∈I → N to an (A[tα]α∈I)-moduleN we have thatD(f(t)) =
∑

α∈I Dα(f)D(tα)
for all f(t) ∈ A[tα]α∈I . Note that Dα(f) = 0 for all but a finite number of α because
each polynomial f(t) is expressed in a finite number of variables tα. Moreover, for
every ideal b of A[tα]α∈I an A-derivation D : A[tα]α∈I → N factors via an A-
derivation A[tα]α∈I/b → N if and only if

∑
α∈I Dα(f)D(tα) = 0 for all f ∈ b.

(5.6) Example. Let ϕ : A→ B be an A-algebra and χ : B → C a homomorphism
of A-algebras. The homomorphism χ gives C a structure as a B-algebra. Moreover
let P be a C-module that we consider as a B-module by restriction of scalars. We
denote by C[P ] the C-algebra C ×P with addition defined by (χ(g), x)+ (χ(h), y) =
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(χ(g) + χ(h), x+ y) and product defined by (χ(g), x)(χ(h), y) = (χ(g)χ(h), gy+ hx)
for all g, h in B and x, y in P . Write g+x = (g, x). We consider C[P ] as an C-algebra
via the map C → C[P ] that sends h to (h, 0) and identify C with its image by this
map.

Let ψ : B → C[P ] and D : B → P be maps that are related by ψ(h) = χ(h)+D(h)
for all h ∈ B. It is clear that ψ is an A-linear homomorphism if and only if D is an
A-linear homomorphism. When ψ and D are both A-linear homomorphism we have
that ψ is an A-algebra homomorphism if and only if D is an A-derivation because
ψ(gh)−ψ(g)ψ(h) = χ(gh)+D(gh)− (χ(g)+D(g))(χ(h)+D(h)) = D(gh)−gD(h)−
hD(g) for all g, h in B. In this way we obtain a bijection

HomA -alg(B,C[P ]) → DerA(B,P ).

(5.7) Example. Let ϕ : A→ B be an A-algebra and let S and T be multiplicatively
closed subsets of A respectively B such that ϕ(S) ⊆ T . Then every A-derivation
D : B → N from B to a B-module N defines a unique (S−1A)-derivation T−1D :
T−1B → T−1N such that D(g)/1 = T−1D(g/1) for all g ∈ B.

It is clear that T−1D is unique if it exists because for all elements g ∈ B and
t ∈ T we have that T−1D(g/t) = T−1D((t/1)−1(g/1)) = −(g/1)(t/1)−2T−1D(t/1)+
(t/1)−1T−1D(g/1) = −(g/t2)(D(t)/1) + (1/t)(D(g)/1) in T−1N .

We define T−1D by T−1D(g/t) = D(g)/t − (gD(t))/t2 for all g ∈ B and t ∈ T .
The definition is independent of the representation g/t because if g/t = g′/t′ in T−1B
with t′ ∈ T and g′ ∈ B there is a t′′ ∈ T such that we have an equality t′′(gt′−tg′) = 0
in B. Derivation of both sides of the equality gives D(t′′)(gt′ − tg′) + t′′(gD(t′) +
t′D(g)−g′D(t)− tD(g′)) = 0. Multiplication of both sides of the latter equality with
t′′ and division by tt′ in T−1N gives the equality 0 = (t′′)2((gD(t′)/(tt′) +D(g)/t−
(g′D(t))/(tt′) −D(g′)/t′) = (t′′)2((g′D(t′))/(t′)2 +D(g)/t− (gD(t))/t2 −D(g′)/t′).
Hence we obtain that D(g)/t − (gD(t))/t2 = D(g′)/t′ − (g′D(t′))/(t′)2 in T−1N ,
and thus T−1D(g/t) = T−1D(g′/t′). It is easy to check that T−1D is an (S−1A)-
derivation.

(5.8) Functoriality. Let B be an A-algebra and N a B-module. For every homo-
morphism v : N → N ′ of B-modules we obtain a homomorphism of B-modules

v0 : DerA(B,N) → DerA(B,N ′)

that maps the A-derivation D : B → N to the A-derivation vD : B → N ′. It is clear
that the correspondence that maps a B-module N to DerA(B,N) with fixed A and
B is a functor from B-modules to B-modules.

Let χ : B′ → B be a homorphism of A-algebras. We consider N as a B ′-module
by restriction of scalars via χ. Then we obtain a χ-module homomorphism

χ0 : DerA(B,N) → DerA(B′, N)
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that maps the A-derivation D : B → N to the A-derivation Dχ : B ′ → N .
Let ϕ : A′ → A be a homomorphism of rings. We consider B as an A′-algebra,

and N as an A′-module, by restriction of scalars. Then we obtain a homomorphism
of B-modules

ϕ0 : DerA(B,N) → DerA′(B,N)

that maps the A-derivation D : B → N to itself considered as an A′-derivation by
restriction of scalars.

(5.9) Theorem. Let ϕ : A→ B be an A-algebra and let χ : B → C be a B-algebra.
Moreover let P be a C-module. We obtain an exact sequence of B-modules

0 → DerB(C,P )
ϕ0

−→ DerA(C,P )
χ0

−→ DerA(B,P ),

where we consider the C-module DerA(C,P ) and DerB(C,P ) as B-modules by re-
striction of scalars.

Proof. It is clear that ϕ0 is injective. Moreover we have that Im(ϕ0) ⊆ Ker(χ0)
because, when D : C → P is a B-derivation, we have that (Dχ)(g) = D(χ(g)) = 0
for all g ∈ B by Remark (?).→

We shall show that Im(ϕ0) = Ker(χ0). Let D : C → P in Ker(χ0) be an A
derivation, that is, a derivation such that Dχ : B → P is zero. For all g ∈ B
and h ∈ C we have that D(gh) = D(χ(g)h) = hD(χ(g)) + χ(g)D(h) = χ(g)D(h).
Consequently D : C → P is a B-derivation. Hence the image of the A-derivation D
by ϕ0 is itself considered as a B-derivation.

(5.10) Remark. Let A be a ring and let B and C be A-algebras. Moreover
let χ : B → C be a surjection of A-algebras with kernel b. Every A-derivation
D : B → P into a C-module P induces a B-linear map v = D|b : b → P . In
fact, for all g ∈ B and h ∈ b we have that v(gh) = D(gh) = gD(h) + hD(g) =
χ(g)D(h) + χ(h)D(g) = χ(g)D(h) = D(gh) = v(gh). We also see that when g ∈ b

we have that v(gh) = 0. Hence v is zero on the ideal b2 and induces a B-module
homomorphism b/b2 → P′ξ]. Since C = B/b and P are C-modules we obtain a

C-module homomorphism w : b/b2 → P . It is clear the correspondence that sends
D to w gives a B-module homomorphism

u : DerA(B,P ) → HomC(b/b2, P )

where HomC(b/b2, P ) is a B-module via χ.

(5.11) Theorem. Let χ : B → C be a surjection of A-algebras, and let b be the
kernel of χ. For every C-module P there is an exact sequence of B-modules

0 → DerA(C,P )
χ0

−→ DerA(B,P )
u−→ HomC(b/b2, P ),
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where u is the map of Remark (5.10).→
Proof. We have that χ0 is injective since χ is surjective. Moreover Im(χ0) ⊆ Ker(u)
because, if D : C → P is an A-derivation, then the map (Dχ)|b : b → P is zero, since
for all h ∈ b we have (Dχ)(h) = D(χ(h)) = D(0) = 0.

It remains to prove that Im(χ0) = Ker(u). Let D : B → P be an A-derivation such
that u(D) = 0. Then D(h) = 0 for all h ∈ b. Hence it follows from Lemma (1.13)→
that the A-linear homomorphism D : B → P factors via χ : B → C, and an A-linear
homomorphism E : C → P . It is easy to verify that since D is an A-derivation the
A-linear homomorphism E is also an A-derivation. Clearly we have that χ0(E) = D,
and we have proved the Theorem.

(5.12) Kähler differentials. Let B be an A-algebra. We consider the A-algebra
B ⊗A B as a B-module via multiplication by B in the left factor of B ⊗A B. That
is, for all f, g, h in B we let f(g ⊗A h) = fg ⊗A h.

The multiplication B⊗AB → B that maps g⊗A h to gh is a ring homomorphism,
and a B-module homomorphism. We denote the kernel of the multiplication map by
I = IB/A. Then we have an exact sequence of B-modules

0 → IB/A → B ⊗A B → B → 0.

The B-module IB/A is generated by the elements {1 ⊗A g − g ⊗A 1}g∈B. In fact if∑n
i=1 gi ⊗A hi with gi and hi in B is in IB/A, that is

∑n
i=1 gihi = 0, we have that∑n

i=1 gi ⊗A hi =
∑n
i=1 gi ⊗A hi −

∑n
i=1 gihi ⊗A 1 =

∑n
i=1 gi(1 ⊗A hi − hi ⊗A 1). We

write!!n

Ω1
B/A = IB/A/I

2
B/A.

The B-module Ω1
B/A is generated by the classes of the elements {1⊗A g−g⊗A 1}g∈B.

Let !!n

dB/A : B → Ω1
B/A

be the map that takes an element g ∈ B to the class dB/A(g) of 1 ⊗A g − g ⊗A 1 in

IB/A/I
2
B/A. The map dB/A is A-linear. In fact it is clearly a group homomorphism,

and for f ∈ A and g ∈ B we have that dB/A(fg) is the class in Ω1
B/A of the element

1 ⊗A fg − fg ⊗A 1 = f ⊗A g − fg ⊗A 1 = f(1 ⊗A g − g ⊗A 1), and thus dB/A(fg) =
fdB/A(g). Moreover we have that dB/A is an A-derivation. In fact for g, h in B we

have that dB/A(gh) is the class in IB/A/I
2
B/A of

1 ⊗A gh− gh⊗A 1 = g(1 ⊗A h− h⊗A 1)

+ h(1 ⊗A g − g ⊗A 1) + (1 ⊗A g − g ⊗A 1)(1 ⊗A h− h⊗A 1).

(5.13) Definition. We call the B-module Ω1
B/A the Kähler differentials of the A-

algebra B, and we call the A-derivation dB/A : B → Ω1
B/A the exterior derivation.

For f ∈ B we call dB/A(f) the differential of the element f .
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(5.14) Remark. We have that the B-module Ω1
B/A is generated by the elements

{dB/A(g)}g∈B. When the A-algebra B is generated by the elements {gα}α∈I we have

that the B-module Ω1
B/A is generated by the elements {dB/A(gα)}α∈I . In fact, this

follows from Remark (5.4) since dB/A is a derivation.→
(5.15) Proposition. Let B be an A-algebra. The exterior derivation dB/A : B →
Ω1
B/A has the following universal property:

For every A-derivation D : B → N to a B-module N there is a unique B-linear
homomorphism v : Ω1

B/A → N such that D = vdB/A.

The map that sends D to v is an isomorphism of B-modules

DerA(B,N) ∼−→ HomB(Ω1
B/A, N).

Proof. Since the B-module Ω1
BA is generated by the elements {dB/A(g)}g∈B we have

that if v exists then it is uniquely determined by v(dB/A(g)) = D(g) for all g ∈ B.
To show that v exists we observe that we have an A-bilinear map B×B → N that

sends a pair (g, h) to gD(h). The A-bilinear map gives an A-linear homomorphism
w : B⊗A B → N determined by w(g⊗A h) = gD(h) for all g, h in B. We see that w
is also B-linear. The homomorphism w is zero on I2

B/A because for f, g, h in B we

have

w(h(1⊗Af−f⊗A 1)(1⊗Ag−g⊗A 1)) = w(h⊗A fg−gh⊗Af−hf⊗A g+hfg⊗A1)

= hD(fg) − hgD(f) − hfD(g) + hfgD(1) = h(D(fg)− fD(g)− gD(f)) = 0.

Consequently w induces a B-linear homomorphism v : IB/A/I
2
B/A → N such that

D = vdB/A. Hence we have proved the first part of the Proposition.

It is clear that the map DerA(B,N) → HomB(Ω1
B/A, N) that sends D to v is a

B-module homomorphism, and the uniqueness of v implies that it is injective. The
map is surjective because if w : Ω1

B/A → N is a B-module homomorphism we obtain

that wdB/A : B → N is an A-derivation that maps to w.

(5.16) Remark. The map dB/A : B → Ω1
B/A is uniquely determined in the sense

that if d : B → Ω is another A-derivation that has the same universal property, that
is, for every A-derivation D : B → N there is a unique B-module map v : Ω → N
such that D = vd, then there is a B-module isomorphism w : Ω1

B/A → Ω such that

d = wdB/A. In fact w is obtained by the universality of dB/A and the universality

of d defines a unique B-module homomorphism v : Ω → Ω1
B/A such that vd = dB/A.

We have that d = wvd and dB/A = vwdB/A and by the universality of Ω and Ω1
B/A

we have that wv = idΩ and vw = idΩ1
B/A

, and thus that v and w are inverse maps.

(5.17) Example. Let B = A[tα]α∈I be the polynomial ring in the variables tα over
the ring A. It follows from Example (5.5) that Ω1

B/A is the free B-module with basis→
{dB/A(tα)}α∈I .
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Let b be an ideal of B, and let C = B/b. It follows from Example (5.5) that→
Ω1
C/A is equal to the C-module which is the free C-module Ω1

B/A ⊗B C modulo the

C-module generated by the elements
∑

α∈I Dα(f)dB/A(tα) for all f ∈ B.

(5.18) Functoriality. Let χ : B → C be a homomorphism of A-algebras. We
obtain a C-linear homomorphism

χC/B/A : Ω1
B/A ⊗B C → Ω1

C/A (5.18.1)

that is uniquely determined by χC/B/A(dB/A(g) ⊗B h) = hdC/A(χ(g)) for all g in

B and h in C. In fact the A-derivation dC/A : C → Ω1
C/A gives an A-derivation

dC/Aχ : B → Ω1
C/A, and consequently an A-derivation ψ : Ω1

B/A → Ω1
C/A such that

χ = ψdB/A. We obtain the map (5.18.1) by extension of scalars.→
Let ϕ : A → B be a ring homomorphism and let C be an B-algebra that we

consider as an A-algebra by restriction of scalars. We have a C-linear homomorphism

ϕC/B/A : Ω1
C/A → Ω1

C/B

that is uniquely determined by ϕC/B/A(dC/A(h)) = dC/B(h) for all h ∈ C. In fact the
B-derivation dC/B : C → ΩC/B is also an A-derivation via ϕ and by the universal

property gives a C-linear map ϕC/B/A : Ω1
C/A → Ω1

C/B such that ϕC/B/AdC/A =

dC/B.

(5.19) Lemma. Let B be an A-algebra and let Ω be a B-module. Moreover let
d : B → Ω be an A-derivation that satisfies the conditions:

(1) There is a B-linear homomorphism v : Ω → Ω1
B/A such that dB/A = vd.

(2) The B-module Ω is generated by the elements {d(g)}g∈B.

Then v is an isomorphism.

Proof. Since d is a B-derivation there is a unique B-linear homomorphism w :
Ω1
B/A → Ω such that d = wdB/A. Since the B-module Ω is generated by the elements

{d(g)}g∈B it follows that w is surjective. We have that vwdB/A = vd = dB/A. It

follows from the universality of Ω1
B/A that vw = idΩ1

B/A
. In particular we have that

w is injective. Consequently w is an isomorphism and the same is therefore true for
v.

(5.20) Proposition. Let B be an A-algebra and let C be a B-algebra. We have an
isomorphism of (B ⊗A C)-modules

Ω1
B/A ⊗A C ∼−→Ω1

B⊗AC/C
(5.20.1)

that is uniquely determined by mapping the element dB/A(g) ⊗A h to the element
dB⊗AC/C(g ⊗A h) = hdB⊗AC/C(g ⊗A 1) for all g ∈ B and h ∈ C.
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Proof. The A-algebra structure ψ : A → C on C gives a (B ⊗A C)-linear homomor-
phism ψB⊗AC/C/A : Ω1

B⊗AC/A
→ Ω1

B⊗AC/C
. We obtain a (B⊗AC)-linear homomor-

phism Ω1
B/A ⊗B (B ⊗A C) → Ω1

B⊗AC/C
. It follows from Lemma (2.11) that we have→

a canonical (B ⊗A C)-module isomorphism Ω1
B/A ⊗B (B ⊗A C) ∼−→Ω1

B/A ⊗A C. We

consequently have constructed the (B⊗AC)-linear homomorphism v : Ω1
B/A⊗AC →

Ω1
B⊗AC/C

of the Proposition. We have that the A-derivation dB/A : B → Ω1
B/A

gives a C-derivation d = dB/A ⊗A idC : B ⊗A C → Ω1
B/A ⊗A C. It is clear that

the (B ⊗A C)-module Ω1
B/A ⊗A C is generated by the elements {d(g⊗A 1)}g∈B, and

that dB⊗AC/C = vdB⊗AC/C . It follows from Lemma (5.19) that the homomorphism→
(5.20.1) is an isomorphism.→
(5.21) Proposition. Let B be an A-algebra via the ring homomorphism ϕ : A→ B.
Moreover let S and T be multiplicatively closed subsets of A, respectively B, such
that ϕ(S) ⊆ T . Then there is an isomorphism of T−1B-modules

Ω1
B/A ⊗B T−1B ∼−→Ω1

T−1B/S−1A (5.21.1)

that is uniquely determined by mapping dB/A(g)⊗A (h/t) to (h/t)dT−1B/S−1A(g/1)
for all g, h in B and t ∈ T .

Proof. Functoriality of the differentials gives homomorphisms of (T−1B)-modules
Ω1
B/A ⊗B T−1B → Ω1

T−1B/A and Ω1
T−1B/A → Ω1

T−1B/S−1A. We consequently have

constructed the T−1B-module homomorphism v : Ω1
B/A ⊗B T−1B → Ω1

T−1B/S−1A

of the Proposition. It follows from Example (5.7) that the A-derivation dB/A : B →→
Ω1
B/A gives an S−1A-derivation T−1dB/A : T−1B → T−1ΩB/A = ΩB/A ⊗B T−1B

defined by T−1dB/A(g/t) = −(g/t2)(dB/A(t)/1)+(dB/A(g)/t) for all g ∈ B and t ∈ T .

The elements {dB/A(g)}g∈B clearly generate the T−1B-module ΩB/A⊗B T−1B, and

dT−1B/S−1A = vT−1dB/A. It follows from Lemma (5.19) that the homomorphism→
(5.21.1) is an isomorphism.→
(5.22) Theorem. Let ϕ : A → B be an A-algebra and let χ : B → C be a B-
algebra. We consider C as an A-algebra by restriction of scalars. There is an exact
sequence of C-modules

Ω1
B/A ⊗B C

χC/B/A−−−−−→ Ω1
C/A

ϕC/B/A−−−−−→ Ω1
C/B → 0. (5.22.1)

Proof. It is clear that that (5.22.1) is a complex. Let P be a C-module that we→
consider as a B-module by restriction of scalars. We obtain a complex of C-modules

0 → HomC(Ω1
C/B, P )

HomC(ϕC/B/A,idP )−−−−−−−−−−−−−→ HomC(ΩC/A, P )

HomC(χC/B/A,idP )−−−−−−−−−−−−−→ HomC(Ω1
B/A ⊗B C,P ). (5.22.2)
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If follows from Remark (2.19) that we have a canonical χ-module homomorphism→
HomC(Ω1

B/A⊗BC,P ) ∼−→ HomB(Ω1
B/A, P ). Hence it follows from Proposition (5.15)→

that the complex is the same as the complex

0 → DerB(C,P )
ϕ0

−→ DerA(C,P )
χ0

−→ DerA(B,P ) (5.22.3)

which is eact by Theorem (5.9). Since the sequence (5.22.3) is exact for all C-modules→→
P it follows from Lemma (1.33) that the sequence (5.22.1) is exact.→→

(5.23) Remark. Let χ : B → C be a surjective map of A-algebras with kernel b.
In Remark (5.10) we saw that to every A-derivation D : B → P we can associate a→
canonical C-module homomorphism w : b/b2 → P . In particular we obtain from the
A-derivation D : B → Ω1

B/A ⊗B C which maps g ∈ B to dB/A(g) ⊗B 1 a C-module

homomorphism

δC/B/A : b/b2 → Ω1
B/A ⊗B C

that is uniquely determined by mapping the class in b/b2 of g ∈ B to dB/A(g) ⊗B 1
for all g ∈ B.

(5.24) Theorem. Let χ : B → C be a surjection of A-algebras and let b = Ker(χ).
Then there is an exact sequence of C-modules

b/b2 δC/B/A−−−−−→ Ω1
B/A ⊗B C

χC/B/A−−−−−→ ΩC/A → 0. (5.24.1)

Proof. It is clear that (5.24.1) is a complex of C-modules. Let P be a C-module.→
The complex (5.24.1) gives a complex of C-modules→

0 → HomC(Ω1
C/A, P )

HomC(vχ,idP )−−−−−−−−−→ HomC(Ω1
B/A ⊗B C,P )

HomC(u,idP )−−−−−−−−→ HomC(b/b2, P ). (5.24.2)

It follows from Remark (2.19) that we have a canonical isomorphism of χ-modules→
HomC(Ω1

B/A⊗BC,P ) ∼−→ HomB(Ω1
B/A, P ). Hence it follows from Proposition (5.15)→

that the complex (5.24.2) is the same as the complex→

0 → DerA(C,P )
χ0

−→ DerA(B,P )
u−→ HomC(b/b2, P ) (5.24.3)

which is exact by Theorem (5.11). Since the complex (5.24.3) is exact for all C-→→
modules P is follows from Lemma (1.33) that the complex (5.24.3) is exact.→→
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(5.25) Example. Let ϕ : A → B be an A-algebra and χ : B → C be an A-
algebra homomorphism. We let ψ : B ⊗A C → C be the C-algebra homomorphism
determined by ψ(g ⊗A h) = χ(g)h for all g ∈ B and h ∈ C. Denote the kernel of ψ
by b. We have that the homomorphism of C-modules

δC/B⊗AC/C : b/b2 → Ω1
B⊗AC/C

⊗B⊗AC C.

We shall prove that δC/B⊗AC/C is an isomorphism. It follows from Proposition (5.20)→
that we have a canonical isomorphism Ω1

B/A⊗AC ∼−→Ω1
B⊗AC/C

. The homomorphism

of C-modules ΩB⊗AC/C → ΩB⊗AC/C ⊗B⊗AC C that sends dB⊗AC/C(g ⊗A h) to
dB⊗AC/C(g ⊗A h) ⊗B⊗AC/C 1 for all g ∈ B and h ∈ C is clearly an isomorphism.
Hence the homomorphism δC/B/A is the same as a homomorphism of C-modules

b/b2 → Ω1
B/A ⊗B C (5.25.1)

that sends the class in b/b2 of g ⊗A h ∈ B ⊗A C to dB/A(g) ⊗B h for all g ∈ B

and h ∈ C. In order to show that the homomorphism (5.25.1) is an isomorphism we→
construct an inverse. Let D : B → b/b2 be the map that sends g ∈ B to the class in
b/b2 of the elements g ⊗A 1 − 1 ⊗A χ(g) in B ⊗A C. It is clear that the map D is
A-linear. It is a derivation because

gh⊗A 1 − 1 ⊗A χ(gh) = (g ⊗A 1)(h⊗A 1 − 1 ⊗A χ(h))

+ (h⊗A 1)(g ⊗A 1 − 1 ⊗A χ(g)) + (g ⊗A 1 − 1 ⊗A χ(g))(h⊗A 1 − g ⊗A χ(g)).

From the A-derivation D we obtain a B-linear homomorphism Ω1
B/A → b/b2, and by

extension of scalars we obtain a C-module homomorphism ΩB/A ⊗B C → b/b2 that

is clearly the inverse of the homomorphism (5.25.1).→
The most important application of the Example is when B is a local ring that is

an algebra over a field K and when C = B/mB = κ. We obtain an isomorphism of
κ-vector spaces

m/m2 → ΩB⊗Kκ/κ ⊗B⊗Kκ κ

where m is the kernel of the multiplication map B ⊗K κ → κ.

(5.26) Exercises.
1. Let K[u, v] be a polynomial ring in the two variables u and v over the field K,
and let B = K[u, v](u,v)/(v − u2) and C = K[u, v](u,v)/(v

2 − u3), where K[u, v](u,v)
is the polynomial ring K[u, v] localized in the prime ideal (u, v).

(1) Give generators and relations that determine the B-module Ω1
B/K .

(2) Give generators and relations that determine the C-module Ω1
C/K .

(3) Is Ω1
B/A a free B-module?

(4) Is Ω1
C/A a free C-module?

(5) What is the dimension of the (B/mB)-vector space Ω1
B/K/mBΩ1

B/K?

(6) What is the dimension of the (C/mC)-vector space Ω1
C/K/mCΩ1

C/K?
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2. Let A be a ring and let B = A[t1, t2, . . . , tn] be the polynomial ring in the n
variables t1, t2, . . . , tn over A.

(1) Show that Ω1
B/A is a free A-module of rank 1 generated by the elements

dt1, dt2, . . . , dtn.
(2) Show that the exterior derivative dB/A(f) of an element f ∈ B can be written

uniquely in the form dB/A(f) = (∂f/∂t1)dt1+(∂f/∂t2)dt2+· · ·+(∂f/∂tn)dtn
for uniquely determined elements ∂f/∂t1, ∂f/∂t2, . . . , ∂f/∂tn in B.

(3) Show that the map ∂/∂ti : B → B that sends an element f ∈ B to ∂f/∂ti is
an A-derivation.

3. Let K[t1, t2, . . . , tn] be the polynomial ring in the variables t1, t2, . . . , tn over the
field K. Moreover let f ∈ K[t1, t2, . . . , tn] be a polynomial without constant term
and with linear term a1t1 +a2t2 + · · ·antn with ai ∈ K. Let B = K[t1, t2, . . . , tn]/(f)
be the residue ring of K[t1, t2, . . . , tn] with respect to the ideal generated by f .

Determine the dimension of the K-vector space Ω1
B/K ⊗B B/m where m is the

maximal ideal of B generated by the residue classes in B of the variables t1, t2, . . . , tn.

4. Let A be a ring and let B and C be two A-algebras.

(1) Show that the map ϕ : B → B ⊗A C induces a map u : Ω1
B/A ⊗A B →

Ω1
B⊗AC/A

.

(2) Show that the map u together with the corresponding map for the algebra C
defines an isomorphism of B ⊗A C-modules

(Ω1
B/A ⊗A B) ⊕ (Ω1

C/A ⊗A C) → Ω1
B⊗AC/A

.

5. Let B be an A-algebra, and let IB/A be the kernel of the multiplication map

B⊗AB → B that maps f⊗Ag to fg for all f, g in B. Moreover let d : B → IB/A/I
2
B/A

be the A-module homomorphism defined by d(f) = 1 ⊗A f − f ⊗A 1.

(1) Show that the homomorphism d is an A-derivation.
(2) Show that there is an exact sequence of B-modules

0 → IB/A/I
2
B/A

u−→ Ω1
B⊗AB/A

⊗B⊗AB B
v−→ Ω1

B/A → 0.

(3) Show that there are maps s : Ω1
B⊗AB/A

⊗B⊗ABB → IB/A/b
2 and t : Ω1

B/A →
Ω1
B⊗AB/A

⊗B⊗AB B such that su and vt are the identiy maps.

6. Let A be a ring and B an A-algebra. For all elements D and E in DerA(B,B) we
let [D,E] = DE −ED. Show that DerA(B,B) with the bracket [ , ] is a Lie algebra.
That is, show that

(1) The [ , ] : DerA(B,B) × DerA(B,B) → DerA(B,B) defines a product on
DerA(B,B) which together with the A-module structure on DerA(B,B) sat-
isfies all the properties of an A-algebra except commutativity and associativ-
ity.
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(2) For all D ∈ DerA(B,B) we have that [D,D] = 0.
(3) For all D,E, F in DerA(B,B) the Jacobi identity holds, that is [[D,E], F ] +

[[E,F ], D] + [[F,D], E] = 0.

7. Let A be a ring and B an A-algebra. For all elements D and E in DerA(B,B):

(1) Show that [D,E] = DE − ED is an A-derivation.
(2) Show that for all g, h in B we have

[gD, hE] = gh[D,E] + gD(h)E − hD(g)D.

8. Let B be an A-algebra and let D ∈ DerA(B,B).

(1) Show that C = {g ∈ B : D(g) = 0} is an A algebra in such a way that the
map C → B defining C as a subset of B is an A-algebra homomorphism.

(2) Let p be a prime number such that Dp = 0, and such that pg = 0 for all
elements g ∈ B. Moreover let f ∈ B be such that D(f) = 1. Show that B is
a C-algebra generated by the elements 1, f, . . . , f p−1.

(3) Show that B is free module over C with basis 1, f, . . . , f p−1.
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Affine schemes

1. Sheaves of modules.

(1.1) Notation. We shall follow usual notation and write!! Γ(U,F) instead of F(U)n
for the sections of a presheaf F over an open subset U .

(1.2) Definition. Let X be a topological space with basis B, and let F and A
be presheaves of groups, respectively rings, on B. We say that the presheaf F is an
A-module on B if for every U in B we have that Γ(U,F) is a Γ(U,A)-module, and
for every inclusion U ⊆ V of open sets belonging to B the map (ρF )VU : Γ(V,F) →
Γ(U,F) is a map of (ρA)VU : Γ(V,A) → Γ(U,A)-modules. That is, for every pair of
sections s in Γ(V,F) and t in Γ(V,A) we have that

(ρF)VU (ts) = (ρA)VU (t)(ρF)VU (s).

When A and F are both sheaves we simply say that F is an A-module.

(1.3) Remark. Let X be a topological space and B a basis for the topology.
Moreover let A be a presheaf of rings on B and let F be a presheaf of A-modules
on B. For every point x ∈ X the group Fx becomes an Ax-module. The product
of the class sx of a pair (U, s) with s ∈ Γ(U,F), and the class tx of a pair (V, t)
with t ∈ Γ(V,A) is given by the class txsx of (U ∩ V, ρUU∩V (t)ρVU∩V (s)). It is clear
that the definition of the product is independent of the choices (U, s) and (V, t) of
representatives of the classes tx and sx.

For every open set U belonging to B and every point x ∈ U we have that the map
(ρF)Ux : Γ(U,F) → Fx is a homomorphism of (ρA)Ux : Γ(U,A) → Ax-modules.

(1.4) Definition. Let X be a topological space with basis B for the topology and
let A be a presheaf of rings defined on B. Moreover let F and G be presheaves defined
on B that are A-modules. A homomorphism u : F → G of presheaves of A-modules
is a homomorphism of presheaves of groups such that for all U belonging to B the
map uU : Γ(U,F) → Γ(U,G) is a homomorphism of Γ(U,A)-modules. When A is a
sheaf and F and G are A-modules we say that u is a homomorphism of A-modules.
The set of A-module homomorphisms we denote by HomA(F ,G).!!n

(1.5) Remark. Let A be a presheaf of rings on a basis B of a topological space X
and let u : F → G be a homomorphism of presheaves of A-modules on B. Then the
map ux : Fx → Gx is an Ax-module homomorphism.

111
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(1.6) The direct image. Let ψ : X → Y be a continous map of topological spaces.
Moreover let A be a presheaf of rings on X and let F be a presheaf of A-modules.
By the definiton of the direct images ψ∗(A) and ψ∗(F) we have for every open subset
V of Y that Γ(V, ψ∗(A)) = Γ(ψ−1(V ),A) and Γ(V, ψ∗(F)) = Γ(ψ−1(V ),F). Hence
Γ(V, ψ∗(F)) is a Γ(V, ψ∗(A))-module. It is clear that these modules, for all open
subsets V of Y , make ψ∗(F) into a presheaf of ψ∗(A)-modules. When A is a sheaf
and F is an A-module we have that ψ∗(A) is a sheaf and that ψ∗(F) is a ψ∗(A)-
module.

Let u : F → G be an A-homomorphism of presheaves on X. We have that
ψ∗(u) : ψ∗(F) → ψ∗(G) is a homomorphism of presheaves of A-modules.

(1.7) The inverse image. Let ψ : X → Y be a continous map of topological
spaces and let B be a basis for the topology of Y . Moreover let B be a presheaf of
rings on B and let G be a presheaf of B-modules on B. For all y ∈ Y the stalk Gy
of G at y is a By-module. Consequently the product

∏
x∈U Gψ(x) is a

∏
x∈U Bψ(x)-

module for all open subsets U of X. By the definition of the inverse image in Sec-
tion (?) we have that Γ(U, ψ∗(B)) is a subring of

∏
x∈U Bψ(x) and that Γ(U, ψ∗(G))→

is a subgroup of
∏
x∈U Gψ(x). We shall show that the

∏
x∈U Bψ(x)-module struc-

ture on
∏
x∈U Gψ(x) induces a Γ(U, ψ∗(B))-module structure on Γ(U, ψ∗(G)). Let

(sψ(x))x∈U ∈ Γ(U, ψ∗(B)) and (tψ(x))x∈U ∈ Γ(U, ψ∗(G)). For all x ∈ U there is
a neighbourhood Vψ(x) of ψ(x) belonging to B and sections s(x) ∈ Γ(Vψ(x),B)
and t(x) ∈ Γ(Vψ(x),G) such that for all y in a neighbourhood Ux of x contained

in U ∩ ψ−1(Vψ(x)) we have that sψ(y) = s(x)y and tψ(y) = t(x)y. We have that
s(x)t(x) ∈ Γ(Vψ(x),G) and (s(x)t(x))y = s(x)yt(x)y = sψ(y)tψ(y). Consequently
(sψ(x))x∈U (tψ(x))x∈U = (sψ(x)tψ(x))x∈U is in Γ(U, ψ∗(G). and the

∏
x∈U Bψ(x)-module

structure on
∏
x∈U Gψ(x) induces a Γ(U, ψ∗(B))-modules structure on Γ(U, ψ∗(G)).

We easily see that ψ∗(G) becomes a ψ∗(B)-module. In particular the associated
sheaf id∗

Y (G) of G becomes a module over the associated sheaf id∗
Y (B) of B.

When u : G → H is a homomorphism of presheaves of B-modules on the basis B

we have that ψ∗(u) : ψ∗(G) → ψ∗(H) is a homomorphism of ψ∗(B)-modules.

(1.8) The tensor product. Let X be a topological space with basis B for the
topology. Moreover let A be a presheaf of rings on B and let F and G be presheaves
of A-modules. For every open subset U of X belonging to B we have that Γ(U,F)
and Γ(U,G) are Γ(U,A)-modules. Let Γ(U,H) = Γ(U,F) ⊗Γ(U,A) Γ(U,G). When

U ⊆ V is an inclusion of open sets belonging to B it follows from Lemma (?) that→
we have a map

Γ(V,F)⊗Γ(V,A) Γ(V,G)
(ρF )VU⊗

(ρA)V
U

(ρG)VU
−−−−−−−−−−−−−→ Γ(U,F) ⊗Γ(U,A) Γ(U,G).

We thus obtain a presheaf H of A-modules on B. The associated sheaf of H we
denote by !!F ⊗A G and call the tensor product of F and G over A. It follows fromn

Section (1.?) that F ⊗A G is a module over the associated sheaf id∗
X(A) of A.→
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(1.9) Lemma. For all points x ∈ X there is a canonical isomorphism of Ax-modules

(F ⊗A G)x → Fx ⊗Ax Gx.

Proof. For each open set U belonging to B we have maps (ρF)Ux : Γ(U,F) → Fx,
(ρG)Ux : Γ(U,G) → Gx and (ρA)Ux : Γ(U,A) → Ax. Moreover we have a map H(U) →
Fx ⊗Ax Gx that takes the class of s ⊗Γ(U,A) t with s ∈ Γ(U,F) and t ∈ Γ(U,G)
to sx ⊗Ax tx. Hence we obtain a map Hx → Fx ⊗Ax Gx that sends the class of
(U, s⊗Γ(U,A) t) with s ∈ Γ(U,F) and t ∈ Γ(U,G) to sx⊗Ax tx. It is clear that the map
is independent of the choice of representative (U, s⊗Γ(U,A) t) of the class in Hx. The

inverse map sends sx⊗Ax tx to the class of (U ∩V, (ρF)UU∩V (s)⊗Γ(U∩V,A) (ρG)VU∩V (t))
when (U, s) represents sx and (V, t) represents tx. The inverse is clearly independent
of the choice of representatives (U, s) and (V, t) of the classes sx, respectively tx.

(1.10) Example. We shall show that the presheaf H used in the definition of the
tensor product in Section (1.?) is not necessarily a sheaf. Let X = {x0, x1, x2}→
be the topological spaces with open sets ∅, X, U0 = {x0}, U1 = {x0, x1}, and U2 =
{x0, x2}. We define a presheaf of rings by Γ(∅,A) = {0}, Γ(X,A) = Z, Γ(U1,A) = Z,
Γ(U2,A) = Z, Γ(U0,A) = Z with (ρA)VU = idZ when U 6= ∅. Moreover we define a
presheaf of groups by Γ(∅,F) = (0), Γ(X,F) = Z, Γ(U1,F) = Z/2Z, Γ(U2,F) = Z,
Γ(x0,F) = Z/2Z where (ρF )XU1

is the residue map and the remaining restriction maps
are the identity. Finally let Γ(∅,G) = {0}, Γ(X,G) = Z, Γ(U1,G) = Z, Γ(U2,G) = Z,
Γ(U0,G) = Q with restriction maps being the natural inclusions. Then A with the
given restriction maps is a sheaf of rings, and F and G with the given restriction
maps are A-modules.

We let Γ(U,H) = Γ(U,F) ⊗Γ(U,A) Γ(U,G) for all open subsets U of X. Then

Γ(X,H) = Z, Γ(U1,H) = Z/2Z, Γ(U2,H) = Z and Γ(U0,H) = {0} and (ρH)XU1
is

the residue map and the remaining projection maps are the identity except those
of the form (ρH)UU0

that are zero. Hence H is not a presheaf. The associated sheaf
F ⊗A G has the same sections as H over all open subsets of X except over X where
Γ(X,F ⊗A G) = Z/2Z × Z.

(1.11) Restriction and extension of scalars. Let X be a topological space with
a basis B for the topology and let ϕ : A → B be a homomorphism of presheaves
of rings on B. Moreover let F be a presheaf of A-modules and G a presheaf of
B-modules on B.

For every open subset U of B we obtain a homomorphism of rings ϕU : Γ(U,A) →
Γ(U,B), and Γ(U,G) is a Γ(U,B)-module. By restriction of scalars we have that
Γ(U,G) becomes a Γ(U,A)-module and the map (ρF)VU : Γ(V,G) → Γ(U,G) is a
(ρA)VU -module homomorphism for each inclusion U ⊆ V of open subsets of B. Hence
G becomes a presheaf of A-modules on B. We say that G becomes an A-module by
restriction of scalars, and we denote G considered as an A-module by !!G[ϕ].n
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For every open subset U of B we obtain, by extension of scalars, a Γ(U,B)-
module Γ(U,G)⊗Γ(U,A) Γ(U,B). The homomorphism (ρF)VU ⊗(ρA)VU

(ρB)VU is a (ρB)VU -

homomorphism. It follows that the presheaf H defined in Section (1.?) becomes a→
presheaf of B-modules. We say that H becomes a B-module by extension of scalars.
When B is a sheaf it follows from Section (1.?) that F ⊗A B is a B-module. We say→
that F ⊗A B becomes a B-module by extension of scalars.

(1.12) Direct images on ringed spaces. Let (X,A) and (Y,B) be two ringed
spaces, and let Ψ = (ψ, θ) : (X,A) → (Y,B) be a morphism of ringed spaces, that is,
the map ψ : X → Y is a continuous map of topological spaces and θ : B → ψ∗A is
a homomorphism of sheaves of rings on Y . Moreover let F and G be an A-module
respectively a B-module.

We have that the direct image ψ∗(F) is a ψ∗(A)-module. From the homomorphism
of sheaves of rings θ : B → ψ∗(A) on Y we obtain, by restriction of scalars, that
ψ∗(F) becomes a B-module. We denote this B-module by !!Ψ∗(F) and call it then
direct image of F by Ψ.

When u : F → G is a homomorphism of A-modules on X we have that the homo-
morphism ψ∗(u) : ψ∗(F) → ψ∗(G) of sheaves of groups is a homomorphism of sheaves
of ψ∗(A)-modules. Hence, by restriction of scalars ψ∗(u) becomes a homomorphism
of sheaves of B-modules that we denote by !!Ψ∗(u) : Ψ∗(F) → Ψ∗(G).n

We have that Ψ∗(idF ) = idΨ∗(F), and when v : G → H is a homomorphism of
B-modules we have that Ψ∗(vu) = Ψ∗(v)Ψ∗(u). In other words Ψ∗ is a functor from
A-modules on X to B-modules on Y .

(1.13) Inverse images on ringed spaces. Let (X,A) and (Y,B) be two ringed
spaces, and let Ψ = (ψ, θ) : (X,A) → (Y,B) be a morphism of ringed spaces, that is,
the map ψ : X → Y is a continuous map of topological spaces and θ : B → ψ∗A is
a homomorphism of sheaves of rings on Y . Moreover let F and G be an A-module
respectively a B-module.

We have that ψ∗(G) is a ψ∗(B)-module. From the adjoint homomorphism θ] :
ψ∗(B) → A of the homomorphism θ : B → ψ∗A we obtain, by extension of scalars,
that ψ∗(G) ⊗ψ∗(B) A is an A-module. We denote this A-module by !!Ψ∗(G) and calln
it the inverse image of G by the map Ψ.

When v : G → H is a homomorphism of B-modules on the basis B of the topology
it is clear that the map ψ∗(u) : ψ∗(G) → ψ∗(H) induces a homomorphism

ψ∗(G) ⊗ψ∗(B) A
ψ∗(u)⊗ψ∗(B)idA−−−−−−−−−−→ ψ∗(H) ⊗ψ∗(B) A,

that is, a homomorphism of A-modules !!n

Ψ∗(u) : Ψ∗(G) → Ψ∗(H).

It is clear that Ψ∗(idG) = idΨ∗(G), and if wu : F → G is a homomorphism of B-
modules we have that Ψ∗(vu) = Ψ∗(v)Ψ∗(u). In other words, we have that Ψ∗ is a
covariant functor from B-modules on B to A-modules on X.
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For every point x ∈ X we have, by Lemma (1.9) applied to the Ψ∗(B)-modules→
Ψ∗(G) and A, an isomorphism Ψ∗(G) = (ψ∗(G) ⊗ψ∗(B) A)x

∼−→ψ∗(G)x ⊗ψ∗(B)x Ax.

Moreover it follows from Lemma (Modules 2.23) that there is a homomorphism of→
Ax-modules (ρG)x ⊗(ρB)x (idA)x : Gψ(x) ⊗Bψ(x)

Ax → ψ∗(G)x ⊗ψ∗(B)x Ax, and from

(Sheaves 2.3) that the latter homomorphism is an isomorphism. Consequently we→
have a canonical isomorphism of Ax-modules

Gψ(x) ⊗Bψ(x)
Ax

∼−→Ψ∗(G)x = (ψ∗(G) ⊗ψ∗(B) A)x. (1.13.1)

(1.14) Remark. Let Ψ = (ψ, θ) : (X,A) → (Y,B) be a homomorphism of ringed
spaces. Then Ψ∗(B) = A. In fact we have that Γ(U, ψ∗(B)) is canonically isomorphic
to Γ(U, ψ∗(B)) ⊗Γ(U,ψ∗(B)) Γ(U,A) = Γ(U,A) for all open subsets of X belonging to
B.

(1.15) Adjunction. Let (X,A) and (Y,B) be two ringed spaces and let Ψ =
(ψ, θ) : (X,A) → (Y,B) be a homomorphism of ringed spaces. Moreover let F be
an A-module and G be a B-module. The adjunction maps ρB : B → ψ∗(ψ

∗(B))
and σA : ψ∗(ψ∗(A)) → A are homomorphisms of rings. Clearly the adjunction map
ρG : G → ψ∗(ψ

∗(G)) of (Sheaves 3.8) is a homomorphism of ρB-modules and the→
adjunction map σF : ψ∗(ψ∗(F)) → F of (Sheaves 3.8) is a homomorphism of σA-→
modules. Hence we obtain an adjunction map ρG : G → Ψ∗(Ψ

∗(G)) of A-modules
and an adjunction map σF : Ψ∗(Ψ∗(F)) → F of B-modules. We obtain, by extension
and restriction of scalars, an adjunction map

HomA(Ψ∗(G),F) ∼−→ HomB(G,Ψ∗(F))

which is a bijection between A-modules homomorphisms Ψ∗(G) → F , and B-module
homomorphisms G → Ψ∗(F).

(1.16) Kernels and cokernels of homomorphisms of modules. Let X be a
topological space with a basis B for the topology. Moreover let A be a presheaf of
rings on B and let u : F → G be a homomorphism of presheaves of A-modules on B.
Let H be the presheaf of Section (Sheaves 2.10) defined by Γ(U,H) = Im(uU ) and→
where (ρH)VU is induced by (ρG)VU for all inclusions U ⊆ V of open subsets belonging
to B. Clearly H is a presheaf of A-modules. For every open subset U belonging to
B we obtain commutative diagrams of A-modules with exact rows

0 −−−−→ Ker(uV ) −−−−→ Γ(V,F) −−−−→ Γ(V,H) −−−−→ 0

σVU

y (ρF )VU

y (ρH)VU

y

0 −−−−→ Ker(uU ) −−−−→ Γ(U,F) −−−−→ Γ(U,H) −−−−→ 0,

and
0 −−−−→ Γ(V,H) −−−−→ Γ(V,G) −−−−→ Coker(uV ) −−−−→ 0

(ρH)VU

y (ρG)VU

y (τ)VU

y

0 −−−−→ Γ(U,H) −−−−→ Γ(U,G) −−−−→ Coker(uU ) −−−−→ 0,
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where σVU is induced by (ρG)VU and where τVU is induced by (ρG)VU . Let Γ(U,F ′) =
Ker(uU ) and let Γ(U,G′) = Coker(uU ) for all open subsets U belonging to B. For all
inclusions U ⊆ V of open sets belonging to B we let (ρF ′)VU = σVU and (ρG′)VU = τVU .
It is clear that F ′ and G′, with the restriction maps (ρF ′)VU respectively (ρG′)VU , are
presheaves of A-modules on B.

Assume that A, F and G are sheaves on B. It is easy to check that F ′ is an A-
module on B, and that the inclusions Γ(U,F ′) ⊆ Γ(U,F) for all open sets belonging
to B make F ′ into a subsheaf of F . The surjections Γ(U,G) → Γ(U,G ′) for all open
sets U belonging to B define a homomorphism G → G ′ of presheaves of A-modules,
and it follows from Lemma (Sheaves 2.12) that the resulting map on stalks Gx → G′

x is→
surjective for all x ∈ X. The composite of the map G → G ′ with ρG′ : G′ → (idX)∗(G′)
gives a homomorphism G → (idX)∗(G′)x of A-modules, and it follows from Remark
(?) that the the resulting map on stalks Gx → (idX)∗(G′)x is surjective. Hence it→
follows from Proposition (Sheaves 2.3) that the map G → (idX)∗(G′) is surjective.→
We have that the subsheaf Im(u) = (idX)∗(H) of G is an A-module, and that the
homomorphism j : Im(u) → G is a homomorphism of A-modules.

(1.17) Example. Even when A, F and G are sheaves the presheaf G ′ of Section
(1.16) is not necessarily a sheaf.→

In fact in Example (Sheaves 2.11) the sheaf F is a sheaf of rings. Let F = A.→
It is clear that the sheaf G of Example (Sheaves 2.11) is an A-module, and that→
u : F → G is a homomorphism of A-modules. We have that Γ(∅,G ′) = {0}, Γ(X,G′)
is isomorphic to Z, and Γ(Ui,G′) = {0} for i = 0, 1, 2. Hence G ′ is not a sheaf.

We note that the presheaf H of Example (Sheaves 2.11) is an A-module. Hence→
H is not necessarily a sheaf even when u is a homomorphism of A-modules.

(1.18) Definition. Let X be a topological space with a basis B for the topology.
Moreover let A be a sheaf of rings on B and let u : F → G be a homomorphism of
A-modules. The subsheaf F ′ of F defined in Remark (1.16) we call the kernel of u,→
and we denote it by !!Ker(u). We call the A-module (idX)∗(G′) the cokernel of u andn

we denote it by !!Coker(u). When u is injective we often write Coker(u) = G/F . Ann
A-submodule of G is a sheaf of the form Im(u) for some A-module homomorphism
u : F → G. A submodule of the sheaf of rings A is called an ideal of A.

A sequence of A-modules

· · · −→ Fn−1
un−1−−−→ Fn un−→ Fn+1 −→ · · ·

we call a complex when Im(un−1) ⊆ Ker(un) for all n, and we say that the complex
is exact if Im(un−1) = Ker(un) for all n.

(1.19) Remark. For all points x ∈ X we clearly have an injection Ker(u)x ⊆
Ker(ux) of Ax-modules contained in Fx. This injection is an equality of sets

Ker(u)x = Ker(ux).
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In fact, every element in Ker(ux) is represented by a pair (U, s) where U is open in B,
and s ∈ Γ(U,F) is such that uU (s) = 0 and (U, s) represents an element in Ker(u)x.

For all points x ∈ X we have a cononical ismorphism of Ax-modules

Coker(ux)
∼−→ Coker(u)x (1.19.1)

between quotient modules of Gx. In fact, it is clear that we have a surjective Ax-
module homomorphism Coker(ux) → Coker(u)x. This homomorphism is an isomor-
phism because every element r in Coker(ux) is represented by a pair (V, t) where V
is open in B and t ∈ G(V ). If r is mapped to zero by (1.19.1) there is an open neigh-→
bourhoood U of x belonging to B and contained in V such that (ρG)VU (t) = uU (s) for
a section s ∈ Γ(U,F). The pairs (V, t) and (U, uU (s)) represent the same element r
in Coker(ux). Since (U, uU (s)) represents the class of ux(sx) in Coker(ux), and this
class is zero, we have that r = 0, and hence that (1.19.1) is injetive.→
(1.20) Proposition. A complex

F ′ u′

−→ F u′′

−→ F ′′ (1.20.1)

of A-modules is exact if and only if the resulting complex of stalks of Ax-modules

F ′
x

u′
x−→ Fx

u′′
x−→ F ′′

x (1.20.2)

is exact for all x ∈ X.
In particular we obtain two exact complexes of A-modules

0 → Ker(u) → F → Im(u) → 0

and
0 → Im(u) → G → Coker(u) → 0.

The homomorphism u is injective if and only if Ker(u) = 0 and surjective if and only
if Coker(u) = 0.

Proof. When the sequence (1.20.1) is exact we have that Im(u′)x = Ker(u′′)x for all→
points x ∈ X. Hence it follows from Remark (Sheaves 2.15) and Remark (1.19) that→→
Im(u′x) = Ker(u′′x) and thus that the sequence (1.20.2) is exact.→

Conversely, if the sequence (1.20.2) is exact for all points x ∈ X, it follows from→
Remark (Sheaves 2.5) and Remark (1.19) that Im(u′)x = Ker(u′′)x for all points x ∈→→
X. Hence it follows from Lemma (Sheaves 2.12) that the inclusion Im(u′) ⊆ Ker(u′′)→
is an equality. That is, the sequence (1.20.1) is exact.→

The last part of the Proposition follows from the two exact sequences of Example
(Modules 1.31) associated to the Ax-module map ux : Fx → Gx, and from the→
equalities Ker(u)x = Ker(ux), Coker(u)x = Coker(ux), and Im(u)x = Im(ux) of
Remark (Sheaves 2.15) and Remark (1.19).→→
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(1.21) Proposition. Let Ψ = (ψ, θ) : (X,A) → (Y,B) be a homomorphism of
ringed spaces and let

0 → F ′ u′

−→ F u′′

−→ F ′′ (1.21.1)

be an exact sequence of A-modules. Then we have an exact sequence of B-modules

0 → Ψ∗(F ′)
Ψ∗(u′)−−−−→ Ψ∗(F)

Ψ∗(u′′)−−−−→ Ψ∗(F ′′) (1.21.2)

Proof. The map F ′ → Im(u′) induced by u′ is an isomorphism, and the map Im(u′)
is injective. Hence the map u′U : Γ(U,F ′) → Γ(U,F) is injective and has image
Im(u′)U . Hence, by assumption Im(u′) = Ker(u′′) and by the definition of Ker(u′′)
we have that Ker(u′′)U = Ker(u′′U ). Hence Im(u′)U = Ker(u′′)U = Ker(u′′U ). Hence
we have an exact sequence

0 → Γ(U,F ′)
u′
U−−→ Γ(U,F)

u′′
U−−→ Γ(U,F ′′)

of Γ(U,A)-modules for all open subsets U of X. Hence we have that the sequence

0 → Γ(V,Ψ∗(F ′))
Ψ∗(u′)V−−−−−→ Γ(V,Ψ∗(F))

Ψ∗(u′′)V−−−−−−→ Γ(V,Ψ∗(F))

of Γ(V,Ψ∗(A))-modules is exact for all open subsets V of Y . It follows that Ψ∗(u
′)

induces an isomorphism F ′ → Im(Ψ∗(u
′)). Moreover, since Γ(V,Ker(Ψ∗(u

′′)) =
Ker(Ψ∗(u

′′))V Ker(Ψ∗(u
′′)V ), we obtain that Im(Ψ∗(u

′)) = Ker(Ψ∗(u
′′)). Hence we

have that the sequence (1.21.2) is exact.→
(1.22) Proposition. Let Ψ = (ψ, θ) : (X,A) → (Y,B) be a homomorphism of
ringed spaces and let

0 → G′ v′−→ G v′′−→ G′′ → 0 (1.22.1)

be an exact sequence of B-modules. Then

0 → ψ∗(G′)
ψ∗(v′)−−−−→ ψ∗(G)

ψ∗(v′′)−−−−→ ψ∗(G′′) → 0 (1.22.2)

is an exact sequence of ψ∗(B)-modules. In particular

Ψ∗(G′)
Ψ∗(v′)−−−−→ Ψ∗(G)

Ψ∗(v′′)−−−−→ Ψ∗(G′′) → 0 (1.22.3)

is an exact sequence of A-modules.

Proof. It follows from Proposition (1.20) that the sequence (1.22.1) is exact if and→→
only if the sequence

0 → G′
y

v′y−→ Gy
v′′y−→ G′′

y → 0 (1.22.4)
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is an exact sequence of By-modules for all y ∈ Y . From Proposition (Sheaves 2.2)→
it follows that when the sequence (1.22.4) is exact for all y ∈ Y the sequence of→
Ψ∗(B)x-modules

0 −→ ψ∗(G′)x
ψ∗(v′)x−−−−−→ ψ∗(G)x

ψ∗(v′′)x−−−−−→ ψ∗(G′′)x −→ 0

is exact for all x ∈ X. It follows from Proposition (1.20) that then (1.22.2) is exact.→→
From the exatness of the sequence

ψ∗(G′)x
ψ∗(v′)x−−−−−→ ψ∗(G)x

ψ∗(v′′)x−−−−−→ ψ∗(G′′)x → 0

and from Lemma (1.9) we obtain an exact sequence→
ψ∗(G′)x ⊗ψ∗(B)x Ax −→ ψ∗(G)x ⊗ψ∗(B)x Ax −→ ψ∗(G′′)x ⊗ψ∗(B)x Ax → 0

of Ax-modules for all points x ∈ X. That is, we have an exact sequence

Ψ∗(G′)x
Ψ∗(v′)x−−−−−→ Ψ∗(G)x

Ψ∗(v′′)x−−−−−→ Ψ∗(G′′)x → 0

of Ax-modules for all points x ∈ X. It follows from Proposition (1.20) that the→
sequence (1.22.3) is exact.→
(1.23) Direct sums of modules of sheaves. Let X be a topological space with a
basis B for the topology. Moreover let A be a presheaf of rings on B and let {Fα}α∈I
be a collection of presheaves of A-modules. For every open set U belonging to B we
let Γ(U,F) = ⊕α∈IΓ(U,Fα) be the direct sum of the Γ(U,A)-modules Γ(U,Fα) for
α ∈ I. Moreover, for all inclusions U ⊆ V of open sets belonging to B, we let (ρF )VU :
Γ(V,F) → Γ(U,F) be the map induced by the maps (ρFα)VU : Γ(V,Fα) → Γ(U,Fα)
for all α ∈ I. It is clear that F with the restriction maps (ρF )VU is a presheaf of
A-modules on B.

For all β ∈ I, and for every open set U belonging to B there is a canonical map
Γ(U,Fβ) → ⊕α∈IΓ(U,Fα) of Γ(U,A)-modules. It is clear that these maps, for fixed
β, and for all open sets U belonging to B, define a canonical map of presheaves of
A-modules

iβ : Fβ → F .
For every point x ∈ X we have a map (iβ)x : (Fβ)x → Fx of Ax-modules, and
consequently a map of Ax-modules

⊕α∈I(Fα)x
∼−→Fx. (1.23.1)

The map (1.23.1) is an isomorphism of Ax-modules. In fact we shall construct the→
inverse to the map (1.23.1). Each element in Fx is represented by a pair (U,⊕α∈Jsα)→
where U is an open set belonging to B and ⊕α∈Jsα ∈ Γ(U,F) = ⊕α∈IΓ(U,Fα),
with sα ∈ Γ(U,Fα), and where J is a finite subset of I. We map the class of the
pair (U,⊕α∈Jsα) in Fx to ⊕α∈J (sα)x ∈ ⊕α∈I(Fα)x. It is clear that the resulting
element in ⊕α∈I(Fα)x is independent of choise of the representative (U,⊕α∈Jsα) of
the element in Fx, and that we obtain a map Fx → ⊕α∈I(Fα)x which is the inverse
of the map (1.23.1).→
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(1.24) Example. Even when all the sheaves Fα are A-modules the presheaf F of
Section (?) is not necessarily a sheaf. Let X be the topological space which consists→
of the set N of natural numbers with the discrete topology. We let A be the simple
sheaf of rings on X with fiber Z. Moreover, for every n ∈ N we let Fn be the sheaf
on X defined by Γ(U,Fn) = Z when n ∈ U and Γ(U,Fn) = {0} otherwise, and
where the restriction map (ρFn)VU = idZ when n ∈ U and the zero map otherwise.
Clearly Fn is an A-module via the multiplication of Γ(U,A) on Γ(U,Fn) defined by
(fi)i∈Ux = fnx.

The presheaf F associated to the collection {Fn}n∈N in Remark (?) is not a sheaf.→
In fact let sn = 1 ∈ Γ({n},Fn) for every member {n} in the open covering {{n}}n∈N

of X. Then the restriction of sm and sn to the intersecton {m} ∩ {n} = ∅ is 0 for all
pairs of integers m,n. However there is no section in Γ(X,F) = ⊕n∈NΓ(X,Fn) that
restricts to sn on the open set {n} for all n ∈ N.

(1.25) Definition. Let X be a topological space with a basis B for the topology.
Moreover let A be a sheaf of rings on B and let {Fα}α∈I be a collection of A-modules.
The direct sum of the A-modules Fα is the associated sheaf (idX)∗(F) of the presheaf
F defined in Section (1.23) from the collection {Fα}α∈I . We denote the direct sum→
by !!⊕α∈IFα, and the canonical A-module homomorphism we obtain by composingn

iβ : Fβ → F with ρF : F → (idX)∗(⊕α∈IFα) we denote by !!n

hβ : Fβ → ⊕α∈IFα.

When Fα = G for all α ∈ I we write !!⊕α∈IFα = G(I), and when I is finite andn

consists of n elements we write G(I) = Gp.
(1.26) Remark. It is clear that the A-module ⊕α∈IFα together with the canonical
maps hα : Fα → ⊕α∈IFα is the direct sum of the collection of A-modules {Fα}α∈I
in the category of A-modules. Moreover it follows from Proposition (Sheaves 2.3)→
and the isomorphism (1.23.1) that we have a canonical isomorphism of Ax-modules→

⊕α∈I(Fα)x
∼−→ (⊕α∈IFα)x

for all x ∈ X.

(1.27) Lemma. Let (X,A) be a ringed space and let {Fα}α∈I be a collection of
A-modules. Moreover let hβ : Fβ → ⊕α∈IFα be the canonical homomorphism to
factor β. For every A-modules G there is a canonical A-module isomorphism

⊕α∈I(Fα ⊗A G) ∼−→ (⊕α∈IFα) ⊗A G (1.27.1)

that composed with the homomorphism hβ ⊗A idG : Fβ ⊗A G → (⊕α∈IFα) ⊗A G is
the canonical homomorphism Fβ ⊗A G → ⊕α∈I(Fα ⊗A G) to factor β for all β ∈ I.

Proof. From the universal property of direct sums of A-modules the maps hβ⊗A idG :
Fβ ⊗A G → (⊕α∈IFα) ⊗A G for β ∈ I define a canonical homomorphism (1.27.1)→
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with the properties described in the Lemma. We must show that the homomorphism
(1.27.1) is an isomorphism. It follows from Proposition (1.20) that it suffices to→→
prove that the induced map on stalks at x ∈ X is an isomorphism for all x ∈ X. We
saw in Remark (1.26) that up to isomorphisms the map of stalks at a point x ∈ X→
is given by the homomorphism ⊕α∈I(Fα ⊗A G)x → ((⊕α∈IFα) ⊗A G)x obtained
from the homomorphisms (hβ ⊗A idG)x : (Fβ ⊗A G)x → ((⊕α∈IFα) ⊗A G)x for all
β ∈ I. Moreover it follows from Lemma (1.9) that the latter homomorphism up to→
isomorphisms is given by the map ⊕α∈I((Fα)x⊗AxGx) → (⊕α∈IFα)x⊗AxGx obtained
from the homomorphisms (hβ)x ⊗Ax idGx : (Fβ)x ⊗Ax Gx → (⊕α∈IFα)x ⊗Ax Gx. It
follows from Remark (1.26) applied to the collection of modules {Fα ⊗A G}α∈I that→
the latter map is an isomorphism.

(1.28) Proposition. Let Ψ = (ψ, θ) : (X,A) → (Y,B) be a homomorphism of
ringed spaces and let {Gα}α∈I be a collection of B-modules. Then there is a canonical
isomorphism of A-modules

⊕α∈IΨ∗(Gα) ∼−→Ψ∗(⊕α∈IGα) (1.28.1)

such that the composite of the homomorphism (1.28.1) with the canonical homomor-→
phism Ψ∗(Gβ) → ⊕α∈IΨ∗(Gα) is the map Ψ∗(hβ) : Ψ∗(Gβ) → Ψ∗(⊕α∈IGα), where
hβ is defined in Section (1.25).→
Proof. For every α ∈ I the canonical homomorphism hβ : Gβ → ⊕α∈IGα gives a
canonical homomorphism Ψ∗(hβ) : Ψ∗(Gβ) → Ψ∗(⊕α∈IGα). Consequently we obtain
a canonical homomorphism ⊕α∈IΨ∗(Gα) → Ψ∗(⊕α∈IGα) that composed with the
canonical homomorphism of A-modules Ψ∗(Gβ) → ⊕α∈IΨ∗(Gα) is Ψ∗(hβ). We have
thus constructed the homomorphism (1.28.1).→

It remains to prove that the homomorphism (1.28.1) is an isomorphism. It fol-→
lows from Remark (1.26) and the isomorphism (1.13) that we have canonical iso-→→
morphisms (⊕α∈IΨ∗(Gα))x

∼−→ ⊕α∈I (Ψ∗(G)α)x
∼−→ ⊕α∈I (ψ∗(Gα)x ⊗ψ∗(B)x Ax) of

Ax-modules for each point x ∈ X i, and from Proposition (Sheaves 2.3) we ob-→
tain a canonical homomorphism of Ax-modules ⊕α∈I(Ψ∗(Gα)x⊗Ψ∗(B)xAx)

∼−→ ⊕α∈I
(Gα)ψ(x)⊗Bψ(x)

Ax). From the isomorphism (1.13.1) and Remark (1.26) we obtain iso-→→
morphisms Ψ∗(⊕α∈IGα)x

∼−→ (⊕α∈IGα)ψ(x) ⊗Bψ(x)
Ax

∼−→ ⊕α∈I (Gα)ψ(x) ⊗Bψ(x)
Ax.

It is easy to check that via these isomorphisms the homomorphism (1.28.1) induces→
the identity on ⊕α∈I(Gα)ψ(x) ⊗Bψ(x)

Ax. It consequently follows from Proposition

(1.20) that (1.28.1) is an isomorphism.→→
(1.29) Definition. Let X be a topological space and A a sheaf of rings on X. The
support !!Supp(F) of a A-module F is the subset of X consisting of points x wheren
Fx 6= 0.

(1.30) Exercises.
1. Let A be a ring and let M be an A-module. Moreover letX be a topological space.
For all open non-empty subsets U of X we let Γ(U,A) = AU and Γ(U,F) = MU ,
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and let Γ(∅,A) = {0}, and Γ(∅,F) = {0}. For every inclusion U ⊆ V of open subsets
of X we define (ρA)VU : Γ(V,A) → Γ(U,A) and (ρF)VU : Γ(V,F) → Γ(U,F) as the
restrictions of functions on V to functions on U . Show that the sheaf F with the
restriction maps (ρF )VU is a module over the sheaf A with the restriction maps (ρA)VU .

2. LetX be a topological space and let {Ax}x∈X and {Mx}x∈X be collections of rings
Ax respectively Ax-modules Mx. Moreover let Γ(U,A) =

∏
x∈U Ax and Γ(U,F) =∏

x∈UMx for all open subsets U of X. Then Γ(U,F) has a natural structure as a

Γ(U,A)-module for all open subsets U of X. Let (ρA)VU : Γ(V,A) → Γ(U,A) and
(ρF)VU : Γ(V,F) → Γ(U,F) be the projections.

(1) Show that A with the given restrictions maps is a sheaf of rings.
(2) Show that F with the given restriction maps is an A-module.

3. Let X, with a fixed point x0, be the topological space where the non-empty open
subsets are all subsets of X that contain the point x0. Let {Ax}x∈X and {Mx}x∈X
be collection of rings Ax respectively Ax-modules Mx. Assume that we for all points
x ∈ X have a ring homomorphism ϕx : Ax → Ax0

such that ϕx0
= idAx0 and a

ϕx-module homomorphism ux : Mx → Mx0
such that ux0

= idMx0
. For all open

subsets U of X let Γ(U,A) be the subset of
∏
x∈U Ax consisting of elements (fx)x∈U

such that ϕx(fx) = fx0
for all x ∈ U , and let Γ(U,F) be the subset of

∏
x∈UMx

consisting of elements (zx)x∈U such that ux(zx) = zx0
for all x ∈ U .

(1) Show that for every inclusion U ⊆ V of open subsets of X the projections∏
x∈V Ax → ∏

x∈U Ax and
∏
x∈V Mx → ∏

x∈UMx induce restriction maps

(ρA)VU : Γ(V,A) → Γ(U,A), respectively (ρF)VU : Γ(V,F) → Γ(U,F).
(2) Show that A with the restriction maps (ρA)VU is a sheaf of rings on X and

that F with the restriction maps (ρF)VU is an A-module.
(3) Describe the Ax-module Fx for all points x ∈ X.
(4) Show that all sheaves of rings B, and B-modules G on X, are obtained

from collections {Bx}x∈X and {Nx}x∈X of rings Bx and Bx-modules Nx
in the same way as A and F are obtained from the collections {Ax}x∈X and
{Mx}x∈X .

4. Let X be a topological space and let A be a sheaf of rings on X. Moreover let F
and G be A-modules.

(1) Show that the A-modules F ⊗A A and F are canonically isomorphic.
(2) Show that the A-modules F ⊗A G and G ⊗A F are canonically isomorphic.

5. Let A and B be sheaves of rings on a toplogical spaces X. Moreover let F be an
A-modules and let G be a B-modules. Show that there is a canonical homomorphism
of groups

HomA(F ,G[ϕ]) → HomB(F ⊗A B,G).

6. Let X = {x, y} be the topological space with two point x and y and the discret
topology. Define sheaves of groups F and G by Γ(X,F) = Z/6Z, Γ({x},F) = Z/2Z,
Γ({y},F) = Z/3Z with the natural residue maps as restrictions, and Γ(X,G) =
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Z/6Z, Γ({x},G) = Z/3Z, Γ({y},G) = Z/2Z with the natural residue maps as re-
strictions. Give F and G a structure as modules over a ring A in such a way that
the presheaf H of Section (?) is different from F ⊗A G.→
7. Let X be a topological space with a basis B for the topology. For every open
subset U of X we consider U as a topological space with the topology induced by
that of X, and we let BU be the basis for U consisting of open sets V belonging to
B that are contained in U .

For every presheaf F defined on B we let F|U be the presheaf on BU defined
by Γ(V,F|U) = Γ(V,F) for all V belonging to BU and (ρF|U)WV = (ρF)WV for all
inclusions V ⊆W of open sets belonging to BU .

Let A be a presheaf of rings defined on B and let F and G be presheaves of
A-modules defined on B. We write HomA(F ,G)(U) = HomA|U (F|U,G|U) for the
group of all homomorphisms of presheaves of A|U -modules from F|U to G|U , for
every open subset U belonging to B.

(1) Show that for all inclusions U ⊆ V of open sets belonging to B we have a
canonical map

ρVU : HomA|V (F|V,G|V ) → HomA|U (F|U,G|U)

that maps a homomorphism u : F|V → G|V to the restriction u|U : F|U →
G|U to U .

(2) Show that HomA(F ,G) with the restriction maps ρVU : HomA(F ,G)(V ) →
HomA(F ,G)(U) for all inclusions U ⊆ V of open subsets belonging to B is a
presheaf of A-modules on B.

(3) Show that there is a canonical homomorphism

HomA(A,G) → G.

(4) Show that for all x ∈ X we have a canonical homomorphism of stalks

HomA(F ,G)x → HomAx(Fx,Gx)

that maps the class of a pair (U, u), where u : F|U → G|U is a homomorphism
of presheaves, to the map ux : Fx → Gx.

(5) Show that when A, F and G are sheaves on B then HomA(F ,G) is an A-
module on B.

(6) Let F and G be A-modules. Assume that there is a neighbourhood U of x
and an exact sequence

Am|U → An|U → F|U → 0

of A-modules. Show that then the homomorphism

HomA(F ,G)x → HomAx(Fx,Gx)
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is an isomorphism.
(7) Let 0 → G′ → G → G′′ be an exact sequence of A-modules, and let F be an

A-module. Show that the sequence of A-modules

0 → HomA(F ,G′) → HomA(F ,G) → HomA(F ,G′′)

is exact.
(8) Let F ′ → F → F ′′ → 0 be an exact sequence of A-modules, and let G be an

A-module. Show that the sequence of A-modules

0 → HomA(F ′′,G) → HomA(F ,G) → HomA(F ′,G)

is exact.
(9) Let X = {x0, x1} be the topological space with open sets {∅, {x0}, X}, and

let A be the simple sheaf with stalks Z. Moreover let F be the sheaf defined
by Γ(X,F) = {0} = Γ(∅,F) and Γ({x0},F) = Z, and let G be the sheaf
defined by Γ(X,G) = Z and Γ({x0},G) = (0) = Γ(∅,G), both with the only
possible restriction maps. Finally let H be the sheaf defined by H(∅) = {0}
and H(X) = Z = H({x0}) and with (ρH)Xx0

= idZ.
(a) Show that F and G are A-modules.
(b) Show that the map

HomA(F ,F)x1
→ HomAx1

(Fx1
,Fx1

)

is not injective.
(c) Show that the map

HomA(G,H)x1
→ HomAx1

(Gx1
,Hx1

)

is not surjective.

8. Let X be a topological space with basis B for the topology. Moreover let A be
a presheaf of rings on B and let {Fα}α∈I be a collection of presheaves of A-modules
on B. For every open subset U of B we let Γ(U,F) =

∏
α∈I Γ(U,Fα), and for every

inclusion U ⊆ V of open subsets belonging to B we let (ρF)VU =
∏
α∈I(ρFα)VU .

(1) Show that F with the restriction maps (ρF)VU is a presheaf on A-modules on
B.

(2) For every α ∈ I and every open subset U of B we have a projection map
uU :

∏
α∈I Γ(U,Fα) → Γ(U,Fα). Show that the maps uU for all U belonging

to B defines a homomorphism of presheaves of A-modules

pα :
∏

α∈I

Fα → Fα.
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(3) Show that F with the projections pα is a product of the presheaves Fα in the
category of presheaves of A-modules.

(4) Show that when A is a sheaf all the presheaves Fα are A-modules then F is
an A-module. We denote this A-module by

∏
α∈I Fα and call it the product

of the sheaves Fα.
(5) Show that the A-module

∏
α∈I Fα together with the projections pα is a prod-

uct of the A-modules Fα in the category of A-modules.
(6) For every x ∈ X and for every α ∈ I we have a map (pα)x : (

∏
α∈I Fα)x →

(Fα)x. Show that these maps, for all α ∈ I, give a map of Ax-modules

(
∏

α∈I

Fα)x → (Fα)x.

9. Let X be a topological space and let A be a sheaf of rings on X. Moreover let
{Fα}α∈I be a collection of A-modules.

(1) Show that Supp(⊕α∈IFα) = ∪α∈I Supp(Fα).
(2) Is it true that Supp(

∏
α∈I Fα) = ∪α∈I Supp(Fα)?
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2. Quasi-coherent modules.

(2.1) Sections. Let (X,OX) be a ringed space and let F be an OX -module. An
OX -module homomorphism u : OX → F gives a section s = uX(1) in Γ(X,F).
Conversely a section s ∈ Γ(X,F) defines an OX -module homomorphism u : OX →
F determined on each open subsets U of X, and every section t ∈ Γ(U,OX), by
uU (t) = t(ρF)XU (s). We call u the homomorphism induced by the section s.

In this way we obtain a bijection between the sections of Γ(X,F) and the OX -
module homomorphisms OX → F . Let I be a collection of indices. We obtain a

bijection between OX -module homomorphisms u : O(I)
X → F and families of sections

(sα)α∈I of Γ(X,F). Under this bijection the homomorphism u : O(I)
X → F corre-

sponds to the family (uhα)α∈I where uhα : OX → F is the composite map of u with

the canonical homomorphisms hα : OX → O(I)
X to factor α for all α ∈ I.

(2.2) Definition. Let (X,OX) be a ringed space and let F be an OX -module.
We say that a collection of section (sα)α∈I of Γ(X,F) generate F if the resulting

homomorphism O(I)
X → F is surjective. The sheaf F is generated by global section

over X if it is generated by a collection of sections of Γ(X,F). That is, there is a

surjection O(I)
X → F for some family I of indices.

(2.3) Remark. It follows from Lemma (?) and Lemma (?) that F is generated by→→
the collection of sections (sα)α∈I with sα ∈ Γ(X,F) if and only if the Ox-module Fx
is generated by the elements (sα)x of the collection ((sα)x)α∈I for all x ∈ X.

(2.4) Example. Not all modules are generated by their global sections.
Let X = {x0, x1} be the topological space with open sets {∅, X, {x0}}. Moreover

let OX be the simple sheaf with fibers Z, and let F be the submodule of OX defined
by Γ(∅,F) = {0} = Γ(X,F), and Γ({x0},F) = Z with (ρF )VU = 0 for all U ⊆ V .
Since F(X) = {0} and Fx0

= Z the OX -module F can not be generated by global
sections.

(2.5) Definition. Let (X,OX) be a ringed space. An OX -module F is quasi-

coherent if there, for all x ∈ X, is an open neighborhood U of x such that F|U is the

cokernel of a homomorphism O(I)
X |U → O(J)

X |U of OX -modules for some collections
of indices I and J .

An OX -algebra A is quasi-coherent if it is quasi-coherent as an OX -module.

(2.6) Example. We have that OX is quasi-coherent, and every direct sum of quasi-
coherent OX -modules is quasi-coherent.

(2.7) Example. Even residue modules of OX are not necessarily quasi-coherent.
Let OX and F be as in Example (2.4). We have that the sections of OX/F→

are given by Γ(∅,OX/F) = {0} = Γ({x0},OX/F) and Γ(X,OX/F) = Z. The sheaf

OX/F is not coherent because if OX/F were the cokernel of u : O(I)
X → O(J)

X it follows



128 Affine schemes

from Theorem (1.20) that we would have an exact sequence O(I)
X,xi

uxi−−→ O(J)
X,xi

→→
Fxi → 0 for i=1,2. For i = 0 we obtain the exact sequence Z(I)

ux0−−→ Z(J) → Z → 0,

and for i = 1 we obtain the exact sequence Z(I)
ux1−−→ Z(J) → 0. This is however

impossible since (ρOX )Xx0
= idZ and thus ux0

= ux1
.

(2.8) Proposition. Let Ψ = (ψ, θ) : (X,OX) → (Y,OY ) be a homomorphism of
ringed spaces and let G be a quasi-coherent OY -module. Then the OX -module Ψ∗(G)
is quasi-coherent.

Proof. Let x be a point of X and let y = ψ(x). Since the sheaf F is quasi-coherent
there is an open neighbourhood V of y and an exact sequence of (OY |V )-modules

O(I)
Y |V → O(J)

Y |V → F|V → 0. Let U = ψ−1(V ). Then U is a neighbourhood of x
and it follows from Proposition (1.22) that there is an exact sequence of (Ψ∗(OY )|U)-→
modules Ψ∗(O(I)

Y )|U → Ψ∗(O(J)
Y )|U → Ψ∗(G)|U → 0. It follows from Proposition

(1.28) that we obtain an exact sequence Ψ∗(OY )(I)|U → Ψ∗(OY )(J)|U → Ψ∗(G)|U .→
Since Ψ∗(OY ) = OX we have that Ψ∗(G) is quasi coherent.

(2.9) Definition. Let (X,OX) be a ringed space. An OX -modules F is of finite

type it there for every x ∈ X is an open neighbourhood U of x such that F|U is
generated by a finite collection of sections of Γ(U,F). That is, we have a surjection
(OX |U)n → F|Uof OX -modules.

(2.10) Example. The sheaf OX is of finite type. Every quotient module of a sheaf
of finite type is of finite type. A finite direct sum of modules of finite type is of finite
type, and it follows from Lemma (1.9) and Lemma (Sheaves 2.12) that the tensor→→
product of two modules of finite type is of finite type.

(2.11) Remark. When F is an OX -module of finite type the support Supp(F)
is a closed subset of X. In fact if x /∈ Supp(F) we have that Fx = 0. Since F is
of finite type we can find an open neighbourhood V of x and sections s1, s2, . . . , sn
in Γ(V,F) that generate the OX,y-module Fy for all y ∈ U . Since (si)x = 0 in Fx
there is a neighbourhood Ui of x contained in V such that (si)y = 0 for y ∈ Ui. Let
U = ∩ni=1Ui. Then U is an open neighbourhood of x and Fy = 0 for all y ∈ U , and
thus the complement of Supp(F) is open in X.

(2.12) Definition. Let (X,OX) be a ringed space. An OX -modules F is coherent

if it satisfies the following two conditions:

(1) It is of finite type.
(2) For every open subset U ofX the kernel of each homomorphism On

X |U → F|U
of OX -modules is of finite type.

An OX -algebra A is coherent if it is coherent as an OX -module.

(2.13) Example. A coherent module is of finite type, and it is quasi-coherent.
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(2.14) Remark. A submodule F of finite type of a coherent sheaf G is coherent.
In fact, every homomorphism On

X |U → F gives a map On
X |U → G with the same

kernel. Since G is coherent the kernel is of finite type.

(2.15) Theorem. Let (X,OX) be a ringed space and let

0 → F u−→ G v−→ H → 0

be an exact sequence of OX -modules. When two of the three modules F , G, H are
coherent, then the third module is coherent.

Proof. (1) Assume that the modules G and H are coherent. Let w : On
X |U → G→

be a surjective OX -modules homomorphism. We obtain a commutative diagram of
(OX |U)-modules with exact rows

0 −−−−→ Ker((v|U)w) −−−−→ On
X |U (v|U)w−−−−→ H|U −−−−→ 0

y w

y
∥∥∥

0 −−−−→ F|U −−−−→
u|U

G|U −−−−→
v|U

H|U −−−−→ 0,

where the left vertical homomorphism is induced by w. The left vertical homomor-
phism is surjective, and Ker((v|U)w) is of finite type since H is coherent. Hence F
is of finite type. Since G is quasi-coherent it follows from Remark (2.14) that F is→
coherent.

(2) Assume that F and G are coherent modules. Since G is of finite type we have→
that H is of finite type. Hence it remains to prove that the second condition of
Definition (2.12) is fulfilled for H.→

Let w : On
X |U ′ → H be a homomorphism of (OX |U)-modules, and let t1, t2, . . . , tn

in Γ(U ′,H) be sections that define w. Since F is of finite type we can find an open
neighbourhood V of x contained in U ′ and a surjective homomorphism r : Om

X |V →
F . The map vx : Gx → Hx is surjective. Hence we can, for each point x ∈ X,
find an open neighbourhood W of x contained in V and sections s1, s2, . . . , sn in
Γ(W,G) such that vx((si)x) = (ti)x for i = 1, 2, . . . , n. Then the pairs (W, vW (si))

and (W, (ρH)U
′

W (ti)) define the same class in Hx. We can therefore find an open

neighbourhood U of x contained in W such that vU ((ρG)WU (si)) = (ρH)U
′

U (ti) for
i = 1, 2, . . . , n. The sections s1, s2, . . . , sn define a homomorphism s : On

X |U → G
such that (w|U) = (v|U)(s|U). Together with (u|U)(r|U) we the homomorphism s
defines a homomorphism q = ((u|U)(r|U) + s) : Om

X |U ⊕On
X |U → G|U such that we

obtain a comutative of OX |U -modules with exact rows

0 −−−−→ Om
X |U h|U−−−−→ Om

X |U ⊕On
X |U p−−−−→ On

X |U −−−−→ 0

r|U

y q

y w|U

y

0 −−−−→ F|U u|U−−−−→ G|U v|U−−−−→ H|U −−−−→ 0,

(2.15.1)
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where h is the canonical homomorphism to the first factor and p is the projection to
the second factor. Since G is coherent the kernel of the homomorphism q is of finite
type. Since r|U is surjective this kernel maps by p onto the kernel of the homomor-
phism w|U . Hence the kernel of w|U is finitely generated. We have proved that the
module H satisfies the second condition of Definition (2.12), and consequently that→
H is a coherent OX -module.

(3) Assume that the modules F and H are coherent. As in the case when F and G→
were coherent we can construct a commutative diagram (2.15.1). Since H is assumed→
to be coherent, and thus of finite type, we can choose the homomorphism w in the
diagram to be surjective. Then the homomorphism q is surjective hence G is of finite
type.

It remains to prove that the second condition of Definition (2.12) holds for the→
module G. Let w : On

X |U → G|U be a homomorphism of OX |U -modules. We
obtain a homomorphism (v|U)w : On

X |U → H|U . Since H is coherent there is a
homomorphism s : Om

X |U → On
X |U that maps onto the kernel of (v|U)w. Since

(v|U)ws = 0 and Ker(v) = Im(u) we have that the image of ws : Om
X |U → G lies

in Im(u|U). Moreover since F is coherent and is isomorphic to Im(u|U) we have
that Im(u|U) is coherent. Hence Ker(ws) is of finite type. We have that Ker(ws)
is mapped by s : Om

X |U → On
X |U onto Ker(w). Since Ker(ws) is of finite type we

have that Ker(w) is of finite type, and consequently G satisfies the second condition
of (2.12).→

(2.16) Corollary. Let u : F → G be a homomorphism of coherent OX -modules.
Then we have that Ker(u), Im(u), and Coker(u) are coherent OX -modules.

Proof. Since u induces a surjection F → Im(u) and F is coherent we have that Im(u)
is of finite type. However, since G is a coherent module, it follows from Remark (2.14)→
that Im(u) is coherent. Hence it follows from the exact sequences of Proposition (1.20)→
that Ker(u) and Coker(u) also are coherent modules.

(2.17) Remark. Let (X,OX) be a ringed space and let F and G be coherent OX -

modules. We have an exact sequence of OX -modules 0 −→ F h−→ F ⊕ G p−→ G → 0
where h is the canonical map to the first factor, and p is the projection to the second
factor. It follows from Theorem (2.15) that F ⊕ G is coherent.→

Assume that F and G are submodules of a coherent OX -modules H. The inclusion
maps F → H and G → H define a canonical OX -modules homomorphism u : F⊕G →
H. The image of u is called the sum of the submodules F and G and is denoted by
!!F + G. Since F ⊕ G is of finite type we have that F + G is of finite type. Itn

consequently follows from Remark (2.14) that F + G is coherent.→
The residue maps H → H/F and H → H/G define a homomorphism of OX -

modules v : H → H/F ⊕ H/G. The kernel of the map v is called the intersection of
the submodules F and G and is denoted by !!F ∩G. It follows follows from Theoremn

(2.15) that H/F and H/G are coherent. Hence the image of H by v is coherent→
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by Corollay (2.16). It follows from Theorem (2.15) that the intersection F ∩ G is→→
coherent.

In particular we see that when H is coherent then the intersection of two submod-
ules of finite type is coherent.

(2.18) Example. Let (X,OX) be a ringed space. Then OX is not necessarily
coherent, even when X consist of one point. It follows from Remark (2.17) that to→
give an example where OX is not coherent it suffices to find a ring A and two finitely
generated ideals a and b that have an intersection that is not finitely generated. Then
we can take X = {x} and define OX by Γ(X,OX) = A.

I order to find such a ring A we consider the polynomial ring K[u, v, t1, t2, . . . ] in
the independent variables u, v, t1, t2, . . . over a ring K. Let c be the ideal generated
by the elements uv, uti− vti, and titj for i, j = 1, 2, . . . . Let A = K[u, v, t1, t2, . . . ]/c
and let x,y, and fi be the residue classes of u, v, respectively ti for i = 1, 2, . . . .
We then have relations xy = 0 = fifj and xfi = yfi in A for i, j = 1, 2, . . . . From
the relations it follows that every element in A can be written uniquely in the form
f(x) + g(y) +

∑m
i=1 hi(x)fi where f(u) and h(u) are polynomials in K[u], and g(v)

is a polynomial in K[v] such that g(0) = 0.
We have that x(f(x) + g(y) +

∑m
i=1 hi(x)fi) = xf(x) +

∑m
i=1 hi(x)xfi and that

y(f(x) + g(y) +
∑m

i=1 hi(x)fi) = yf(0) + yg(y) +
∑m
i=1 hi(x)xfi. From these expres-

sions we see that (x) ∩ (y) = (xf1, xf2, . . . ). The ideal (xf1, xf2, . . . ) is not finitely
generated. In fact if

∑mi

j=1 hij(x)xfj for i = 1, 2, . . . , n were generators and m is
an integer strictly greater than m1,m2, . . . ,mn then xfmi can not be in the ideal
(g1, g2, . . . , gn) generated by g1, g2, . . . , gn since fifj = 0.

(2.19) Exercises.
1. Let (X,OX) be a ringed space. Show that when F and G are coherent OX -
modules then F ⊗OX G is a coherent OX -module.

2. Let (X,OX) be a ringed space. Show that when F and G are coherent OX -
modules then the OX -module HomOX (F ,G) defined in Excercise (?) is coherent.→
3. Let (X,OX) be a ringed space. Moreover let F be a coherent OX -module and
let I be a coherent ideal in OX .

(1) Show that there is a canonical homomorphism I⊗OX F → F of OX -modules.
(2) Show that the image IF of this homomorphism is coherent.

4. Let (X,OX) be a ringed space and let F be an OX -module.

(1) Show that here is a canonical homomorphism of OX -modules

OX → HomOX (F ,F)

that maps a section s ∈ Γ(U,OX) to the canonical multiplication by s in
Hom(F|U,F|U) for all open subsets U of X. The kernel of this homomor-
phism is called the annihilator of F .

(2) Show that when OX and F are coherent OX -modules then the annihilator is
coherent.
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5. Let (X,OX) be a ringed space with OX -coherent, and let F be a coherent OX -
module. Moreover let x ∈ X and let M be an OX,x-submodule of the stalk Fx. Show
that there is an open neighbourhood U of x and a coherent (OX |U)-submodule G of
F|U such that Gx = M .

6. LetX = {x0, x1} be the topological space with open sets ∅, {x0} andX. Moreover
let OX be the simple sheaf on X with fibers Z, and let F be the OX -module defined
by Γ(∅,F) = 0 = Γ(X,F) and Γ({x0},F) = Z and with the restrictions being the
only possible maps.

(1) Is the sheaf OX quasi-coherent?
(2) Is the sheaf OX of finite type?
(3) Is the sheaf OX coherent?
(4) Is the sheaf F quasi-coherent?
(5) Is the sheaf F of finite type?
(6) Is the sheaf F coherent?
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3. Modules and affine schemes.

(3.1) Change of multiplicative subsets. Let ϕ : B → A be a homomorphism of
rings and let T and S be multiplicative closed subsets of B, respectively A, such that
ϕ(T ) ⊆ S. It follows from the universal property of localization that the composite
map B → S−1A of ϕ : B → A with iSA : A → S−1A, factors via the canonical map
iTB : B → T−1B and a unique algebra homomorphism

ϕS,T : T−1B → S−1A.

Let N be an B-module and M a A-module, and let u : N → M be a ϕ-module
homomorphism. We obtain a unique ϕS,T -module homomorphism

uS,T : T−1N → S−1M

such that iSMu = uS,XiTN . We have that uS,T (x/s) = u(x)/ϕ(s). It is clear that
the definition of uS,T is independent of the choise of representative (x, s) of the
class x/s and it follows from the explicit form of the map that it is a ϕS,T -module
homomorphism.

For every commutative diagram of A-modules

M
u−−−−→ N

v

y
yw

M ′ u′

−−−−→ N ′

we have a commutative diagram

T−1M
uS,T−−−−→ S−1N

T−1v

y S−1w

y

T−1M ′ −−−−→
(u′)S,T

S−1N ′.

(3.2) Proposition. Let S and T be multiplicatively closed subsets of the ring A.
Assume that there for every element s ∈ S are elements t ∈ T and f ∈ A such that
t = sf . For every A-module M the following assertion shold:

(1) There is a canonical homomorphism of groups!!n

ρT,S = (ρM)T,S : S−1M → T−1M.

(2) When t = sf with s ∈ S and t ∈ T we have that (ρM )T,S(x/s) = (fx)/t.
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(3) When s is in S, x, y are in M , and t, t′ are in T and t′(tx− sy) = 0 in M we
have that (ρM )T,S(x/s) = y/t in T−1M .

(4) We have that (ρA)T,S : S−1A → T−1A is a homomorphism of rings, and
(ρM )T,S is a (ρA)T,S-module homomorphism.

(5) We have that (ρM )S,S = idS−1M , and when R is a multiplicatively closed
subset of A with the property that for every r ∈ R there is an s ∈ S and a
g ∈ A such that s = rg then

(ρM )R,S = (ρM )R,T (ρM )T,S.

Proof. (1) Let s ∈ S and x ∈ M . By assumption there is a t ∈ T and an f ∈ A
such that t = sf . We let (ρM )T,S(x/s) = (fx)/t. The definition is independent
of the representation t = sf because if t′ = sf ′ then we have that t′fx − tf ′x =
(sf ′f − sff ′)x = 0, and hence that (fx)/t = (f ′x)/t′. We have proved assertion (1).

(2) Assertion (2) follows from the definition of (ρM )T,S

(3) To prove assertion (3) we assume that t′(tx− sy) = 0. By assumption there is
a t′′ ∈ T and an f ∈ A such that t′′ = sf . Then (ρM )T,S(x/s) = (fx)/t′′. We must
prove that (fx)/t′′ = y/t in T−1M . However t′(tfx− t′′y) = ft′sy− t′sfy = 0. That
is, we have (fx)/t′′ = y/t in T−1M as we wanted to prove.

(4), (5) The remaining properties are easy to check from the explicit description
of (ρA)T,S and (ρM )T,S.

(3.3) Corollary. Let f, g be elements in the ring A such that D(f) ⊇ D(g) in
X = Spec(A). For every A-module M there is a canonical homomorphism!!n

ρg,f = (ρM )g,f : Mf →Mg

such that (ρA)g,f is a ring homomorphism, and (ρM)g,f is a (ρA)g,f -module ho-
momorphism. when gm = hf we have that ρg,f(x/f

n) = hnx/gmn, and when
gm(gnx− fpy) = 0 then ρg,f(x/f

p) = y/gn.
We have that ρf,f = idMf

, and for every h ∈ A such that D(f) ⊇ D(g) ⊇ D(h)
we have that

ρh,f = ρh,gρg,f .

Proof. If D(f) ⊇ D(g) it follows from Proposition (?) that g ∈ r(f). In other words→
there is a positive integer n and an h ∈ A such that gn = fh. This means that the
multiplicatively closed subsets S = {1, f, f 2, . . .} and T = {1, g, g2, . . .} of A satisfy
the condition of the Proposition. Hence the Corollary follows from the Proposition.

(3.4) Corollary. Let p be a prime ideal in A, and let f ∈ A\p. For every A-module
M there is a canonical homomorphism!!n

ρfp = (ρM)fp : Mf →Mp
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such that if g ∈ A and D(f) ⊇ D(g) we have that

ρfp = ρgpρg,f .

Proof. Since f /∈ p we have that S = {1, f, f 2, . . .} ⊆ A \ p. The Corollary therefore
follows from the Proposition with S = {1, f, f 2, . . . , } and T = A \ p.

(3.5) Theorem. Let A be a ring and M an A-module. Moreover let f be an element
of A and {fα}α∈I a family of elements of A such that D(f) = ∪α∈ID(fα) in Spec(A).

(1) Let x/fn ∈ Mf be such that ρfα,f (x/f
n) = 0 in Mfα for all α ∈ I. Then

x/fn = 0 in Mf .
(2) Let xα/f

nα ∈ Mfα be elements such that for every point x ∈ D(fα) ∩D(fβ)
and every neighbourhood D(fγ) of x contained in D(fα) ∩ D(fβ) we have
that ρfγ ,fα(xα/f

nα) = ρfγ ,fβ (xβ/f
nβ ). Then there is an element x/fn ∈Mf

such that ρfα,f (x/f
n) = xα/f

nα for all α ∈ I.

Proof. (1) Since D(f) ⊇ D(fα) it follows from Proposition (?) that there is a positive→
integermα and an element gα ∈ A such that fmα

α = gαf . We have that ρfα,f (x/f
n) =

(gnαx)/f
mαn
α = 0 in Mfα . Consequently there is a positive integer qα such that

fqαα gnαx = 0 in M . We multiply the latter equation with fn and obtain that fpαα x = 0
for some positive integer pα. It follows from Theorem (?) that there is a finite subset→
J of I such that D(f) = ∪β∈JD(fβ). Choose a positive integer p such that p ≥ pβ
for all β ∈ J . Then fpβx = 0 for all β ∈ J . It follows from Theorem (?) that there→
is a positive integer m and elements hβ ∈ A for β ∈ J such that fm =

∑
β∈J hβf

p
β .

Then fmx = 0, and consequently x/fn = 0 in Mf as we wanted to prove.
(2) We just observed that D(f) = ∪β∈JD(fβ) for a finite subset J of I. In

order to prove assertion (2) it suffices to prove that there is an element x/fn ∈ Mf

such that ρfβ,f (x/f
n) = xβ/f

nβ
β for all β ∈ J . This is because for every α ∈

I we have that D(fα) ∩ D(fβ) can be covered by opens sets of the form D(fγ),
such that ρfγ ,fα(xα/f

nα
α ) = ρfγ ,fβ (xβ/f

nβ
β ) = ρfγ ,fβρfβ,f (x/f

n) = ρfγ ,f (x/f
n) =

ρfγ ,fαρfα,f (x/f
n). Hence it follows from part (1) that xα/f

nα = ρfα,f (x/f
n).

Moreover, when α, β are in J we obtain for every D(fγ) ⊆ D(fα) ∩ D(fβ) =
D(fαfβ) equalities ρfγ ,fαfβρfαfβ ,fα(xα/f

nα
α ) = ρfγfα(xα/f

nα
α ) = ρfγfβ (xβ/f

nβ
β ) =

ρfγ ,fαfβρfαfβ,fβ (xβ/f
nβ
β ). Hence it follows from part (1) that ρfαfβ ,fα(xα/f

nα
α ) =

ρfαfβ ,fβ (xβ/f
nβ
β ) in Mfαfβ for all α, β in J , and we can find a positive integer m

such that (fαfβ)
m(f

nβ
β xα − fnαα xβ) = 0 in M for all α, β in J . It follows from

Theorem (?) that there is a positive integer n and elements gβ ∈ A for β ∈ J such→
that fn =

∑
β∈J gβf

m+nβ
β . Let x =

∑
β∈J gβf

m
β xβ . Then we have, for all α, β in J ,

the equalities fm+nα
α x =

∑
β∈J gβf

m+nα
α fmβ xβ =

∑
β∈J gβf

m+nβ
β fmα xα = fnfmα xα.

It follows from Proposition (?) that ρfα,f (x/f
n) = xα/f

nα
α in Mfα as we wanted to→

prove.
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(3.6) Sheaves associated to modules and rings. Let A be a ring and M an
A-module, and let X = Spec(A). To every open subset D(f) in X we associate the
localized module Mf . It follows from Proposition (?) that whenever D(f) ⊇ D(g)→
there is a canonical map ρg,f : Mf →Mg and that we in this way we obtain a presheaf
on the basis {D(f)}f∈A with restrictions ρg,f : Mf → Mg when D(f) ⊇ D(g). It
follows from Theorem (?) that this presheaf is in fact a sheaf on {D(f)}f∈A. We→
denote the associated sheaf on X by !!M̃ . Hence it follows from Remark (?) thatn→
Γ(D(f), M̃) = Mf , and in particular that Γ(X, M̃) = Γ(D(1), M̃) = M .

It is clear that M̃ is a sheaf of groups and that Ã is a sheaf of rings, and it follows

from Proposition (?) that M̃ is an Ã-module.→
(3.7) Notation. For all points x ∈ X = Spec(A) we let !!Mx = Mjx and we letn

!!ρfx : Mf →Mx be the canonical map.n

(3.8) Lemma. There is a canonical isomorphism of groups Mx → M̃x such that the

map ρ
D(f)
x : M̃(D(f)) → M̃x corresponds to the localization map ρfx : Mf →Mx.

In particular we obtain a homomorphism !!ϕx : Ax → Ãx. The latter homomor-n

phism is an isomorphism of rings, and the isomorphism Mx → M̃x is an ϕx-module
homomorphism.

Proof. Let jx = p. We have that M̃x consist of equivalence classes (D(f), y/fn)
with y/fn ∈ Mf and f /∈ p. Moreover (D(f), y/fn) ∼ (D(g), z/gm) if there is an
h /∈ p such that ρh,f(y/f

n) = ρh,g(z/g
m) in Mh, that is when hp(gmy − fnz) = 0

in M for some positive integer p. Let Mx → M̃x be the map that maps y/s with
s /∈ p to the class of (D(s), y/s). The definition is independent of the representative
(y, s) of the class of y/s because if y/s = z/t then there is an r /∈ p such that
r(ty − sz) = 0. Consequently (D(s), y/s) and (D(t), z/t) are both in the same class
as (D(rst), (rty)/(rst)) = (D(rst), (rsz)/(rst)). The map is surjective because the
class represented by (D(f), y/fn) is the image of the element y/fn ∈ Mx. It is
also injective because if y/s in Mx is mapped to zero, then the pair (D(s), y/s) is
equivalent to the class of (D(t), 0) for some t /∈ p. Hence tny = 0 for some positive
integer n, and thus y/s = 0 in Mx.

(3.9) Remark. Let u : M → N be a homomorphism of A-modules. It follows from
Proposition (?) that the maps uf : Mf → Nf for all f ∈ A induce a homomorphism→
ũ : M̃ → Ñ of Ã-modules. This homomorphism is uniquely determined by ũ(D(f)) =

uf for all f ∈ A. It follows from Proposition (?) that ĩdM = idfM
and that when→

v : N → P is a map of A-modules we have that ṽu = ṽũ. In other words the

correspondence that associates the Ã-module M̃ to the A-module M is a functor

from A-modules to Ã-modules.

(3.10) Proposition. The map HomA(M,N) → Hom eA(M̃, Ñ) that sends u to ũ, is
a bijection.
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Proof. We shall show that the map !!Γ : Hom eA(M̃, Ñ) → HomA(M,N) wich sendsn

v : M̃ → Ñ to vD(1) : M → N is an inverse of the map of the Proposition. Let
u : M → N be a homomorphism of A-modules. It follows from the definition of ũ

that Γ(ũ) = ũD(1) = u. Hence it remains to prove that v = Γ̃(v) for all Ã-module

homomorphisms v : M̃ → Ñ . For all f ∈ A we have a commutative diagram

M
vD(1)=Γ(v)−−−−−−−→ N

(ρ eM
)f,1

y
y(ρeN

)f,1

Mf

vD(f)−−−−→ Nf .

By the definition of ρfM
we have that (ρfM

)f,1 = ifM and (ρ eN )f,1 = ifN . Hence it

follows from (3.1) that vD(f) = Γ(v)f , and consequently that v = Γ̃(v).→
(3.11) Proposition. Let A be a ring and let

M
u−→ N

v−→ P

be an exact sequence of A-modules. Then

M̃
eu−→ Ñ

ev−→ P̃ (3.11.1)

is an exact sequence of Ã-modules

Proof. For all points x ∈ Spec(A) it follows from Lemma (3.8) that the sequence→
(3.11.1) gives rise to an exact sequence Mx → Nx → Px of Ax-modules. It follows→
from Lemma (3.8) that M̃x → Ñx → P̃x is exact. Hence it follows from Theorem→
(1.20) that the sequence (3.11.1) is exact.→→
(3.12) Proposition. Let A be a ring and let u : M → N be a homomorphism of
A-modules.

(1) The Ã-modules K̃er(u), Ĩm(u), and ˜Coker(u) associated to the A-modules

Ker(u), Im(u), respectively Coker(u) are the Ã-modules Ker(ũ), Im(ũ), re-
spectively Coker(ũ).

In particular we have that u is injective, surjective, or bijective, if and only
if ũ is injective, surjective, respectively bijective.

(2) Let {Mα}α∈I be a collection of A-modules. Then there is a canonical isomor-

phism of Ã-modules

⊕α∈IM̃α
∼−→ ˜⊕α∈IMα (3.12.1)

that composed with the canonical homomorphism M̃β → ⊕α∈IM̃α is the

homomorphism h̃β : M̃β → M̃ where hβ : Mβ → ⊕α∈IMα = M is the
canonical homomorphism to factor β.
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Proof. (1) It follows from Proposition (3.11), applied to the sequences→→
0 → Ker(u) →M → Im(u) → 0

0 → Im(u) → N → Coker(u) → 0

obtained in Remark (?) from the factorization M → Im(u) → N of u, that we have→
exact sequences

0 → K̃er(u) → M̃ → Ĩm(u) → 0 (3.12.2)

0 → Ĩm(u) → Ñ → ˜Coker(u) → 0 (3.12.3)

obtained from the factorization M̃ → Ĩm(u) → Ñ of ũ. From the sequences (3.12.2)→
and (3.12.3) it follows that K̃er(u) = Ker(ũ), Ĩm(u) = Im(ũ), and ˜Coker(u) =→
Coker(ũ).

The last part of assertion (1) is clear.→
(2) The canonical map hβ : Mβ → ∑

α∈IMα gives a canonical map h̃β : M̃β →→
˜

∑
α∈IMα of Ã-modules. Consequently we obtain a homomorphism ⊕α∈IM̃α →

˜⊕α∈IMα. We have thus constructed the map (3.12.1).→
It remains to prove that the map (3.12.1) is an isomorphism. For every point x ∈→

Spec(A) it follows from Remark (1.26) and from Lemma (3.8) that we have canonical→→
isomorphisms (⊕α∈IM̃α)x

∼−→ ⊕α∈I (M̃α)x
∼−→ ⊕α∈I (Mα)x, and also the canonical

isomorphims ( ˜⊕α∈IMα)x
∼−→ (⊕α∈IMα)x

∼−→ ⊕α∈I (Mα)x. It is clear from Lemma
(3.8) and Proposition (Modules 3.20) that via these isomorphisms the homomor-→→
phism (3.12.1) gives the identity map on ⊕α∈I(Mα)x. Hence the map (⊕α∈IM̃α)x →→

˜⊕α∈I(Mα)x is an isomorphism for all x ∈ X. It follows from Theorem (1.20) that→
the map (3.12.1) is an isomorphism.→
(3.13) Proposition. Let A be a ring and let M and N be A-modules. The Ã-

module associated to the A-module M ⊗A N is canonically isomorphic to M̃ ⊗ eA Ñ .

Proof. We have that the sheaf M̃ ⊗ eA Ñ is the sheaf associated to the presheaf F
whose sections over the open subset U of X is Γ(U,F) = Γ(U, M̃)⊗Γ(U, eA) Γ(U, Ñ). It

follows from (?) that Γ(D(f),F) = Mf ⊗Af Nf . However it follows from Proposition→
(3.6) and Proposition (?) that we have canonical isomorphisms Mf⊗AfNf ∼−→M⊗A→→
Af ⊗Af Nf ∼−→M ⊗A Nf ∼−→M ⊗A N ⊗A Af ∼−→ (M ⊗A N)f = Γ(D(f), M̃ ⊗A N).
We consequently have a canonical isomorphism

Γ(D(f),F) ∼−→Γ(D(f), M̃ ⊗A N).

It is clear that these isomorphisms for f ∈ A are compatible with the restriction maps

(ρF)
D(f)
D(g) and (ρ

M̃⊗AN
)
D(f)
D(g) for all f, g in A such that D(f) ⊇ D(g). Consequently

we have a canonical isomorphism F ∼−→ M̃ ⊗A N .
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(3.14) Criteria for quasi-coherence. Let A be a ring and let X = Spec(A).

Moreover let U be an open subset U of X, and let F be an Ã|U -module. For every

element f ∈ A = Γ(X, Ã) we have the two conditions:

d(f, U):
(1) For every section s ∈ Γ(D(f) ∩ U,F) there is an integer n ≥ 0 such that fns

can be extended to a section of Γ(U,F). That is, the element fns is in the
image of (ρF)UD(f)∩U .

(2) For every section t ∈ Γ(U,F) with restriction (ρF)UD(f)∩U (t) to D(f) ∩ U

equal to zero there is an integer n ≥ 0 such that fnt = 0 in Γ(U,F).

(3.15) Lemma. Let A be a ring and let g1, g2, . . . , gp be elements in A. Moreover
let X = Spec(A), let U = ∪pi=1D(gi) be the union of the open subsets D(gi) of X,

and let F be an Ã|U -module.
Assume that the conditons d(f,D(gi)) and d(f,D(gigj)) are fulfilled for all f ∈ A

such that D(f) ⊆ D(gi) respectively D(f) ⊆ D(gigj) = D(gi) ∩ D(gj) for all i, j =
1, 2, . . . , p. Then the conditions d(f, U) hold for all f ∈ A.

Proof. We first show that the second condition of d(f, U) holds. Let t ∈ Γ(U,F) have
restriction equal to zero on D(f)∩U . Since D(fgi) ⊆ D(gi) and d(fgi, D(gi)) holds
by assumption, we can find integers ni ≥ 0 such that (fgi)

nit = 0 in Γ(D(gi),F)

for i = 1, 2, . . . , p. We have that the image of gi in Agi = Γ(D(gi), Ã) is invertible.
Consequently fnit = 0 in Γ(D(gi),F). Let n be an integer greater than or equal to
n1, n2, . . . , np. We then have that fnt = 0 in Γ(D(gi),F) for i = 1, 2, . . . , p. Since F
is a sheaf we have that fnt = 0 in Γ(U,F). Hence the second condition of d(f, U)
holds.

We next show that the first condition of d(f, U) holds. Let s ∈ Γ(D(f) ∩ U,F).
SinceD(fgi) ⊆ D(gi) and d(fgi, D(gi)) holds by assumption we can find integers ni ≥
0, and sections s′i ∈ Γ(D(gi),F) with restriction to D(f) ∩D(gi) equal to (fgi)

nis.

The image of gi in Agi = Γ(D(gi), Ã) is invertible. Hence we can find a section si in
Γ(D(gi),F) such that s′i = gnii si. Then the restriction of si to D(f) ∩D(gi) is fnis.

Let n be an integer which is greater than or equal to all the n1, n2, . . . , np. Then
the restriction of fn−nisi = fn−njsj to D(f) ∩ D(gi) ∩ D(gj) = D(fgigj) is zero.
Since the second condition of d(f,D(gigj)) holds when D(fgigj) ⊆ D(gigj) by as-
sumption, we obtain integers nij ≥ 0 such that (fgigj)

nij (fn−nisi− fn−njsj) is zero

in Γ(D(gigj,F). We have that the image of gigj in Agigj = Γ(D(gigj), Ã) is invert-
ible. Hence, when m is an integer which is greater or equal to nij for i, j = 1, 2, . . . , p,
we have that fm(fn−nisi − fn−njsj) is zero in Γ(D(gigj),F) = Γ(D(gi)∩D(gj),F)
for i, j = 1, 2, . . . , p. Since F is a sheaf we can find a section s′ in Γ(U,F) with
restriction fm+n−nisi to D(gi) for i = 1, 2, . . . , p. The restriction of fm+n−nisi to
D(f)∩D(gi) is fm+n−nifnis = fm+ns. Consequently the restriction of s′ toD(f)∩U
is equal to fm+ns. Hence the first property of d(f, U) holds.

(3.16) Proposition. Let A be a ring and let X = Spec(A). Moreover let U be a
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compact open subset of X and let F be an (OX |U)-module. We have equivalently:

(1) The sheaf F is quasi-coherent.
(2) There is an open covering U = ∪pi=1D(fi) of U by open sets D(fi) with

fi ∈ A, and Afi-modules Mi such that M̃i|D(fi) is isomorphic to F|D(fi) for
i = 1, 2, . . . , p.

Proof. (1)⇒(2) When F is quasi-coherent every point x ∈ U has a neighbourhood→→
D(f) such that F|D(f) is isomorphic to the cokernel of a map Ã

(I)
f → Ã

(J)
f . It follows

from Proposition (?) that such a homomorphism is associated to a homomorphism→
u : A

(I)
f → A

(J)
f of A-modules. Hence it follows from Proposition (3.12) that F|D(f)→

is associated to the cokernel of u. Since U is compact we can cover it with a finite
number of neighbourhoods of the form D(f). Consequently condition (1) implies→
that condition (2) holds.→

(2)⇒(1) Every A-module M is the quotient of a map A(I) → A(J) for some set→→
of indices I and J . It follows from Proposition (3.11) that the resulting sequence→
O(I)
X → O(J)

X → M̃ → 0 is exact. Hence every sheaf associated to a module is
quasi-coherent. Condition (1) consequently follows from condition (2).→→

(3.17) Theorem. Let A be a ring and let X = Spec(A). Moreover let U be a
compact subset of X, and let F be an (OX |U)-module. We have equivalently:

(1) There is an A-module M such that M̃ |U is isomorphic to F .
(2) The sheaf F is quasi-coherent.
(3) The conditions d(f, U) of Section (?) holds for all f ∈ A such that D(f) ⊆ U .→

Proof. (1)⇒(2) Since the open sets D(f) form a basis for the topology of X and U is→→
compact it follows that the second condition of Proposition (3.16) is fulfilled. Hence→
assertion (2) holds.→

(2)⇒(3). We shall show that assertion (3) follows from the second condition of→→→
Proposition (3.16), and thus from assertion (2). It follows from Lemma (3.15) that→→→
we may assume that U = D(g) and that F is associated to an Ag-module N. In order
to show that the second condition of Proposition (3.16) implies assertion (3) thus we→→
may replace X by U and A by Ag. Hence we assume that U = Spec(A) and that F
is associated to the A-module N .

Let s ∈ Γ(D(f), Ñ) = Nf . Then s can be written in the form z/fn with z ∈ N

and f ∈ A. Then fns is the restriction to D(f) of the section z in Γ(U, Ñ) = N and
we have shown that the first condition of d(f, U) holds.

Let t ∈ Γ(U, Ñ) = N be a section that has restriction to D(f) equal to zero. That

is, the image of t by the canonical map ifN : N → Nf = Γ(D(f), Ñ) is zero. Then
fnt = 0 in N for some integer n ≥ 0. Hence we have proved that the second condition
of d(f, U) holds.
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(3)⇒(1) Let g ∈ A be such that D(g) ⊆ U . We note first that the conditions→→
d(f,D(g)) are fulfilled for the sheaf F|D(g) and all f ∈ A such that D(f) ⊆ D(g).
It is clear that the first condition of d(f, U) for all f ∈ A such that D(f) ⊆ U
implies that the first condition of d(f,D(g)) holds for all f ∈ A such that D(f) ⊆ U .
Moreover when t ∈ Γ(D(g),F) is a section with restriction zero to D(f) it follows
from the first condition of d(f, U) that there is a section s ∈ Γ(U,F) and an integer
m ≥ 0 such that the restriction of s to D(g) is gmt. Then it follows from the second
condition of d(f, U) that there is an integer n ≥ 0 such that fngmt = 0 in Γ(D(g),F).
Since the image of g in Ag is invertible we have that fnt = 0 in Γ(D(g),F). Hence
we have proved that the second condition of d(f,D(g)) is fulfilled for all f ∈ A such
that D(f) ⊆ U . We have shown that the conditions d(f,D(g)) are fulfilled for all
f ∈ A such that D(f) ⊆ D(g). Hence it follows from Lemma (Modules ?) that→
d(f, U) holds for all f ∈ A.

Let M = Γ(U,F) and let j : U → X be the canonical inclusion. Moreover
let f ∈ A. The image of f in Af is invertible. Hence it follows from Proposition
(?) that the restriction map (ρF)UD(f)∩U : M = Γ(D(f),F) → Γ(D(f), j∗(F)) =→
Γ(D(f) ∩ U,F) factorizes via the canonical map ifM : M → Mf and a unique Af -
module homomorphism

uD(f) : Mf = Γ(D(f), M̃) → Γ(D(f), j∗(F)) = Γ(D(f) ∩ U,F).

It is clear that the maps uD(f), for all f ∈ A, define a homomorphism of Ã-modules

u : M̃ → j∗(F).

We shall prove that u is an isomorphism. It suffices to prove that uD(f) is an iso-
morphism for all f ∈ A. Let s ∈ Γ(D(f) ∩ U,F). It follows from the first condition
of d(f, U) that there is a section z ∈ M = Γ(U,F) and an integer n ≥ 0 such that
z restrict to fns on D(f) ∩ U . That is, we have that uD(f)(z/f

n) = s, and we have
proved that uD(f) is surjective.

Let z/fm ∈Mf = Γ(D(f), M̃) be in the kernel of uD(f), where z ∈M = Γ(U,F).
Since the image of f in Af is invertible the restriction of z to D(f)∩U is consequently
equal to zero. It follows from the second condition of d(f, U) that there is an integer
n ≥ 0 such that fnz = 0. Consequently we have that z/fn = 0 in Mf . We have thus
proved that uD(f) is injective.

(3.18) Proposition. Let A be a ring and let (X,OX) = (Spec(A), Ã). Moreover
let U be a compact open subset of X and let F be an (OX |U)-modules. Consider
the following conditions:

(1) The OX -module F is coherent.
(2) The OX -module F is of finite type and coherent.

(3) There is a finitely generated A-module M such that F is isomorphic to M̃ |U .
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Then condition (1) implies condition (2), and condition (2) implies condition (3).→→→→
When condition (3) is fulfilled we have that F is of finite type.→

Proof. (1)⇒(2) It is clear that the first condition implies the second.→→
(2)⇒(3) We have that F is quasi-coherent. Hence it follows from Theorem (3.17)→→→

that there is an A-module N such that F is isomorphic to Ñ |U . for every point
x ∈ U there is an open neighbourhood of x contained in U and a finite collection of
sections in N = Γ(U,F) that generate the OX,y-modules Fy for all y ∈ U . Since U
is compact we can find elements f1, f2, . . . , fn in A and elements x1, x2, . . . , xm in N
such that Ny = Fy is generated by the classes of x1, x2, . . . , xm for all y ∈ U .

Let M be the submodule of N generated by the elements x1, x2, . . . , xm and let u :

M̃ |U → F be the composite of the isomorphism Ñ |U ∼−→F with the homomorphism

M̃ |U → Ñ |U obtained from the inclusion of M in N . It follows from Proposition
(3.12) that u is injective, and it follows from Proposition (3.12) that u is surjective.→→
Hence condition (3) holds.→

When condition (3) holds we have that F is isomorphic to M̃ for a finitely gener-→
ated A-module M . That is, there is a surjection v : An → M for some integer n. It

follows from Proposition (3.12) that ũ : Ãn → M̃ is surjective. Hence F is of finite→
type.

(3.19) Exercises.
1. Let Z(p) be all the rational numbers of the form m/n where n is not divisible by

the prime number p. Describe the ringed space (Spec(Z(p)), Z̃(p)).

2. Describe the ringed space (Spec(Z), Z̃).

3. Let K[u, v] be the polynomial ring in the variables u, v over the field K, and let

A = K[u, v]/(u2, uv). Describe the ringed space (Spec(A), Ã).

4. Let A = Z and let M be the A-module Z/2Z. Describe the (Spec(Z), Z̃)-module

M̃ .

5. Let A be ring and M an A-module. Show that M̃ = (0) on Spec(A) if and only

if M̃x = (0) for all points x in Spec(A).

6. Let Z(p) be the rational numbers of the form m/n where n is not divisible by the
prime number p. Let F be the simple sheaf with fiber Q on Spec(Z(p)).

(1) Show that F is a Z̃(p)-module.

(2) Is it true that F = M̃ for some Z(p)-module M?

7. Let Z(p) be the ring of rational numbers of the form m/n where n is not devisible
by the prime number p. Moreover let F be the sheaf on X = Spec(Z(p)) defined by
Γ(X,F) = {0} and Γ({x0},F) = Q.

(1) Show that F is a Z̃(p)-module.

(2) Is it true that F = M̃ for some Z(p)-module M?
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8. Is there a ring A such that Spec(A) consists of two points {x, y} and Ãx = Z and

Ãy = Q?
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4. Affine schemes.

(4.1) Homomorphisms of locally ringed spaces associated to ring homo-
morphisms. Let ϕ : B → A be a homomorphism of rings. We saw in (?) that→
we have a continous map aϕ : Spec(A) → Spec(B) of topological spaces. For ev-
ery g ∈ B it follows from Proposition (?) that aϕ−1(D(g)) = D(ϕ(g)). It follows→
from the definition of the sheaves of rings Ã and B̃ that the rings Γ(D(g), B̃) and

Γ(D(ϕ(g)), Ã) are canonically identified with Bg respectively Aϕ(g). It follows from

(2.1) that the homomorphism ϕ induces a canonical homomorphism of rings!!→n

ϕg : Bg → Aϕ(g),

that is a homomorphism of rings

ϕ̃D(g) : Γ(D(g), B̃) → Γ(D(ϕ(g)), Ã).

It is clear that for all inclusions D(f) ⊇ D(g) of open sets in Spec(B) we have a
commutative diagram

Γ(D(f), B̃)
eϕD(f)−−−−→ Γ(D(ϕ(f)), Ã)

(ρ
eB
)g,f

y
y(ρ

eA
)ϕ(g),ϕ(f)

Γ(D(g), B̃) −−−−→
eϕD(g)

Γ(D(ϕ(g)), Ã).

Since Γ(D(ϕ(g)), Ã) = Γ(aϕ−1(D(g)), Ã) = Γ(D(g), (aϕ)∗Ã) and the sets D(g) with
g ∈ B form a basis for Spec(B) we obtain a homomorphism of sheaves of rings

ϕ̃ : B̃ → (aϕ)∗(Ã).

Hence we have a map of ringed spaces!!n

Φ = (aϕ, ϕ̃) : (Spec(A), Ã) → (Spec(B), B̃).

It follows from Lemma (?) and (?) that (Spec(A), Ã) and (Spec(B), B̃) are locally→→
ringed spaces.

We note that the adjoint map

ϕ̃]x : ((aϕ)∗B̃)x → Ãx

of ϕ̃ at the point x on Spec(A) is the same as the localization

ϕx : Bϕ(x) → Ax
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that we obtain from (2.1) with T = A \ jx and S = B \ jϕ(x). In fact, take an→
element h in ((aϕ)∗B̃)ϕ(x) = Bϕ(x). Then h = g/t with g, t in B and t /∈ jϕ(x).
We have that D(t) is an open neighbourhood of ϕ(x) in Spec(B) and that ϕ̃D(t) :

Γ(D(t), B̃) → Γ((aϕ)−1(D(t)), Ã) is the same as the map ϕt : Bt → Aϕ(t). Con-

sequently we have that a section s in Γ(D(t), B̃) represented by g/tn is mapped to

the section ϕ̃(D(t))(g/tn) in Γ((aϕ)−1(D(t)), Ã) represented by ϕ(g)/ϕ(tn). In other
words ϕ̃]x(s) = ϕ(g)/ϕ(tn) in Aϕ(x).

In particular we obtain that ϕ̃]x is a local map of local rings.

(4.2) Definition. A ringed space (X,OX) is an affine scheme if it is isomorphic

as ringed spaces to (Spec(A), Ã) for some ring A. The ring Γ(X,OX) which is
canonically isomorphic to A is called the coordinate ring of the affine scheme, and
is sometimes denoted !!A(X). Sometimes we simply say that Spec(A) is an affinen

scheme, instead of saying that (Spec(A), Ã) is an affine scheme. A homomorphism of

affine schemes Ψ = (ψ, θ) : (X,OX) → (Y,OY ) is a local homomorphism of locally
ringed spaces.

(4.3) Remark. Let ϕ : B → A be a homomorphism of rings. We have seen that

it gives a local homomorphism!! Φ = (aϕ, ϕ̃) : (Spec(A), Ã) → (SpecB, B̃) of locallyn

ringed spaces. Note that Φ determines ϕ uniquely since ϕ = Γ(ϕ̃) : Γ(Spec(B), B̃) →
Γ(Spec(B), (aϕ)∗(Ã)) and Γ(Spec(B), (aϕ)∗(Ã)) = Γ(Spec(A), Ã).

(4.4) Theorem. Let (X,OX) and (Y,OY ) be two affine schemes. A homomorphism
of ringed spaces Ψ = (ψ, θ) : (X,OX) → (Y,OY ) is a homomorphism of affine schemes

Φ = (aϕ, ϕ̃) : (Spec(A), Ã) → (Spec(B), B̃) where ϕ : B → A is a homomorphism of
rings, if and only if the map Ψ is a local homomorphism of locally ringed spaces.

Proof. We have already seen in (?) that if Ψ is of the form Φ = (aϕ, ϕ̃) for some ring→
homomorphism ϕ : B → A then Ψ is a local homomorphism of locally ringed spaces.

Conversely, assume that Ψ = (ψ, θ) is a local homomorphism of locally ringed
spaces. Let B = Γ(X,OX) and A = Γ(Y,OY ). The homomorphism θ : OY → ψ∗OX

gives a canonical homomorphism of rings

ϕ = Γ(θ) : Γ(Y,OY ) → Γ(Y, ψ∗(OX))

and by the canonical identifications A = Γ(X,OX) = Γ(Y, ψ∗(OX)) and B =
Γ(Y,OY ) a homomorphism of rings

ϕ = Γ(θ) : B → A.

We first note that ψ and aϕ are the same homomorphism X → Y of topological
spaces. This is because the localization θ]x : (ψ∗OY )x = OY,ψ(x) → OX,x of the
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adjoint map of θ gives the commutative diagram

B = Γ(Y,OY )
ϕ=Γ(θ)−−−−−→ Γ(X,OX) = A

i
jψ(x)
B =ρYψ(x)

y
yρXx =i

jx
A

Bψ(x) = OY,ψ(x) = ψ∗(OY )x −−−−→
θ]x

OX,x = Ax

for all x ∈ X. It follows from (?) that the inverse image of (mA)x by ρXx is jx,→
and the inverse image of (mB)ψ(x) by ρYψ(x) is jψ(x). Since θ]x is local it follows

that ϕ−1(jx) = jψ(x), and consequently that aϕ(x) = ψ(x) and hence that aϕ = ψ.

Moreover, since the diagram is commutative, it follows from (2.1) that θ]x = ϕx→
However we saw in (4.1) that xϕ = (ϕ̃])x. Hence we have that θ]x = (ϕ̃])x for all→
x ∈ X. It follows from the characterization of sheaves that θ] = ϕ̃], and thus by
adjunction that θ = ϕ̃.

(4.5) Remark. The affine schemes with local homomorphisms form a category.

(4.6) Remark. Let ϕ : B → A be a homomorphism of rings. Moreover let g ∈ B
and let f = ϕ(g). We saw in (3.1) that we obtain a homomorphism of rings→

ϕg : Bg → Af

such that ϕ(h/gn) = ϕ(h)/fn for all h ∈ B and all integers n ≥ 0. Let M be an A-
modules. It follows from section (3.1) used to the natural ϕ-module homomorphism→
M[ϕ] →M that we obtain a homomorphism of ϕg-modules

(M[ϕ])g →Mf ,

or equivalently, by restriction of scalars, an isomorphism of Bg-modules!!n

(ug)M : (M[ϕ])g → (Mf )[ϕg ]

mapping the element x/gn ∈ (M[ϕ])g to x/fn for all x ∈ M and all integers n ≥ 0.

Since g is invertible in Bg it follows from Proposition (?) that we have a natural→
Bg-module homomorphism (Mf )[ϕg] → (Mϕ])g and it is easily checked that this
homomorphism is the inverse homomorphism to (ug)M . Consequently (ug)M is an
isomorphism. When v : M → M ′ is a homomorphism of A-modules we obtain a
commutative diagram of Bg-modules

(M[ϕ])g
(ug)M−−−−→ (Mf )[ϕg]

v[ϕ]

y
y(vf )[ϕg ]

(M ′
[ϕ])g −−−−→

(ug)M′

(M ′
f )[ϕg].
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(4.7) Proposition. Let ϕ : B → A be a homomorphism of rings and let Φ =
(aϕ, ϕ̃) : (X,OX) → (Y,OY ) be the corresponding homomorphism of affine schemes.
Moreover let M be an A-module. Then there is a canonical isomorphism of OY -
modules

uM : M̃[ϕ]
∼−→Φ∗(M̃).

For every homomorphism v : M →M ′ of A-modules we have that

Φ∗(ũ)uM = uM ′ ṽ[ϕ]

where ṽ[ϕ] is the map associated to the B-modules homomorphism v[ϕ] : M[ϕ] →M ′
[ϕ].

When C is an A-algebra the map uC is a OY -algebra homomorphism.

Proof. Let g ∈ B and let f = ϕ(g). We have identifications Γ(D(g), M̃[ϕ]) = (M[ϕ])g

and Γ(D(f), M̃) = Mf as Bg respectively Af -modules. It follows from Remark (4.6)→
that we have a ring homomorphism ϕg : Bg → Af and a Bg-module isomorphism
(ug)M : (M[ϕ])g → (Mf )[ϕg] such that (vf )[ϕg](u

g)M = (ug)M ′v[ϕ]. We consequently

obtain an isomorphism of Γ(D(g), B̃)-modules

Γ(D(g), M̃[ϕ])
∼−→Γ(aϕ−1(D(g)), M̃)[ϕg ].

These isomorphisms, for varying g ∈ B, clearly define an isomorphism of OY -modules

uM : M̃[ϕ]
∼−→Φ∗(M̃). The equality uM ′ ṽ[ϕ] = Φ∗(ũ)uM follows from the equality

(vf )[ϕg ](u
g)M = (ug)M ′v[ϕ].

The last part of the Proposition is clear.

(4.8) Remark. Let ϕ : B → A be a homomorphism of rings. Moreover let p be
a prime ideal of A and let q = ϕ−1(p). We saw in section (3.1) that we obtain a→
homomorphism of rings

ϕq : Bq → Ap

such that ϕ(h/t) = ϕ(h)/ϕ(t) for all h ∈ B and t ∈ B \ q. Let N be a B-module. It
follows from section (3.1) used to the natural ϕ-module homomorphism N → N⊗BA→
that we otain a homomorphism of ϕq-modules

Nq → (N ⊗B A)p,

or equivalently, by extension of scalars, an Ap-module homomorphism

uq : Nq ⊗Bq
Ap → (N ⊗B A)p (4.8.1)

mapping (y/t) ⊗Bq
(g/s) to (x ⊗Bq

g)/ϕ(t)s for all y ∈ N , s ∈ A \ p and t ∈
B \ p. It follows from Proposition (Modules) that we have a natural Ap-module→
homomorphism (N ⊗B A)p → Nq ⊗Bq

Ap which is easily checked to be the inverse
of the map (uq)N . Hence the homomorphism (uq)N is an isomorphism.
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When w : N → N ′ is a homomorphism of B-modules we obtain a commutative
diagram of Ap-modules

Nq ⊗Bq
Ap

(uq)N−−−−→ (N ⊗B A)p

(wq⊗Bq idAp)

y
y(w⊗B idA)p

N ′
q ⊗Bq

Ap −−−−→
(uq)N′

(N ′ ⊗B A)p.

(4.9) Proposition. Let ϕ : B → A be a homomorphism of rings and let Φ =
(aϕ, ϕ̃) : (X,OX) → (Y,OY ) be the corresponding homomorphism of affine schemes.
Moreover let N be a B-module. Then there is a canonical isomorphism of OX -
modules

uN : Φ∗(Ñ) ∼−→ Ñ ⊗B A. (4.9.1)

For every homomorphism w : N → N ′ of B-modules we have that

( ˜w ⊗B idA)uN = uN ′Φ∗(w). (4.9.2)

When C is a B-algebra we have that uN is a homomorphism of OX -algebras.

Proof. We have a natural homomorphism of B-modules N → (N ⊗B A)[ϕ] mapping
z ∈ N to z ⊗B 1. In fact for g ∈ B we have that the image of gz is gz ⊗B 1 =

z ⊗B ϕ(g) = ϕ(g)(z⊗B 1). We obtain a homorphism of OY -modules Ñ → ˜(N⊗A)[ϕ]

It follows from Proposition (4.7) that there is a canonical homomorphism of OY -→
modules Ñ → Φ∗(Ñ ⊗B A). By adjunction (?) we obtain a homomorphism of→
OX -modules uN : Φ∗(Ñ) → Ñ ⊗B A. We have thus constructed the map (4.9.1) and→
it is clear that the equality (4.9.2) holds.→

In order to show that the homomorphism uM is an isomorphism it follows from
Theorem (?) that we have to show that the map on stalks (uN )x is an isomorphism for→
all x ∈ X. Let y = aϕ(x). It follows from the definition of Φ∗(Ñ) in (?) that we have→
an isomorphism Φ∗(Ñ)x

∼−→ ((aϕ)∗(Ñ) ⊗ϕ∗( eB) Ã)x, and from Proposition (?) and→
Proposition (?) we obtain isomorphisms ((aϕ∗)(Ñ)⊗ϕ∗( eB)Ã)x

∼−→ (aϕ∗)(Ñ)x⊗ϕ∗( eB)x→
Ãx

∼−→Ny⊗By Ax. On the other hand it follows from (?) that (Ñ ⊗B A)x is isomor-→
phic to (N ⊗B A)x. Using the explicit formulas for adjunction of (?) and (?) we see→→
that uN induces the isomorphism Ny ⊗By Ax ∼−→ (N ⊗B A)x of (4.8.1). Hence we→
have proved that uN is an isomorphism.

The last part of the Theorem is clear.

(4.10) Exercises.

1. Let A be ring and f an element of A. Show that the ringed space (Spec(Af ), Ãf)
is isomorphic to the ringed space (D(f),OSpec(A)|D(f)).
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2. Let A be ring and let X = Spec(A) and OX = Ã. We say that the ringed space
(X,OX) is reduced if the ideal a(U) of nilpotent elements in the ring Γ(U,OX) is (0)
for all open subsets U of X.

(1) Show that the following conditions are equivalent
(1a) For all open subsets U of X the ring Γ(U,OX) has no nilpotent elements.
(1b) For all points x ∈ X the ring (OX)x has no nilpotent elements.

(2) Show that the restriction (ρOX )VU : Γ(V,OX) → Γ(U,OX) induces a restric-
tion map σVU : Γ(V,OX)/a(V ) → Γ(U,OX)/a(U) for all inclusion U ⊆ V of
open subsets of X.

(3) Show that when we let B(U) = Γ(U,OX)/a(U) for all open subsets and let
(ρB)VU = σVU for all inclusions U ⊆ V of open subsets of X, then B with these
restrictions is a presheaf of rings on X.

(4) Show that the fiber of B at x is equal to Ajx/ajx where ajx is the ideal of
nilpotent elements in the fiber Ajx .

(5) Let C be the associated sheaf of B. Show that (X, C) is an affine scheme

isomorphic to the affine scheme (Spec(A/a), Ã/a) where a is the ideal of
nilpotent elements in A.

(6) Show that the affine scheme (X, C) is reduced.

3. Let A be a ring and let K be a field. Moreover let X = Spec(A). For every point
x ∈ X we let κ(x) = Ax/mx be the residue field in the point x. Show that there is
a unique correspondence between homomorphisms Spec(K) → X with image x and
ring homomorphisms κ(x) → K.

4. Let K be a field and let ϕ : K → A be a K-algebra. Let X = Spec(A), and
for every point x ∈ X we let κ(x) = Ax/mx be the residue field. Assume that the

composite map K
ϕ−→ Ax

uκ(x)−−−−→ κ(x) is surjective. Show that there is a unique
correspondence between the morphisms Spec(K[ε]) → Spec(A) of affine schemes
such that the composite map Spec(K) → Spec(K[ε]) → Spec(A) comes from the

map A
ixA−→ Ax

ϕκ(x)−−−−→ κ(x), and homomorphisms Homκ(x)(mx/m
2
x,κ(x)).

5. Let A be a ring, and let K be the category of affine schemes with a fixed

homomorphism (X,OX) → (Spec(A), Ã) of ringed spaces. Show that the prod-

uct of (Spec(B), B̃) and (Spec(C), C̃) in the category K exists and is equal to

(Spec(B ⊗A C), B̃ ⊗A C).
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1. Artinian and noetherian modules.

(1.1) Definition. Let A be a ring andM an A-module. The moduleM is noetherian

if every ascending chain !!M1 ⊆ M2 ⊆ · · · of submodules Mn of M is stable, that is,n
there is an n such that Mn = Mn+1 = · · · .

The A-module M is artinian if every descending chain M1 ⊇ M2 ⊇ · · · of sub-
modules Mn of M is stable, that is, there is an n such that Mn = Mn+1 = · · · .
(1.2) Example. K be field and M a finitely generated vector space. Then M
is artinian and noetherian. In fact, it follows from Remark (MODULES 1.26) that→
when L ⊂ L′ is a strict inclusion of subspaces of M then dim(L) < dim(L′). Hence
there can only be ascending or descending chains of finite length in M .

(1.3) Example. The integers Z is a noetherian Z-module. This is because every
ideal of Z is of the form (n) for some integer n, and (m) ⊆ (n) means that n divides
m. The module Z is not artinian because (2) ⊃ (22) ⊃ (23) ⊃ · · · is an infinite
descending chain of ideals.

(1.4) Example. The polynomial ring Z[t] in the variable t over the integers is
not noetherian as an Z module since it contains the infinite chain Z ⊂ Z + Zt ⊂
Z + Zt + Zt2 ⊂ · · · of submodules. It is not artinian either because it contains the
infinite chain (2) ⊃ (22) ⊃ (23) ⊃ · · · of ideals.

(1.5) Example. Fix a prime number p. Let M be the Z-submodule of Q/Z
consisting of all the classes of rational numbers m/n such that pqm/n ∈ Z for some
positive integer q. That is, the classes of the elements m/n where n is a power of
p. We denote by Mn the submodule of M generated by the class of 1/pn. Then
Mn consists of the pn elements that are the classes in M of the elements m/pn

for m = 0, 1, . . . , pn−1. The modules in the chain M1 ⊂ M2 ⊂ M3 ⊂ . . . are the
only proper submodules of M . This is because if L is a proper submodule of M it
contains the class of an element m/pn with n > 1, and where p does not divide m.
Since p is a prime number that does not divide m there are integers q and r such
that qpn + rm = 1. Then rm/pn = −qpn/pn + 1/pn = −q + 1/pn. Hence the class
of 1/pn is in L. It follows that Mn ⊆ L, and that L = Ms, where s is the largest
integer such that Ms ⊆ L. Since we have a chain M1 ⊂ M2 ⊂ M3 ⊂ · · · and the
modules Mn are the only proper submodules of M it follows that the Z-module M
is artinian but not noetherian.
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(1.6) Lemma. Let A be a ring and M an A-module. The following assertions are
equivalent:

(1) The module M is noetherian.
(2) The collection of submodules of M satisfies the maximum condition.
(3) Every submodule of M is finitely generated.

Proof. (1) ⇔ (2) We saw in (TOPOLOGY 1.5) that the assertions (1) and (2) are→
equivalent.

(2) ⇒ (3) Assume that M satisfies the maximum condition and let L 6= 0 be a
submodule of M . Denote by !!L the collection of non-zero submodules of L that aren
finitely generated. Then L is not empty since Ax is in L for all x 6= 0 in L. Since M
satisfies the maximum condition L has a maximal element L′. We shall prove that
L = L′. Assume that L′ ⊂ L. Then there is an element x ∈ L \ L′. We have that
Ax+L′ is a finitely generated submodule of L and L′ is contained properly in Ax+L′.
This is impossible because L is maximal in L, and we have obtained a contradiction
to the assumption that L 6= L′. Hence L = L′ and L is finitely generated.

(3) ⇒ (1) Assume that every submodule of M is finitely generated. Let M1 ⊆
M2 ⊆ · · · be a chain of submodules of M . Then L = ∪∞

n=0Mn is a submodule of
M and thus finitely generated. Each finite set of generators of L must be contained
in some Mn. Then L = Mn = Mn+1 = · · · . That is, the chain M1 ⊆ M2 ⊆ · · · is
stable.

(1.7) Proposition. Let A be a ring and let 0 →M ′ u−→M
v−→M ′′ → 0 be an exact

sequence of A-modules. Then:

(1) The module M is noetherian if and only if the modules M ′ and M ′′ are
noetherian.

(2) The module M is artinian if and only if the modules M ′ and M ′′ are artinian.

Proof. (1) Assume thatM is noetherian. Every chainM ′′
1 ⊆M ′′

2 ⊆ · · · of submodules
of M ′′ gives rise to a chain v−1(M ′′

1 ) ⊆ v−1(M ′′
2 ) ⊆ · · · of submodules of M . Since

M is noetherian we have that v−1(M ′′
n ) = v−1(M ′′

n+1) = · · · for some positive integer
n, and thus M ′′

n = M ′′
n+1 = · · · . Every chain M ′

1 ⊆ M ′
2 ⊆ · · · of submodules

of M ′ gives rise to a chain u(M ′
1) ⊆ u(M ′

2) ⊆ · · · in M . Since M is noetherian
u(M ′

n) = u(M ′
n+1) = · · · for some positive integer n, and thus M ′

n = M ′
2 = · · · .

Conversely assume that M ′ and M ′′ are noetherian, and let M1 ⊆M2 ⊆ · · · be a
chain of submodules of M . Then v(M1) ⊆ v(M2) ⊆ · · · is a chain of submodules of
M ′′, and u−1(M1) ⊆ u−1(M2) ⊆ · · · is a chain of submodules of M ′. Since M ′ and
M ′′ are noetherian there is a positive integer n such that v(Mn) = v(Mn+1) = · · ·
and u−1(Mn) = u−1(Mn+1) = · · · . However, then Mn = Mn+1 = · · · since Mi is
completely determined by v(Mi) and u−1(Mi). In fact an element x of M is in Mi if
and only if v(x) ∈ v(Mi) and there is an x′ ∈ u−1(Mi) such that x− u(x′) ∈Mi.

(2) The proof of the second part is analogous to the proof of the first part, with
descending chains instead of ascending chains.
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(1.8) Corollary. Let M1,M2, . . . ,Mn be A-modules.

(1) If the modules M1,M2, . . . ,Mn are noetherian, then the direct sum ⊕ni=1Mi

is noetherian.
(2) If the modules M1,M2, . . . ,Mn are artinian, then the direct sum ⊕ni=1Mi is

artinian.

Proof. (1) We shall prove the first assertion of the Corollary by induction on n. It
holds trivially for n = 1. Assume that it holds for n − 1. We clearly have a short
exact sequence 0 → Mn → ⊕ni=1Mi → ⊕n−1

i=1 Mi → 0. It follows from the induction

hypothesis that ⊕n−1
i=1 Mi is noetherian. The first part of the Corollary hence follows

from the Proposition.
(2) The proof of the second part of the Corollary is similar to the proof of the first

part.

(1.9) Definition. Let !!(0) = M0 ⊂M1 ⊂ · · · ⊂Mn = M be a chain of submodulesn
of M . We call n the length of the chain. A chain is a refinement of another chain if we
obtain the second by adding modules to the first. We call a chain (0) = M0 ⊂ M1 ⊂
· · · ⊂ Mn = M a composition series if the modules M1/M0,M2/M1, . . . ,Mn/Mn−1

have no proper submodules.

(1.10) Theorem. (The Jordan Theorem) Let A be a ring and M an A-module that
has a composition series. Then all composition series of M have the same length,
and every chain can be refined to a composition series.

Proof. For every submodule L of M that has a composition series we let !`(L)! ben
the smallest length of a composition series of L. Let `(M) = n and let (0) = M0 ⊂
M1 · · · ⊂Mn = M be a composition series for M .

We shall first show that every submodule L of M has a composition series and
that `(L) < `(M) for all proper submodules L of M . To see this we consider the
chain (0) = L0 = L∩M0 ⊆ L1 = L∩M1 ⊆ · · · ⊆ Ln = L∩Mn = L of submodules of
L. We have that Li/Li−1 has no proper submodules since, by Lemma (MODULES
1.13), we have an injective map Li/Li−1 →Mi/Mi−1. Since Mi/Mi−1 has no proper→
submodules either Li = Li−1 or Li/Li−1 → Mi/Mi−1 is an isomorphism. Hence,
removing terms where Li−1 = Li from the chain (0) = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L we
obtain a composition series for L. It follows that `(L) ≤ `(M).

We shall show by induction on i that if `(L) = `(M) then Mi = Li for i =
1, 2, . . . , n. When `(L) = `(M) all the maps Li/Li−1 →Mi/Mi−1 are isomorphisms.
In particular M1 = L1. Assume that Li−1 = Mi−1. Since Li/Li−1 → Mi/Mi−1 is
an isomorphism we have for each x in Mi that there is an element x1 in Mi−1 and
an element y in Li such that x + x1 = y. Then x = y − x1 is in Li since −x1 is in
Mi−1 = Li−1 ⊆ Li. Hence we have that Li = Mi. In particular we have that L = M .
We have thus shown that when `(L) = `(M) then L = M . Hence when L is properly
contained in M we have that `(L) < `(M).

We shall now prove that all composition series of M have the sema length. Let
K1 ⊂ K2 ⊂ · · · ⊂ Km = M be a chain in M . Then m ≤ `(M) because `(K1) <
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· · · < `(Km) = `(M). In particular, if (0) ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km = M is a
composition series we must have that m = `(M) since `(M) is the length of the
shortest composition series of M . Hence we have proved that all composition series
have the same length.

If m < `(M), the chain K1 ⊂ K2 ⊂ · · · ⊂ Km can not be a composition series.
Consequently at least one of the residue modules K1/(0), K2/K1, . . . , Km/Km−1 con-
tains a proper submodule different from (0). Hence we may add one more term to
the chain to obtain a chain of length m + 1. In this way we can add groups in the
chain until the chain has length n in which case it is a composition series. Hence
every chain can be refined to a composition series.

(1.11) Definition. Let A be a ring and M an A-module. We say that M has
finite length if it has a composition series. The length of M is the common length
`(M) = `A(M) of all composition series of M .

(1.12) Example. Let K be a field. A finitely dimensional K-vector space M
has finite length and dimK(M) = `K(M). This is because K has no proper K-
submodules, and thus, if x1, x2, . . . , xn is a basis for M , then Kx1 ⊂ Kx1 +Kx2 ⊂
· · · ⊂ Kx1 +Kx2 + · · · +Kxn is a composition series.

(1.13) Example. The ring Z/6Z has the composition series (0) ⊂ 2Z/6Z ⊂ Z/6Z.
Clearly (Z/6Z)/(2Z/6Z) is isomorphic to Z/2Z. There is another composition series
{0} ⊂ 3Z/6Z ⊂ Z/6Z.

(1.14) Proposition. Let A be a ring and M an A-module. The length of M is
finite if and only if M is an artinian and noetherian A-module.

Proof. If M is of finite length it follows from Theorem (1.10) that all chains in M→
are of finite length. Hence M is artinian and noetherian.

Conversely, assume that M is artinian and noetherian. Denote by !!L be then
collection of submodules L 6= (0) of M such that there is a chain L = Mn ⊂Mn−1 ⊂
· · · ⊂M1 = M for some positive integer n where Mi−1/Mi has no proper submodules
for each i = 2, 3, . . . , n. Then L is not empty because M belongs to L. Since M is
artinian there is a minimal element L′ in L. If L′ has no proper submodules we have
found a composition series (0) ⊆ L′ = Mn ⊂ Mn−1 ⊂ · · · ⊂ M1 = M of M and we
have proved the Proposition.

We shall show that L′ can not have proper submodules. Assume to the contrary
that L′ has proper submodules and let !!L′ be the collection of proper submodules ofn
L′. Since M is noetherian there is a maximal proper submodule Mn+1 of L. Then
L′/Mn+1 has no proper submodules, and thus Mn+1 ⊂ Mn ⊂ · · · ⊂ M1 = M is
a chain such that Mi−1/Mi has no proper submodule for i = 2, 3, . . . , n + 1. Since
Mn+1 ⊂ L this is impossible since L′ is minimal in L. This contradicts the assumption
that L′ has proper submodules and we have proved the Proposition.

(1.15) Proposition. Let A be a ring and 0 → M ′ u−→ M
v−→ M ′′ → 0 an exact
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sequence of A-modules.

(1) The A-module M is of finite length if and only if the A-modules M ′ and M ′′

are of finite length.
(2) When all the modules are of finite length we have that `(M) = `(M ′)+`(M ′′).

Proof. (1) It follows from Proposition (1.7) and Proposition (1.14) that the first part→→
of the Proposition holds.

(2) To prove the second part of the Proposition we take a composition series
0 = M ′

0 ⊂M ′
1 ⊂ · · · ⊂M ′

n′ = M ′ of M ′ and a composition series (0) = M ′′
0 ⊂M ′′

1 ⊂
· · · ⊂ M ′′

n′′ = M ′′ of M ′′. Then (0) = u(M ′
0) ⊂ u(M ′

1) ⊂ · · · ⊂ u(M ′
n′) = u(M ′) =

v−1(0) = v−1(M ′′
0 ) ⊂ v−1(M ′′

1 ) ⊂ · · · ⊂ v−1(M ′′
n′′) = v−1(M ′′) = M is a composition

series of length n′ + n′′ for M . In fact the homomorphism u clearly induces an
isomorphism M ′

i/M
′
i−1 → u(M ′

i)/u(M
′
i−1), and the homomorphism v clearly induces

an isomorphism v−1(M ′′
i )/v−1(M ′′

i−1) →M ′′
i /M

′′
i−1.

(1.16) Remark. Let ϕ : A→ B be a surjection of rings and let N be a B-module
of finite length. Then we have that `B(N) = `A(N[ϕ]). In fact every A-submodule of
N is also a B-submodule.

(1.17) Theorem. (The Hölder Theorem) Let A be a ring and let M be an A module
of finite lenght. Two composition series

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = M (1.13.1)

and
{0} = M ′

0 ⊂M ′
1 ⊂ · · · ⊂M ′

n = M (1.13.2)

of M are equivalent, that is, there is a permutation σ of the numbers {1, 2, . . . , n}
such that Mσ(i)/Mσ(i)−1 is isomorphic to M ′

i/M
′
i−1 for i = 1, 2, . . . , n.

Proof. We show the Theorem by induction on `(M). It is trivially true when `(M) =
1. Assume that it holds when `(M) = n − 1. If Mn−1 = M ′

n−1 the Theorem holds
by the induction hypothesis.

Assume that Mn−1 6= M ′
n−1. We choose a composition series {0} = L0 ⊂ L1 ⊂

· · · ⊂ Ln−2 = Mn−1∩M ′
n−1 of Mn−1∩M ′

n−1. Then we obtain two composition series

(0) = L0 ⊂ L1 ⊂ · · · ⊂ Ln−2 = Mn−1 ∩M ′
n−1 ⊂ Mn−1 ⊂Mn = M (1.13.3)

(0) = L0 ⊂ L1 ⊂ · · · ⊂ Ln−2 = Mn−1 ∩M ′
n−1 ⊂ M ′

n−1 ⊂M ′
n = M (1.13.4)

for the module M . Since M/Mn−1 and M/M ′
n−1 have no proper submodules and

Mn−1 6= M ′
n−1 it follows from Lemma (MODULES 1.13) that the inclusions Mn−1 ⊂→

M and M ′
n−1 ⊂ M induce isomorphisms Mn−1/Mn−1 ∩ M ′

n−1 → M/M ′
n−1 and

M ′
n−1/Mn−1 ∩M ′

n−1 → M/Mn−1. Hence (1.13.3) and (1.13.4) are equivalent com-
position series. The composition series (1.13.1) and (1.13.3) have Mn−1 in com-
mon. Hence it follows from the induction hypothesis used to the module Mn−1 that
the composition series are equivalent. Similarly the composition series (1.13.2) and
(1.13.4) are equivalent since they have M ′

n−1 in common. It follows that (1.13.1) and
(1.13.2) are equivalent composition series, as we wanted to prove.
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(1.18) Exercises.
1. Let L be the submodule of the Z-module Z×Z generated by the elements (2, 3).

(1) Is the residue module (Z × Z)/L noetherian?
(2) Is the residue module (Z × Z)/L artinian?

2. Find all composition series for the module Z/12Z.

3. Let K[t] be the polynomial ring in the variable t over the field K. Find the
composition series of the K[t]-module K[t]/(t3(t+ 1)2).

4. Let A be a ring and 0 → M0 → M1 → · · · → Mn → 0 be an exact sequence of
A-modules of finite length. Show that

∑n
i=0(−1)i`(Mi) = 0.

5. Let 0
u−1−−→M0

uo−→M1
u1−→ · · · un−1−−−→Mn

un−→ 0 be a complex of modules of finite
length.

(1) Show that the A-modules Hi = Ker(ui)/ Im(ui−1) is of finite length for i =
0, 1, . . .n.

(2) Show that
∑n
i=0(−1)i`(Mi) =

∑n
i=0(−1)i`(Hi).

6. Let A be a ring and m a maximal ideal. Moreover let M be a finitely generated
A-module.

(1) Show that the A-module M/mM is of finite length.
(2) Give an example of a ring A, a prime ideal p of A, and a finitely generated

A-module M such that M/pM is not of finite length.

7. Let M be a noetherian A-module, and let u : M → M be an A-linear surjective
map. Show that u is an isomorphism.

8. Let M be an artinian A-module, and let u : M → M be an A-linear injective
homomorphism. Show that u is an isomorphism.
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2. Artinian and noetherian rings.

(2.1) Definition. A ring A is noetherian, respectively artinian, if it is noetherian,
respectively artinian, considered as an A-module. In other words, the ring A is
noetherian, respectively artinian, if every chain a1 ⊆ a2 ⊆ · · · of ideal ai in A is
stable, respectively if every chain a1 ⊇ a2 ⊇ · · · of ideals ai in A is stable.

(2.2) Example. Let K[t] be the polynomial ring in the variable t with coefficients in
a field K. Then the residue ring K[t]/(tn) is artinian and noetherian for all positive
integers n. This is because K[t]/(tn) is a finite dimensional vector space of dimension
n.

(2.3) Example. The ring Z is noetherian, but not artinian. All rings with a finite
number of ideals, like Z/nZ for n ∈ Z, and fields are artinian and noetherian.

(2.4) Example. The polynomial ring A[t1, t2, . . . ] in the variables t1, t2, . . . over a
ring A is not noetherian since it contains the infinite chain (t1) ⊂ (t1, t2) ⊂ · · · of
ideals. It is not artinian either since it contains the infinite chain (t1) ⊃ (t21) ⊃ (t31) ⊃
· · · .
(2.5) Proposition. Let A be a ring and let M be a finitely generated A-module.

(1) If A is a noetherian ring then M is a noetherian A-module.
(2) If A is an artinian ring then M is an artinian A-module.

Proof. (1) It follows from Proposition (MODULES 1.20) that we have a surjective→
map ϕ : A⊕n → M from the sum of the ring A with itself n times to M . Hence it
follows from Proposition (1.7) that M is noetherian.→

(2) The proof of the second part is analogous to the proof of the first part.

(2.6) Corollary. Let ϕ : A→ B be a surjective map from the ring A to a ring B.

(1) If the ring A is noetherian then the ring B is noetherian.
(2) If the ring A is artinian then the ring B is artinian.

Proof. (1) Since ϕ is surjective B is a finitely generated A-module with generator
1. It follows from the Proposition that B is noetherian as an A-module. Then B is
clearly noetherian as a B-modules.

(2) The proof of the second part is analogous to the proof of the first part.

(2.7) Proposition. Let S be a multiplicatively closed subset of a ring A.

(1) If A is noetherian then S−1A is noetherian.
(2) If A is artinian then S−1A is artinian.

Proof. (1) It follows from Remark (MODULES 3.13) that every ideal b in the local-→
ization S−1A satisfies ϕS−1A(b)S−1A = b. Every chain b1 ⊆ b2 ⊆ · · · of ideals in
S−1A therefore gives a chain ϕ−1

S−1A
(b1) ⊆ ϕ−1

S−1A
(b2) ⊆ · · · of ideals in A. Since A is
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noetherian there is a positive integer n such that ϕ−1
S−1A

(bn) = ϕ−1
S−1A

(bn+1) = · · · .
Consequently we have that bn = bn+1 = · · · . Hence S−1A is noetherian.

(2) The proof of the second part is analogous to the proof of the first part.

(2.8) Remark. A noetherian ring has only a finite number of minimal prime ideals.
This is because Spec(A) is a noetherian topological space since the descending chains
of closed subsets of Spec(A) correspond to ascending chains of ideals in A by Remark
(RINGS 5.2). By Proposition (TOPOLOGY 4.25) Spec(A) has only a finite number→→
of irreducible components. However, it follows from Proposition (TOPOLOGY 5.13)→
that the irreducible components of Spec(A) correspond bijectively to the minimal
prime ideals in A.

(2.9) Remark. The radical rA(0) of a noetherian ring A is nilpotent, that is, we
have rA(0)n = 0 for some integer n. This follows from Remark (RINGS 4.8) because→
rA(0) is finitely generated ideal.

(2.10) Theorem. (The Hilbert basis theorem) Let A be a noetherian ring and B a
finitely generated algebra over A. Then B is a noetherian ring.

Proof. It follows from Proposition (RINGS 3.6) that we have a surjective homomor-→
phism A[t1, t2, . . . , tn] → B of A-algebras from the polynomial ring A[t1, t2, . . . , tn] in
the variables t1, t2, . . . , tn over A. Hence it follows from Corollary (2.6) that is suffices→
to prove that the polynomial ring A[t1, t2, . . . , tn] is noetherian. If we can prove that
the polynomial ring C[t] in one variable t over a noetherian ring C is noetherian, it
clearly follows by induction on n that A[t1, t2, . . . , tn] is noetherian. Hence it suffices
to prove that A[t] is noetherian.

Let b be an ideal in A[t]. We shall show that b has a finite number of generators.
Let a be the collection of elements f ∈ A such that there is a polynomial f0 + f1t+
· · · + fn−1t

n−1 + ftn in b. It is clear that a is an ideal in A. Since A is noetherian
we can find generators g1, g2, . . . , gm of a. For every i = 1, 2, . . . ,m we can find a
polynomial pi(t) = gi,0 + gi,1t+ · · ·+ gi,di−1t

di−1 + git
di in b. Let d = maxmi=1(di).

For each polynomial f(t) = f0 + f1t + · · · + fet
e in b we can find elements

h1, h2, . . . , hm in A such that fe = h1g1 + h2g2 + · · · + hmgm. If e ≥ d the poly-
nomial f(t) = h1t

e−d1p1(t) − h2t
e−d2p2(t) − · · · − hmt

d−dmpm(t) is of degree stricly
less than e. It follows by descending induction on e that we can find polynomials
h1(t), h2(t), . . . , hm(t) such that g(t) = f(t) −∑m

i=1 hi(t)pi(t) is of degree strictly
less than d. Since f(t) ∈ b, and all the polynomials pi(t) are in b, we have that
g(t) ∈ b. Hence g(t) is in the A-module M = (A+ tA+ · · · + td−1A) ∩ b. It follows
from Corollary (1.8) and Proposition (1.7) that M is a noetherian module. Hence→→
we can find a finite number of generators q1(t), q2(t), . . . , qn(t) of M . Then b will be
generated by the polynomials p1(t), p2(t), . . . , pm(t), q1(t), q2(t), . . . , qn(t). Hence b is
finitely generated as we wanted to prove. Since all ideals b of B are finitely generated
it follows from Lemma (1.6) that B is noetherian as a module over itself, and hence→
noetherian.
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(2.11) Proposition. In an artinian ring all the prime ideals are maximal.

Proof. Let p be a prime ideal. We must show that for each element f ∈ A \ p we
have that Af + p = A. Since A is artinian the chain Af + p ⊇ Af 2 + p ⊃ · · · must
stabilize. Hence there is a positive integer n such that fn = gfn+1 + h for some
g ∈ A and h ∈ p. Hence fn(1 − gf) ∈ p. Since p is a prime ideal and f /∈ p we have
that 1 − gf ∈ p. Hence there is an e ∈ p such that 1 − gf = e. The ideal Af + p

consequently contains the element gf − e = 1 and thus is equal to A is we wanted to
prove.

(2.12) Proposition. Let A be a ring and m1,m2, · · · different maximal ideals in A.
Then m1m2 · · ·mn is a proper submodule of m1m2 · · ·mn−1.

Proof. Since the ideals mi are maximal we can for each i = 1, 2, . . . , n − 1 find an
element fi ∈ mi\mn. Assume that m1m2 · · ·mn−1 = m1m2 · · ·mn. Then we have that
f1f2 · · ·fn−1 ∈ m1m2 · · ·mn−1 = m1m2 · · ·mn ⊆ mn, which is impossible since mn is
a prime ideal and fi /∈ mn for i = 1, 2, . . . , n − 1. This contradicts the assumption
that m1m2 · · ·mn = m1m2 · · ·mn−1. Hence m1m2 · · ·mn is a proper submodule of
m1m2 · · ·mn−1.

(2.13) Corollary. An artinian ring has a finite number of maximal ideals.

Proof. If it had an infinte number of maximal ideals we could find an infinite sequence
m1,m2, · · · of different maximal ideals. Then it follows from the Proposition that we
have an infinite chain m1 ⊃ m1m2 ⊃ · · · of ideals in A. This contradicts that A is
artinian. Thus A has only a finite number of maximal ideals.

(2.14) Proposition. In an artinian ring the radical is nilpotent.

Proof. Since A is artinian the sequence of ideals rA(0) ⊇ rA(0)2 ⊇ · · · is stable.
Thus there is a positive integer n such that a := rA(0)n = rA(0)n+1 = · · · . We shall
prove that a = 0. Assume to the contrary that a 6= 0. Consider the collection !!Bn
of ideals b in A such that ab 6= 0. Then B is not empty since a is in B. Since A
is artinian we have that B contains a minimal element c. Then there is an f ∈ c

such that af 6= 0. Since c is minimal in B and (f) ⊆ c we must have that c = (f).
We have that (fa)a = fa2 = fa 6= 0 and (fa) ⊆ (f) = c. By the minimality of
c we obtain that (fa) = (f). Hence there is an element g ∈ a such that fg = f .
Hence f = fg = fg2 = · · · . However, since g ∈ a ⊆ rA(0), we have that gn = 0 for
some positive integer n. Thus f = 0 which is impossible since af = ac 6= 0. This
contradicts the assumption that a 6= 0. Hence a = 0 as we wanted to prove.

(2.15) Lemma. Let A be a ring and let m1,m2, . . . ,mn be, not necessarily different,
maximal ideals in A such that m1m2 · · ·mn = 0. Then A is artinian if and only if A
is noetherian.

Proof. We have a chain A = m0 ⊃ m1 ⊇ m1m2 ⊇ m1m2m3 ⊇ · · · ⊇ m1m2 · · ·mn = 0
of ideals in A. Let Mi = m1m2 · · ·mi−1/m1m2 · · ·mi for i = 1, 2, . . . , n. Then each
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Mi is an A/mi-module, that is, a vector space over A/mi. Hence Mi is artinian if
and only if it is noetherian. For i = 1, 2, . . . , n we have an exact sequence

0 → m1m2 · · ·mi → m1m2 · · ·mi−1 →Mi → 0.

It follows from Proposition (1.7) that m1m2 · · ·mi and Mi are artinian, respectively→
noetherian, if and only if m1m2 · · ·mi−1 is artinian, respectively noetherian. By
descending induction on i starting with Mn = m1m2 · · ·mn−1 we obtain that the
module m1m2 · · ·mi is artinian if and only if it is noetherian. For i = 0 we obtain
that A is artinian if and only if it is noetherian.

(2.16) Remark. Let A be a local noetherian ring with maximal ideal m, and let
q be an m-primary ideal. Then A/q is an artinian ring. To show this we first note
that m = r(q). Since A is noetherian m is finitely generated, and thus it follows from
Remark (RINGS 4.8) that a power of the maximal ideal in the noetherian local ring→
A/q is zero. Hence it follows from Lemma (2.15) that A/q is artinian.→
(2.17) Theorem. A ring is artinian if and only if it noetherian and has dimension
0.

Proof. When A is artinian it follows from Proposition (2.11) that dim(A) = 0. It→
follows from Corollary (2.13) that the ring A has a finite number of maximal ideals→
m1,m2, . . . ,mn. We have that m1m2 · · ·mn ⊆ m1∩m2∩· · ·∩mn ⊆ rA(0). Since rA(0)
is nilpotent by Proposition (2.14) it follows from Lemma (2.15) that A is noetherian.→→

Conversely assume that A is noetherian of dimension 0. Then every prime ideal is
maximal, and from Remark (2.8) it follows that A has finitely many maximal ideals→
m1,m2, . . . ,mn. Again m1m2 · · ·mn ⊆ rA(0). If follows from Remark (RINGS 4.8)→
that rA(0) is nilpotent. Hence it follows from Lemma (2.15) that A is artinian.→
(2.18) Proposition. An artinian ring is isomorphic to the direct product of a finite
number of local artin rings.

More precicely, when A is an artinian ring the canonical map A→ ∏
x∈Spec(A)Ajx

obtained from the localization maps A→ Ajx is an isomorphism.

Proof. By Corollary (2.13) we have that Spec(A) consists of a finite number of→
points, and by Proposition (2.11) the points are closed. Hence Spec(A) is a dis-→
crete topological space. Since OSpec(A) is a sheaf there is an injective map A =
Γ(Spec(A),OSpec(A)) → ∏

x∈Spec(A)Ajx =
∏
x∈Spec(A) OSpec(A),x. However each

point x is open in Spec(A). Hence Ajx = Γ({x},OSpec(A)), and {x} ∩ {y} = ∅ when
x 6= y. It follows that we can glue any collection of sections sx ∈ Γ({x},OSpec(A))
for x ∈ Spec(A) to a section s ∈ Γ(Spec(A),OSpec(A)). Hence the map A →∏
x∈Spec(A)

∏
Ajx is also surjective.

(2.19) Exercises.
1. Show that if S is a multiplicatively closed subset of a ring A such that S−1A is
noetherian. Then A is not necessarily noetherian.
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2. Let K[t1, t2, . . . ] be the polynomial ring in the infinitely many variables t1, t2, . . .
over a field K. Morever let K(t1, t2, . . . ) be the localization of K[t1, t2, . . . ] in the
multiplicatively closed subset of K[t1, t2, . . . ] consisting of all non-zero elements.

(1) Show that K(t1, t2, . . . ) is noetherian.
(2) Let u1, u2, . . . be independent variables over K[t1, t2, . . . ]. Show that the K-

algebra map K[t1, t2, . . . , u1, u2, . . . ] → K[t1, t2, . . . ] ⊗I KK[t1, t2, . . . ] that
sends ti to ti ⊗K 1 and ui to 1 ⊗K ti is an isomorphism.

(3) Let S be the multiplicatively closed subset of K[t1, t2, . . . , u1, u2, . . . ] consist-
ing of all non-zero products fg with f in K[t1, t2, . . . ] and g in K[u1, u2, . . . ].
Show that the K-algebra homomorphism of part (3) induces a canonical ho-→
momorphism S−1K[t1, t2, . . . , u1, u2, . . . ] → K(t1, t2, . . . ) ⊗K K(t1, t2, . . . ).

(4) Show that the homomorphism of part (4) is an isomorphism.→
(5) Show that the ideal (t1 − u1, t2 − u2, · · · ) of K[t1, t2, . . . , u1, u2, . . . ] does not

intersect S.
(6) Show that K(t1, t2, . . . ) ⊗K K(t1, t2, . . . ) is not Noetherian.

3. Let A a ring. Give an example of a ring A that is not noetherian, but is such
that Spec(A) is noetherian.

4. Let M be a noetherian A-module. Show that the ring A/AnnA(M) is noetherian.

5. Prove that there is only a finite number of minimal primes in a noetherian ring
A without using properties of the topological space Spec(A).

6. Let A be a ring. We say that two ideals a and b in A are coprime if a + b = A.
Let a1, a2, . . . , an be ideals of A that are pairwise comprime. We define a map

ϕ : A→
n∏

i=1

A/ai

by ϕ(f) = (ϕA/a1
(f), ϕA/a2

(f), . . . , ϕA/an(f)) for all f ∈ A.

(1) Show that if a and b are coprime, then am and bn are coprime for all positive
integers m and n.

(2) Show that for all i the ideals ai and ∩i6=jaj are coprime.
(3) Show that the homomorphism ϕ is a ring homomorphism with kernel ∩ni=1ai.
(4) Show that the homomorphism ϕ is surjective.
(5) Use parts (1), (2), (3), and (4) to prove that an artin ring is the direct product

of a finite number of artinian rings.

7. Let q be a primary ideal in the ring A, and let a and b be ideals in A such that
ab ⊆ q. Show that either a ⊆ q or there is a positive integer n such that bn ⊆ q.

8. Let A and B be noetherian local rings and let ϕ : A → B be a local homomor-
phism, that is, we have ϕ−1(mB) ⊆ mA. Assume that the following three conditions
hold:

(1) The induced map A/mA → B/mB of residue rings is an isomorphism.
(2) The induced map mA → mB/m

2
B is surjective.

(3) We have that B is a finitely generated A-module via ϕ.
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Show that ϕ is surjective.

9. Show that whtn A[t] is noetherian then A is noetherian.

10. Let K[t1, t2, . . . ] be a polynomial ring over the field K in the independent
variables t1, t2, . . . and let A be the residue ring of K[t1, t2, . . . ] modulo the ideal
generated by the elements ti(ti − 1) for i = 1, 2, . . . .

(1) Show that all the prime ideals of A are of the form (t1−δ1, t2−δ2, . . . ) where
the elements δi are either 0 or 1.

(2) Show that all the prime ideals of A are maximal.
(3) Show that for all prime ideal p of A we have a canonical ring isomorphism

Ap
∼−→K.

(4) Show that A is not noetherian, but that Ap is noetherian for all prime ideals
p of A.
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3. Modules over noetherian rings.

(3.1) Proposition. Let A be a noetherian ring and let M 6= (0) be an A-module.
Then M has associated prime ideals.

When M is finitely generated there is a chain

)0) = Mn ⊂Mn−1 ⊂ · · · ⊂M1 ⊂ M0 = M

of submodules of M such that each quotient Mi−1/Mi is isomorphic to an A-module
of the form A/pi, where pi is a prime associated to M .

Proof. Let I be the collection of ideals in A that are annihilators of elements in M .
Then I is not empty because it contains the elements Ann(x) for all x in M . Since
A is noetherian there is a maximal element p = Ann(x) of I. We shall prove that p

is a prime ideal and thus associated to M . Let let f, g be elements in A such that
fg ∈ p and f /∈ p. Then fx 6= 0 and AnnA(fx) ⊇ Ag + p. Since p is maximal we
must have that p = AnnA(fx) and thus that g ∈ p.

To prove the second part we let L be the collection of submodules of M for which
the Proposition holds. Then L is not empty because it contains the zero module.
Since A is noetherian and M is finitely generated it follows from Proposition (2.5)→
that M is noetherian. Thus there is a maximal element L in L. We shall show that
L = M . Assume to the contrary that L 6= M . Then there is an associated prime
ideal p of M/L. Let p = Ann(y) for some y ∈ M/L, and denote by x an element
of M whose class in M/L is y. We have an isomorphism A/p → Ay = (Ax+ L)/L.
Since the Proposition holds for L it will consequently hold for Ax+L. Hence Ax+L
is in L, which is impossible since L is maximal in L. This contradicts the assumption
that L 6= M . Hence we we must have that L = M , and the Proposition holds for M .

(3.2) Proposition. Let A be a noetherian ring and let M be an A-module. An
element f ∈ A is contained in an associated prime ideal if and only if there is an
element x 6= 0 in M such that fx = 0.

Proof. Let Ann(x) be an associated prime ideal in A. If f ∈ Ann(x) we have that
x 6= 0 and fx = 0.

Conversely, assume that fx = 0 for some x 6= 0. It follows from Proposition (3.1)→
that Ax has an associated prime ideal p. Then p = AnnA(gx) for some g ∈ A, and
consequently p is associated to M and f ∈ p. Thus f is contained in an associated
ideal.

(3.3) Proposition. Let A be a noetherian ring and let M be an A-module.

(1) The support of M consists of the prime ideals in A that contain an associated
prime.

(2) The intersection ∩p∈Supp(M)p , which is thus the intersection of all associated
ideals of M , consists of all elements f ∈ A such that fM : M →M is locally
nilpotent.
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Proof. (1) Assume that p is in the support of M , that is, we have Mp 6= 0. Then
there is an element x ∈ M such that (Ax)p 6= 0. It follows from Proposition (3.1)→
that there is a prime ideal q that is associated to the A-module (Ax)p. Then there
is an element f ∈ A and an element s ∈ A \ p such that q = AnnA((fx)/s). We have
that p ⊇ q because, if t ∈ q \ p, then (tfx)/s = 0 and 0 = (1/t)((tfx)/s) = (fx)/s in
(Ax)p, contradicting that (fx)/s 6= 0 in (Ax)p.

To prove the first part of the Proposition we prove that q is an associated prime
ideal of M . Let f1, f2, . . . , fn be generators for q. Since q is the anninhilator of
the element fx/s in the A-module (Ax)p we can find elements s1, s2, . . . , sn in A \ p

such that sififx = 0 in M for i = 1, 2, . . . , n. Consequently we have an inclusion
q ⊆ AnnA(s1s2 · · · snfx). We shall prove the opposite inclusion. Take an element
g ∈ AnnA(s1s2 · · · snfx). Since s1s2 · · · sngfx = 0 and s1s2 · · · sn /∈ p, we have that
(gfx)/s = 0 in (Ax)p. However, then we have that g ∈ q, and we have proved
that q = AnnA(s1s2 · · · snfx). Hence the prime ideal q is associated to M . We
have proved that every ideal in the support contains an associated prime ideal. In
Remark (MODULES 4.13) we saw that every associated prime ideal is contained→
in the support. Hence every prime ideal that contains an associated ideal is in the
support.

(2) Assume that f ∈ A is not in the intersection of all the prime ideals in the
support. Then there is a prime ideal p of A with Mp 6= 0 and f /∈ p. Let x ∈ M
and s /∈ p be such that x/s 6= 0 in Mp. Since f /∈ p we have that fnx/s 6= 0 in
Mp, and thus fnx 6= 0 in M for all positive integers n. Consequently f is not locally
nilpotent.

Finally let f ∈ A be an element in the intersection of all the ideals in the support
of M . We shall show that fM is locally nilpotent. Assume to the contrary that f is
not locally nilpotent. Then there is an x ∈ M such that fn /∈ Ann(x) for all positive
integers n. It follows from Proposition (RINGS 4.16) that we can find a prime ideal→
p that contains Ann(x) but does not contain f . Then we have that (Ax)p 6= 0, and
thus p is contained in the support of M . This contradicts the assumption that f is in
the intersection of all ideals in the support. Hence we have proved that fM is locally
nilpotent.

(3.4) Remark. Let A be a noetherian ring and M a finitely generated A-module.
It follows from Remark (MODULES 4.8) that the locally nilpotent elements are the→
elements of r(Ann(M)) and hence it follows from Proposition (3.3) that the radical→
r(Ann(M)) of M is equal to the intersection of the prime ideals of the support of M ,
or equivalently, to the intersection of the associated ideals of M .

In particular we have that Supp(M) = V (Ann(M)).

(3.5) Proposition. Let A be a noetherian ring and let M be an A-module. The
following assertions are equivalent:

(1) The module M has exactly one associated prime ideal.
(2) We have that M 6= 0 and for every element f in A either fM is injective or
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locally nilpotent.

When the assertions hold the associated ideal of M consists of the locally nilpotent
elements.

Proof. (1) ⇒ (2) If there is only one associated prime ideal p it follows from Proposi-
tion (3.3) that when f ∈ p the map fM is locally nilpotent. Moreover it follows from→
Proposition (3.2) that for f /∈ p the map fM is injective.→

(2) ⇒ (1) If fM is locally nilpotent it follows from Proposition (3.2) that the→
element f ∈ A is contained in some associated prime ideal. On the other hand, if fM
is injective, it follows from Proposition (3.2) that f is not contained in any associated→
ideal. Hence it follows from Proposition (3.3) that the union of the associated prime→
ideals will be equal to their intersection. Hence there can be only one associated
prime ideal for M .

We saw in the proofs of both (1) ⇒ (2) and (2) ⇒ (1) that when the assertions
of the Proposition holds then the associated ideal consists of the locally nilpotent
elements.

(3.6) Corollary. Let A be a noetherian ring and M a finitely generated A-module.
Moreover let L be a submodule of M . The following conditions are equivalent:

(1) The module M/L has only one associated ideal.
(2) The module L is primary.

When the conditions hold the associated prime ideal of M/L is the prime ideal
belonging to L.

Proof. (1) ⇒ (2) Let p be the associated prime ideal of M/L. By the Proposition
and Remark (MODULES 4.8) we have that M 6= L, and that L is primary and p is→
the ideal belonging to L.

(2) ⇒ (1) If M 6= L and L is primary it follows from the Proposition that M/L
has only one associated ideal.

(3.7) Proposition. Let A be a noetherian ring and let M be a finitely generated
A-module. Then every submodule L of Mcan be written as an intersection L =
L1 ∩ L2 ∩ · · · ∩ Ln of submodules Li of M such that each module Li is primary.

Proof. Consider the set L of submodules L of M that can not be written as L =
L1 ∩ L2 ∩ · · · ∩ Lm with all Li primary. We shall show that L is empty. Assume to
the contrary that it is not empty. Since M is noetherian it follows that L then has a
maximal element L. In particular L is not primary. Thus there is an element f ∈ A
such that the homomorphism fM/L : M/L→M/L is neither injective nor nilpotent.
We therefore obtain a sequence

Ker(fM/L) ⊆ Ker(f2
M/L) ⊆ · · ·

of non-zero proper submodules of M . Since M is noetherian this sequence must
stop. Assume that Ker(f rM/L) = Ker(f r+1

M/L) = · · · and let u = f rM/L. We have
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that Ker(u) is a proper submodule of M and that Ker(u) = Ker(u2). Consequently
Ker(u)∩ Im(u) = (0). In particular Im(u) is different from M/L. Let M1 and M2 be
the inverse images of Ker(u) respectively Im(u) by the canonical map uM/L : M →
M/L. Then M1 and M2 contain L and are different from L, and L = M1∩M2. By the
maximality of L we have that the Proposition holds for M1 and M2. Consequently
the Proposition holds for L which is impossible since L is in L. This contradicts the
assumption that L is non-empty, and we have proved the Proposition.

(3.8) Proposition. Let A be a noetherian ring and M a finitely generated A-
module. Write (0) = L1 ∩ L2 ∩ · · · ∩ Ln with Li primary for i = 1, 2, . . . , n, and
assume that for each i we have Li 6⊇ ∩i6=jLj. Then the associated primes of M
coincide with the primes belonging to the primary modules Li.

Proof. We have an injection

M →M/L1 ⊕M/L2 ⊕ · · ·M/Ln

which sends x ∈ N to (uM/L(x), uM/L(x), . . . , uM/L(x)). It follows from Proposition

(MODULES 4.25) that the associated prime ideals of M can be found among the→
associated primes of M/L1,M/L2, . . . ,M/Ln. We shall show that the prime ideal pi
belonging to Li is associated to M for i = 1, 2, . . . , n.

We have that L = L2 ∩L3 ∩ · · · ∩Li−1 ∩Li+1 · · · ∩Ln 6= (0) by assumption. Since
L = L/L ∩ Li it follows from Lemma (MODULES 1.13) that we have an injective→
A-module homomorphism L → M/Li. It follows from Proposition (3.1) that L→
has an associated ideal, and from Corollary (3.6) that this ideal must be pi. From→
Proposition (MODULES 4.25) it follows that pi is also associated to M .→

(3.9) Proposition. Let A be a noetherian ring. If A is reduced the associated
primes are the minimal prime ideals.

Proof. It follows from Proposition (3.3) that every prime ideal contains an associated→
prime. Hence every minimal prime ideal is associated.

Conversely let p = Ann(f) be an associated prime ideal of A. In Remark (2.8) we→
observed that A has only a finite number of minimal primes p1, p2, · · · , pn. Assume
that p is not minimal. Then it follows from Proposition (RINGS 4.22) that we can→
find an element t ∈ p \ p1 ∪ · · · ∪ pn. Then fp = 0, and consequently tf = 0. Thus
f ∈ p1∩· · ·∩pn. However the intersection of the minimal prime ideals is the radical of
A and thus fn = 0 for some integer n. Since A is reduced f = 0, which is impossible
since p = Ann(f). This contradicts the assumption that p is not minimal, and we
have proved that the associated prime ideals are minimal.

(3.10) Exercises.

1. Find the associated prime ideals of the Z-module Z/12Z, and write (0) in Z/12Z
as an intersection of primary modules.
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2. Let K be a field and let K[u, v] be the polynomial ring over K in the independent
variables u, v.

(1) Find the associated prime ideals of the K[u, v]-module M = K[u, v]/(u2, uv).
(2) Write (0) ∈M as an intersection of primary modules.

3. Let A be a noetherian ring and let q be a p-primary ideal. Show that pn ⊆ q for
some positive integer n.

4. Let A be a ring. An ideal a of A is irreducible if a = b ∩ c implies that a = b or
that a = c.

(1) Show that a is irreducible in A if and only if (0) is irreducible in the residue
ring A/a.

(2) Show that a is primary in A if and only if (0) is primary in the residue ring
A/a.

(3) Show that when A is a noetherian ring then every ideal in A is the intersection
of irreducible ideals.

(4) Assume that A is noetherian the ideal (0) in A is irreducible. Let fg = 0
with g 6= 0 in A. Let n be such that Ann(fn) = Ann(fn+1 = · · · . Show that
(fn) ∩ (g) = 0.

(5) Show that when A is noetherian then every irreducible ideal is primary.

5. Let A be a noetherian ring. Moreover let m be a maximal ideal and q and ideal
contained in m. Show that the following assertions are equivalent:

(1) The ideal q is m-primary.
(2) r(q) = m.
(3) There is a positive integer n such that mn ⊆ q ⊆ m.
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Graded rings and dimension

1. Gradings and filtrations.

(1.1) Definition. A ring A is graded if it is the direct sum !!⊕∞
n=0An of subgroupsn

An such that AmAn ⊆ Am+n for all natural numbers m and n. We say that an
A-module M is graded if it is the direct sum !⊕∞

n=0Mn! of subgroups Mn such thatn
AmMn ⊆Mm+n for all natural numbers m and n.

The elements in An and Mn are called homogeneous of degree n. When x ∈ M
and x =

∑m
n=1 xn with xn ∈Mn we call the elements x1, x2, . . . , xm the homogeneous

components of x. For all negative integers n we let An = 0 and Mn = 0.
An ideal a of A is homogeneous if a = ⊕∞

n=0an with an ⊆ An.

(1.2) Remark. It follows from the definitions that A0 is a ring, and that Mn is an
A0-module for each n. We have that A is an A0-algebra via the inclusion of A0 in A.

An ideal is homogeneous if and only if it is generated by homogeneous elements.

(1.3) Example. Let A be a ring and A[tα]α∈I be the polynomial ring in the variables

{tα}α∈I for some index set I. Then the elements tµ =
∏
α∈I t

µ(α)
α with µ ∈ N(I) and∑

α∈I µ(α) = n generate an A-module (A[tα]α∈I)n, and A[tα]α∈I is a graded ring
with homogeneous elements (A[tα]α∈I)n of degree n.

Let a ⊆ A[tα]α∈I be an ideal such that for each element f =
∑m
i=1 fi in a with

fi ∈ Ai we have that fi ∈ a. Then a = ⊕∞
n=0an, with an = a ∩ An, is a graded

A[tα]α∈I -module. That is, the ideal a is homogeneous. Moreover we have that
A/a = ⊕∞

n=0Ai/ai is a graded ring.

(1.4) Example. Let A be a ring and a an ideal in A. Then the direct sum !!Ra(A) =n

⊕∞
n=0a

n of the ideals an, with a0 = A, is a graded ring where the multiplication of
elements in am with elements in an is given by the multiplication in A. The ring
Ra(A) is called the Rees-ring of a, or the Rees-algebra of a when it is considered as
an A0-algebra.

Let M be an A-module. We have that the direct sum Ra(M) = ⊕∞
n=0a

nM is an
Ra(A)-module, where the multiplication of the elements of am with the elements in
anM is defined by the operation of A on M .

(1.5) Example. Let A be a ring and a an ideal in A. The direct sum !!Ga(A) =n

⊕∞
n=0a

n/an+1 of the A/a-modules an/an+1, with a0/a = A/a, is a graded ring. To
define the multiplication we let gm ∈ am/am+1 and gn ∈ an/an+1 be the classes of
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fm ∈ am, respectively fn ∈ an. We define gmgn ∈ am+n/am+n+1 as the class of the
element fmfn ∈ am+n. It is clear that the definition is independent of the choice of
the representatives fm and fn of the classes gm, respectively gn. We call the ring
Ga(A) the graded ring of a, or the graded algebra of a when we consider Ga(A) as an
A/a-algebra.

Let M be an A-module, and let Ga(M) = ⊕∞
n=1a

nM/an+1M . Then Ga(M) is an
Ga(A)-module. To define the operation of Ga(A) on Ga(M) we let g ∈ am/am+1 and
y ∈ anM/an+1M be the classes of f ∈ am respectively of x ∈ anM . Then we define
the product gy ∈ am+nM/am+n+1M as the class of fx ∈ am+n. It is clear that the
product is independent of the choice of the representatives f and x for the classes in
am/am+1 respectively anM/an+1M .

(1.6) Proposition. Let A = ⊕∞
n=0An be a graded ring. The following two condition

are equivalent:

(1) The ring A is noetherian.
(2) The ring A0 is noetherian and A is a finitely generated A0-algebra.

Proof. (2) ⇒ (1) It follows immediately from The Hilbert Basis Theorem (CHAINS
2.10) that, when condition (2) is fulfilled, then condition (1) is fulfilled.→

(1) ⇒ (2) We have that the ring A0 is isomorphic to the residue ring of A modulo
the ideal A+ = ⊕∞

n=1An. Hence it follows from Corollary (CHAINS 2.6) that A0 is→
noetherian.

Since A is noetherian we have that A+ is a finitely generated A-module. If we, if
necessary, take all the homogeneous components of a finite set of generators for A+,
we obtain homogeneous generators f1, f2, . . . , fm of the A-module A+. Let fi ∈ Api
and write B = A0[f1, f2, . . . , fm]. We shall show that A = B. To show that A = B
it suffices to show that An ⊆ B for all n ∈ N. This is proved by induction on n.
For n = 0 it is clear. Assume that An−1 ⊆ B. For every element g ∈ An we have
that g =

∑m
i=1 gifi with gi ∈ An−pi . Since pi > 0 for i = 1, 2, . . . ,m it follows from

the induction assumption that gi ∈ B for i = 1, 2, . . . ,m. Hence we have that g ∈ B
and we have proved that An ⊆ B. Hence we have that A = B, and A is a finitely
generated A0-algebra.

(1.7) Definition. Let A be a ring and a an ideal of A. Moreover let M be an
A-module. A filtration !! {Mn}n∈N of M is a sequence of submodules !!M = M0 ⊇nn
M1 ⊇ M2 ⊇ · · · of M . The filtration is an a-filtration if aMn ⊆ Mn+1 for all n. We
say that an a-filtration is a-stable if aMn = Mn+1 for all sufficiently large n. For all
sufficiently large n means that there is an integer m such that the property holds for
n ≥ m.

(1.8) Remark. Let M be an A-module and let {Mn}n∈N be an a-stable filtration,
and m an integer such that aMn = Mn+1 for n ≥ m. Then we have that Mm+n =
anMm for n = 0, 1, . . . .
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(1.9) Example. Let A be a ring and a an ideal in A. Moreover let M be an
a-module. Then we have a filtration M = a0M ⊇ aM = a1M ⊇ a2M ⊇ · · · of M .
This filtration is a-stable.

(1.10) Example. Let A be a ring and let a be an ideal in A. Moreover let M be an
A-module and let {Mn}n∈N be an a-filtration. Then the direct sum ⊕∞

n=0Mn of the
A-modules Mn is a graded Ra(A) = ⊕∞

n=1a
n-module. The product of f ∈ am with

x ∈Mn is fx ∈ amMn ⊆Mm+n.

(1.11) Example. Let A be a ring and a an ideal of A. Moreover let M be an
A-module, and let {Mn}n∈N be an a-filtration. Then the direct sum ⊕∞

n=0Mn/Mn+1

of the A/a-modules Mn/Mn+1 is a graded Ga(A) = ⊕∞
n=0a

n/an+1-module. The
product of the class in am/am+1 of f ∈ am and the class in Mn/Mn+1 of x ∈ Mn is
the class in Mm+n/Mm+n+1 of fx ∈ Mm+n. Again the definition of the product is
independent of the representatives of the classes of f and x.

When Mn = anM for n = 0, 1, . . . we obtain that ⊕∞
n=0a

nM/an+1M is the Ga(A)-
module Ga(M) defined in Example (1.5).→
(1.12) Lemma. Let A be a ring and a an ideal in A. Moreover let {Mn}n∈N and
{M ′

n}n∈N be a-stable filtrations of an A-module M . Then there is a positive integer
m such that

Mm+n ⊆M ′
n and M ′

m+n ⊆Mn for n = 0, 1, . . . .

Proof. Since aMn ⊆ Mn+1 and aM ′
n ⊆ M ′

n+1 we have that anM ⊆ Mn and anM ⊆
M ′
n for n = 0, 1, . . . . The filtrations {Mn}n∈N and {M ′

n}n∈N are a-stable. Hence we
can find natural numbers p, p′ in N such that Mn+p = anMp and M ′

n+p′ = anM ′
p′

for n ≥ p+ p′. Let m = p+ p′. Then we have that Mm+n = an+p′Mp ⊆ anM ⊆M ′
n

and M ′
m+n = an+pM ′

p′ ⊆ anM ⊆ Mn for n = 0, 1, 2, . . . .

(1.13) Lemma. Let A be a noetherian ring and let a be an ideal in A. Moreover
let M be a finitely generated A-module and let {Mn}n∈N be an a-filtration. The
following conditions are equivalent:

(1) The graded Ra(A)-module ⊕∞
n=0Mn is finitely generated, where Ra(A) =

⊕∞
n=0a

n.
(2) The filtration {Mn}n∈N is a-stable.

Proof. For each m we have that Km = ⊕mn=0Mn is an A-submodule of ⊕∞
n=0Mn.

Since M is a finitely generated A-module and A is noetherian, it follows from Lemma
(CHAINS 1.6) that all the A-modules Mn are finitely generated. Hence we have that→
Km is a finitely generated A-module. The elements of Km generate the Ra(A)-
submodule

Lm = M0 ⊕M1 ⊕ · · · ⊕Mm ⊕ aMm ⊕ a2Mm ⊕ · · ·
of ⊕∞

n=0Mn. Since Km is a finitely generated A-module we clearly have that Lm is
a finitely generated Ra(A)-module. We have that L0 ⊆ L1 ⊆ L2 ⊆ · · · and that
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∪∞
n=0Ln = ⊕∞

n=0Mn. Since Ra(A) is noetherian by Lemma (CHAINS 1.6) it follows→
from Proposition (?) that ⊕∞

n=0Mn is noetherian if and only if there is an m such→
that Lm = Lm+1 = · · · . However we clearly have that Lm = Lm+1 = · · · if and only
if Mm+n = anMm for n = 0, 1, . . . , that is, if and only if the filtration {Mn}n∈N is
a-stable.

(1.14) Theorem. (Artin-Rees) Let A be a noetherian ring and a an ideal in A.
Moreover let M be a finitely generated A-module and let {Mn}n∈N be an a-stable
filtration of M . For every submodule L of M we have that {L ∩ Mn}n∈N is an
a-stable filtration of L.

Proof. We have that a(L ∩Mn) ⊆ aLaMn ⊆ L ∩Mn+1. Hence the filtration {L ∩
Mn}n∈N of L is an a-filtration, and consequently ⊕∞

n=0(L∩Mn) is a Ra(A)-submodule
of ⊕∞

n=0Mn. Since the filtration {M}n∈N is a-stable it follows from Lemma (1.13) that→
⊕∞
n=0Mn is a finitely generated Ra(A)-module, and from Proposition (1.6) it follows→

that the ring Ra(A) is noetherian. Consequently it follows from Lemma (CHAINS
1.6) that ⊕∞

n=0(L ∩Mn) is a finitely generated Ra(A)-module. Using Lemma (1.13)→→
once more we see that the filtration {L ∩Mn}n∈N of L is a-stable.

(1.15) Theorem. (Krull) Let A be a noetherian ring and a an ideal of A. Moreover
letM be a finitely generated A-module. Then the submodule ∩∞

n=1a
nM ofM consists

of the elements x ∈M such that (1 + f)x = 0 for some f ∈ a.

Proof. It is clear that an element x ∈ M with the property that there is an f ∈ a

such that (1 + f)x = 0 satisfies the equations x = fx = f 2x = · · · . Hence we have
an inclusion x ∈ ∩∞

n=1a
nM .

To prove the opposite inclusion we let L = ∩∞
n=1a

nM . It follows from Theorem
(1.14) that {L ∩ anM}n∈N is an a-stable filtration of L. Hence it follows from→
Lemma (1.12) that we can find a positive integer m such that L ∩ am+nM ⊆ anL→
for n = 0, 1, . . . . In particular L ∩ am+1M ⊆ aL. Since L = ∩∞

n=1a
nM ⊆ anM for

n = 0, 1, . . . we obtain that L ⊆ L ∩ am+1M ⊆ aL. Hence we have that L = aL. It
follows from Theorem (MODULES 1.27) that there is an element f ∈ a such that→
(1 + f)L = 0.

(1.16) Corollary. Let A be a noetherian local ring with maximal ideal m. Then
∩∞
n=1m

n = 0.

Proof. It follows from the Theorem with a = m that there is an element f ∈ m such
that (1+ f)∩∞

n=1 mn = 0. However we observed in (RINGS 4.17) that 1+ f is a unit→
in A. Hence we have that ∩∞

n=1m
n = 0.

(1.17) Proposition. Let A be a noetherian ring and let a be an ideal in A. Moreover
let M be a finitely generated A-module, and let {Mn}n∈N be an a-stable filtration
of M .

(1) The ring Ga(A) = ⊕∞
n=0a

n/an+1 is noetherian.
(2) The Ga(A)-module ⊕∞

n=0Mn/Mn+1 is noetherian.
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Proof. (1) Since the ring A is noetherian we have that a is a finitely generated
A-module. For every set of generators f1, f2, . . . , fm of a we have that an/an+1

is generated as an A/a-module by the residue classes of the elements fi1fi2 · · · fin
where i1, i2, . . . , in are, not necessarily different, integers satisfying 1 ≤ ij ≤ m
for j = 1, 2, . . . ,m. Denote by g1, g2, . . . , gm the classes in a/a2 of the elements
f1, f2, . . . , fm. Then we clearly have that Ga(A) = (A/a)[g1, g2, . . . , gm], that is, the
A/a-algebra Ga(A) is generated by the elements g1, g2, . . . , gm. It follows from the
Hilbert Basis Theorem (CHAINS 2.10) that Ga(A) is noetherian.→

(2) It follows from Proposition (CHAINS 1.7) that M is noetherian. Consequently→
Mn is a noetherian A-module for all n. It follows that Mn/Mn+1 is a noetherian
A/a-module for n = 0, 1, . . . . Since the filtration {Mn}n∈N is a-stable it follows
from Lemma (1.12) that there is a positive integer m such that Mm+n ⊆ anMm→
for n = 0, 1, . . . . Hence the Ga(A)-module ⊕∞

n=0Mn/Mn+1 is generated by the el-
ements in ⊕mn=0Mn/Mn+1. Since each module Mn/Mn+1 is noetherian it follows
from Lemma (CHAINS 1.6) that ⊕mn=0Mn/Mn+1 is a finitely generated A/a-module,→
and each collection of generators of ⊕mn=0Mn/Mn+1 as a A/a-module will generate
⊕∞
n=0Mn/Mn+1 as a Ga(A)-module. It follows that ⊕∞

n=0Mn/Mn+1 is finitely gener-
ated as a Ga(A)-module, and consequently noetherian.

(1.18) Exercises.
1. Let A = ⊕∞

n=0An be a graded ring and let M = ⊕∞
n=0Mn be a graded A-modules.

A submodule L of M is graded if for every element x =
∑n

n=0 xn in L with xn ∈Mn

we have that xn ∈ L.

(1) Show that for every submodule L of M the A-module ⊕∞
n=0(L ∩ Mn) is a

graded submodule of M .
(2) Show that if L = ⊕∞

n=0Ln is a graded submodule of M , then Ln = L ∩Mn.
(3) Show that a submodule L of M is a graded submodule of M if and only if L

can be generated by homogeneous elements.
(4) Show that for every graded submodule L = ⊕∞

n=0Ln of M we have that M/L
is isomorphic to the graded module ⊕∞

n=0Mn/Ln.

2. Let A = ⊕∞
n=0An and B = ⊕∞

n=0 be graded rings. Moreover let ϕ : A → B be
a ring homomorphism such that ϕ(An) ⊆ Bn for all integers n. We say that ϕ is a
homomorphism of graded rings.

(1) Show that the kernel of ϕ is a graded ideal.
(2) Show that the image of ϕ is a graded ring.

3. Let A = ⊕∞
n=0 be a graded ring, and let M = ⊕∞

n=0 and N = ⊕∞
n=0 be graded

A-modules. Moreover let u : M → N be a homomorphism such that there is an
integer m satisfying u(Mn) ⊆ Nm+n for all integers n. We say that u is graded of

degree m.

(1) Show that the kernel of u is a graded submodule of M .
(2) Show that the image of u is a graded submodule of N .

4. Let S = ⊕∞
n=0Sn and S+ = ⊕∞

n=1Sn. Moreover let n0 be a positive integer and
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assume that we for every integer n ≥ n0 have a subgroup pn of Sn. Consider the
following three conditions

(a) Smpn ⊆ pm+n for m ≥ 0 and n ≥ n0.
(b) For m ≥ n0 and n ≥ n0, and for all elements f ∈ Sm and g ∈ Sn the relation

fg ∈ pm+n implies that either f ∈ pm or g ∈ pn.
(c) We have that pn 6= Sn for at least one integer n ≥ n0.

(1) Show that when p is a homogeneous prime ideal in S that does not contain
S+, and such that pn = p ∩ Sn for n ≥ n0, then the conditions (a), (b) and→→
(c) hold.→

(2) Assume that the conditions (a), (b) and (c) hold. It follows from (c) that→→→→
there is an f ∈ Sd \ pd for some d ≥ n0. Show that for m ≥ n0 we have

pm = {x ∈ Sm : fx ∈ pm+d}.

(3) Under the same assumptions as in part (2), we write→

pm = {x ∈ Sm : fx ∈ pm+d}

for all positive integers m. Show that p = ⊕∞
n=0pn is a prime ideal.

(4) Show that when (a), (b) and (c) hold then there is a unique homogeneous→→→
prime ideal p that does not contain S+ and such that pn = p ∩ Sn for all
n ≥ n0.

5. Let !!S = ⊕∞
n=0Sn be a graded ring. Moreover let !!Proj(S) be the homogeneousnn

prime ideals in S that do not contain S+ = ⊕∞
n=1Sn. For every homogeneous ideal

a in S we let !!V+(a) be the prime ideals in Proj(S) that contain a, and for everyn

homogeneous element f ∈ S+ we let !!D+(f) be the prime ideals in Proj(S) that don
not contain f .

(1) Show that the sets V+(a) for all homogeneous ideals a of S are the closed sets
of a topology on Proj(S). This topology we call the Zariski topology.

(2) Show that for every homogeneous element f ∈ S+ the set D+(f) is open in
the Zariski topology, and that the sets D+(f) for all homogeneous elements
f ∈ S+ form a basis for the topology.

(3) Let f ∈ Sd be a homogeneous element of S+. We denote by S(f) the elements

g/fn in the localization Sf of S in the multiplicatively closed set {1, f, f 2, . . .}
such that g ∈ Sdn. Show that S(f) is a ring.

(4) Show that there is a map of sets

ψf : D+(f) → Spec(S(f))

that sends a prime ideal to the set of all elements of the form g/fn ∈ S(f)

with g ∈ p ∩ Sdn.
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(5) Let q0 be a prime ideal in S(f). For every positive integer we let

pn = {x ∈ Sn : xd/fn ∈ q0}.

Show that p = ⊕∞
n=0pn is a prime ideal in S that does not contain S+.

(6) Show that the map ψf is a homeomorphism of topological spaces, that is, the
map ψf is continous and has an inverse that is also continous.

(7) Show that for all homogeneous elements f, g in S+ there is an inclusion of
open sets D+(fg) ⊆ D+(f) and a homomorphism ωfg,f : S(f) → S(fg) of
rings.

(8) Denote by ιfg,f : D+(fg) → D+(f) the continous map coming from the
inclusion D+(fg) ⊆ D+(f). Show that (aωfg,f)(ψfg) = (ψf )(ιfg,f).

(9) Define a sheaf of rings OX on X = Proj(S) such that for all homoge-
neous elements f, g in S+ there is an isomorphism of ringed spaces (ψf , θf ) :
(D+(f),OX |D+(f)) → (Spec(S(f)),OSpec(S(f))) such that (ψf , θf) restricted

to D+(fg) gives the map (ψfg, θfg).
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2. Hilbert polynomials.

(2.1) Definition. Let A be a ring. An additive function !λ = λA! on finitelyn
generated A-modules associates to every finitely generated A-module M an integer
λ(M) and satisfies the property:

For every exact sequence of finitely generated A-modules

0 →M ′ →M →M ′′ → 0

we have

λ(M) = λ(M ′) + λ(M ′′).

(2.2) Remark. let M ′ = (0) and thus M = M ′′. We see that λ((0)) = 0.

(2.3) Example. It follows from Proposition (CHAINS 1.15) that when A is an→
artinian ring the length is an additive function on finitely generated A-modules. In
particular the vector space dimension is an additive function on finite dimensional
vecor spaces.

(2.4) Remark. Let A = ⊕∞
n=0An be a graded ring that is finitely generated as

an A0-algebra, and let M = ⊕∞
n=0Mn be a finitely generated A-module. Then each

Mn is a finitely generated A0-module. In fact when we replace, if necessary, a set
of generators for the A0-algebra A, and a set of generators for the A-module M
by their homogeneous components, we see that the A0-algebra A can be generated
by a finite set f1, f2, . . . , fp of homogeneous elements of A, respectively that the A-
module M can be generated by a finite set x1, x2, . . . , xq of homogeneous elements
of M . If fi ∈ Ami

for i = 1, 2, . . . , p and xi ∈ Mni for i = 1, 2, . . . , q we clearly
have that Mn is generated, as an A0-module, by the elements fi1fi2 · · · firxj for all
collections of integers i1, i2, . . . , ir between 1 and p and and j between 1 and q, and
with mi1 +mi2 + · · ·+mir + nj = n.

In particular, it follows from Proposition (1.6) that for any noetherian graded ring→
A and finitely generated graded module M , the homogeneous part Mn is finitely
generated over A0 for all n.

(2.5) Definition. Let A = ⊕∞
n=0An be a graded ring that is finitely generated as

an A0-algebra, and let M = ⊕∞
n=0Mn be a finitely generated A-module. Moreover

let λ be an additive function on finitely generated A0-modules. The Poincaré series

of the A-module M is the power series!!n

Pλ(M, t) =
∞∑

n=0

λ(Mn)t
n

in the variable t with coefficients in Z.
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(2.6) Example. Let A = K[t1, t2, . . . , tn] be the polynomial ring in the variables
t1, t2, . . . , tn over a field K. Then A = ⊕∞

i=0Ai where Ai is the vector space of all ho-
mogeneous polynomials of degree n. Let λ(M) = dimK(M) for all finite dimensional

vector spaces M over K. Then Pλ(A, t) =
∑∞
i=0

(
i+n−1
n−1

)
ti = 1/(1 − t)n.

(2.7) Example. Let K[t1, t2] be the polynomial ring in the variables t1, t2 over a
field K. Moreover let A = K[t1, t2]/(t

2
1, t1t2) be the residue ring of the polynomial

ring K[t1, t2] modulo the ideal (t21, t1t2), and let u and v be the residue classes of t1,
respective t2 in A. Then u2 = 0 = uv and we have that A = K⊕ (Ku+Kv)⊕Kv2⊕
Kv3 ⊕ · · · . Hence Pλ(A, t) = 1 + 2t+ t2 + t3 + · · · = (1 + t− t2)/(1 − t).

(2.8) Example. Let K[t1, t2] be the polynomial ring in the variables t1, t2 over a
field K. Moreover let A = K[t1, t2]/(t

2
1 + t22) be the residue ring of the polynomial

ring K[t1, t2] modulo the ideal (t21 + t22), and let u and v be the residue classes of t1
respectively t2 in A. Then u2 + v2 = 0 and A = K ⊕ (Ku+Kv) ⊕ (Kuv +Kv2) ⊕
(Kuv2 +Kv3) ⊕ · · · . Hence Pλ(A, t) = 1 + 2t+ 2t2 + · · · = (1 + t)/(1 − t).

(2.9) Lemma. Let A = ⊕∞
n=0An be a noetherian graded ring and let M = ⊕nn=0Mn

be a finitely generated A-module. Moreover let λ be an additive function on finitely
generated A0-modules. For every homogeneous element f ∈ Am with m > 0 we have
an exact sequence of A-modules

0 → L→M
fM−−→M → N → 0 ((.)9.1)

where L and N are finitely generated (A/fA)-modules, and

(1 − tm)Pλ(M, t) = Pλ(N, t) − tmPλ(L, t). (2.9.2)

Proof. For each integer n ≥ −m we have an exact sequence

0 → Ln →Mn
fM−−→Mm+n → Nm+n → 0 (2.9.3)

where Ln and Nm+n are defined as the kernel, respectively the cokernel of the map
fM . Let L = ⊕∞

n=0Ln and N = ⊕∞
n=0Nn. Then L and N are A modules, and we

have an exact sequence (2.6.1). Since M is noetherian by Lemma (CHAINS 1.6) it→→
follows from Proposition (1.7) that L and N are noetherian A-modules. In particular→
it follows from Remark (2.4) that Ln and Nn are finitely generated A0-modules for→
all n. It follows from (2.9.3) that we have equations→

λ(Mm+n) − λ(Mn) = λ(Nm+n) − λ(Ln) for n = −m,−m + 1, . . . . (2.9.4)

Multiply both sides of (2.9.4) by tm+n for n = −m,−m + 1, . . . , and sum the right→
and left hand sides of the resulting equations. We obtain equation (2.9.2) of the→
Lemma.

Finally we note that fL = 0 and fN = 0. Hence L and N are in fact A/fA-
modules.
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(2.10) Theorem. (Hilbert-Serre) Let A be a noetherian graded ring, generated as
an A0-module by m homogeneous elements of positive degrees p1, p2, . . . , pm. More-
over let M be a finitely generated graded A-module, and λ an additive function on
finitely generated A0-modules. Then

Pλ(M, t) = f(t)/
m∏

i=1

(1 − tpi) (2.10.1)

in the ring Z[[t]] of power series in the variable t over the integers, where f(t) is a
polynomial in Z[t] and 1/(1 − tpi) = 1 + tpi + t2pi + · · · .
Proof. We prove the Theorem by induction on m. When m = 0 we have that A = A0,
and since M is finitely generated Mn = 0 for all sufficiently large n. Consequently
Pλ(M, t) is a polynomial when m = 0.

Assume that m > 0 and that the Theorem holds for m− 1. Let f1, f2, . . . , fm be
homogeneous elements of positive degrees p1, p2, . . . , pm respectively that generate A
as an A0-algebra. It follows from Lemma (2.9) with f = fm that→

(1 − tpm)Pλ(M, t) = Pλ(N, t) − tpmPλ(L, t) (2.10.2)

where L and N are (A/fmA)-modules. We have that the A0-algebra A/fmA =
A0[f1, f2, . . . , fm]/fmA is generated by the residue classes of f1, f2, . . . , fm−1. It

follows from the induction hypothesis that Pλ(N, t) = g(t)/
∏m−1
i=1 (1 − tpi) and

Pλ(L, t) = h(t)/
∏m−1
i=1 (1−tpi), where g(t) and h(t) are polynomials in Z[t]. Equation

(2.10.1) consequently follows from equation (2.10.2).→→
(2.11) Corollary. Let A be a noetherian graded ring that is finitely generated as
an A0-algebra by m elements of degree 1. Moreover let M be a finitely generated
graded A-module. Write

Pλ(M, t) = f(t)/(1− t)m = g(t)/(1− t)p

where 0 ≤ p ≤ m and g(t) is a polynomial in Z[t] with g(1) 6= 0. Then there is a
polynomial h(t) in Q[t] of degree p − 1 such that λ(Mn) = h(n) for all sufficiently
large n. Here we define the degree of the zero polynomial as −1.

Proof. When p = 0, that is, when (1 − t)m divides f(t) we have that Pλ(M, t) is a
polynomial. Consequently we have that λ(Mn) = 0 when n is larger than the degree
of Pλ(M, t). Hence the Corollary holds when (1 − t)m divides f(t).

Assume that 0 < p ≤ m. Write g(t) =
∑q
n=0 gnt

n with gn ∈ Z. Since 1/(1− t)p =∑∞
n=0

(
n+p−1
p−1

)
tn in Z[[t]], we have that

g(t)/(1− t)p =

∞∑

n=0

∑

i+j=n

gi

(
j + p− 1

p− 1

)
tn.
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Consequently λ(Mn) =
∑

i+j=n gi
(
j+p−1
p−1

)
=
∑q
i=0 gi

(
n−i+p−1
p−1

)
. We write

(
t
n

)
=

(1/n!)t(t− 1) · · · (t−n+1) in Q[t], and we let h(t) =
∑q
i=0 gi

(
t−i+p−1
p−1

)
. Then h(t) is

a polynomial of degree p− 1 because the coefficient of tp−1 is (1/(p− 1)!)
∑q
i=0 gi =

(1/(p−1)!)g(1) 6= 0. Moreover we have that λ(Mn) = h(n) when n ≥ q, and we have
proved the Corollary.

(2.12) Definition. Let A = ⊕∞
n=0An be a graded noetherian ring which is generated

as an A0-module by elements of degree 1. Moreover let M be a finitely generated
A-module, and let λ be an additive function on finitely generated A0-modules. The
polynomial !h(t)! in Q[t] such that h(n) = λ(Mn) for all sufficiently large n is calledn

the Hilbert polynomial of M with respect to λ. We denote by !!dλ(M) the degree ofn
the Hilbert polynomial. Here we define the degree of the zero polynomial as −1.

(2.13) Example. Let K[t1, t2, . . . , tn] be the polynomial ring in the variables
t1, t2, . . . , tn over a field K. We saw in Example (2.6) that the Hilbert polynomial→
h(t) is

(
t+n−1
n−1

)
= (1/(n− 1)!)(t+ n− 1)(t+ n− 2) · · · (t+ 1).

(2.14) Example. Let A = K[u, v] with u2 = 0 = uv be the ring of Example (2.7).→
Then the Hilbert polynomial h(t) is equal to 1.

(2.15) Example. Let A = K[u, v] with u2 + v2 = 0 be the ring of Example (2.8).→
Then the Hilbert polynomial h(t) is equal to 2.

(2.16) Lemma. Let A be a noetherian graded ring that is generated as an A0-
module by elements of degree 1. Moreover let M be a finitely generated A-module,
and let λ be an additive function on finitely generated A0-modules. For every homo-
geneous element f ∈ A of positive degree which is M -regular we have that

dλ(M) = dλ(M/fM) + 1.

Proof. Let f be homogeneous of degree m > 0. Since f is M -regular the map
fM : M → M is injective. Hence it follows from the exact sequence (2.9.1) that→
L = 0, and we obtain from equation (2.9.2) that→

(1 − tm)Pλ(M, t) = Pλ(M/fM, t).

Write Pλ(M, t) = g(t)/(1 − t)p and Pλ(M/fM, t) = h(t)/(1 − t)q where g(t) and
h(t) are polynomials in Z[t] with g(1) 6= 0 respectively h(1) 6= 0. Then (1 − tm)(1 −
t)qg(t) = (1 − t)ph(t). Since 1 − tm = (1 − t)(1 + t+ · · · + tm−1) and (1 + t+ · · · +
tm−1)(1) = m 6= 0 we have that p = q+1. That is, we have dλ(M) = dλ(M/fM)+1,
and we have proved the Lemma.

(2.17) Exercises.
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1. Let K[u, v] be the ring of polynomials in the independent variables u, v with
coefficients in a field K. Moreover, let S = K[u, v]/(u2, uvm) be the residue ring of
K[u, v] modulo the ideal (u2, uvm).

(1) Determine the polynomial g(t) in Z[t] and the non-negative integer p such
that

Pλ(S, t) = g(t)/(1− t)p

and g(1) 6= 0, when λ = dimK .
(2) Determine the Hilbert polynomial of S with respect to dimK .

2. Let K[u, v] be the ring of polynomials in the independent variables u, v with
coefficients in a field K. Let S = K[u, v]/(u2, vm) be the residue ring of K[u, v]
modulo the ideal (u2, vm).

(1) Determine the polynomial g(t) in Z[t] and the non-negative integer p such
that

Pλ(S, t) = g(t)/(1− t)p

and g(1) 6= 0, when λ = dimK .
(2) Determine the Hilbert polynomial of S with respect to dimK .

3. Let K[t1, t2, . . . , tn] be the ring of polynomials in the independent variables
t1, t2, . . . , tn over a field K. Moreover, let f(t1, t2, . . . , tn) be a polynomial of de-
gree d > 0, and let S = K[t1, t2, . . . , tn]/(f(t1, t2, . . . , tn)) be the residue ring of
K[t1, t2, . . . , tn] modulo the ideal (f(t1, t2, . . . , tn)) generated by f(t1, t2, . . . , tn).

(1) Determine the polynomial g(t) in Z[t] and the non-negative integer p such
that

Pλ(S, t) = g(t)/(1− t)p

and g(1) 6= 0, when λ = dimK .
(2) Determine the Hilbert polynomial of S with respect to dimK .

4. Let K[t0, t1, . . . , tn] be the ring of polynomials in the independent variables
t0, t1, . . . , tn with coefficients in a field K with infinitely many elements. For ev-
ery point b = (b0, b1, . . . , bn) in the cartesian product Kn+1 of the field K with itself
n+1 times, and for every element κ in K we write κb = (κb0, κb1, . . . , κbn). Moreover
for every collection of points a1, a2, . . . , am in Kn+1 we write

I(a1, a2, . . . , am) = {f ∈ K[t0, t1, . . . , tn] :

f(κai) = 0 for i = 1, 2, . . . ,m and all κ ∈ K}.

(1) Show that I(a1, a2, . . . , am) is a homogeneous ideal in K[t0, t1, . . . , tn].
(2) Show that

dimK(I(a1, a2, . . . , am)) ≥ max(0,

(
n+ d

d

)
−m).



182 Graded rings and dimension

(3) Show that for every non-empty collection !!P of homogeneous polynomials inn
K[t0, t1, . . . , tn] of positive degree the subset

V (P) = {b ∈ Kn+1 : f(b) = 0 for all f ∈ P}

of Kn+1 is different from Kn+1.
(4) Show that we can find points a1, a2, . . . , am in Kn+1 such that

dimK(I(a1, a2, . . . , am)) = max(0,

(
n+ d

d

)
−m).

(5) Let S = K[t0, t1, . . . , tn]/I(a1, a2, . . . , am). Determine the polynomial g(t) in
Z[t] and the non-zero integer p such that

Pλ(S, t) = g(t)/(1− t)p

and g(1) 6= 0, when λ = dimK .
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3. Dimension of local rings.

(3.1) Notation. Let Q[t] be the polynomial ring in the variable t over the rational
numbers. For each positive integer m we define a polynomial

(
t
m

)
by

(
t

m

)
= (1/m!)t(t− 1) · · · (t−m+ 1).

We let
(
t
0

)
= 1. The polynomial

(
t
m

)
has degree m and the coefficient of tm is 1/m!.

For all integers n we have that
(
t
m

)
(n) =

(
n
m

)
is an integer, so all the polynomials(

t
m

)
define a function Z → Z.

Define an operator ∆ on the collections of functions h : Z → Z by

∆h(t) = h(t+ 1) − h(t) for all f ∈ Q[t].

Then ∆(
(
t
m

)
) =

(
t

m−1

)
.

(3.2) Remark. The polynomials
(
t
0

)
,
(
t
1

)
, . . . ,

(
t
m

)
form a basis for the subspace of

the Q-vector space Q[t] consisting of polynomials of degree at most equal to m.

(3.3) Lemma. Let Q[t] be the polynomial ring in the variable t with coefficients in
Q.

(1) If f(t) ∈ Q[t] is a polynomial of degreem such that f(n) ∈ Z for all sufficiently
large n, there are integers n0, n1, . . . , nm such that

f(t) = n0

(
t

m

)
+ n1

(
t

m− 1

)
+ · · ·+ nm.

In particular we have that f(n) ∈ Z for all integers n.
(2) Let h : Z → Z be a function such that there is a polynomial g(t) ∈ Q[t] of

degree m − 1 with ∆h(n) = g(n) for all sufficiently large n. Then there is a
polynomial f(t) ∈ Q[t] of degree m such that h(n) = f(n) for all sufficiently
large n.

Proof. (1) We shall prove assertion (1) by induction on m. When m = 0 the assertion
clearly holds. Assume that assertion (1) holds for polynomials of degree m−1. Since
the polynomials

(
t
0

)
,
(
t
1

)
, . . . ,

(
t
m

)
form a basis for the vector space over Q consisting of

polynomials of degree at most m there are rational numbers n0, n1, . . . , nm such that
f(t) = n0

(
t
m

)
+ n1

(
t

m−1

)
+ · · ·+ nm. We shall show that the numbers n0, n1, . . . , nm

are integers. We have that ∆f(t) = n0

(
t

m−1

)
+ n1

(
t

m−2

)
+ · · · + nm−1. Since ∆f(t)

is of degree at most m − 1 and ∆f(n) = f(n+ 1) − f(n) is in Z for all sufficiently
large integers n it follows from the induction hypothesis that n0, n1, . . . , nm−1 are
integers. Since f(n) ∈ Z for some n, and

(
n
i

)
is in Z for i = 0, 1, . . . , it follows that

we also have nm ∈ Z.
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(2) It follows from assertion (1) that g(t) = n0

(
t

m−1

)
+ n1

(
t

m−2

)
+ · · · + nm−1 for

some integers n0, n1, . . . , nm−1. Let k(t) = n0

(
t
m

)
+ n1

(
t

m−1

)
+ · · ·+ nm−1

(
t
1

)
. Then

k(t) is of degree m and we have that ∆k(t) = g(t). Consequently there is an integer
p such that ∆(h − k)(n) = ∆h(n) − g(n) = g(n) − g(n) = 0 when n ≥ p. Hence
there is an integer nm such that h(n) − k(n) = h(p) − k(p) = nm when n ≥ p. Let
f(t) = k(t)+nm. Then f(t) is of degree m and we have that f(n) = k(n)+nm = h(n)
when n ≥ p, and we have proved assertion (2).

(3.4) Lemma. Let A be a noetherian ring and let M be an A-module. Moreover let
{Mn}n∈N be a filtration on M such that Mn/Mn+1 is an A-module of finite length
for n = 0, 1, . . . . Then

(1) M/Mn is of finite length for n = 0, 1, . . . .
(2) For n = 0, 1, . . . we have

`(Mn−1/Mn) = `(M/Mn) − `(M/Mn−1) and `(M/Mn) =

n∑

i=1

`(Mi−1/Mi).

(3) If there is a polynomial g(t) ∈ Q[t] of degree m − 1 such that g(n) =
`(Mn/Mn+1) for all sufficiently large integers n, then there is a polynomial
f(t) ∈ Q[t] of degree m such that f(n) = `(M/Mn) for all sufficiently large
n.

Proof. (1) For each n ≥ 1 we have an exact sequence→

0 →Mn−1/Mn →M/Mn →M/Mn−1 → 0. (3.4.1)

It follows from Proposition (CHAINS 1.15) by induction on n, starting withM0/M1 =→
M/M1, that each M/Mn is an A-module of finite length.

(2) The first equality of assertion (2) follows from the exact sequence (3.4.1) and→→→
Proposition (CHAINS 1.15), and the second equality follows from the first by induc-→
tion on n, starting with n = 1.

(3) Let h(n) = `(M/Mn) for n = 0, 1, . . . , and let h(n) = 0 for n < 0. It follows→
from assertion (2) that ∆h(n) = g(n) for all sufficiently large integers. Assertion (3)→→
consequently follows from assertion (2) of Lemma (3.3).→→
(3.5) Proposition. Let A be a noetherian local ring with maximal ideal m. More-
over let q be an m-primary ideal in A, and let M be a finitely generated A-module
with a q-stable filtration {Mn}n∈N. Then

(1) The A-module M/Mn has finite length.
(2) Let m be the least number of generators for q. Then there is a polynomial

g(t) ∈ Q[t] of degree at most m such that g(n) = `(M/Mn) for all sufficiently
large n.

(3) The degree deg(g) of the polynomial g(t) and the coefficient of tdeg(g) are
independent of the filtration {Mn}n∈N.
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Proof. (1) It follows from Remark (CHAINS 2.16) that the ring A/q is artinian.→
Moreover it follows from Proposition (1.17) that the ring Gq(A) = ⊕∞

n=0q
n/qn+1 is→

noetherian and that ⊕∞
n=0Mn/Mn+1 is a finitely generated Gq(A)-module. Hence it

follows from Remark (2.4) that the modules Mn/Mn+1 are finitely generated A/q-→
modules, and hence of finite length as A-modules. Consequently it follows from
Lemma (3.4) that the A-modules M/Mn are of finite length.→

(2) The classes in q/q2 of a set of generators of q generate the A/q-algebra Ga(A) =
⊕∞
n=0q

n/qn+1. Hence it follows from Corollary (2.11) that there is a polynomial f(t)→
in Q[t] of degree at most m − 1 such that f(n) = `(Mn/Mn+1) for all sufficiently
large n. It follows from Lemma (3.4) that there is a polynomial g(t) in Q[t] of degree→
at most m such that g(n) = `(M/Mn) for all sufficiently large n.

(3) Since {qnM}n∈N is a q-stable filtration we obtain a polynomial h(t) in Z[t]
such that h(n) = `(M/qnM) for all sufficiently large n. It follows from Lemma
(1.12) that there is a positive integer m such that Mp+n ⊆ qnM and qp+nM ⊆ Mn→
for n = 0, 1, . . . . Then

g(p+ n) ≥ h(n) and h(p+ n) ≥ g(n) (3.5.1)

for all sufficiently large n. It is easily seen that the equation (3.5.1) for all sufficiently→
large n implies that g(t) and h(t) have the same degree and that the coefficient of
tdeg(g) = tdeg(h) is the same. Hence all q-stable filtrations have polynomials with the
same degrees as h(t) and the same coefficients of tdeg(h) as h(t).

(3.6) Notation. Let A be a noetherian local ring with maximal ideal m. Moreover
let q be an m-primary ideal and M a finitely generated A-module. We denote by
χMq (t) the polynomial in Q[t] such that χMq (n) = `(M/qnM) for all sufficiently large

n. When M = A we write χq(n) = χAq (n).

(3.7) Proposition. Let A be a noetherian local ring and let q be an ideal that is
primary for the maximal ideal m of A. Then

deg(χq) = deg(χm).

Proof. It follows from Remark (CHAINS 2.9) that mm ⊆ q for some integer m. Hence→
we have that mmn ⊆ qn ⊆ mn. It follows that

χm(mn) ≥ χq(n) ≥ χm(n)

for all sufficiently large integers n. Since χm(t) and χq(t) are polynomials they must
have the same degree.

(3.8) Lemma. Let A be a noetherian local ring and let q be an ideal in A that is
primary for the maximal ideal m. Moreover let M be a finitely generated A-module
and f ∈ A an element that is regular for M . Then

deg(χ
(M/fM)
q ) ≤ deg(χMq ) − 1.
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Proof. Let L = fM and let N = M/fM . We have a surjective A-module homomor-
phism u : M → N/qnN that is the composite of the canonical maps uN : M → N
and uN/qnN : N → N/qnN . The kernel of u is fM + qnM = L + qnM . As

we saw in Lemma (MODULES 1.13) the homomorphism u induces a surjective→
homomorphism v : M/qnM → N/qnN . The kernel of v is (L + qnM)/qnM .
It follows from Lemma (MODULES 1.13) that we have a canonical isomorphism→
(L + qnM)/qnM = L/(L ∩ qnM). Let Ln

∼−→L ∩ qnM . We then have an exact
sequence of A-modules

0 → L/Ln →M/qnM
v−→ N/qnN → 0. (3.8.1)

It follows from Theorem (1.14) that the filtration {Ln}n∈N is q-stable. Hence it→
follows from Proposition (3.5) that there is a polynomial g(t) ∈ Q[t] such that g(n) =→
`(L/Ln) for sufficiently large integers n. It follows from the exact sequence (3.8.1)→
that we have

χNq (n) = χMq (n) − g(n) (3.8.2)

for all sufficiently large integers n. Since f is M -regular the map M → L that sends
x to fx is an isomorphism. Moreover, since {Ln}n∈N is stable and L is isomorphic
to M it follows from Proposition (?) that the polynomials χMq (t) and g(n) have the→
same degree and the same leading coefficient of tdeg(g). Hence it follows from (3.8.2)→
that deg(χNq ) < deg(χMq ) and we have proved the Lemma.

(3.9) Lemma. Let A be a local noetherian ring with maximal ideal m. Then

dim(A) ≤ deg(χm(t)).

In particular we have that dim(A) is finite.

Proof. We show the Lemma by induction on m = deg(χm(t)). If m = 0 then `(A/mn)
is constant for all sufficiently large integers n. Hence mn = mn+1 for all sufficiently
large integers n. It follows from Nakaymas Lemma (MODULES 1.27) that mn = 0→
for all sufficiently large integers n. Hence it follows from Remark (CHAINS 2.15)→
that A is artinian and hence from Proposition (CHAINS 2.17) dim(A) = 0.→

Assume that m > 0 and that the Lemma holds for m− 1. Let p0 ⊂ p1 ⊂ · · · ⊂ pp
be a chain of prime ideals in A. We shall show that p ≤ m. If p = 0 there is nothing
to prove, so we assume that p ≥ 1. Then there is an element f ∈ p1 \ p0. Let
B = A/p0 and let g be the residue class of f in B. Then g 6= 0, and since B is an
integral domain by Proposition (RINGS 4.13) we have that g is not a zero divisor in→
B. Consequently it follows from Lemma (3.8) that deg(χ

B/gB
m ) ≤ deg(χBm) − 1.→

Let MB be the maximal ideal of the local ring B and let m = mA. The canonical
map ϕB : A→ B induces a surjective homomorphism A/mn

A → B/mn
B for all natural

numbers n. Consequently `A(A/mn
A) ≥ `A(B/mn

B) for all natural numbers n and we
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clearly have that `A(B/mn
B) = `B(B/mn

B). It follows that deg(χAm) ≥ deg(χBm). We

have thus shown that deg(χ
B/gB
m ) ≤ deg(χAm) − 1 = m− 1.

It follows from the induction assumption that dim(B/gB) ≤ deg(χ
B/gB
m ), and thus

dim(B/gB) ≤ deg(χAm) − 1 = m− 1. (3.9.1)

Let ϕ : A→ B/gB be the composite map of the surjection A→ B with the canonical
map ϕB/gB : B → B/gB. The image of the chain p1 ⊂ p2 ⊂ · · · ⊂ pp by ϕ is a
chain of length p− 1 in B/gB. Consequently p− 1 ≤ dim(B/gB). Together with the
inequality (3.9.1) we obtain that p ≤ m. Hence dim(A) ≤ deg(χm(t)) as we wanted→
to prove.

(3.10) Proposition. Let A be a noetherian local ring with maximal ideal m. Then
there is an m-primary ideal generated by dim(A) elements.

Proof. Let m = dim(A). We shall construct elements f1, f2, . . . , fm such that every
prime ideal that contains the ideal (f1, f2, . . . , fn) =

∑n
i=1Afi is of height at least

equal to n for n = 0, 1, . . . ,m. The construction is performed by induction on n.
When n = 0 there is nothing to prove. Let n− 1 < m, and assume that we have con-
structed f1, f2, . . . , fn−1 such that every prime ideal that contains (f1, f2, . . . , fn−1)
has height at least equal to n−1. If all the prime ideals that contain (f1, f2, . . . , fn−1)
have height at least equal to n we can take fn to be any element in (f1, f2, . . . , fn−1).
We therefore assume that there is a least one prime ideal of height n − 1 that con-
tains (f1, f2, . . . , fn−1). It follows from Remark (CHAINS 2.8) applied to the ring→
A/(f1, f2, . . . , fn−1) that there are finitely many prime ideals that are minimal among
those containing (f1, f2, . . . , fn−1). Let p1, p2, . . . , pp be those of the minimal prime
ideals containing (f1, f2, . . . , fn−1) that are of height n− 1.

Since ht(pi) = n− 1 < n ≤ m = dim(A), and m is the height of the maximal ideal
m we have that all the prime ideals pi are different from m. It therefore follows from
Proposition (RINGS 4.22) that m 6= ∪pi=1pi. Choose fn ∈ m \ ∪pi=1pi, and let q be a→
prime ideal that contains the ideal (f1, f2, . . . , fn). Then q contains a prime ideal p

that is minimal among the prime ideals that contain (f1, f2 . . . , fn−1).
If p = pi for some i we have that q ⊃ p because fn ∈ q \ p. Hence we have that

ht(q) > ht(p) = ht(pi) = n− 1, and thus that ht(q) ≥ n.
If p 6= pi for all i we have that ht(p) ≥ n since p1, p2, . . . , pp are all the prime

ideals of height n− 1 among the minimal ideals containing (f1, f2, . . . , fn−1). Hence
ht(q) ≥ ht(p) ≥ n. We consequently have constructed elements f1, f2, . . . , fn for
n = 1, 2, . . . ,m such that all the prime ideals that contain (f1, f2, . . . , fn) have heigth
at least equal to n.

It remains to prove that (f1, f2, . . . , fm) is an m-primary ideal. Every prime ideal
containing (f1, f2, . . . , fm) have height at least equal to m = dim(A), and since
m = ht(m) we have that p = m. Hence m is the only prime ideal that contains
(f1, f2, . . . , fm), and consequently m is the radical of (f1, f2, . . . , fm). Hence, as we
saw in Example (MODULES 4.3), the ideal (f1, f2, . . . , fm) is m-primary.→
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(3.11) Lemma. Let A be a local noetherian ring with maximal ideal m. Moreover
let f1, f2, . . . , fn be elements in m. We have that the elements f1, f2, . . . , fn generate
the ideal m if and only if their classes in m/m2 generate the A/m-vector space m/m2.

In particular the least number of generators of m is equal to dimA/m(m/m2).

Proof. It is clear that when f1, f2, . . . , fn generate m, then their residue classes gen-
erate m/m2 as a A/m-vector space.

Conversely we have that when the residue classes of f1, f2, . . . , fn generate the
A/m-vector space m/m2 we have that (f1, f2, . . . , fn) + m2 = m. It follows from
Theorem (MODULES 1.27)(3) with L = (f1, f2, . . . , fn) and a = m that then→
(f1, f2, . . . , fn) = m.

(3.12) Theorem. Let A be a noetherian local ring with maximal ideal m. The
following numbers are equal:

(1) The dimension dim(A) of A.
(2) The degree deg(χm(t)) of the polynomial χm(t).
(3) The least number of generators of an m-primary ideal.

Proof. Let m be the least number of generators of an m-primary ideal. It follows from
Proposition (3.5)(2) that deg(χq(t)) ≤ m. Hence it follows from Proposition (3.7)→→
that deg(χm(t)) ≤ m. The inequality dim(A) ≤ deg(χm(t)) follows from Lemma
(3.9). Finally the inequality m ≤ dim(A) follows from Proposition (3.10). Hence→→
dim(A) ≤ dim(χm(t)) ≤ m ≤ dim(A), and we have proved the Theorem.

(3.13) Corollary. Let A be a noetherian local ring with maximal ideal m. Then

dim(A) ≤ dimA/m(m/m2)

where dimA/m(m/m2) is the dimension of the vector space m/m2 over the field A/m.

Proof. The Corollary follows immediately from Lemma (3.11) and the Theorem.→
(3.14) Corollary. Let A be a noetherian ring and let f1, f2, . . . , fm be elements
of A. Then every prime ideal that is minimal among the associated ideals of the
A-module A/(f1, f2, . . . , fm) is of height at most equal to m.

In particular we have that if f is neither a zero divisor nor a unit, then every prime
ideal that is minimal among the prime ideals containing (f) = Af has height 1

Proof. It follows from Proposition (CHAINS 3.3) that every prime ideal of A con-→
taining (f1, f2, . . . , fm) contains an associated prime ideal of B = A/(f1, f2, . . . , fm).
In particular the ideals that are minimal among those that contain (f1, f2, . . . , fm)
are associated ideals of B. It follows from Remark (?) that there is only a finite→
number of associated ideals of B that are minimal among the associated ideals of B.

Let p = Ann(g) with g ∈ B be a prime ideal of A that is minimal among the
associated prime ideals of B. It follows from Proposition (MODULES 3.11) that pAp→
is minimal among the prime ideals that contain (f1, f2, . . . , fm)Ap and thus the only
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prime ideal in Ap containing (f1, f2, . . . , fm)Ap. Hence it follows from the Theorem
that ht(pAp) = dim(Ap) ≤ m. We obtain that ht(p) = ht(pAp) ≤ m. Hence we have
proved the first part of the Corollary.

To prove the last part we use the above observation that the minimal prime ideals
p in A that contain (f) are associated to A/(f). Hence it follows from the first part
that they have height at most equal to 1. If ht(p) = 0 we have that dim(Ap) = 0.
It follows from Proposition (CHAINS 2.7) that Ap is noetherian and hence it follows→
from Theorem (CHAINS 2.17) that it is artinian. Then we have that fm = 0 in Ap→
for some positive integer m, and thus sfm = 0 in A for some s /∈ p. Consequently f
is a zero divisor contrary to the assumptions of the Corollary. We have proved the
last part of the Corollary.

(3.15) Corollary. Let A be a noetherian local ring and let f ∈ m be a regular
element of A. Then

dim(A/Af) = dim(A) − 1.

Proof. It follows from the Theorem, from Lemma (3.8), and from Proposition (3.7)→→
that we have an inequality dim(A/fA) ≤ dim(A) − 1.

To prove the opposite inequality we observe that it follows from Proposition (3.10)→
that, with dim(A/fA) = m − 1, we can find elements f1, f2, . . . , fm−1 in A whose
images by the canonical map ϕA/fA : A→ A/fA generate an (m/Af)-primary ideal
in A/Af . It is clear that the ideal (f1, f2, . . . , fm−1, f) is m-primary. Hence it follows
from the Theorem that dim(A) ≥ m. Hence dim(A)− 1 ≥ m− 1 = dim(A/fA), and
we have proved that dim(A/fA) = dim(A) − 1.

(3.16) Definition. Let A be a local noetherian ring with maximal ideal m. A
parameter system for A is a collection of dim(A) elements that generate an m-primary
ideal.

(3.17) Remark. Let A be a ring and let f1, f2, . . . , fm withm = dim(A) be elements
of A. Write q = (f1, f2, . . . , fm) =

∑m
n=1Afn. We obtain a map

ϕ : (A/q)[t1, t2, . . . , tm] → Gq(A) = ⊕∞
n=0q

n/qn+1 (3.17.1)

from the polynomial ring in the varables t1, t2, . . . , tm over A/q to the graded ring
Gq(A) by sending the variable ti to the class in q/q2 of fi for i = 1, 2, . . . ,m. It is
clear that the map ϕ is a surjective map of (A/q)-algebras.

(3.18) Lemma. Let A be a local noetherian ring with maximal ideal m. Moreover
let f1, f2, . . . , fm be a parameter system for A and let q = (f1, f2, . . . , fm). When
f is a homogeneous element in the polynomial ring A[t1, t2, . . . , tm] in the variables
t1, t2, . . . , tm over A which is in the kernel of the map (3.17.1)→

ϕ : (A/q)[t1, t2, . . . , tm] → Gq(A)
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then f has coefficients in m.

Proof. Assume that f has a coefficient that is not in m. It follows from Example
(RINGS 2.16) that f is not a zero divisor in (A/q)[t1, t2, . . . , tm]. We obtain from→
Lemma (2.16) that d`((A/q)[t1, t2, . . . , tm]/(f)) = d`((A/q)[t1, t2, . . . , tm]) − 1. As→
we saw in Example (2.13) we have that d`((A/q)[t1, t2, . . . , tm]) = m − 1. Since→
f is in the kernel of the surjection ϕ we have that ϕ induces a surjective map
(A/q)[t1, t2, . . . , tm]/(f) → Gq(A) of graded (A/q)-algebras. Hence we have that
d`(Gq(A)) ≤ d`((A/q)[t1, t2, . . . , tm]/(f)) = m − 2. However it follows from Lemma
(3.4)(3) and Theorem (3.12) that d`(Gq(A)) = deg(χq(A))−1 = dim(A)−1 = m−1.→→
This contradicts the assumption that f has a coefficient that is not contained in m,
and we have proved the Lemma.

(3.19) Theorem. Let A be a noetherian local ring with maximal ideal m and let
κ = A/m be the residue field. The following conditions are equivalent:

(1) There are generators f1, f2, . . . , fm of m with m = dim(A) such that the
homomorphism (3.17.1)→

ϕ : κ[t1, t2, . . . , tm] → Gm(A)

is an isomorphism.
(2) We have an equality dim(A) = dimκ(m/m2).
(3) The maximal ideal m can be generated by dim(A) elements.

When the conditions hold we have that condition (1) holds for all families of→
generators for m with dim(A) elements.

Proof. (1) ⇒ (2) when ϕ is an isomorphism the κ-vector space κt1+κt2+· · ·+κtm is
isomorphc to the κ-vector space m/m2. It follows that dimκ(m/m2) = m = dim(A).

(2) ⇒ (3) Let g1, g2, . . . , gm with m = dim(A) be elements of m whose residue
classes in m/m2 form an κ-basis. Then it follows from Lemma (3.11) that we have→
(g1, g2, . . . , gm) = m.

(3) ⇒ (1) When g1, g2, . . . , gm are generators for m with m = dim(A) we have that
the homomorphism ϕ : κ[t1, t2, . . . , tm] → Gm(A) of (3.17.1) defined by g1, g2, . . . , gm→
is surjective. It follows from Lemma (3.18) that it is also injective.→

The last part of the Theorem was proved in the above three steps.

(3.20) Definition. A local noetherian ring A that satisfies the three conditions of
Theorem (3.20) is called a regular local ring.→
(3.21) Proposition. Let A be a local regular ring. Then A is an integral domain.

Proof. Let f, g be non zero elements in A. It follows from Corollary (1.16) that→
∩∞
n=0m

n = 0. Consequently we can find natural numbers p, q such that f ∈ mp \
mp+1 and g ∈ mq \ mq+1. It follows from Theorem (3.19)(1) that Gm(A) is an→
integral domain. Hence the product in Gm(A) of the residue classes of f in mp/mp+1,
respectively g in mq/mq+1 is not zero. That is, the residue class of fg in mp+q/mp+q+1

is not zero. Hence fg /∈ mp+q+1, and we have, in particular, that fg 6= 0.
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(3.22) Theorem. Let A be a local noetherian ring with maximal ideal m.

(1) If A is a regular local ring, then every family of generators f1, f2, . . . , fm of
m with m = dim(A) is an A-regular sequence, and the ring A/(f1, f2, . . . , fn)
is regular of dimension dim(A) − n for n = 0, 1, . . . ,m.

(2) If m is generated by a regular A-sequence we have that A is a regular local
ring.

Proof. (1) We prove by induction on n that the ring A/(f1, f2, . . . , fn) is regular of
dimension dim(A) − n. This is trivial when n = 0. Assume that it holds for n − 1.
Since f1, f2, . . . , fm is a family of generators for m with the least number of members
we have that the classes of fn, fn+1, . . . , fm in A/(f1, f2, . . . , fn−1) are generators
with the least number of elements for the maximal ideal of A/(f1, f2, . . . , fn). In
particular we have that fn is not zero in A/(f1, f2, . . . , fn−1).

It follows from the induction hypothesis that A/(f1, f2, . . . , fn−1) is regular of
dimension dim(A) − n + 1, and hence an integral domain by Proposition (3.22).→
Then the residue class of fn in A/(f1, f2, . . . , fn−1) is not a zero divisor, and it follows
from Corollary (3.15) that dim(A/(f1, f2, . . . , fn)) = dim(A/(f1, f2, . . . , fn−1))−1 =→
dim(A) − n. Since the maximal ideal of A/(f1, f2, . . . , fn) can be generated by the
residue classes of the dim(A)−n = m−n elements fn+1, fn+2, . . . , fm it follows from
Theorem (3.20) that A/(f1, f2, . . . , fn) is regular. Hence we have proved assertion→
(1).

(2) Assume that g1, g2, . . . , gn is an A-regular sequence that generates m. It fol-
lows from Corollary (3.15) by induction on p that A/(g1, g2, . . . , gp) is of dimension→
dim(A) − p for p = 0, 1, . . . , n. Consequently we have that dim(A) ≥ n. It follows
from Theorem (3.12) that m can not be generated by fewer than dim(A) elements.→
Hence n ≥ dim(A) and we have that dim(A) = n. Since g1, g2, . . . , gn is a set of
generators of m it follows from Theorem (3.19) that A is a regular local ring.→
(3.23) Exercises.
1. Let K be a field and let K[t1, t2] be the polynomial ring in the independent
variables t1, t2 with coefficients in the field K. Denote by u and v the residue classes
of t1, respectively t2, in the residue ring A = K[t1, t2]/(t1 + t2)

m.

(1) Determine the dimension of the local ring A(u,v).
(2) Find a minimal set of generators of an (u, v)A(u,v)-primary ideal.

2. Let K be a field and let K[t1, t2] be the polynomial ring in the independent
variables t1, t2 with coefficients in the field K. Denote by u and v the residue classes
of t1, respectively t2, in ther residue ring A = K[t1, t2]/(t

2
1, t1t

m
2 ).

(1) Determine the dimension of the local ring A(u,v).
(2) Find a minimal set of generators of an (u, v)A(u,v)-primary ideal.

3. Let K be a field and let K[t1, t2] be the polynomial ring in the independent
variables t1, t2 with coefficients in the field K. Denote by u and v the residue classes
of t1, respectively t2, in the residue ring A = K[t1, t2]/(t

2
1, t

m
2 ).

(1) Determine the dimension of the local ring A(u,v).
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(2) Find a minimal set of generators of an (u, v)A(u,v)-primary ideal.

4. Let K be field and let K[t1, t2, . . . ] be the ring of polynomials in the independent
variables t1, t2, . . . with coefficients in K. For each positive integer n write pn =
(t2n−1 , t2n−1+1, . . . , t2n−1), and let S = K[t1, t2, . . . ] \ ∪∞

n=0pn.

(1) Show that pn is a prime ideal.
(2) Show that S is a multiplicatively closed set.
(3) Show that S−1A is noetherian. In order to prove this you can use that a ring

A is noetherian if every non-zero element is contained in a finite number of
maximal ideals only, and if Am is noetherian for all maximal ideals m of A.
To prove the latter statement you can proceed as follows:
(a) Let a be a non-zero ideal of A, and let m1,m2, . . . ,mr be the maxi-

mal ideals containing a. Choose an element x0 of a. We denote by
m1,m2, . . . ,mr,mr+1, . . . ,ms be the maximal ideals containing x0. Show
that for i = r+1, r+2, . . . s we have that mi is not contained in ∪rj=1mj .

(b) With the notation as in part (a). Choose for i = r + 1, r + 2, . . . , s an→
element xi in mi \ ∪rj=1mj . Show that aAm = (x0, x1, . . . , xs)Am = Am

for all maximal ideals of A that are not among the ideals m1,m2, . . . ,mr.
(c) Choose elements xs+1, xs+2, . . . , xt whose images in Ami generate aAmi

for i = 0, 1, . . . , s. With the notation as in part (a) and (b), let b =→→
(x0, x1, . . . , xt). Show that b = a.

(d) Show that it follows from (a), (b) and (c) that A is noetherian.→→→
(4) Determine the height of pnS

−1A.
(5) Determine the dimension of S−1A.

5. Let A be a ring and let p be a prime ideal. Moreover let κ(p) = Ap/pAp.

(1) Let q be a prime ideal in the polynomial ring A[t] in the variable t over A
such that p = q ∩ A. Show that qAp[t] is a prime ideal in Ap[t].

(2) Show that the map that sends q to the image of qAp[t] by the residue map
Ap[t] → (Ap/pAp)[t] = κ(p)[t] gives a bijection between prime ideals q in A[t]
such that p = q ∩ A, and prime ideals in κ(p)[t].

(3) Show that if q ⊂ q′ are prime ideals in A[t] such that p = q∩A = q′∩A, then
we have q = pA[t].

6. Let A be a ring and let A[t] be the ring of polynomials in the variable t with
coefficients in A.

(1) Show that for every ideal a in A we have that aA[t] ∩A = a.
(2) Show that for every prime ideal p in A we have that pA[t] is a prime ideal in

A[t].
(3) Show that dim(A) + 1 ≤ dim(A[t]).
(4) Use Exercise (5) to show that→

dim(A[t]) ≤ 1 + 2 dim(A).
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7. Let A be a noetherian ring and let p be a prime ideal.

(1) Show that ht(pA[t]) ≥ ht(p).
(2) Let m = ht(p). Show that there are elements f1, f2, . . . , fm in p such that the

ideal (f1, f2, . . . , fm)Ap is pAp-primary.
(3) Show that p is minimal among the prime ideals in A that contain the ideal

a = (f1, f2, . . . , fm).
(4) Show that pA[t] is minimal among the prime ideals in A[t] that contain aA[t].
(5) Show that ht(pA[t]) ≤ ht(p) = m.
(6) Let q0 ⊂ q1 ⊂ · · · ⊂ qr be prime ideals in A[t], and let pi = qi ∩ A for

i = 0, 1, . . . , r. Show that ht(ps) ≥ s.
(7) Assume that we have proper inclusions ps+1 ⊂ ps+2 ⊂ · · · ⊂ pr, and that

ps = ps+1. Show that r − s− 1 + ht(ps) ≤ dim(A).
(8) Show that

dim(A[t]) = dim(A) + 1.

8. Let K be a field an let K[u, v] be the polynomial ring in the independent variables
u, v with coefficients inK. Let A be the localization of the ringK[u, v] in the maximal
ideal (u, v). Moreover let B be the localization of the subring K[u, v, v/u] of the ring
of fractions of K[u, v] in the multiplicatively closed set K[u, v] \ (u, v). Denote by m

the maximal ideal of A.

(1) Show that (u, v) = (u, v, v/u)B ∩ A.
(2) Show that htA(m) = 2.
(3) Show that htB((u, v, v/u)B) = 2.
(4) Show that dim(B/mB) = 1, and in particular that the strict inequality

htB((u, v, v/u)B) < htA(mA) + dim(B/mB)

holds.
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Flatness

1. Flatness.

(1.1) Setup. Given a ring A and an A–module M . For each prime ideal P of A
we write κ(P ) = AP /PAP . Let E be a free A–module of rank r+ 1 and e0, . . . , er a
basis of E. Denote by R = SymA(E) the symmetric algebra of E over A and write
P(E) = Proj(R) for the r–dimensional projective space over SpecA.

The particular quotient A[x]/(x2) we denote by A[ε] where ε is the class of the
variable x over A. Moreover we let M [ε] = A[ε] ⊗AM .

(1.2) Definition. Given an A–module M . The module M is flat over A if every
short exact sequence

0 → N ′ → N → N ′′ → 0

gives rise to a short exact sequence

0 →M ⊗A N ′ →M ⊗A N →M ⊗A N ′′ → 0.

(1.3) Definition. Given a morphism f :X → S of schemes and an OX–module
F . We say that F is flat over S if, for every point x of X, we have that Fx is a
flat OS,f(x)–module, where the module structure comes from the map f−1 OS,f(x) →
OX,x, or equivalently from the composite map OS,f(x) → (f∗OX)f(x) → OX,x. The
morphism f is flat if OX is flat over S.

When f is the identity we say that F is a flat OS–module.

(1.4) Remark. Flatness has the following fundamental properties:

(1) (Long exact sequences) We can break long exact sequences into short exact
sequences. Hence M is flat over A if and only if every exact sequence

· · · → N ′ → N → N ′′ → · · ·

of A–modules gives rise to an exact sequence

· · · →M ⊗A N ′ → N ⊗A N →M ⊗A N ′′ → · · · .

(2) (Left exactness) Since the tensor product is right exact ([?], (2.18)) we have→
that M is flat over A if every injective map N ′ → N of A–modules gives rise
to an injective map M ⊗A N ′ →M ⊗A N ′′.

195
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(3) (Localization) Let S be a multiplicatively closed subset of A. It follows from
the definition of localization that the localization S−1A of A in S, that S−1A
is a flat A–module.

(4) (Base change) Given a flat A–module N , and let B be an A–algebra. Then
B ⊗A N is a flat B–module. Indeed, for every B–module P we have an
isomorphism P ⊗B (B ⊗A N) ∼= P ⊗A N .

(5) (Direct sums) For every set (Ni)i∈I of A–modules and every A–module P we
have an isomorphism P ⊗A (⊕i∈INi) ∼= ⊕i∈I(P ⊗A Ni). Hence ⊕i∈INi is
exact if and only if it is exact in every factor Ni. We conclude that ⊕i∈INi
is flat over A if and only if each summand Ni is flat over A. It follows in
particular that every free A–module is flat. Moreover, projective A–modules
are flat because they are direct summands of free modules.

(1.5) Lemma. Given an exact sequence

0 →M → N → F → 0

of A–modules, where F is flat. Then the sequence

0 → P ⊗AM → P ⊗A N → P ⊗A F → 0

is exact for all A–modules P .

Proof. Write P as a quotient of a free A–module L,

0 → K → L→ P → 0.

We obtain a commutative diagram

0
y

K ⊗AM −−−−→ K ⊗A N −−−−→ K ⊗A Fy
y

y

0 −−−−→ L⊗AM −−−−→ L⊗A N −−−−→ L⊗A Fy
y

P ⊗AM −−−−→ P ⊗A Ny

0

where the upper right vertical map is injective because F is flat, and the middle left
horizontal map is injective because L is free. A diagram chase gives that P ⊗AM →
P ⊗A N is injective.
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(1.6) Proposition. Given an exact sequence

0 → F ′ → F → F ′′ → 0

of A–modules with F ′′ flat. Then F is flat if and only if F ′ is flat.

Proof. Given an injective map M ′ →M . We obtain a commutative diagram

0
y

0 −−−−→ M ′ ⊗A F ′ −−−−→ M ′ ⊗A F −−−−→ M ′ ⊗A F ′′ −−−−→ 0
y

y
y

0 −−−−→ M ⊗A F ′ −−−−→ M ⊗A F −−−−→ M ⊗A F ′′ −−−−→ 0

.

The rows are exact to the left by Lemma (1.5), and we have injectivity of the top→
vertical map since F ′′ is flat. The Proposition follows from a diagram chase.

(1.7) Lemma. Given an A–module M such that the map

I ⊗AM → IM

is an isomorphism for all ideals I in A. For every free A–module F and every injective
map K → F of A–modules we have that

K ⊗AM → F ⊗AM
is injective.

Proof. Since every element in K⊗AM is mapped into F ′⊗AM where F ′ is a finitely
generated free submodule of F we can assume that F is finitely generated.

When the rank of F is 1 the Lemma follows from the assumption. We prove the
Lemma by induction on the rank r of F . We have an exact sequence 0 → F1 → F →
A → 0, where F1 is a free rank r − 1 module. Let K1 = K ∩ F1 and let K2 be the
image of K in A. We obtain a diagram

0 0
y

y

K1 ⊗AM −−−−→ K ⊗AM −−−−→ K2 ⊗AM −−−−→ 0
y

y
y

0 −−−−→ F1 ⊗AM −−−−→ F ⊗AM −−−−→ A⊗AM

.

where the right and left top vertical maps are injective by the induction assumption
and it follows from Lemma (1.5) that the lower left map is injective because A is→
free. A diagram chase proves that the middle vertical map is injective.
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(1.8) Proposition. An A–module M is flat if and only if the map

I ⊗AM → IM

is an isomorphism for all finitely generated ideals I of A.

Proof. If M is flat the tensor product I ⊗A M → M of the map I → A is injective
so I ⊗AM → IM is an isomorphism.

Conversely, we can assume that I ⊗AM → IM is an isomorphism for all ideals I
of A. Indeed, every element of I ⊗AM is contained in J ⊗AM , where J is a finitely
generated ideal, and if J ⊗AM →M is injective and the element is not zero then it
is not mapped to zero by I ⊗AM →M .

Let N ′ → N be an injective map and write N as a quotient 0 → K → F → N → 0
of a free A–module F . Let F ′ be the inverse image of N ′ in F . Then we have an
exact sequence 0 → K → F ′ → N ′ → 0, and we obtain a commutative diagram

0
y

K ⊗AM −−−−→ F ′ ⊗AM −−−−→ N ′ ⊗AM −−−−→ 0
y

y
y

K ⊗AM −−−−→ F ⊗AM −−−−→ N ⊗AM

.

It follows from Lemma (1.7) that the top vertical map is injective. A diagram chase→
shows that the right vertical map is injective. Consequently M is flat over A.

(1.9) Remark. It follows from Proposition (1.8) that a module over a principal→
ideal domain is flat if and only if it does not have torsion.

(1.10) Lemma. Given a map ϕ:A → B of rings and let N be a B–module. Then
N is flat over A if and only if NQ is flat over AP for all prime ideals P in A and Q
in B such that ϕ−1(Q) = P .

Proof. Assume that N is flat over A. Since BQ is flat over B the functor that
sends an AP –module F to BQ ⊗B (N ⊗A F ) is exact. However BQ ⊗B (N ⊗A F ) =
NQ ⊗A F = NQ ⊗AP F . Consequently the functor that sends the AP –module F to
the AP –module NQ ⊗AP F is exact, that is, the AP –module NQ is flat.

Conversely, assume that NQ is a flat AP module for all prime ideals Q in B
with P = ϕ−1(Q). The functor that sends an A–module F to the AP –module FP
is exact by Note (1.4(3)). Consequently the functor that sends the A–module F→
to the BQ–module NQ ⊗AP FP is exact. However, we have that NQ ⊗AP FP =
NQ ⊗AP (AP ⊗A F ) = NQ ⊗A F . Hence the functor that sends an A–module F to
NQ⊗AF is exact. However, the functor that sends an A–module F to the B–module
N ⊗A F is exact if and only if the functor that sends the A–module F to the BQ–
module NQ ⊗A F is exact for all prime ideal Q of B. We thus have that N is a flat
A–module.
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(1.11) Note. Given a morphism f :X → S of schemes and a quasi–coherent OX–
module F . It follows from Lemma (1.10) that F is flat over SpecA if and only if→
F(U) is a flat A–module for all open affine subsets U of X.

In particular, if F is flat over SpecA, and U0, . . . , Ur is an open affine covering of
X, the module F(Ui0 ∩ · · · ∩ Uip) is flat over A for all 0 ≤ i0 < · · · < ip ≤ r, and FU

is a complex of flat A–modules.

(1.12) Lemma. Given a regular ([A], (Theorem 11.22)) one dimensional ring A and→
a homomorphism ϕ:A → B into a noetherian ring B. Then B is flat over A if and
only if ϕ−1(Q) = 0 for all associated prime ideals Q in B.

In particular, when B is reduced, we have that B is flat over A if and only if
ϕ−1(Q) = 0 for all minimal primes Q of B.

Proof. Assume that B is flat over A and let Q be a prime ideal in B. If P = ϕ−1(Q)
is maximal we have that AP is a discrete valutation ring ([A] (Proposition 9.2 and
Lemma 11.23)). Let t ∈ PAP be a generator for the maximal ideal. Since t is not a→
zero divisor in AP and BQ is a flat AP –module it follows that t is not a zero divisor
in BQ. Consequently Q is not an associated prime in B.

Conversely, assume that ϕ−1(Q) is zero for all associated primes Q of B. It follows
from Lemma (1.10) that we must prove that BR is flat over Aϕ−1(R) for all prime→
ideals R in B. If ϕ−1(R) = 0 we have that Aϕ−1(R) is a field and consequently

that BR is flat. On the other hand, if P = ϕ−1(R) is a maximal ideal we choose
a t ∈ ϕ−1(R) that generates the ideal PAP . Since AP is a principal ideal domain
it follows from Remark (1.9) that it suffices to show that BR is a torsion free AP –→
module. Since all elements of AP can be written as a power of t times a unit, this
means that it suffices to prove that t is not a zero divisor in BR. However, if t were
a zero divisor in BR it would be contained in an associated prime ideal Q of B since
B is noetherian. This is impossible because t 6= 0 and, by assumption, ϕ−1(Q) = 0.
Hence t is not zero divisor and we have proved the first part of the Proposition.

The last part of the Proposition follows since in a reduced ring the associated
primes are the minimal primes. Indeed, on the one hand every prime ideal contains an
associated prime so that the minimal primes are associated. Conversely, let Q be an
associated prime and Q1, . . . , Qn be the minimal primes. Choose a non zero element
a such that aQ = 0. We have that Q ⊆ Q1∪ · · · ∪Qn because if b ∈ Q \Q1 ∪ · · ·∪Qn
then ab = 0 and thus a ∈ Q1∩ · · · ∩Qn = 0, contrary to the assumption that a is not
zero. Hence Q ⊆ Q1 ∪ · · · ∪Qn and thus Q ⊆ Qi for some i ([A] (Proposition 1.11)).→
Hence Q ⊆ Qi and Q is minimal.

(1.13) Proposition. Assume that A is a regular ring of dimension one. Given a
morphism f :X → SpecA from a noetherian scheme X. Then f is flat if and only if
the associated points of X are mapped to the generic point of SpecA.

In particular, if X is reduced we have that f is flat if and only if the components
of X all dominate SpecA.

Proof. The Proposition is an immediate consequence of Lemma (1.12).→
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(1.14) Lemma. Assume that A is noetherian and that M is a finitely generated
A–module. Then M is flat if and only if MP is a free AP –module for all prime ideals
P of A.

Proof. It follows from Lemma (1.12) that M is flat over A if and only if MP is flat→
over AP for all primes P of A. Since MP is flat over AP if MP is free over AP it
follows that when MP is a free AP –module for all prime ideals P of A, we have that
M is a flat A–module.

Coversely, assume thatM is a flat A–module. Given a prime ideal P of A. TheMP

is a flat AP –module. Since M is finitely generated it follows from Nakayama’s Lemma
that we can choose a surjection AnP → MP such that (κ(P ))n → κ(P ) ⊗AP MP is
an isomorphism of κ(P )–vectorspaces. Denote by L the kernel of AnP → MP . Since
A is noetherian we have that L a is finitely generated A–module. However, since M
is flat, we have that κ(P ) ⊗AP L = 0. It follows by Nakayamas Lemma that L = 0.
Consequently we have that the map AnP → MP is an isomorphism, and that MP is
a free AP –module.

(1.15) Lemma. With the notation of Definition (1.9), assume that the A–modules→
F 0, F 1, . . . of the complex F are flat and that H i(F ) is a flat A–module for i ≥ p.
Then the A–modules Bi(F ) and Zi−1(F ) are flat for i ≥ p.

Proof. We prove the Lemma by descending induction on p. The Lemma holds for
p > r since Zr = F r. Assume that the Lemma holds for p + 1. By the induction
assumption we have that Bp+1 and Zp are flat. From the sequence (1.9.2) with i = p→
and Proposition (1.6) it follows that Bp is flat. Then, from the sequence (1.9.1) with→→
i = p− 1 and Proposition (1.6) it follows that Zp−1 is flat.→
(1.16) Theorem. Given a noetherian scheme S and a morphism f :X → S which
is separated of finite type. Let F be a coherent OX–module. Then:

(1) Assume that F is flat over S and that Rif∗F = 0 for i > 0. Then f∗F is a
flat OS–module.
In particular, if f∗F is coherent, we have that f∗F is locally free.

(2) Assume that S = SpecA and that X is a closed subscheme of P(E). If there
is an m0 such that f∗F(m) is locally free for m ≥ m0, we have that F is flat
over SpecA.

Proof. Both assertions are local on S. Hence we can assume that S = SpecA in

both cases. Then it follows from the equality (1.7.4) that f∗F = ˜H0(X,F). Hence→
f∗F is a flat OS–module if and only if H0(X,F) is flat over A. The last part of (1)
consequently follows from the first part of Lemma (1.14).→

If F is flat over SpecA it follows from Note (1.11) that F(Ui0 ∩ · · · ∩ Uip) is flat→
over A, and thus that the complex FU consists of flat modules. From the assumption
of the Theorem we have that H i(FU ) = Hi(X,F) = 0 for i > 0. It follows from
Lemma (1.15) with p = 1 that Z0(FU) = H0(X,F) is flat, and we have proved the→
first assertion.
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By Assumption we have that H0(X,F(m)) = f∗F(m)(SpecA) is flat for m ≥ m0.
Let N = ⊕m≥m0

H0(X,F(m)). Then it follows from Setup (2.1) that N is an R/I–→
module such that F = Ñ , where I ⊆ R is an ideal defining X in P(E). We have, with

the notation of Setup (2.1) that F(Ui) = Ñ(Ui) = Ñ(yi), where yi is the class of ei in→
R/I. It therefore suffices to prove that N(yi) is flat over A. However, the module N is
a direct sum of flat A–modules, and thus flat over A. Hence the functor which sends
an A–module L to the A–module N ⊗A L is exact. We consider N ⊗A L as an R/I–
module, via the action of R/I on N . Since (R/I)yi is flat over R/I for all i we have
that the functor that sends an A–module L to the A–module (R/I)yi ⊗(R/I) N ⊗A L
is exact. Hence (R/I)yi ⊗(R/I) N = Nyi is a flat A–module. The same is therefore
true for the direct summand N(yi) of degree zero.

(1.17) Lemma. Given a noetherian integral domain A and an A–algebra B of finite
type. Moreover, given a finitely generated B–module N . Then there is a non–zero
element f ∈ A such that Nf is free over Af .

Proof. Write B = A[u1, . . . , uh]. We shall prove the Lemma by induction on h. When
h = 0 we have that A = B. It follows from Lemma (2.6) in the non graded case that→
we can choose a filtration N = Nn ⊃ Nn−1 ⊃ · · · ⊃ N0 = 0 by A–modules such that
Ni/Ni−1 = A/Pi, where Pi is a prime ideal in A. Since A is an integral domain we
have that the intersection of the non zero primes Pi is not zero. Choose a non zero
f ∈ A in this intersection if there is one non zero prime Pi and let f = 1 otherwise.
Then (Ni/Ni−1)f is zero if Pi is a non zero prime and isomorphic to Af when Pi = 0.
Consequently we have that Nf is a free Af–module.

Assume that h > 0 and that the Lemma holds for h − 1. Choose generators
n1, . . . , ns for the B–module N and write B′ = A[u1, . . . , uh−1]. Then B = B′[uh].
Moreover, let N ′ = B′n1 + · · ·B′ns. We have that N ′ is a finitely generated B′–
module such that BN ′ = N . It follows from the induction assumption used to the
A–algebra B′ and the B′–module N ′ that we can find an element f ′ ∈ A such that
N ′
f ′ is a free Af ′–module. It therefore remains to prove that we can find an element

f ′′ ∈ A such that (N/N ′)f ′′ is a free Af ′′–module. To this end we write

N ′
i = N ′ + uhN

′ + · · ·+ uihN
′

and
Pi = {n ∈ N ′:ui+1

h n ∈ N ′
i}.

Clearly N ′
i is a B′–submodule of N and Pi a B′–submodule of N ′. We obtain a

filtration
N ′

1/N
′ ⊆ N ′

2/N
′ ⊆ · · · ⊆ N/N ′

ofN/N ′ by B′–modulesN ′
i/N

′ such that ∪iN ′
i/N

′ = N/N ′. The B′–linear homomor-

phism N ′ → N ′
i+1 which sends n to ui+1

h n defines an isomorphism N ′/Pi → N ′
i+1/N

′
i

for all i. Since B′ is noetherian, the sequence P0 ⊆ P1 ⊆ · · · ⊆ N ′ must sta-
bilize. That is, among the quotients N ′

i+1/N
′
i there appears only a finite number
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of B′–modules. It follows from the induction assumption that we can find an ele-
ment f ′′ ∈ A such that all the modules (N ′

i+1/N
′
i)f ′′ are free Af ′′–modules. Hence

(N/N ′)f ′′ is a free Af ′′–module, as we wanted to prove.

(1.18) Proposition. (Generic flatness) Given a morphism f :X → S of finite
type to a noetherian integral scheme S, and let F be a coherent OX–module. Then
there is an open dense subset U of S such that FU is flat over U .

Proof. We clearly can assume that S is affine. Since f is of finite type we can cover
X with a finite number of open affine subschemes Xi. It follows from Lemma (1.17)→
that, for each i, there is an open dense affine subset Ui of S such that (F|Xi)Ui is
flat over Ui. We can take U to be the intersection of the sets Ui.

(1.19) Proposition. Given a morphism f :X → S finite type to a noetherian
scheme S and let F be a coherent OX–module. Then S is a finite set theoretic
union of locally closed reduced and disjoint subschemes Si such that FSi is flat over
Si.

Proof. Assume that the Proposition does not hold. Since S is noetherian there is a
closed subscheme T of X which is minimal among the closed subschemes for which
the Proposition does not hold. Let T ′ be an irreducible component of T with the
reduced scheme structure and let V ′ be an open subset of T ′ that does not intersect
the other components of T . Then V ′ is also open in T . It follows from Proposition
(1.18) that there is an open non–empty subset V of V ′ such that FV is flat over→
V . By the induction assumption the complement of V in T has a stratification, and
together with V this gives a stratification of T . This contradicts the assumption that
T has no stratification and we have proved the Proposition.

(1.20) Proposition. Assume that A is a regular ring of dimension one. Let x be
a closed point in SpecA and Y a closed subscheme of p−1(SpecA \ x) which is flat
over SpecA \ x and Y the scheme theoretic closure of Y in P(E) Then Y is the
unique closed subscheme of P(E) which is flat over SpecA and whose restriction to
p−1(SpecA \ x) is equal to Y .

Proof. Let P be the prime ideal in A corresponding to the point x of SpecA. It
clearly suffices to prove the Proposition for an open affine subset SpecC of P(E).
Let ϕ:A→ C be the homomorphism induced by the projection of P(E).

We have that SpecA \ x = SpecAt where t in P is the generator of PAP . We
have that SpecC ∩ f−1(SpecA \ x) = SpecCϕ(t). Let Cϕ(t) → B define the closed
subscheme Y ∩ SpecCϕ(t) of SpecCϕ(t). The closure of Y ∩ SpecCϕ(t) in SpecC is
defined by the kernel I of the composite map C → Cϕ(t) → B.

Since A is a principal ideal domain and B is flat, we have that B has no torsion.
Hence the submodule C/I of B has no torsion, and thus C/I is flat over A. We have
proved that the scheme theoretic closure Y of Y is flat over SpecA.

To prove that Y is unique with the given properties we let J be an ideal in C that
defines a closed subset which is flat over SpecA and whose restriction to SpecCϕ(t)
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is Y . That is, the ring C/J is flat over A and has the same image in Cϕ(t) as I. Then
J ⊆ I. It remains to show that I ⊆ J . Let c ∈ I. Since I and J have the same image
in Cϕ(t) we have that tnc ∈ J for some n. Since C/J is flat over A we have that C/J
has no A–torsion. Hence c ∈ J and we have that I = J .

(1.21) Lemma. Given a ring B and a B–module N . Let F be a B–submodule of
N .Denote by ψ:N → N/F the canonical quotient map. Given a homomorphism

ϕ:F → N/F

of B–modules.
We define

Fϕ = {f + εn ∈ N [ε]: f ∈ F and ϕ(f) = −ψ(n)}.
Then:

(1) We have that Fϕ is a B[ε]–submodule of N [ε] whose image in N by the
canonical map γ:N [ε] → N is F , and N [ε]/Fϕ is a flat B[ε]–module.

(2) The correspondence which sends ϕ to Fϕ defines a bijection between the set
HomB(F,N/F ) and the B[ε]–submodules Fε of N [ε] whose image by γ is F ,
and that are such that N [ε]/Fε is flat over B[ε].

Proof. It is clear that Fϕ is a B[ε]–submodule of N [ε] and that the image by γ is
F . To check that N [ε]/Fϕ is flat over B[ε] it follows from Proposition (1.8) that it→
suffices to check that the map

(ε) ⊗B[ε] N [ε]/Fϕ → N [ε]/Fϕ (1.21.1)

is injective. Denote by β:N [ε] → N [ε]/Fϕ the quotient map. Let f + εn ∈ N [ε] be
such that ε⊗ β(f + εn) is in the kernel of the map (1.21.1). Then εf ∈ Fϕ and thus→
0 = ψ(f) so f ∈ F . Choose n′ ∈ N such that ϕ(f) = −ψ(n′). Then f + εn′ ∈ Fϕ
and ε⊗ β(f + εn) = ε⊗ β(f) = ε⊗ β(f + εn′) = 0. Hence we have proved that the
map (1.21.1) is injective.→

Conversely, let Fε ∈ N [ε] be a B[ε]–submodule such that γ(Fε) = F and such that
N [ε]/Fε is flat over B[ε]. It follows from Lemma (1.5) that the sequence→

0 → B ⊗B[ε] Fε → B ⊗B[ε] N [ε] = N → B ⊗B[ε] N [ε]/Fε → 0 (1.21.2)

is exact. The image of the map B ⊗B[ε] Fε → N is F , since we have assumed that

γ(Fε) = F . Consequently, the middle right map of (1.21.2) induces an isomorphism→

ρ:N/F → B ⊗B[ε] N [ε]/Fε.

We tensor the exact sequence

0 → B
ε−→ B[ε] → B → 0
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with N [ε]/Fε over B[ε] and obtain an exact sequence

0 → N/F
ρ∼= B ⊗B[ε] N [ε]/Fε

δ−→ N [ε]/Fε = B[ε] ⊗B[ε] N [ε]/Fε

η−→ N/F
ρ∼= B ⊗B[ε] N [ε]/Fε → 0.

Denote by βε:N [ε] → N [ε]/Fε the canonical quotient map and consider N as a
submodule of N [ε]. Then η(βε|N) = ψ and δψ = ε(βε|N).

For f ∈ F we have that ηβε(f) = ψ(f) = 0. Consequently there is a unique
element ψ(n) of N/F such that δψ(n) = βε(f). We then write ϕ(f) = ψ(n). In this
way we define a B–module homomorphism

ϕ:F → N/F.

It remains to show that Fε = Fϕ.
Take f + εn ∈ Fε ⊆ N [ε]. Then f ∈ F because γ(Fε) = F . We have that

0 = βε(f + εn) = βε(f) + εβε(n). Consequently βε(f) = −εβε(n) = −δψ(n), and
thus ϕ(f) = −ψ(n), by the definition of ϕ. Hence f + εn ∈ Fϕ.

Conversely, let f + εn ∈ Fϕ. Then again f ∈ F and ϕ(f) = −ψ(n), that is
βε(f) = −δψ(n). We obtain that βε(f +εn) = βε(f)+εβε(n) = −δψ(n)+δψ(n) = 0
so that f + εn ∈ Fε. We have thus proved that Fε = Fϕ.

(1.10) Exercises.
1.
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2. Flatness of finitely generated modules.

(2.1) Definition. Let A be a ring. For each prime ideal P in A we write κ(P ) =
AP /PAP .

The following result is one way of formulating the criterion for flatness by equations
(see e.g. [M], Theorem 7.6, p. 49). We shall use this result instead of Lazard’s
Theorem ([La1], Theorem 1.2, p. 84) asserting that every flat module is the filtering
limit of finitely generated free modules. As was observed by Lazard the results are
indeed equivalent.

(2.2) Lemma. Let A be a ring and M an A-module. The following assertions are
equivalent:

(1) The module M is flat over A.
(2) For any finitely presented module N , that is there is an exact sequence Am →

An → N → 0 of A-modules, the map

HomA(N,A) ⊗AM → HomA(N,M) (1.2.1)

that sends u⊗ x to the A-linear map sending y to u(y)x is bijective.
(3) Any A-linear map N → M from a finitely presented A-module N factors

through a finitely generated free A-module.
(4) For every A-module homomorphism u:F →M from a finitely generated free

A-module F , and for every element e in the kernel of u, there is a factorization
u = vf of u via an A-module homomorphism f :F → G into a finitely gener-
ated free A-module G such that f(e) = 0, and an A-module homomorphism
v:G→M .

Proof. For any A-module M the functors HomA(N,A)⊗AM and HomA(N,M) are
additive and contravariant in N . Since the map (1.2.1) is bijective for N = A it
follows that it is bijective for N = An.

Assume that M is flat over A. Then the two functors are left exact. It follows that
the map (1.2.1) is an isomorphism for every finitely presented A-module N . Hence
the first assertion implies the second.

Assume that the second assertion holds. Let u:N →M be an A-linear map from
a finitely presented A-module N . Then u is the image by (1.2.1) of an element∑n
i=1 ui ⊗ xi of HomA(N,A) ⊗A M . Hence u is the composite of the map N →

An sending y to (u1(y), . . . , un(y)), and the map An → M sending (a1, . . . , an) to∑n
i=1 aixi. Hence the third assertion follows from the second.
The fourth assertion follows from the third since F/Ae is finitely presented.
Finally we prove that the last assertion implies the first. We shall show that M is

flat over A by showing that the map I ⊗AM → M is injective for all ideals I of A.
Assume that there is an element x =

∑m
i=1 ai⊗xi with ai ∈ I and xi ∈ M in I⊗AM

that maps to zero in M . Let u:F →M be the A-linear homomorphism from the free
A-module F with basis f1, . . . , fm defined by u(fi) = xi, and let y =

∑m
i=1 ai ⊗ fi.
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Then u(y) = x, and the image e of y by the map i: I ⊗A F → F maps to zero by u.
Hence the last assertion of the Lemma implies that u:F →M factors via A-module
homomorphisms f :F → G and v:G→M , where G is a free A-module of finite rank,
and where f(e) = 0. The map j: I ⊗A G → G is injective since G is flat over A. We
have that 0 = f(e) = fi(y) = j(idI ⊗f)(y) and consequently that (idI ⊗f)(y) = 0.
Hence we have that x = (idI ⊗u)(y) = (idI ⊗v)(idI ⊗f)(y) = 0.

The following two results are well known (see e.g. Matsumura [M], Theorem 7.10,
p. 51). We include proofs to show how Lemma (1.2) can be used in this situation
instead of the criterion for flatness by equations.

(2.3) Lemma. Let A be a local ring with maximal ideal P and M a flat A-module.
Moreover, let F be a free A-module and u:F → M an A-linear map. If the residue
map u(P ):F/PF →M/PM is injective, then the map u is injective.

Proof. Let e in F be such that u(e) = 0. We first prove the Lemma when F is
of finite rank. Since M is a flat A-module it follows from Proposition (1.2) that

we have a factorization F
f−→ G

v−→ M of u into A-linear maps, where G is a free
A-module of finite rank, and where we have that f(e) = 0. Then u(P ) factors via

κ(P )⊗AF
f(P )−−−→ κ(P )⊗AG

v(P )−−−→ κ(P )⊗AM . Since u(P ) is injective by assumption,

it follows that f(P ) is injective. Our claim follows if we show that F
f−→ G is injective.

We fix a basis for F and G and let the map f be represented by a matrix. Let n be
the rank of F . Since the induced map f(P ) is injective, there exist a (n× n)-minor
N(P ) of the matrix f(P ) which is invertible. It follows that the determinant of the
corresponding square matrix N of f is invertible since det(N)⊗Aκ(P ) = det(N(P )).
Then there exist a matrix N ′ such that N ′N is the identity matrix, and we may
construct a map f ′ : G→ F such that f ′f is the identity map. Hence f is injective.

Assume that F has infinite rank. Then the element e is contained in a free A-
submodule F ′ of F of finite rank, which is a direct summand of F . Let i:F ′ → F
be the inclusion. Then i(P ) is injective and thus u(P )i(P ) = ui(P ) is injective. It
follows from the first part of the proof that the map ui:F ′ → M is injective. Hence
ui(e) = u(e) = 0 implies that e = 0 and we have proved the Lemma.

(2.4) Proposition. Let M be a finitely generated flat A-module. Then MP is a
free AP -module for all prime ideals P of A.

Proof. Let P be a prime ideal of A. Then MP is a flat AP -module. Since M is
finitely generated it follows from Nakayama’s Lemma that we can choose a surjection
u:AnP →MP such that the residue map u(P ):κ(P )n → κ(P ) ⊗AP MP is an isomor-
phism of κ(P )-vector spaces. If follows from Lemma (1.3) that AnP →MP is injective
and hence an isomorphism. Thus MP is a free AP -module for all prime ideals P in
A.

(2.5) Proposition. Let M be a finitely generated flat A-module. If there is an
integer d such that

d = dimκ(P )(κ(P ) ⊗AM) (1.5.1)
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for all prime ideals P of A we have that M is locally free.

Proof. Let P be a prime ideal of A. Let m1, . . . ,mn be a generator set for the A-
module M , and let F be a free A-module with basis f1, . . . , fd. Since M is flat it
follows from the Proposition that MQ is a free AQ-module for all prime ideals Q of
A. It follows from (1.5.1) that MQ is of rank d. In particular there is an isomorphism

u:FP → MP of AP modules. Choose elements gj =
∑d

i=1 aj,ifi in FP such that
u(gj) =

mj

1 for j = 1, . . . , n. Let t be a common denominator of the elements u(fi),
and of the coefficients aj,i for i = 1, . . . , d and j = 1, . . . , n. Then there is a surjective
map v:Ft → Mt of At-modules such that the localization of v at P is equal to u.
Denote by K the kernel of v. For each prime Q of A we obtain an exact sequence
0 → KQ → FQ →MQ → 0 of AQ-modules. Since FQ is free of rank d it follows that
KQ = 0 for all primes Q of At. Consequently we have that K = 0. We thus have
that Mt is a free At-module.

(2.5) Remark. When A is noetherian and M is a finitely generated A-module we
have that if MP is a free AP -module, then there is an element t in A not in P such
that Mt is a free At-module. Indeed, in the proof of Corollary (1.5) we constructed
a surjective map v:Ft → Mt from a free At-module of rank equal to the rank of
MP , whose localization at P is an isomorphism. Hence the localization KP of the
kernel K of v at P is zero. Since A is noetherian by assumption, we have that K is
finitely generated and thus we can find an element s in A not contained in P such
that Ks = 0. It follows that vs:Fst → Mst is an isomorphism of Ast-modules. In
particular it follows from Proposition (1.4) that if M is flat, then M is locally free.

With the following example we will show that when A is not noetherian we can
have a finitely generated flat A-module M such that MP is free for all prime ideals P
of A, but where M is not locally free. In particular it follows that condition (1.5.1)
is necessary in Corollary (1.5).

(2.) Example. 6Let B = k[y1, y2, . . . ] be the polynomial ring in the variables
y1, y2, . . . over the field k, and let A be the residue ring of B by the ideal generated
by the polynomials yi(yi − 1) for i = 1, 2, . . . . Denote by xi the class of yi in A. Let
P be a prime ideal of A. Then, for each i, the ideal P contains either xi or xi− 1. It
follows that the prime ideals of A are the ideals (x1 − δ1, x2 − δ2, . . . ), for all choices
of δ1, δ2, . . . , where δi, here and below, will take the values 0 and 1. We obtain in
particular that A/P = κ(P ) = k.

We note that the ring A is reduced. Indeed, if a polynomial f(y1, . . . , yn) in B
maps to a nilpotent element in A we must have that f(δ1, . . . , δn) = 0 for all choices
of δ1, . . . , δn. It is easy to show, by induction on n, that this implies that f(y1, . . . , yn)
is in the ideal generated by the elements y1(y1 − 1), . . . , yn(yn − 1). Hence the class
of f(y1, . . . , yn) in A is zero.

Let P = (x1 − δ1, x2 − δ2, . . . ). Then P is a prime ideal of A. For each i we have
that (xi − δi)(xi + δi − 1) = 0, and clearly xi + δi − 1 /∈ P . Consequently we have
that the class of xi − δi is zero in AP . Hence we have that AP = κ(P ) = k for all
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prime ideals P in A. In particular any module M over A is flat.
Fix a prime P of A. We have that the A-module M = κ(P ) is generated by one

element. Moreover we have that MP = AP ⊗A M = κ(P ) ⊗A M = κ(P ), and that
MQ = AQ ⊗AM = κ(Q) ⊗AM = 0 for all prime ideals Q of A different from P .

In SpecA every non-empty open set contains infinitely many points. Indeed, let Af
be the ring of a non-empty principal open set in SpecA, where f is the residue class of
the polynomial f(y1, . . . , yn) in A. Then f(δ1, . . . , δn) 6= 0 for some δ1, . . . , δn. Then,
for all choices of δn+1, δn+2, . . . , the prime (x1 − δ1, . . . , xn − δn, xn+1 − δn+1, . . . ) is
in SpecAf . Since M = κ(P ) has fiber k at one point and fiber zero at the remaining
points, it follows that M = κ(P ) can not be locally free.

The condition that M is finitely generated is necessary in Corollary (1.5), even
when A is noetherian, as shown by the following example communicated to us by C.
Walter.

(2.7) Example. Let A = Z be the ring of integers and let M be the Z-submodule

M = {x ∈ Q: vp(x) ≥ −1 for all primes p ∈ Z}

of the rational numbers Q, where vp(x) = d if x = m
n
pd with m and n prime to p. If

P is a maximal ideal of Z corresponding to a prime integer p, we have that MP =
1
pZP . In particular the Z-module M is a flat. Furthermore we have an isomorphism

Q → M ⊗Z Q = M(0). Hence we have that dimκ(P )(κ(P ) ⊗Z M) = 1 for all prime
ideals P in the ring Z. However we obviously have that Mn = { x

nm
:x ∈ M,m ∈ Z}

is not finitely generated Zn-module for any non-zero integer n. In particular M is
not locally free.

(2.) Example. 8 We shall give another, perhaps more typical, example of a ring
A, together with a flat A-module M , such that MP is a free AP -module of rank 1 for
each prime P of A, but such that M is neither a finite, nor a locally free A-module.

Denote by A the product
∏
i∈NKi of a field K = Ki for i ∈ N. Let I be the ideal

in A consisting of elements a = (ai)i∈N with finite support Supp(a) = {i: ai 6= 0}.
That is, the ideal I is the direct sum ⊕i∈NKi of the field K = Ki for i ∈ N. Let
M = I ⊕ A/I.

We first show that the ring A is absolutely flat, that is all A-modules M are flat.
Note that there are no inclusions of prime ideals in A. Indeed, let P be a prime ideal
and let a be an element in A not in P . If a is not a unit in A we let b be an element
in A having support on the complement of Supp(a). Then ab = 0, and consequently
we have b in P . The element a+ b is congruent to a modulo P . We have that a+ b
is a unit in A since Supp(a+ b) = N, hence a is a unit in A/P . Thus A/P is a field
and all prime ideals are maximal, and minimal.

The ring A is reduced and consequently any fraction ring of A is reduced. In
particular the stalks AP are reduced for all prime ideals P in A. In our ring A all
prime ideals P are minimal, thus we get that AP = κ(P ). Consequently any module
M is flat over A.
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Hence, when we localize the exact sequence

0 → I → A→ A/I → 0 (1.8.1)

in a prime ideal P of A we see that we either have that IP is a free AP -module of rank
1 and (A/I)P = 0, or we have that IP = 0 and (A/I)P is a free AP -module of rank
1. In both cases we have that MP = AP ⊗AM = κ(P ) ⊗AM is a free κ(P )-module
of rank 1.

We have that I is not a finitely generated A-module, since the elements of I
otherwise would have support on a finite subset of N. However I is a quotient of M ,
so M is not a finitely generated A-module either.

We can tell exactly for which prime ideals P we have that IP = 0. Indeed, it
is easily seen that there is an inclusion preserving bijection between ideals in A and
filters of N. This correspondence associates to an ideal I of A the ultrafilter consisting
of the complement in N of the support Supp(a) = {i ∈ N: ai 6= 0} of the elements
a = (ai)i∈N of I. Under this correspondance the prime ideals of A correspond to
the ultra filters of N. The trivial ultra filters, that is the ultra filters consisting of
the sets containing a fixed integer, correspond to the maximal ideals consisting of
elements with one fixed coordinate equal to zero.

We have that IP = 0 exactly when P corresponds to a non-trivial ultra filter.
Indeed, let a = (ai)i∈N be an element of I. Then ab = 0 for all elements b in A whose
support is in the complement of the support of a. Such an element b has cofinite
support, that is, the complement of the support is finite. However, it is easily seen
that an ultra filter is non-trivial if and only if it contains the filter of all cofinite sets.

We have that if P is a prime ideal corresponding to a trivial ultra filter, then
there exist a f not in P such that Mf = If = Af . The module M is however not
locally free, that is there exist prime ideals P in A such that Mf is not free for any
f not in P . Indeed if there for each prime ideal P exists fP not in P such that
MfP is free, then there exist prime ideals P1, . . . , Pm such that

∑m
i=1 aifPi = 1, with

a1, . . . , am in A. We have that MP = AP for all prime ideals P in A. It follows
that MfP is a finitely generated AfP -module. Let x1, . . . , xn be elements in M such
that the classes of x1, . . . , xn generate MfPi

as an AfPi -module for i = 1, . . . ,m.
Then x1, . . . , xn generate M as an A-module. In particular we would have that M
is finitely generated, which we have seen is not the case. Thus M is not locally free.

(2.10) Exercises.
1.
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1. Indeks.

cartesian product, 1
partially ordered set, 1
upper filtrating, 1
upper directed, 1
chain, 1
finite support, 2
composition, 3
isomorphism, 3
covariant functor, 3
contravariant, 3
product, 3
coproduct, 3
topological space, 5
open, 5
closed, 5
neighbourhood, 5
open covering, 5
trivial topology, 5
discrete topology, 5
induced, 5
basis for the neighbourhoods of, 5
basis for the topology, 5
closure, 5
continous, 5
isomorphism, 5
inverse, 5
metric, 6
irreducible, 9
irreducible components, 9
generic point, 9
compact, 9
Kolmogorov space, 10
Hausdorff space, 10
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abelian group, 11
inverse, 11
subgroup, 11
subgroup, 11
homomorphism, 11
isomorphism, 11
kernel, 11
residue class group, 11
pointwise addition, 12
finite support, 12
direct sum, 12
pointswise, 12
commutative ring with unity, 13
ring, 13
identity, 13
pointwise, 13
formal expressions, 13
degree, 13
polynomial ring in the variable, 13
ring of polynomials in, 13
with coefficients in, 13
pointwise addition, 13
convolution product, 13
convolution product in several variables, 14
polynomial ring in the independent variables, 14
ring of polynomials in the independent variables, 14
ring homomorphism, 14
isomorphism, 14
zero divisor, 14
integral domain, 14
nilpotent, 14
unit, 14
invertible element, 14
inverse, 14
field, 14
local ring, 14
algebra homomorphism, 14
polynomial maps, 15
ideal, 17
finite, 17
ideal generated by the elements, 17
principal ideals, 17
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finite, 17
product, 17
prime ideal, 18
maximal, 18
multiplicatively closed, 21
radical, 21
radical, 21
presheaf, 25
sections, 25
restriction maps, 25
restriction of s to U , 25
sheaf, 25
presheaf, 25
sheaf, 25
constant presheaf, 25
restriction, 26
extension, 26
homomorphism, 26
homomorhism, 26
homomorphism, 26
isomorphism, 26
stalk, 26
stalk, 27
inductive system, 27
direct image, 29
sheaf associated to the presheaf G, 31
takes values in groups, 33
presheaf of groups, 33
takes values in rings, 33
presheaf of rings, 33
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direct sum, 36
submodule of M generated by the elements, 36
elements, 36
generate, 36
linearly independent, 36
free with basis, 36
uniquely, 36
cokernel, 37
sequence, 37
complex, 37
short exact, 37
bilinear, 39


