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ABSTRACT  A lot of philosophy taught to science students consists of scientific methodology. But 
many philosophy of science textbooks have a fraught relationship with methodology, presenting it either a 
system of universal principles or entirely permeated by contingent factors not subject to normative assessment. 
In this paper, I argue for an alternative, heuristic perspective for teaching methodology: as fallible, purpose- and 
context-dependent, subject to cost-effectiveness considerations and systematically biased, but nevertheless 
subject to normative assessment. My pedagogical conclusion from this perspective is that philosophers should 
aim to teach science students heuristic reasoning: strategies of normative method choice appraisal that are 
sensitive to purposes, contexts, biases and cost-effectiveness considerations; and that we should do so by 
teaching them exemplars of such reasoning. I illustrate this proposal at the hand of three such exemplars, 
showing how they help students to appreciate the heuristic nature of both methods and methodology, and to 
normatively assess method choice in such circumstances. 
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There is, indeed, very little fixed method; but, with all due respect to those who suffer from 
the curse of Frege, there is objectivity enough. (Levi 1980, 430) 

 
 
 
1. Introduction 
Science students expect normative guidance from methodology. But philosophy of science, at 
least as represented by the majority of textbooks used for this purpose, too often are swayed 
by Frege's Curse: they assume that a normative methodology either consist of a fixed system 
of universal principles, or that scientific method choice is influenced by psychological and 
other contingent factors and thus not subject to normative control at all. This makes for 
uneasy company in the classroom, where philosophers tasked with instructing science 
students often teach highly abstract methodological principles without clear bearings on the 
actual scientific practices students engage in, or alternatively resort to teaching history of 
science without any normative input. 
 
In this paper, I offer a way out of this cursed dichotomy. Based on the idea that scientific 
methods are heuristic in nature (Bechtel & Richardson 1993; Wimsatt 2007), I argue that 
teaching methodology should focus on the justification of method choice as fallible, purpose- 
and context-dependent, subject to cost-effectiveness considerations and systematically 
biased. In other words, methodology itself is heuristic in nature (Hey 2016; Grüne-Yanoff 
2021b). This precludes methodology being a fixed system of universal principles, but it does 
not prevent methodology from being normative. There are good and bad heuristics for 
particular contexts and purposes. Yet instead of providing a more localized recipe book, I 
argue, philosophers should teach methodology as heuristic reasoning, by training students at 
the hand of exemplar method choices. These exemplars illustrate that there are multiple 
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methods for a given purpose, that the fallibility and bias of each can be amplified or curtailed 
through contextual features, and that inadvertent or intentional mismatch between method 
and context can lead to method misuse. They further show that purposes, contextual factors 
and method success conditions are often vague and uncertain, so that one must revert to rules 
of thumb for choosing between them. Through these exemplars, students learn to justify 
method choice, without taking recourse to a system of universal principles. 
 
The paper is structured as follows. Section 2 sketches Frege's curse, and how a heuristic 
methodology can avoid it. Section 3 draws some general pedagogical conclusion from the 
preceding argument, and then illustrates teaching methodology as heuristic reasoning at the 
hand of three exemplars. Section 4 concludes. 
 
 
2. Frege’s Curse  
Scientific methodology is about the justification of method choice in science.1 Like with any 
human choice, the subject of methodology is thus closely connected to questions about 
human cognitive abilities and their limitations. For this reason, many traditional philosophers 
of science have had a fraught relationship with methodology. Following Frege's rejection of 
psychologism, they assume that "the objectivity of scientific inquiry is made to stand or fall 
with the existence of a fairly powerful and fixed system of principles applicable to all agents 
on all occasions” (Levi 1980, 427). This assumption is shared by those defending a universal 
methodology, for example Carnap or Popper, as well as those rejecting it, for example 
Feyerabend. Only if there was a universal normative methodology could the objectivity of 
scientific inquiry be upheld; if there wasn't, then one must concede that scientific inquiry is 
exposed to psychologically, sociologically or historically contingent factors and thus not 
subject to serious critical control. The belief in this purported dichotomy Levi called the 
curse of Frege. 
 
Granted, philosophy of science might have been gradually freeing itself from the curse. Since 
the 1990s, there is a palpable shift from generalist philosophy of science to a philosophy of 
the special sciences, and there are successful organizational efforts, e.g. in the wonderful 
Society for the Philosophy of Science in Practice (SPSP), to refocus on scientific practices as 
the primary locus of philosophical analysis. However, there are some caveats. First, a lot of 
philosophy of the special sciences is not about methodology, but about conceptual or 
foundational issues. Second, amongst those who focus on practices in the special sciences, 
many avoid an explicitly normative analysis. There are of course important exceptions - e.g.  
Bechtel & Richardson (1993), Wimsatt (2007) - who appreciate the heuristic nature of 
scientific methods and draw explicit methodological conclusions from it.2 In any case, these 
views have so far not percolated into philosophy of science textbooks, which most often carry 
on presenting the competing universalist positions (see the review of recent textbooks in 
Grüne-Yanoff 2014); hence I suspect that it hasn’t percolated into teaching practices either. 
On the question of methodology, philosophers of science thus divide into traditionalists beset 
by Frege’s curse (either by defending a universal method or by rejecting a normative 
methodology altogether), and particularists who try to free themselves from it. When it comes 

 
1 In this paper I focus on the challenges of teaching methodology. But I do not deny that science students can 
benefit from philosophers teaching other subjects as well (cf. Laplane et al. 2019).  
2 My impression from attending many SPSP conferences, however, is that many eschew normative conclusions, 
instead constraining themselves to descriptions of scientific practices. That strikes me as them being stuck on 
the other extreme of the cursed dichotomy. 
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to teaching philosophy of science to science students, it seems the traditionalists still have the 
edge. 
 
I notice these conflicting positions also amongst my students.3 On the one hand the 
“universalists”, who take the textbook version of science at face value and assume that 
sufficient attention to the facts has and will fuel the steady progress of science. To them, 
methodology is merely a technical question of acquiring the skills needed to handle the ever-
more sophisticated machineries for recording and process the facts.4 To give but two 
examples, such students tend to consider statistics as providing universal algorithms and 
embrace the evidential hierarchy. From such a perspective, a discussion of method choice 
seems often redundant. Instead, the difficulty lies in mastering the algorithm or the procedure 
that produces “best” evidence.  
 
On the other hand the “particularists”: They sense that the tools and practices of scientific 
inquiry are too multifaced, have too many purposes and are too uncertain in their application 
conditions and their successes to be controlled by a universal norm. They seem to grasp that 
many practices they acquire in their studies are conventional. Yet they also learn about the 
admired mavericks who advanced the field with their unconventional approaches. They 
might begin to realize how much depends on funding, hierarchies and the review lottery; and 
if they look at other disciplines, they see that core features like evidence standards, 
experimental practices and modelling strategies often look entirely different from those of 
their own discipline.  
 
Neither the universalists nor the particularists benefit from philosophy in the thrall of Frege's 
curse. The universalists think they already have their technological solution to any 
methodological problem, and are unlikely to listen to the technologically unskilled 
philosophers for advice. The particularists intuitively understand that there are no universal 
recipes for doing science, and they have no need for philosophers lecturing on them.5 
 
Nor do either of these groups have much patience with philosophers holding forth on the 
other pole of the cursed dichotomy: that science, because it is infused with psychologically, 
sociologically or historically contingent factors, is not subject to critical control. This is 
obviously the case for the universalists. But even particularists, in my experience, are attuned 
to the need of such normative assessment. They are aware that to challenge conventional and 
dominant theories and practices in their field, they need to produce arguments that stand 
critical scrutiny; and they know that in order to collaborate interdisciplinarily, practices and 
standards independent of the historical and sociological contingencies of the involved 
disciplines must be agreed. Therefore they seek normative critical guidelines, albeit not in the 
form of a universal methodology. 
 
This sketch of what scientific methodology is or should be raises the question: How to lift 
Frege’s Curse? How to teach science students to justify, assess and critique method choice 

 
3 This is an intuition formed through teaching more than 1000 MSc and PhD science students per year over the 
last 10 years. I do not have empirical data to support this intuition, nor do I know of any relevant study that 
could support it.  
4 Such students are often supported in their views by (senior) scientists defending universalist understanding of 
methodology (the many lip-services to falsification come to mind here, as well as the references to 'the' 
scientific method, for instance in debates about replication). 
5 Smith (2017) and Grüne-Yanoff (2014) offer additional ideas what might make science students resistant to 
philosophy courses. 
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without falling back on the chimera of a universal methodology? My proposal is to convey to 
students the heuristic nature not only of methods but also methodology, and teach them how 
to reason heuristically for the use of specific heuristic methods suitable for their research 
purposes and -contexts. 
 
The notion of heuristic has been widely used in cognitive science and decision theory, 
starting with Simon in the 1950s, and gaining wider recognition with the work of Tversky, 
Kahneman and Gigerenzer, amongst others (for an overview, see Chow 2015). In the first 
place, the notion has been used for explanatory purposes. But importantly, its normative 
assessment has been increasingly discussed: there are good and bad heuristics for specific 
purposes and contexts; and sometimes, a simple heuristic can outperform a more substantial 
universal algorithm (Gigerenzer & Sturm 2012; Arló-Costa & Pedersen 2013). For scienctific 
methodology, it has been Feyerabend and then in particular Wimsatt who stressed the 
importance of heuristics.6 According to Wimsatt, many scientific methods are heuristics in 
that they (i) are fallible, (ii) are motivated by cost-effectiveness considerations, (iii) are 
systematically biased (and show this bias in some contexts but not in others) and (iv) 
transform the original problem into a manageable but non-identical one (Wimsatt 2007, 76-
77). 
 
Methodology thus studies the justification of heuristic method choices. It must consequently 
consider purposes and contextual factors - for example: Is the context of use similar to the 
heuristic's past successes? Does the context provide resources to make this heuristic 
effective? Does the context fuel or starve the heuristic's biases? Answers to all these 
questions will typically be highly uncertain, and where uncertainty can be resolved, it will 
often require highly local, experiential or tacit knowledge. In order to deal with these 
uncertainties, methodology itself must resort to heuristics (Hey 2016; Grüne-Yanoff 2021b). 
There still is a norm for each specific problem and context. But because context and purpose 
conditions are now so fine-grained, it is often difficult to precisely determine them and to 
check whether a specific research context satisfies them. This uncertainty and the resulting 
interpretation problems often force scientists to revert to simple, fallible and biased meta-
heuristic rules. 
 
This contextualization and localization have important implications for teaching approaches. 
Even though some philosophers have delved deeply into some specific purposes and contexts 
that scientists face, philosophers can hardly be expected to know these purposes and contexts 
as well as a scientist trained in a specific discipline. Nor do they have the scientists’ practical 
skills and know-how. Finally, the knowledge and skill requirements would become even 
more daunting when philosophers face an interdisciplinary audience, as they often do. To 
teach students a large number of concrete recipes of the kind “if you aim at X and you face 
conditions Y, do Z” would be pointless, given philosophers' comparative ignorance of the 
relevant Xs and Ys (here the universalists amongst my students might have a point). What I 
propose instead is to train students in heuristic reasoning, by systematically examining 
exemplars of heuristic method choice in different domains of scientific practice. 
 

 
6 Interestingly, Feyerabend exempted such heuristics from his crusade against method: “Andererseits ist gar 
nichts gegen Faustregeln einzuwenden....sie fordern [den Forscher] auf, kindliche Dinge, wie die Logik, hinter 
sich zu lassen und auch erkenntnistheoretische Regeln nie zu ernst zu nehmen“ (Feyerabend 1986, 377). By this, 
he also seemed to have exempted them from normative control altogether. By thus implicitly equating 
normative methodology with universal principles, Feyerabend reveals himself to still suffer from Frege’s curse. 
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3. Teaching Heuristic Reasoning by Exemplar 
While there are a number of proposals for a normative theory of heuristic reasoning, they 
remain fragmented, incomplete and controversial. Furthermore, as I argued above, any such 
theory useful for scientists would likely to be so domain-specific that it could not be fruitfully 
taught to an interdisciplinary audience; and the context-specificity of the required knowledge 
would make philosophers not the ideal teachers anyway. Instead, I teach heuristic reasoning 
by exemplar. 
 
This proceeds as follows. I start by identifying a popular method and identify potential 
alternative methods that could be used in its stead. This makes clear that scientists must make 
a choice, which in turn requires a justification. Given the heuristic nature of the method, this 
justification depends both on the research purpose and various contextual features. What 
purposes does the method serve? and: are there purposes that this method cannot serve? are 
my questions here. Then, for achievable purposes, what are the contextual conditions that 
further or prevent the successful attainment of the goal with this method? And what features 
might indicate the presence of such success or failure conditions?  
 
In the following, I present my teaching approach at the hand of discussing three methods: 
Fisherian significance testing, experimental randomization and massive simulation 
modelling. Each case speaks against universalist intuitions: the methods discussed cannot be 
seen as general algorithms. Instead, each case shows the need for normative assessment: to 
justify the method choice in a simple, fallible and biased – i.e. heuristic – way. Each also 
exemplifies ways how to heuristically reason for such a justification: by identifying relevant 
success and failure conditions to the best of one limited knowledge and cognitive abilities. I 
chose these cases because they represent different domains of research practice, and because 
they tend to work for an interdisciplinary student body (ranging from students of the natural 
sciences, engineering to the social sciences). They also put the spotlight on slightly different 
aspects of heuristic approaches. In the first two cases, the problem is to determine whether a 
method offers a desired function or not, while in the third case, the problem is to find an 
acceptable trade-off between different desiderata. Furthermore, in the first case, the problem 
is at least partly solved by being more specific about the goal in using a certain method; while 
in the second case, a better understanding is required of what the method actually does. 
Importantly, these cases are exemplars: they do not teach methodological recipes for specific 
purposes and contexts. Instead, they help students understand and apply procedures of 
justifying heuristic method choice.   
 
3.1 Significance testing 
In p-value significance testing, one chooses a model (the null hypothesis) and a threshold 
value, called the significance level of the test, traditionally 5% or 1%. One then calculates the 
p-value, the probability of obtaining test results at least as extreme as the results actually 
observed, under the assumption that the null hypothesis is correct. If the p-value is less than 
the chosen significance level, that suggests that the observed data is sufficiently inconsistent 
with the null hypothesis and that the null hypothesis may be rejected.  
 
P-value significance testing is a statistical method widely used in the sciences. But it also has 
attracted a fair amount of controversy, with some authors claiming that scientists should stop 
using it (Amrhein et al. 2019) and some journals banning its use in submitted manuscripts 
(Trafimow & Marks 2015). What are the reasons of this controversy, and what can science 
students learn from it for their on methodological choices? 
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That statistics promulgates lies is a hackneyed platitude. More interesting is the claim that 
statistics can be misused, as the popular textbook How to Lie with Statistics (Huff 1954) 
tongue-in-cheek explains. P-value significance testing methods can help ill-intentioned 
scientists to make false claims about how well their hypotheses are supported, as the recent 
replication crisis in psychology and medicine shows (Open Science Collaboration 2015; 
Begley & Ellis 2012). The fact that statistics can be misused shows that it does not provide a 
universal algorithm that for each problem assigns a unique method and yields an 
unambiguous result. Instead, statistics offers a toolbox - a collection of methods that can be 
put to different uses, good and bad. Choosing a proper tool for a given problem requires 
statistical thinking (Gigerenzer 2004). Users must argue why employing a certain statistical 
method is justified given their purpose and the application context. 
 
If statistics can be misused, one might wonder what its legitimate uses are. To drive this point 
home, I ask students: Why use statistics at all?7 After all, they already encountered 
explications of testing procedures that did just fine without reference to statistics, like 
Popper’s falsification and Hempel’s logic of confirmation. For good measure, I also 
introduce them to Austin Bradford Hill, who reported that in many of his studies “[t]he 
evidence was so clear cut … that no [statistical] tests could really contribute anything of 
value to the argument. So why use them?" (Hill 1965, 299). Evidently, statistical methods are 
not necessary for making scientific inferences – although they might sometimes be useful. 
 
But what are they useful for? I offer three answers: first, stochastic hypotheses only imply 
distributions, and thus can be tested only with statistical descriptions of the data; second, 
probabilities help quantify the degree of confirmation that a certain piece of evidence confers 
on hypothesis; and third, statistics helps to quantify the probability of error when one infers a 
systematic pattern from noisy data. While these alternatives are not meant to be 
comprehensive, they show the heterogeneity of purposes for which statistical methods are 
used. Furthermore, not every method can satisfy every purpose: p-value significance testing, 
for example, cannot be used to quantify the degree of confirmation that a certain piece of 
evidence confers on hypotheses. 
 
Applying a method to a purpose it cannot satisfy constitutes a form of statistics misuse. Such 
misuse is surprisingly common, typically based on a misunderstanding of the method in 
question. The ASA's statement on p-values corrects a number of such misunderstandings, for 
example: that significance testing proves a tested hypothesis to be false; or that one can infer 
the probability of hypotheses from significance tests (Wasserstein & Lazar 2016). Statistical 
thinking thus requires not only an answer to “why use statistics at all for this problem?”, but 
also “which statistical method(s) can satisfy my goal in investigating this problem?”.  
 
Differentiating purposes, however, is not the only demand of statistical thinking. The purpose 
of Fisherian significance testing is to quantify the probability of erroneously rejecting H0. 
The p-value is the probability of obtaining observations like the ones made, or more extreme 
ones if the H0 were true. By quantifying this error, and thus making it comparable to accepted 
standard thresholds, significance testing helps ensure that hypotheses are subjected to a 
severe test – i.e. one that maximally confronts a claim's potential flaws with the available 

 
7 Although that is not the main focus of this paper, I hope it becomes clear that my teaching approach aims to 
maximally engage the students through having them answer questions, discuss with and present to their peers 
and apply novel concepts and arguments by analyzing scientific texts or by making explicit the method choices 
in their own MSc or PhD thesis. For more on the ‘how’ of such teaching, see Grüne-Yanoff (2014).   
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data (Mayo 2018). Most of the researchers who produced non-reproducible studies 
presumably knew that this was the purpose of significance testing and used it in order to 
show that they performed a severe test. They thus used the testing procedure for the right 
purpose, but they used it – either inadvertently or intentionally – under conditions that 
resulted in the procedure not satisfying this purpose. Instead of the procedure satisfying the 
intended purpose, their use of the procedure only made it appear that it satisfied the 
procedure, while in fact it did not. 
 
This insight allows us to identify a second kind of statistics misuse: to use the many decisions 
that researchers need to make in performing a statistical analysis as means of generating the 
mere appearance of a severe test. These include strategic hypothesis formulation, biased 
selection and operationalizion of independent variables, ad hoc discarding of participants, 
failing to specify the sampling plan, non-random assignment, correcting data during data 
collection in a non-blinded manner, intermediate significance testing, ad hoc data cleaning, 
and many more (Wicherts et al. 2016).  
 
Didactically, I ask students to participate in a p-hacking competition, making use of these 
‘tricks’ with the goal is to adjust the testing procedure based on a given data set in such a way 
that the p-value ends up below the 1% threshold, thus giving the appearance of severity. 
Students are asked to test a simple hypothesis (that a coin is fair) with a simulated data set 
(tossing a coin n times, where – unknown to the students - the probability of the coin showing 
heads at each toss is indeed 50%). Students can manipulate a number of test features: the 
formulation of the null hypothesis, the number n of tosses, whether it is a one or a two-sided 
test, whether a certain part of the sequence should be discarded as an outlier and whether to 
use a normal or non-normal distribution of errors. These manipulations can be performed 
throughout the exercise, while students can continuously observe the resulting p-value. Their 
task is to draw their conclusion (either that the coin is fair or that it is not) at a significance 
level of 0.01. The ease with which students can generate such support for either conclusion 
gives a good impression of the pitfalls in using this method. I then reveal the true data 
generation mechanism and review the test procedure with the students, discussing various 
safeguards (e.g. preregistration, sampling plan, data-cleaning rules) against such misuses. 
 
To conclude, significance testing is a heuristic method that can successfully serve particular 
purposes, under particular conditions. It is a good exemplar for teaching heuristic 
methodology to science students, because it is widely applied in science practices across 
disciplines, and most students have basic technical skills in statistics. Universalist intuitions 
run high here - many students seem to believe that statistics must always be applied to craft 
an empirical argument, and that it can be applied like an algorithm. Heuristic methodology, to 
the contrary, shows that statistics is fallible even when used for the right purpose, under the 
right conditions, and that it is often hard to determine both purpose & conditions precisely for 
a given problem. Nevertheless, given that success is likely in certain conditions, to call for a 
ban of this method is misplaced. Significance testing furthermore is a good exemplar, 
because scientists have begun to actively participate in methodological debates relating to it, 
thus deflating the apperance of any fundamental opposition between philosophy and science. 
What discussing this exemplar shows it that scientists need to acquire statistical thinking 
competences: the ability to formulate clear goals pursued with significance testing (severe 
test) and the conditions necessary to ensure that provides a severe test. 
 
3.2 Randomization 
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An experiment is called "randomized" when the assignment of experimental subjects or 
objects to treatment and control groups proceeds with the help of a randomization device. 
Today, randomization is often considered to be the property that distinguishes highest-quality 
experimental evidence from lower quality one (e.g. USPSTF 1996). However, a growing 
number of authors has voiced criticism against attributing such general quality improving 
capacities to randomization (e.g. Rawlins 2008 for medicine, Ravallion 2020 for economics, 
and Deaton & Cartwright 2018 for a cross-disciplinary perspective). Consequently, I 
encourage students to explore the reasons for this high regard for randomization. 
 
The most commonly cited reason for randomizing experiments is that it supposedly helps 
control the influence of background conditions. Such control is of course important to make 
valid inferences from experimental observations: when comparing the effect of an 
intervention with a control group, one must ensure that the observed difference is not affected 
by those background conditions. But 'control' here is ambiguous, referring to multiple 
different practices and results. One controlling practice is the elimination of a background 
factor, leading to a state where the background factors have no influence at all on the variable 
of interest - for example falling experiments in a vacuum, or electrical experiments in a 
Faraday cage. Another practice is the homogenization of background factors, leading to a 
state where the background factors have the same influence on the variable of interest in both 
treatment and control groups. This can be done, for example, by manipulating the 
background variables in laboratory settings, or by matching members of the treatment group 
with similar members of the control. Either way, these practices are demanding in multiple 
ways: both epistemically, as one need to know what the relevant factors to control are, as 
well as productively, as one must have the abilities to eliminate, manipulate or match these 
factors. Clearly, this knowledge or these abilities are sometimes unavailable.  
 
Randomization does not generate any of the above states: it does not eliminate or 
homogenize background factors. Instead, because of its random assignment, it might generate 
equal distributions of background factors in both treatment and control group, so that the 
expectation of difference in their background factors - calculated over a large number of trials 
- is zero. This is called perfect balance (Schulz 1996). Perfect balance ensures that the 
difference between the mean effects observed in treatment and control group, respectively, is 
exactly equal to the average of the treatment effects among the treated. In this sense, 
randomized experiment can yield an unbiased estimate. Randomization thus provides a 
version of control that can support valid inference of the average treatment effect from an 
experiment, if they satisfy the condition for perfect balance. But that is a big if. It needs to be 
recognized that randomization is a particular version of control, and that it is subject to 
specific success conditions. Thus, researchers must choose their method of control, 
considering at least four features of randomization.  
 
First, for any one trial, randomization will most likely not generate perfectly balance. Instead, 
random assignment is likely to over-represent a known relevant background factor in one arm 
over the other. Inferring that a difference between the means of the two groups is caused by 
the treatment would be a mistake, as the imbalance in the arms likely contributed as well. 
Mere randomization therefore is not sufficient for balance, and thus not a full-fledged 
substitute of other means of control that do guarantee unbiasedness. 
 
Second, randomization is more likely to achieve balance when the sample size is large. As 
the sample size tends to infinity, the means of background factors in treatment and control 
groups converge. Yet of course, sample size is never infinite, so the question is how big finite 
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samples need to be in order to ensure balance. This in turn depends on how many factors are 
known to be relevant: the more factors that need to be included, the larger the sample must 
be. It is obvious that for many experiments, the number of relevant factors is too large to 
hope to secure balance through sample size. 
 
Third, there are strategies to help randomization achieve balance even with smaller sample 
sizes. At the very least, one must check for imbalances amongst the known factors after 
randomization. Treatment and control group factor distributions should be considered with 
respect to their known influence and the size of any imbalance that occurred (Altman & Doré 
1990). If imbalances are too large, one can redo the randomized assignment until the 
imbalance is eliminated (Morgan & Rubin 2012). Alternatively, one can try to stratify the 
sample. By categorizing the sample into relevant background conditions and randomly 
assigning equal numbers from each category to the experimental arms, one can ensure 
balance of all the categorized factors. However, stratification is strictly limited by the number 
of factors and their possible realizations. The number of strata rises exponentially in both, so 
that it quickly outruns even large sample sizes. Finally, another alternative is to adjust for 
imbalanced factors by running a covariance analysis, checking for possible interactions 
between treatment and explanatory variables. Such estimates are biased in final samples 
(Freedman 2008). While such a strategy might be reasonable, it compromises on 
unbiasedness, one of the purported promises of randomization. 
 
Fourth, it is sometimes claimed that randomization also can control unobserved or unknown 
factors (compare e.g. the quotes in Deaton & Cartwright 2018, 5). If this were true, it would 
be an important positive difference to elimination or homogenization methods of control, 
which cannot achieve this. But it isn't true. Mere randomization does not ensure balance, thus 
it does not ensure balance of unknown factors in particular. Furthermore, none of the 
mentioned strategies to achieve balance can be applied to unknown factors. Adjusting the 
sample size requires knowledge of the number of relevant variables. Post-randomization 
check requires knowledge of the identity of relevant variables. Finally, what isn't known 
cannot be stratified.  Consequently, randomization does not help with directly controlling 
unknown factors. 
 
Further arguments for randomization include that it helps eliminate bias in the 
control/treatment assignments, and that it is a useful instrument to implement blinding. 
However, randomization is not necessary for either of these results, nor is it sufficient for 
blinding. 
 
Didactically, I ask students to design experimental assignments and check for balance 
between treatment groups. The (simulated) scenario involves testing a drug on a random 
sample of participants, where 15 known and 3 unknown background factors mediate the 
drug’s effect. Students must choose the sample size and must decide how to assign 
participants to control and treatment groups. Manual assignment is an option, as is 
randomization and stratified randomization. The drug has a medium effect size, but without 
checking for post-assignment balance (via visual comparison of pie charts), and adjusting the 
assignment procedure, simulated experimental results will likely not exhibit any discernable 
difference between control and treatment group. After the exercise, I reveal the true effect 
size and review reliable assignment procedures.  
 
Randomization thus is a particular control strategy with its own advantages and 
disadvantages, that play out in the specific conditions of the experimental study at hand. One 



 

 10 

of these conditions is knowledge: if one doesn't know enough to implement the other 
methods of control, randomization is a viable alternative. But if one has this knowledge, other 
methods might yield better results (Savage 1962; Ziliak 2014). Further conditions are sample 
size, and whether one can repeat the assignment process. 
 
Researchers thus face a genuine choice whether to randomize or not. This choice should be 
informed by the above-discussed conditions and whether they are satisfied in the given 
problem. Because these conditions in practice are often uncertain, researchers must make this 
choice relying on rules of thumb. This makes randomization is a good exemplar for teaching 
heuristic methodology to science students. It is often presented as an unquestioned 
methodological ideal for all experiment designs. The basic idea is easily explained, and the 
strong claims associated with randomization are prima facie plausible. However, it is a 
simple case where these prima facie impressions (in particular regarding balance and control 
of unknown factors) turn out to be unambiguously wrong, and can easily be shown to be so. 
Finally, it is an opportunity to showcase how a method might serve multiple objectives; that 
each of these objectives are reached only under specific conditions; and that some of these 
goals might be irrelevant for a researcher’s specific purpose. 
 
3.3 Massive Simulation Modelling 
Modelling studies investigate a representation of a target instead of the target itself. Agent-
based simulations allow the construction and manipulation of detail-rich models of agents 
and their interaction. Their amount of detail, and the complexity of manipulations increases 
with the ever-growing computational capacities of the newest machines. This raises the 
question whether computational limitations should be the only constraint on the detail and 
complexity of agent-based models, or whether there are good reasons to limit one's models 
for other reasons. I will call models constrained only by current computational capacities 
Massive Simulation Models (MSMs). Models whose detail is also constrained by other 
considerations (of simplicity, of transparency, etc.) I call Abstract Simulation Models 
(ASMs). To make this discussion more manageable, I focus here on simulation models for 
policy purposes in epidemiology and economics (Grüne-Yanoff 2021a).  
 
Based on the richness in realistic detail, MSMs are sometimes claimed to offer a highly 
accurate picture of their targets. Their structure is designed to allow a mapping from the 
model to the target without taking recourse to mediating models. The Eubank et al. (2004) 
model, for example, is introduced as a direct representation of the city of Portland. ASMs, in 
contrast, can hardly ever claim to represent a real system directly — their level of detail is not 
sufficient. At best, they are able to represent stylized facts about a system, which have been 
prepared through an abstraction or idealization procedure from the real system. The Burke et 
al. (2006) model, for example, explicitly claims to represent an “artificial city” that shares 
some properties with real cities, but is different otherwise (Burke et al. 2006, 1142).  
 
For a policymaker, MSMs often seem the prima facie preferable choice, for two reasons. 
First, the more detail is represented, the better a model user can assess the model - and if the 
represented detail is accurate, the more confidence she might have in the model (Dawid and 
Fagiolo 2008, 354). Second, if the model is a sufficiently close and complete representation 
of the real system, the policymaker might take it as a “virtual universe” in which the effects 
of interventions simulated in the model, are taken as accurate forecasts of the results of such 
interventions in the real system (Farmer and Foley 2009, 686). Against these intuitions, I seek 
to convince students that both are viable modelling methods, and that for some purposes and 
contexts, MSMs indeed are superior. 
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First, MSMs have higher number of free parameters, in comparisons to ASMs. As is well 
known in the model-selection literature, models with more free parameters have a larger 
potential to fit the target well; but the larger number of free parameters often yields an 
actually lower fit than the one achieved by a model with fewer parameters. To see this, 
distinguish two steps in the process of fitting a model to data. The first step consists in 
selecting a model — i.e., in specifying the number of parameters. Here, increasing the 
number of parameters indeed increases the model’s potential to accurately represent the 
target. The second step consists in calibrating or estimating the parameters based on a data 
sample drawn from the population. Increasing the number of parameters increases the 
model’s fit to the sample — but this is not the ultimate goal. Rather, increasing the model’s 
fit to the target is. Fitting the model “too closely” (i.e., by including too many parameters) to 
the sample will pick up on the inevitable random error in the sample, and thus leads to an 
increase in the divergence between model and target. As various studies have shown, if the 
sample size is large, adding more parameters above a certain threshold will not substantially 
increase fit to target; if sample size is medium or small, adding more parameters even 
decreases fit to target (Zucchini 2000; Gigerenzer and Brighton 2009). Because MSMs have 
higher number of free parameters than ASMs, there are more prone to this source of error. 
 
Another problem is MSMs' higher number and higher complexity of represented 
mechanisms, in comparisons to ASMs. The more complex a model, the more subcomponents 
it has. Furthermore, when running a simulation on a complex model, these model 
components are run together and in parallel. But they do not all independently contribute to 
the model result. Rather, the components, in the course of a simulation, often exchange 
results of intermediary calculations among one another — so that the contribution of each 
component to the model result is in turn influenced by all those components that it interacted 
with. The resulting interactivity between mechanisms, dubbed "fuzzy modularity” (Lenhard 
and Winsberg 2010), prevents the separation of mechanisms and their contributions to the 
variables of interest. Yet without knowing how individual mechanisms contribute, epistemic 
goals like deign or explanation are hard to satisfy. The designer needs to know where to 
intervene, and an explanation requires to identify the specific difference-makers of the 
explanandum. Because of MSMs' higher number and higher complexity of represented 
mechanisms, they are more likely to amplify each other or cancel each other out, and 
therefore less likely to further goals like explanation or design.  
 
Didactically, to illustrate the problem of overfitting, I ask students to fit a model curve to a 
two-variable data set, generated by an underlying true process confounded by some error. 
Students can choose between five functions of increasing polynomial degree; the higher the 
polynomial, the better the fit. However, if they choose functions with degree 4 or 5, despite 
better data fit, the model will be a worse representation of the true process than functions of 
lower polynomial degree. This will become obvious after I reveal the true process and the 
error component. I then review strategies to avoid overfitting. 
 
Model choice for agent-based simulation is a good exemplar for teaching heuristic 
methodology to science students, because the choice appears in many scientific disciplines, 
and it is easily illustrated with interesting examples. Each of the different choice options, here 
represented in the simple binary distinction MSM vs. ASM, have their specific advantages 
and disadvantages. In particular, it is not true that MSM are generally superior to ASM; 
instead, ASM sometimes can do the job as well as MSM, and often conditions are such that 
they can do the job better because they are not as prone to specific errors as ASM. Whether 
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any particular investigation demands these conditions, however, is often highly uncertain. 
This exemplar thus showcases how competent method choice requires analyzing the 
objectives of one’s own research project, and deciding which advantages and disadvantages 
of the respective options are the most important ones. 
 
4. Conclusion 
My main goal in teaching philosophy of science to science students is to train them in 
heuristic reasoning. This includes appreciating the heuristic nature of scientific methods and 
the particular kind of justification for the associated method choice. The core competence 
that this training aims to create is the ability to ask the right questions when crafting such a 
justification – both concerning the research purpose and the contextual success and failure 
conditions of the respective heuristics, adapted to the limited knowledge about the actual 
research context. Teaching by exemplar conveys the basics of such reasoning with respect to 
different research practice domains, without having to require or appeal to highly specific 
contextual knowledge. It shows that there is a normative question to be answered about each 
method choice, and illustrates how one can reason towards such a justification, while 
acknowledging that for most actual method choices that students will face, they will have to 
perform this evaluation, based on specific knowledge of purpose and context. My approach 
thus allows teaching normative method choice appraisal, without taking recourse to a 
universal system of principle, and thus without submitting to Frege’s curse. 
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