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Till Grüne-Yanoff and Aki Lehtinen

1 INTRODUCTION

Consider the following situation: when two hunters set out to hunt a stag and lose
track of each other in the process, each hunter has to make a decision. Either she
continues according to plan, hoping that her partner does likewise (because she
cannot bag a deer on her own), and together they catch the deer; or she goes for a
hare instead, securing a prey that does not require her partner’s cooperation, and
thus abandoning the common plan. Each hunter prefers a deer shared between
them to a hare for herself alone. But if she decides to hunt for deer, she faces the
possibility that her partner abandons her, leaving her without deer or hare. So,
what should she do? And, what will she do?

Situations like this, where the outcome of an agent’s action depends on the
actions of all the other agents involved, are called interactive. Two people playing
chess is the archetypical example of an interactive situation, but so are elections,
wage bargaining, market transactions, arms races, international negotiations, and
many more. Game theory studies these interactive situations. Its fundamental
idea is that an agent in an interactive decision should and does take into account
the deliberations of the other players involved, who, in turn, take her deliberations
into account. A rational agent in an interactive situation should therefore not ask:
“what should I do, given what is likely to happen?” but rather: “what will they
do, given their beliefs about what I will do; and how should I respond to that?”

In this article, we discuss philosophical issues arising from game theory. We
can only sketch the basic concepts of the theory in order to discuss some of their
philosophical implications and problems. We will thus assume that our readers
have some familiarity with the basic concepts. For those who are primarily looking
for an introduction to the basics of game theory, we recommend Binmore [2007;
2008] or Kreps [1990], both of which also consider philosophical issues. Osborne
and Rubinstein [1994] and Fudenberg and Tirole [1991] are textbooks that put
more emphasis on the mathematical proofs. Hargreaves-Heap & Varoufakis [2001],
Ross [2006b] and Grüne-Yanoff [2008b] provide philosophical accounts of game
theory.1

Philosophy and game theory are connected in multiple ways. Game theory has
been used as a tool in philosophical discussions, and some crucial game theoretical

1This paper is based on Grüne-Yanoff’s earlier paper.
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concepts have been developed by philosophers.2 Game theory also has been the
object of philosophical inquiry itself. Our discussion will concentrate on the latter.
Since game theory relies heavily on mathematical models, the standard epistemic
issues concerning modelling and unrealistic assumptions in philosophy of economics
are also relevant for game theory. But since game theory transcends economics,
a number of other philosophical issues also arise. Perhaps the most important of
these is the interpretation of the theory: is game theory to be understood mainly
as a tool for recommending rational choices, for predicting agents’ behaviour, or for
merely providing an abstract framework for understanding complex interactions
(e.g., [Blackburn, 1998; Aydinonat, 2008])? If we settle for the first interpretation,
the issue of whether the rationality concept employed by the theory is justifiable
becomes pressing. Is it intuitively rational to choose as the theory prescribes?
If the second interpretation is adopted, one must ask whether the theory can in
principle be a good predictive theory of human behaviour: whether it has empirical
content, whether it is testable and whether there are good reasons to believe that it
is true or false. If the third interpretation is adopted, the question arises concerning
which qualities of the theory contribute to this understanding, and to what extent
these qualities are different from the prescriptive or predictive function discussed
in the first two interpretations.

We will address this central question in sections 3 and 4. In order to do so, a
number of game-theoretical concepts that are particularly important in a philo-
sophical assessment must be discussed first, viz. payoffs, strategies, and solution
concepts.

2 SOME BASIC CONCEPTS

Decision theory, as well as game theory, assesses the rationality of decisions in
the light of preferences over outcomes and beliefs about the likelihood of these
outcomes. The basic difference between the two lies in the way they view the
likelihood of outcomes. Decision theory treats all outcomes as exogenous events,
‘moves of nature’. Game theory, in contrast, focuses on those situations in which
outcomes are determined by interactions of deliberating agents. It proposes that
agents consider outcomes as determined by other agents’ reasoning, and that each
agent therefore assesses the likelihood of an outcome by trying to figure out how the
other agents they interact with will reason. The likelihoods of outcomes therefore
become “endogenous” in the sense that players take their opponents’ payoffs and
rationality into account when considering the consequences of their strategies.

The formal theory defines a game as consisting of a set of players, a set of
pure strategies for each player, an information set for each player, and the players’
payoff functions. A player’s pure strategy specifies her choice for each time she has
to choose in the game. If a player’s strategy requires choices at more than one time,

2For example, David Lewis [1969] introduced the notion of common knowledge, and Allan
Gibbard [1973] that of the game form.
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we say that the strategy contains a number of actions. Games in which players
choose between actions simultaneously and only once are called static games. In
dynamic games players choose between actions in a determined temporal order.
All players of a game together determine a consequence. Each chooses a specific
strategy, and their combination (which is called a strategy profile) yields a specific
consequence. The consequence of a strategy profile can be a material prize — for
example money — but it can also be any other relevant event, like being the winner,
or feeling guilt. Game theory is really only interested in the players’ evaluations
of this consequence, which are specified in each players’ payoff or utility function.

The part of the theory that deals with situations in which players’ choice of
strategies cannot be enforced is called the theory of non-cooperative games. Co-
operative game theory, in contrast, allows for pre-play agreements to be made
binding (e.g. through legally enforceable contracts). This article will not discuss
cooperative game theory. More specifically, it will focus — for reasons of simplicity
— on non-cooperative games with two players, finite strategy sets and precisely
known payoff functions. The first philosophical issue with respect to these games
arises from the interpretation of their payoffs.

2.1 Payoffs

Static two-person games can be represented by m-by-n matrices, with m rows and
n columns corresponding to the players’ strategies, and the entries in the squares
representing the payoffs for each player for the pair of strategies (row, column)
determining the square in question. As an example, Figure 1 provides a possible
representation of the stag-hunt scenario described in the introduction.

Col’s choice

Row’s choice
C1 C2

R1 2,2 0,1
R2 1,0 1,1

Table 1. The stag hunt

The 2-by-2 matrix of Figure 1 determines two players, Row and Col, who each
have two pure strategies: R1 and C1 (go deer hunting) and R2 and C2 (go hare
hunting). Combining the players’ respective strategies yields four different pure
strategy profiles, each associated with a consequence relevant for both players:
(R1, C1)leads to them catching a deer, (R2, C1) leaves Row with a hare and Col
with nothing, (R2,C2) gets each a hare and (R1, C2) leaves Row empty-handed
and Col with a hare. Both players evaluate these consequences of each profile.
Put informally, players rank consequences as ‘better than’ or ‘equally good as’. In
the stag-hunt scenario, players have the following ranking:

This ranking can be quite simply represented by a numerical function u, ac-
cording to the following two principles:
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Row Col
1. (R1, C1) 1. (R1, C1)
2. (R2,C1); (R2,C2) 2. (R1,C2); (R2,C2)
3. (R1, C2) 3. (R2, C1)

Figure 1. The hunters’ respective rankings of the strategy profiles

1. For all consequences X,Y : X is better than Y if and only if u(X) > u(Y )

2. For all consequences X,Y : X is equally good as Y if and only if u(X) = u(Y )

A function that meets these two principles (and some further requirements that
are not relevant here) is called an ordinal utility function. Utility functions are
used to represent players’ evaluations of consequences in games. One of the most
important methodological principles of game theory is that every consideration
that may affect a player’s choice is included in the payoffs. If an agent, for example,
cared about the other players’ well-being, this would have to be reflected in her
payoffs. The payoffs thus contain all other behaviour-relevant information except
beliefs.

Convention has it that the first number represents Row’s evaluation, while the
second number represents Col’s evaluation. It is now easy to see that the numbers
of the game in Figure 1 represent the ranking of Figure 2. Note, however, that the
matrix of Figure 1 is not the only way to represent the stag-hunt game. Because
the utilities only represent rankings, there are many ways how one can represent
the ranking of Figure 2. For example, the games in figure 3 are identical to the
game in Figure 1.

C1 C2
R1 -5,-5 -7,-6
R2 -7,-7 -6,-6

(a)

C1 C2
R1 100,100 1,99
R2 99,1 99,99

(b)

C1 C2
R1 -5,100 -7,99
R2 -6,1 -6,99

(c)

Figure 2. Three versions of the stag hunt

In Figure 3a, all numbers are negative, but they retain the same ranking of con-
sequences. And similarly in 3b, only that here the proportional relations between
the numbers (which do not matter) are different. This should also make clear that
utility numbers only express a ranking for one and the same player, and do not
allow a comparison of different players’ evaluations. In 3c, although the numbers
are very different for the two players, they retain the same ranking as in Figure 1.
Comparing, say, Row’s evaluation of (R1, C1) with Col’s evaluation of (R1, C1)
simply does not have any meaning.

Note that in the stag-hunt game, agents do not gain if others lose. Everybody
is better off hunting deer, and lack of coordination leads to losses for all. Games
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with this property are therefore called coordination games. They stand in stark
contrast to games in which one player’s gain is the other player’s loss. Most social
games are of this sort: in chess, for example, the idea of coordination is wholly
absent. Such games are called zero-sum games. They were the first games to be
treated theoretically, and the pioneering work of game theory, von Neumann and
Morgenstern’s [1947] The Theory of Games and Economic Behaviour concentrates
solely on them. Today, many of the games discussed are of a third kind: they
combine coordination aspects with conflictual aspects, so that players may at
times gain from coordinating, but at other times from competing with the other
players. A famous example of such a game is the Prisoners’ Dilemma, to be
discussed shortly.

Players can create further strategies by randomizing over pure strategies. They
can choose a randomization device (like a dice) and determine for each chance
result which of their pure strategies they will play. The resultant probability
distribution over pure strategies is called a mixed strategy σ. For example, Row
could create a new strategy that goes as follows: toss a (fair) coin. Play R1 if
heads, and R2 if tails. Because a fair coin lands heads 50% of the time, such a
mixed strategy is denoted σR = (0.5, 0.5). As there are no limits to the number
of possible randomization devices, each player can create an infinite number of
mixed strategies for herself. The players’ evaluation of mixed strategies profiles
is represented by the expected values of the corresponding pure-strategy payoffs.
Such an expected value is computed as the weighted average of the pure-strategy
payoffs, where the weights are given by the probabilities with which each strategy is
played. For example, if Row in Figure 1 plays her mixed strategy σR = (0.5, 0.5),
and Col plays a strategy σC = (0.8, 0.2), then Row’s expected utility will be
computed by:

uR(σR, σC) = 0.5(0.8 × 2 + 0.2 × 0) + 0.5(0.8 × 1 + 0.2 × 1) = 1.3

With the same mixed strategies, Col’s expected utility, uC(σR, σC) = 1. For
the payoffs of mixed strategy to be computable, the utility function has to carry
cardinal information. That is, now it is also important how much a player prefers a
consequence X to a consequence Y , in comparison to another pair of consequences
X and Z. Because mixed strategies are a very important technical concept in
game theory (although, as we will argue, the interpretation of this notion is often
problematic), it is generally assumed that the utility functions characterizing the
payoffs are cardinal.

It is important to note that the cardinal nature of utilities does not by itself allow
making interpersonal comparisons. In fact, such interpersonal comparisons play
no role in standard game theory at all. There are several reasons for this. The first
is that the standard way how payoffs are measured does not permit interpersonal
comparisons. Payoffs are usually interpreted as von Neumann-Morgenstern utility
functions (NMUFs), which are constructed (in theory at least) with the so-called
reference lottery technique. In this technique, an agent is asked to state proba-
bilities p with which he or she is indifferent between obtaining an intermediately



472 Till Grüne-Yanoff and Aki Lehtinen

preferred outcome for sure, and a lottery involving the best and the worst out-
comes with probabilities p and 1-p (see e.g., [Hirshleifer and Riley, 1992, pp. 16-7]
for a more thorough account). Both indifference judgments, and the judgments
concerning what is the (overall) best and the worst outcome, are subjective as-
sessments of one individual, and cannot be transferred to other individuals. Thus,
when using NMUFs, it is meaningless to compare different persons’ utility sched-
ules. (And although we do not discuss them here, this meaninglessness verdict
also applies to other standard utility measures.)

The second reason is that standard accounts of strategic thinking do not re-
quire the players to make interpersonal comparisons. They only maximise their
own utility, and they predict other players’ choices by supposing that they also
maximise their respective utilities. Thus, comparisons are only made between one
player’s evaluation of outcomes, and not between evaluations of different players.

Steven Kuhn [2004], however, has argued that standard accounts of evolution-
ary dynamics and equilibrium in evolutionary game theory require interpersonal
comparisons. Evolutionary game theory takes a population perspective, in which
different strategies in a population compete for higher rates of replication. Payoffs
in such evolutionary games represent proportions of replication — that is, how
much more a strategy replicates in a certain population, when compared to its
competitors. Such proportional payoffs obviously compare across strategies. This
may be unproblematic in biological applications, where payoffs are interpreted as
Darwinian fitness. But in many social applications of evolutionary game theory,
strategies are linked to individuals, and strategy payoffs to individuals’ preferences.
Applying standard evolutionary dynamics and equilibria to these cases, under a
natural selection interpretation, then implies the interpersonal comparability of
these preferences [Grüne-Yanoff, 2008a].

2.2 Strategies

A pure strategy denotes a choice of an available action in games in strategic form.
This is a relatively straightforward concept, at least insofar as the notions of
availability and actions are well understood. But the concept of strategy also
includes pure strategies in extensive games and mixed strategies. Both of these
strategy kinds are philosophically problematic and will be discussed here.

In extensive games, a strategy specifies an action for each node in the game
tree at which a player has to move. Take the following example. Player 1 is on
a diet and wishes to avoid eating baked goods. When she is leaving work, she
can choose whether to take the direct way home (L), which leads past a bakery,
or take a detour (R). Player 2 (the bakery owner) then decides, without knowing
which route player 1 intends to take, whether to spray a ‘freshly baked bread
aroma’ in front of her bakery (l) or not (r). Deploying this aerosol is costly, but
may influence player 1’s preferences over cakes. If player 1 chose L, he now has to
decide whether to buy a bun (b) or not (d).

The standard strategy notion in extensive games requires that actions are spec-
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Figure 3. The baker’s game

ified for each of the players’ decision nodes. This has two counterintuitive im-
plications. Let us only focus on the game tree of Figure 4 to discuss the first
implication (leaving the payoffs aside for a moment). Even if player 1 chooses R
at the first decision node, he also has to specify what he would choose had he
chosen L, and player 2 had made her choice. As Rubinstein [1991, p. 911] points
out, this is not in accord with our intuition of a ‘plan of action’. Such a plan, as
commonly understood, would for this game require player 1 to decide between L
and R, and only if he chose L, to make provisional choices for when player 2 has
chosen l or r. A strategy in this and other extensive form games thus goes beyond
a player’s ‘plan of action’. Further, these unintuitive aspects of strategies are cru-
cial for game theory. In order to assess the optimality of player 2’s strategy — for
the case that player 1 should deviate from his plan — we have to specify player
2’s expectations regarding player 1’s second choice. For this reason, Rubinstein
argues, it is more plausible to interpret this part of player 1’s strategy as player
2’s belief about player 1’s planned future play.

According to this interpretation, extensive game strategies comprise of a player’s
plan and of his opponent’s beliefs in the event that he does not follow the plan.
This has important consequences for the interpretation of game theoretic results.
In many cases (for example in sequential bargaining) it is assumed that strategies
are stationary — i.e. that the history of the game has no influence on players’
responses to their opponents’ choices. Yet under the new perspective on strategies,
this means that beliefs about opponents’ play are also stationary. This, Rubinstein
argues, eliminates a great deal of what sequential games are intended to model,
namely the changing pattern in players’ behaviour and beliefs, as they accumulate
experience.

In addition to this stationarity issue, this view on strategies also has a prob-
lematic uniformity consequence. If a player’s strategy necessarily comprises of
opponents’ beliefs about her choices, then the attribution of one strategy to the
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agent implies that all opponents hold the same belief about that player’s future be-
haviour. This may be an implausibly strong built-in assumption, as it in particular
concerns the player’s behaviour off the equilibrium path.

The second implausible implication of the standard strategy notion concerns
possible preference changes during the time of play. According to the standard
notion, every strategy profile has a unique payoff for each player. That implies
that player 1 at the initial node knows what the payoff for each of his strategies
are, given the strategies of player 2. Even under incomplete information, he knows
the probability distributions over possible payoffs. Yet there are intuitively plau-
sible cases in which players may try to influence their opponents’ preferences, in
order to obtain better results. This introduces a strategic element into the payoff
information that cannot be adequately represented by a probability distribution.

Take the baker’s game as an example. According to the standard strategy
notion, player 1 knows all strategy profile payoffs at the initial node. Because he
is on a diet, he will at the initial node have a preference for not consuming a bun
(d over b). Hence, independently of whether player 2 chooses l or r, y > x, and
more specifically y = 3 and x = 1. From that perspective, (Ld, r) is the only
sub-game perfect Nash equilibrium – the baker should never try to manipulate the
dieter’s preferences. Yet that is an implausible conclusion — such manipulations,
after all, are often successful. Somehow, the influence of the baker’s strategy on
the dieter’s preferences should be taken into account, that is, if player 1 chooses
L and player 2 chooses l, then x > y. But the standard strategy notion does not
allow for such an influence of actual play on payoffs; and biases standard game
theory to ignore such strategic preference manipulations.

A mixed strategy is a probability distribution over all pure strategies in a strate-
gic form game. We have already discussed their simplest interpretation, namely
that players randomise their pure strategy choice. The idea is that randomisation
may be a conscious decision, or may develop as an unconscious habit. Critics have
objected that ‘real world decision makers do not flip coins’. Such a criticism is
too strong, as there are plausible cases where players randomly choose an action.
Often cited examples include choices when to bluff in Poker, or how to serve in
Tennis. In each of these cases, the randomising player avoids being correctly pre-
dicted — and hence outguessed — by her opponent. Yet, as Rubinstein [1991, p.
913] has pointed out, these are not mixed strategies in which actions like ‘always
bluff’ and ‘never bluff’ are the pure strategies. In a mixed strategy equilibrium,
the players are indifferent between the mixed strategy and a pure component of
that mixed strategy. In the poker or the tennis game, in contrast, the player is not
indifferent between ‘always bluff’ (in which case she soon will become predictable
and hence exploitable) and a randomising strategy.

This feature of mixed strategy equilibria has always made them ‘intuitively
problematic’ [Aumann, 1985, p. 43]. Why should a player choose to randomise
a strategy, if she is indifferent in equilibrium between the randomisation and any
pure component of the randomisation — in particular, if such randomisation is
costly in terms of time or attention?
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Because of these grave problems of the randomising account of mixed strate-
gies, two alternative interpretations have been offered. The first reinterprets mixed
strategies as the distribution of pure choices in a population. If populations in-
stead of players interact in a game, a player is chosen from each population at
random. The mixed strategy then specifies the probabilities with which the pure
choices are drawn from the population. That is, mixed strategies are defined over
sufficiently large population of players, each of which plays a pure strategy. This
is an important context that we will examine in section 4, when discussing evolu-
tionary games. But it is a rather specific one, which does not justify employing
the notion of mixed strategy in a context where players are unique individuals;
and it only holds in particular situations in this context anyway [Maynard Smith,
1982, pp. 183-88].

The second alternative is to reinterpret mixed strategies as the way in which
games with incomplete information appear to outside observers. Each player’s
payoff function is subjected to a slight random perturbation, the value of which
is known only to the player herself, but the other players only know the mean
of her payoff function. Thus, each player will choose a pure strategy component
of her mixed strategy in the resulting incomplete information game. Harsanyi
[1973] showed that this incomplete information game has pure strategy equilibria
that correspond to the mixed strategy equilibria of the original game. The point
here is that to outside observers, the game appears as one in which players use
mixed strategies, and the concept of a mixed strategy essentially represents one
player’s uncertainty concerning the other players’ choice (see also Aumann 1987).
This ‘purification’ account of mixed strategies provides an example of a game-
theoretical concept, that of the mixed strategy, which is plausible only under some
interpretations of game theory. The normative problem of justifying its use led to
a reformulation which is sensible only if game theory is interpreted as a framework
of analysis but not if it is taken to be a prescriptive theory.

2.3 Solution Concepts

When interactive situations are represented as highly abstract games, the objective
of game theory is to determine the outcome or possible outcomes of each game,
given certain assumptions about the players. To do this is to solve a game. Various
solution concepts have been proposed. The conceptually most straightforward
solution concept is the elimination of dominated strategies. Consider the game
in Figure 5. In this game, no matter what Col chooses, playing R2 gives Row
a higher payoff. If Col plays C1, Row is better off playing R2, because she can
obtain 3 utils instead of two. If Col plays C2, Row is also better off playing R2,
because she can obtain 1 utils instead of zero. Similarly for Col: no matter what
Row chooses, playing C2 gives her a higher payoff. This is what is meant by saying
that R1 and C1 are strictly dominated strategies.

More generally, a player A’s pure strategy is strictly dominated if there exists
another (pure or mixed) strategy for A that has a higher payoff for each of A’s
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C1 C2
R1 2,2 0,3
R2 3,0 1,1

Figure 4. The Prisoners’ Dilemma

opponent’s strategies. To solve a game by eliminating all dominated strategies
is based on the assumption that players do and should choose those strategies
that are best for them, in this very straightforward sense. In cases like in that
depicted in Figure 5, where each player has only one non-dominated strategy,
the elimination of dominated strategies is a straightforward and plausible solution
concept. Unfortunately, there are many games without dominated strategies, for
example the game of Figure 6.

C1 C2 C3
R1 3,4 2,5 1,3
R2 4,8 1,2 0,9

Figure 5. A game without dominated strategies

For these kinds of games, the Nash equilibrium solution concept offers greater
versatility than dominance or maximin (as it turns out, all maximin solutions are
also Nash equilibria). In contrast to dominated strategy elimination, the Nash
equilibrium applies to strategy profiles, not to individual strategies. Roughly, a
strategy profile is in Nash equilibrium if none of the players can do better by
unilaterally changing her strategy. Take the example of matrix 6. Consider the
strategy profile (R1, C1). If Row knew that Col would play C1, then she would
play R2 because that’s the best she can do against C1. On the other hand, if Col
knew that Row would play R1, he would play C2 because that’s the best he can do
against R1. So (R1, C1) is not in equilibrium, because at least one player (in this
case both) is better off by unilaterally deviating from it. Similarly for (R1, C3),
(R2, C1), (R2, C2) and (R2, C3): in all these profiles, one of the players can
improve her or his lot by deviating from the profile. Only (R1, C2) is a pure
strategy Nash equilibrium — neither player is better off by unilaterally deviating
from it.

There are games without a pure strategy Nash equilibrium, as matrix 7 shows.
The reader can easily verify that each player has an incentive to deviate, whichever
pure strategy the other chooses.

However, there is an equilibrium involving mixed strategies. Randomizing be-
tween the two strategies, assigning equal probability to each, yields a payoff of
0.5(0.5× 1+0.5×−1)+0.5(0.5× 1+0.5×−1) = 0 for both players. As mutually
best responses, these mixed strategies constitute a Nash equilibrium. As one of
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C1 C2
R1 1,-1 -1,1
R2 -1,1 1,-1

Figure 6. Matching pennies

the fundamental results of game theory, it has been shown that every finite static
game has a mixed-strategy equilibrium [Nash, 1950]. As discussed in the previous
section, the interpretation of this equilibrium is problematic. If Row knew that
Col plays a mixed strategy, she would be indifferent between randomising herself
and playing one of the pure strategies. If randomisation came with a cost, she
would prefer playing a pure strategy. So the mixed equilibrium seems unstable. If
Col knew which pure strategy Row would play, he would exploit this knowledge
by choosing a pure strategy himself. But that would give Row incentives again to
randomise. So the mixed equilibrium would be re-installed.

Many games have several Nash equilibria. Take for example Figure 1. There,
neither player has an incentive to deviate from (R1, C1), nor to deviate from
(R2, C2). Thus both strategy profiles are pure-strategy Nash equilibria. With
two or more possible outcomes, the equilibrium concept loses much of its appeal.
It no longer gives an obvious answer to the normative, explanatory or predictive
questions game theory sets out to answer. The assumption that one specific Nash
equilibrium is played relies on there being some mechanism or process that leads
all the players to expect the same equilibrium. Various equilibrium refinements try
to rule out some of the many equilibria by capturing these underlying intuitions.

Schelling’s [1960] theory of focal points suggests that in some “real-life” sit-
uations players may be able to coordinate on a particular equilibrium by using
information that is abstracted away by the payoffs in the strategic form. Focal
points are equilibria that are somehow salient. Names of strategies and past com-
mon experiences of the players provide examples of information that has such
salience. It will remain very difficult to develop systematic work on the “focal-
ness” of various strategies because what the players take to be focal depends on
their cultural and personal backgrounds and salience is by definition not reflected
in the payoffs. This fact makes it very hard to incorporate these concepts into the
formal structure of game theory (but see [Bacharach, 1993; Sugden, 1995]).

Other refinement notions might appear to evade such context-dependence. Two
prominent examples are payoff dominance and risk dominance. Consider the fol-
lowing coordination games:

We say that the strategy profile (R1, C1) payoff dominates (C2, R2) if and only
if the payoffs of (R1, C1) for each player are equal or larger than the payoffs for
(R2, C2) and at least one of these inequalities is strict. The intuition behind this
refinement idea is that players will be able to coordinate on playing a certain
strategy profile if this strategy profile is Pareto-efficient for all.

In contrast to this position, it has been argued that players may not only take
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C1 C2
R1 5,5 0,4
R2 4,0 2,2

C1 C2
R1 A,a C,b
R2 B,c D,d

Figure 7. A coordination game

the payoff magnitude into account when selecting amongst multiple Nash equilib-
ria, but that they also consider the risk of ending up in a non-equilibrium state. In
other words, (R1, C1) may be better for Row in Figure 8, but the possibility that
Col makes a mistake and chooses C2 when Row chooses R1 bears such a risk that
it is safer for Row to choose R2 (by symmetry, the same applies to Col). We say
that (R2, C2) risk dominates (R1, C1) if and only if (C−D)(c−d) ≥ (B−A)(b−a)
[Harsanyi and Selten, 1988, lemma 5.4.4]. Thus, in the same game of Figure 8, (R1,
C1) is payoff dominant, while (R2, C2) is risk dominant. Cases of such possible
conflicts between refinement solution concepts are exacerbated by an embarrass-
ment of riches. More and more competing refinements were developed, some of
which imposed massive demands on the agents’ ability to reason (and enormous
faith that other agents will follow similar reasoning paths). Some were difficult to
work with and their predictions were not always consistent with intuition, common
sense or experimental evidence. Even more troubling, no proper basis was found
from which to interpret these refinements or to choose between them.

As it will become clearer in section 3.2, the assumptions underlying the ap-
plication of the Nash concept are somewhat problematic. The most important
alternative solution concept is that of rationalizability, which is based on weaker
assumptions. Players assign a subjective probability to each of the possible strate-
gies of their opponents, instead of postulating their opponents’ choices and then
finding a best response to it, as in the Nash procedure. Further, knowing their
opponent’s payoffs, and knowing they are rational, players expect others to use
only strategies that are best responses to some belief they might have about them-
selves. A strategy is rationalizable for a player if it survives indefinitely repeated
selections as a best response to some rational belief she might have about the
strategies of her opponent. A strategy profile is rationalizable if the strategies
contained in it are rationalizable for each player. It has been shown that every
Nash equilibrium is rationalizable. Further, the set of rationalizable strategies is
nonempty and contains at least one pure strategy for each player [Bernheim, 1984;
Pearce, 1984]. Rationalizability is thus often applicable, but there are often too
many rationalizable strategies, so that this solution concept often does not provide
a clear answer to the advisory and predictive questions posed to game theory, and
it is thus seldom actually used in real-world applications.

All solution concepts discussed so far can be applied both to strategic and
extensive form games. However, the extensive form provides more information
than the strategic form, and this extra information sometimes provides the basis
for further refinements. Take the example of Figure 9. The game has three Nash
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equilibria: (U, (L,L)); (D, (L,R)) and (D, (R,R)). But the first and the third
equilibria are suspect, when one looks at the extensive form of the game. After
all, if player 2’s right information set was reached, the he should play R (given
that R gives him 3 utils while L gives him only –1 utils). But if player 2’s left
information set was reached, then he should play L (given that L gives him 2
utils, while R gives him only 0 utils). Moreover, player 1 should expect player 2 to
choose this way, and hence she should choose D (given that her choosing D and
player 2 choosing R gives her 2 utils, while her choosing U and player 2 choosing L
gives her only 1 util). The equilibria (U, (L,L)) and (D, (R,R)) are not “credible’,
because they rely on an “empty threat” by player 2. The threat is empty because
player 2 would never wish to carry it out. The Nash equilibrium concept neglects
this sort of information, because it is insensitive to what happens off the path of
play.

L,L L,R R,L R,R
U 2,1 2,1 0,0 0,0
D -1,1 3,2 -1,1 3,2

(a) (b)

Figure 8. Strategic and extensive form

The simplest way to formalise this intuition is the backward-induction solution
concept, which applies to finite games of perfect information [Zermelo, 1913]. Since
the game is finite, it has a set of penultimate nodes, i.e. nodes whose immediate
successors are terminal nodes. Specify that the player who can move at each such
node chooses whichever action that leads to the successive terminal node with the
highest payoff for him (in case of a tie, make an arbitrary selection). So in the
game of Figure 9b, player 2’s choice of R if player 1 chooses U and her choice of
L if player 1 chooses D can be eliminated, so that the players act as if they were
faced with the following truncated tree:

Figure 9. First step of backward induction
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Now specify that each player at those nodes, whose immediate successors are the
penultimate nodes, chooses the action that maximizes her payoff over the feasible
successors, given that the players at the penultimate nodes play as we have just
specified. So now player 1’s choice U can be eliminated:

Figure 10. Second step of backward induction

Then roll back through the tree, specifying actions at each node (not necessary
for the given example anymore, but one gets the point). Once done, one will have
specified a strategy for each player, and it is easy to check that these strategies
form a Nash equilibrium. Thus, each finite game of perfect information has a
pure-strategy Nash equilibrium.

Backward induction fails in games with imperfect information. In a game like
that in Figure 10, there is no way to specify an optimal choice for player 2 in his
second information set, without first specifying player 2’s belief about the previous
choice of player 1.

Figure 11. A game not solvable by backward induction

However, if one accepts the argument for backward induction, the following
is also convincing. The game beginning at player 1’s second information set is
a simultaneous-move game identical to the one presented in Figure 7. The only
Nash equilibrium of this game is a mixed strategy with a payoff of 0 for both
players (as noted earlier in this section when we discussed the matching pennies
game). Using this equilibrium payoff as player 2’s payoff from choosing R, it
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is obvious that player 2 maximizes his payoff by choosing L, and that player 1
maximizes her payoff by choosing R. More generally, an extensive form game
can be analyzed into proper subgames, each of which satisfies the definition of
extensive-form games in their own right. Games of imperfect information can thus
be solved by replacing a proper subgame with one of its Nash equilibrium payoffs
(if necessary, repeatedly), and performing backward induction on the reduced tree.
This equilibrium refinement technique is called subgame perfection.

Backward induction is based on the idea that players expect other players’
behaviour to be rational in future decision nodes. Forward induction [Kohlberg
and Mertens, 1986] is the converse of this: players expect others to have been
rational in their previous choices. Consider game G’, commonly known as the
‘Battle of the Sexes’, which is depicted in Figure 11a.

LEFT RIGHT
TOP 4,2 0,0
BOTTOM 0,0 2,4

Figure 12. Game G′

This game has no pure strategy equilibria, but we can compute that in a mixed
strategy equilibrium (2/3, 1/3) the expected payoff is 4/3 for both players. Con-
sider now how this game would be played if prior to playing game G’ there was
another game (depicted in Figure 11b) in which playing in G′ was one of the
possible strategies:

IN OUT
IN G’, G’ 4,1
OUT 3,4 3,3

Figure 13. Game G

Since the expected payoff in G′ is 4/3>1, the column player (he) has a dominant
strategy of playing IN. The row player (she) then has a dominant strategy of
playing OUT, so that the solution to G seems to be (OUT, IN ). However, consider
how she could rationalise a choice of IN. If she does enter the game G’, she must
be communicating her intention to obtain the best possible outcome (4, 2), and
given that he understands this, he should choose LEFT if he were to find himself
in this game. Notice that she could have secured a payoff of 3 by staying out, and
that the intention of playing the (TOP, LEFT ) equilibrium is the only reason for
her to enter G′. One might object that she should simply never enter because the
expected payoff in G′ is lower than that from playing OUT. The forward induction
argument thus asks us to consider a counterfactual world in which something that
is unimaginable from the point of view of other game-theoretic principles happens.
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As we saw in the case of static games, different solution concepts may sometimes
give conflicting advice. A similar problem arises in the case of dynamic games:
according to the forward induction argument, entering G’ seems like a perfectly
rational thing to do. Indeed, the very idea of forward induction is to interpret all
previous choices as rational. If the choice of IN is taken as a mistake instead, it
seems reasonable to continue to play the mixed strategy equilibrium. It is not very
surprising that there is a fair amount of discussion on the plausibility of forward
induction. As Binmore [2007, p. 426] suggests, this is because people’s intuitions
about how the relevant counterfactuals are to be interpreted depend on details
concerning how exactly the game has been presented. If you were to find yourself
in game G′ as a column player, would you randomise? We will continue discussing
the role of counterfactuals in backward and forward induction in section 3.3.

Because of the context-dependence and possibility of contradiction, game theo-
rists are cautious about the use of refinements. Rather, they seem to have settled
for the Nash equilibrium as the ‘gold standard’ of game-theoretic solution con-
cepts (see [Myerson, 1999] for a historical account). Yet as we show in section 3.2,
justifications of why players should or will play equilibrium strategies are rather
shaky. Instead of privileging one solution concept, one needs to take a closer look
at how the choice of solution concepts is justified in the application of game theory
to particular situations. This leads us to the discussion of the architecture of game
theory.

2.4 The Architecture of Game Theory

The structure of game theory is interesting from the perspective of the philosophy
of science. Like many other theories, it employs highly abstract models, and it
seeks to explain, predict and advice on real world phenomena by a theory that
operates through these abstract models. What is special about game theory, how-
ever, is that this theory does not provide a general and unified mode of dealing
with all kinds of phenomena, but rather offers a ‘toolbox’, from which the right
tools must be selected.

Ken Binmore distinguishes between modelling and analysing a game (1994, pp.
27, 161-2, 169). Modelling means constructing a game model that corresponds to
an imaginary or a real world situation. Analysing means choosing and applying a
solution concept to a game model, and deriving a prediction of or a prescription for
the players’ choices.3 Grüne-Yanoff and Schweinzer [2008] distinguish three main
components of game theory. The theory proper (on the left hand side of Figure
12) specifies the concept of a game, provides the mathematical elements that are
needed for the construction of a game form, and offers solution concepts for the
thus constructed games. The game structure (left half of the central circle of

3Ross [2006b, p. 24] seems to suggest, however, that choosing the solution concept is part of
modelling because the choice of a refinement depends on the ‘underlying dynamics that equipped
players with dispositions prior to commencement of a game’. But Ross does not specify how the
choice is made in the end.
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Figure 12) is a description of a particular game that is constructed using elements
of the theory proper. The model narrative (the right half of the central circle of
Figure 12) provides an account of a real or a hypothetical economic situation. Its
account of the situation interprets the game.

Figure 14. The architecture of game theory

A game model consists of a formal game structure and an informal model nar-
rative. The game structure — formally characterised as a set-theoretic object —
specifies the number of players, their strategies, information-sets and their pay-
offs.4 The function of the theory proper is to constrain which set-theoretical
structures can be considered as games, and to offer a menu of solution concepts
for possible game structures. Game theorists often focus on the development of
the formal apparatus of the theory proper. Their interest lies in proposing alter-
native equilibrium concepts or proving existing results with fewer assumptions,
not in representing and solving particular interactive situations. “Game theory is
for proving theorems, not for playing games” (Reinhard Selten, quoted in [Goeree
and Holt, 2001, p. 1419]).

One reason for distinguishing between theory proper and the game model (or
between analysing and modelling) is to force the game theorist to include all
possible motivating factors in the payoffs. If this is assumed, introducing new
psychological variables during the analysis is ruled out. Binmore argues [1994,
pp. 161-162], for example, that Sen’s arguments on sympathy and commitment
should be written into the payoffs of a game, i.e. that they should be taken into
account when it is being modelled. The point with the distinction is thus that
critics of game theory should not criticise game-theoretical analyses by invoking
issues that belong to modelling. This is surely a reasonable requirement. Indeed,
Binmore’s point is not new in the discussion. Game theorists and decision the-

4The term ‘game’ is also used for this mathematical object, but since it is also often used
to refer to the combination of the game structure and the accompanying narrative (think of
‘Prisoner’s dilemma’ for example), we hope that clarity is served by distinguishing between game
structures and game models.
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orists have always subscribed to the idea that payoffs should be interpreted as
complete descriptions of all possible factors that may motivate the players (see
e.g., [Kohlberg and Mertens, 1986]). Furthermore, it has been recognised that if
payoffs are interpreted as complete descriptions, the theory proper is empirically
empty.

In our view, game theory . . . should be regarded as a purely formal theory
lacking empirical content. Both theories merely state what will happen if all
participants have consistent preferences and follow their own preferences in a con-
sistent manner – whatever these preferences may be. Empirical content comes in
only when we make specific assumptions about the nature of these preferences and
about other factual matters [Harsanyi, 1966, pp. 413-4].

Yet not only the theory proper lacks empirical content, but the game struc-
ture does too. Although they habitually employ labels like ‘players’, ‘strategies’
or ‘payoffs’, the game structures that the theory proper defines and helps solving
are really only abstract mathematical objects. To acquire meaning, these abstract
objects must be interpreted as representations of concrete situations. The inter-
pretation is accomplished by an appropriate model narrative (cf. Morgan’s [2005]
discussion of stories in game theory). Such narratives are very visible in game the-
ory — many models, like the chicken game or the prisoners’ dilemma, are named
after the story that comes with the model structure. The question is whether these
narratives only support the use of models, or whether they are part of the model
itself [Mäki, 2002, p. 14].

As regularly exemplified in textbooks, these narratives may be purely illustra-
tive: they may describe purely fictional situations whose salient features merely
help to exemplify how a particular model structure could be interpreted. Yet in
other cases, narratives facilitate the relation of game structures to the real world.
The narrative does this by first conceptualising a real world situation with game-
theoretic notions. It identifies agents as players, possible plans as strategies, and
results as payoffs. It also makes explicit the knowledge agents possess, and the
cognitive abilities they have. Secondly, the narrative interprets the given game
structure in terms of this re-conceptualised description of the real-world situation.
Thus, model narratives fill model structures either with fictional or empirical con-
tent.

The model narrative also plays a third crucial role in game theory. As discussed
in the previous sections, a specified game structure can be solved by different
solution concepts. Sometimes, as in the case of minimax and Nash equilibrium for
zero-sum games, the reasoning behind the solution concepts is different, but the
result is the same. In other cases, however, applying different solution concepts
to the same game structure yields different results. This was the case with payoff-
dominance vs. risk dominance, as well as with backward and forward induction,
which we discussed in section 2.3. Sometimes, information contained in the game
structure alone is not sufficient for selecting between different solution concepts.
Instead, the information needed is found in an appropriate account of the situation
— i.e. in the model narrative. Thus, while it is true that stories (prisoner’s
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dilemma, battle of the sexes, hawk-dove, etc.) are sometimes presented only for
illustrative purposes, they take on a far more important function in these cases.
They determine, together with constraints given by theory proper, the choice of
the appropriate solution concept for a specific game [Grüne-Yanoff and Schweinzer,
2008]. Because model structures alone do not facilitate the choice of solution
concepts, they are incomplete. Grüne-Yanoff and Schweinzer thus argue that
model structure and model narrative together form the game model, and that
model narratives are an essential part of game models.5

This conclusion raises the issue of model identity. It is quite common to hear
economists identify a real-world situation with a particular game model; for exam-
ple, to say that a situation X ‘is a Prisoners’ Dilemma’. According to the above
analysis, such a claim not only implies that any suitable description of X can serve
as an interpretation of the model structure. It also implies that this description
of Xis appropriately similar to the model narrative of the prisoners’ dilemma —
for example, in terms of the knowledge of the agents, their cognitive abilities, and
their absence of sympathy and altruism. Without this additional requirement of
similarity of the informal background stories, identification of game model with
concrete situations may lead to the unjustifiable application of certain solution
concepts to that situation, and hence to incorrect results.

More generally, the observations about the architecture of game theory and the
role of informal model narratives in it have two important implications. First, it
becomes clear that game theory does not offer a universal notion of rationality,
but rather offers a menu of tools to model specific situations at varying degrees
and kinds of rationality. Ultimately, it is the modeller who judges, on the basis of
her own intuitions, which kind of rationality to attribute to the interacting agents
in a given situation. This opens up the discussion about the various intuitions
that lie behind the solution concepts, the possibility of contravening intuitions,
and the question whether a meta-theory can be constructed that unifies all these
fragmentary intuitions. Some of these issues will be discussed in section 3.

The second implication of this observation concerns the status of game theory
as a positive theory. Given its multi-layer architecture, any disagreement of pre-
diction and observation can be attributed to a mistake either in the theory, the
game form or the model narrative. This then raises the question how to test game
theory, and whether game theory is refutable in principle. These questions will be
discussed in section 4.

3 GAME THEORY AS A NORMATIVE THEORY OF RATIONALITY

Game theory has often been interpreted as a part of a general theory of rational
behaviour. This interpretation was already in the minds of the founders of game
theory, who wrote:

5This third function of model narratives in game theory distinguishes it from earlier accounts
of stories in economic models more generally (cf. [Morgan, 2001]).
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We wish to find the mathematically complete principles which define
“rational behavior” for the participants in a social economy, and to
derive from them the general characteristics of that behavior. [von
Neumann and Morgenstern, 1944, p. 31]

To interpret game theory as a theory of rationality means to give it a prescriptive
task: it recommends what agents should do in specific interactive situations, given
their preferences. To evaluate the success of this rational interpretation of game
theory is to investigate its justification, in particular the justification of the solution
concepts it proposes. That human agents ought to behave in such and such a
way does not of course mean that they will do so; hence there is little sense in
testing rationality claims empirically. The rational interpretation of game theory
therefore needs to be distinguished from the interpretation of game theory as a
predictive and explanatory theory. The solution concepts are either justified by
identifying sufficient conditions for them, and showing that these conditions are
already accepted as justified, or directly, by compelling intuitive arguments.

3.1 Is Game Theory a Generalisation of Decision Theory?

Many game theorists have striven to develop a unifying framework for analysing
games and single-person decision situations. Decision theory might provide foun-
dations for game theory in several ways. (i) One can argue that payoffs are deter-
mined as revealed preferences in single-person decision problems (e.g., [Binmore,
2007, pp. 13-14]), or relatedly, that the payoffs are NMUFs. (ii) Another argu-
ment is to say that game-theoretical solution concepts can be reduced to the more
widely accepted notion of rationality under uncertainty (e.g., [Aumann, 1987]). If
such reduction is to be successful, one should be able to derive solution concepts
from more primitive assumptions concerning individual rationality as in decision
theory. In this section we will try to see whether this unificatory endeavour has
been successful.6

We will point out several important differences: First, the interpretation of
beliefs in decision theory is objective (vNM) or subjective (Savage), but game
theoretical solution concepts imply restrictions on the players’ beliefs, which in
turn implies a ‘logical’ or ‘necessitarian’ interpretation (Section 3.1.1): the game
determines what the relevant probabilities of rational agents ought to be. Second,
the epistemic conditions for solution concepts are more stringent than those that
derive from the decision-theoretic axioms (Section 3.1.2). The revealed preference
arguments are discussed later in Section 4.4.

6See Mariotti [1995; 1996; 1997] for an argument that axioms of decision theory may conflict
with game theoretical solution concepts. Hammond [1996; 1998; 2004] presents a thorough
discussion of the role of individual utility in game theory. See also [Battigalli, 1996].
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3.1.1 Common Priors and Bayesianism

To motivate the discussion, one may start by asking why the players do not sim-
ply maximise expected utility just as they do in single-person contexts [Kadane
and Larkey, 1982; 1983]. A quick answer is that since the relevant probabilities
often concern the other players’ choices, those probabilities must be endogenously
determined. In other words, one must analyse the whole game with a solution
concept in order to determine the probabilities. This makes the interpretation of
the beliefs a necessitarian one: arguments appealing to the players’ rationality are
used to determine constraints for the beliefs.

Bayesianism in game theory (e.g., [Aumann, 1987; Tan and Werlang, 1988])
can be characterised as the view that it is always possible to define probabilities
for anything that is relevant for the players’ decision-making. In addition, it is
usually taken to imply that the players use Bayes’ rule for updating their beliefs.
If the probabilities are to be always definable, one also has to specify what players’
beliefs are before the play is supposed to begin. The standard assumption is that
such prior beliefs are the same for all players (see [Morris, 1995]). This common
prior assumption (CPA) means that the players have the same prior probabilities
for all those aspects of the game for which the description of the game itself does
not specify different probabilities. Common priors are usually justified with the
so called Harsanyi doctrine [Harsanyi, 1967-8], according to which all differences
in probabilities are to be attributed solely to differences in the experiences that
the players have had. Different priors for different players would imply that there
are some factors that affect the players’ beliefs even though they have not been
explicitly modelled. The CPA is sometimes considered to be equivalent to the
Harsanyi doctrine, but there seems to be a difference between them: the Harsanyi
doctrine is best viewed as a metaphysical doctrine about the determination of
beliefs, and it is hard to see why anybody would be willing to argue against it: if
everything that might affect the determination of beliefs is included in the notion
of ‘experience’, then it alone does determine the beliefs. The Harsanyi doctrine has
some affinity to some convergence theorems in Bayesian statistics: if individuals
are fed with similar information indefinitely, their probabilities will ultimately be
the same, irrespective of the original priors.

The CPA however is a methodological injunction to include everything that
may affect the players’ behaviour in the game: not just everything that moti-
vates the players, but also everything that affects the players’ beliefs should be
explicitly modelled by the game: if players had different priors, this would mean
that the game structure would not be completely specified because there would
be differences in players’ behaviour that are not explained by the model. In a
dispute over the status of the CPA, Faruk Gul [1998] essentially argues that the
CPA does not follow from the Harsanyi doctrine. He does this by distinguishing
between two different interpretations of the common prior, the ‘prior view’ and
the ‘infinite hierarchy view’. The former is a genuinely dynamic story in which it
is assumed that there really is a prior stage in time. The latter framework refers to
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Mertens and Zamir’s [1985] construction in which prior beliefs can be consistently
formulated. This framework however, is static in the sense that the players do not
have any information on a prior stage, indeed, the ‘priors’ in this framework do
not even pin down a player’s priors for his own types. Thus, the existence of a
common prior in the latter framework does not have anything to do with the view
that differences in beliefs reflect differences in information only.

It is agreed by everyone (including [Aumann, 1998]) that for most (real-world)
problems there is no prior stage in which the players know each other’s beliefs,
let alone that they would be the same. The CPA, if understood as a modelling
assumption, is clearly false. Robert Aumann [1998], however, defends the CPA
by arguing that whenever there are differences in beliefs, there must have been a
prior stage in which the priors were the same, and from which the current beliefs
can be derived by conditioning on the differentiating events. If players differ
in their present beliefs, they must have received different information at some
previous point in time, and they must have processed this information correctly
[1999b]; see also [Aumann, 1999a; Heifetz, 1999]. Based on this assumption, he
further argues that players cannot ‘agree to disagree’: if a player knows that his
opponents’ beliefs are different from his own, he should revise his beliefs to take
the opponents’ information into account. The only case where the CPA would be
violated, then, is when players have different beliefs, and have common knowledge
about each others’ different beliefs and about each others’ epistemic rationality.
Aumann’s argument seems perfectly legitimate if it is taken as a metaphysical one,
but we do not see how it could be used as a justification for using the CPA as
a modelling assumption in this or that application of game theory (and Aumann
does not argue that it should).

3.1.2 Sufficient Epistemic Conditions for Solution Concepts

Recall that the various solution concepts presented in section 2 provide advice on
how to choose an action rationally when the outcome of one’s choice depends on
the actions of the other players, who in turn base their choices on the expectation
of how one will choose. The solution concepts thus not only require the players
to choose according to maximisation considerations; they also require that agents
maximise their expected utilities on the basis of certain beliefs. Most prominently,
these beliefs include their expectations about what the other players expect of
them, and their expectations about what the other players will choose on the
basis of these expectations. Such epistemic conditions are not always made explicit
when game theory is being discussed. However, without fulfilling them, players
cannot be expected to choose in accord with specific solution concepts. To make
these conditions on the agent’s knowledge and beliefs explicit will thus further our
understanding on what is involved in the solution concepts. In addition, if these
epistemic conditions turn out to be justifiable, one would have achieved progress in
justifying the solution concepts themselves. This line of thought has in fact been
so prominent that the interpretation of game theory as a theory of rationality has
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often been called the eductive or the epistemic interpretation [Binmore, 1987]. In
the following, the various solution concepts are discussed with respect to their
sufficient epistemic conditions, and the conditions are investigated with regard to
their acceptability.

For the solution of eliminating dominated strategies, nothing is required be-
yond the rationality of the players and their knowledge of their own strategies and
payoffs. Each player can rule out her dominated strategies on the basis of maxi-
mization considerations alone, without knowing anything about the other player.
To the extent that maximization considerations are accepted, this solution concept
is therefore justified.

The case is more complex for iterated elimination of dominated strategies (this
solution concept was not explained before, so don’t be confused. It fits in most
naturally here). In the game matrix of Figure 13, only Row has a dominated
strategy, R1. Eliminating R1 will not yield a unique solution. Iterated elimina-
tion allows players to consecutively eliminate dominated strategies. However, it
requires stronger epistemic conditions.

C1 C2 C3
R1 3,2 1,3 1,1
R2 5,4 2,1 4,2
R3 4,3 3,2 2,4

Figure 15. A game allowing for iterated elimination of dominated strategies

If Col knows that Row will not play R1, she can eliminate C2 as a dominated
strategy, given that R1 was eliminated. But to know that, Col has to know:

i. Row’s strategies and payoffs

ii. That Row knows her strategies and payoffs

iii. That Row is rational

Let’s assume that Col knows i.-iii., and that he thus expects Row to have spotted
and eliminated R1 as a dominated strategy. Given that Row knows that Col did
this, Row can now eliminate R3. But for her to know that Col eliminated C2, she
has to know:

i. Row’s (i.e. her own) strategies and payoffs

ii. That she, Row, is rational

iii. That Col knows i.-ii.

iv. Col’s strategies and payoffs

v. That Col knows her strategies and payoffs
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vi. That Col is rational

Let us look at the above epistemic conditions a bit more closely. i. is trivial, as
she has to know her own strategies and payoffs even for simple elimination. For
simple elimination, she also has to be rational, but she does not have to know
it — hence ii. If Row knows i. and ii., she knows that she would eliminate R1.
Similarly, if Col knows i. and ii., he knows that Row would eliminate R1. If Row
knows that Col knows that she would eliminate R1, and if Row also knows iv.-vi.,
then she knows that Col would eliminate C2. In a similar fashion, if Col knows
that Row knows i.-vi., she will know that Row would eliminate R3. Knowing this,
he would eliminate C3, leaving (R2, C1) as the unique solution of the game.

Generally, iterated elimination of dominated strategy requires that each player
knows the structure of the game, the rationality of the players and, most impor-
tantly, that she knows that the opponent knows that she knows this. The depth of
one player knowing that the other knows, etc. must be at least as high as the num-
ber of iterated eliminations necessary to arrive at a unique solution. Beyond that,
no further “he knows that she knows that he knows. . . ” is required. Depending
on how long the chain of iterated eliminations becomes, the knowledge assump-
tions may become difficult to justify. In long chains, even small uncertainties in
the players’ knowledge may thus put the justification of this solution concept in
doubt.

From the discussion so far, two epistemic notions can be distinguished. If all
players know a proposition p, one says that they have mutual knowledge of p. As
the discussion of iterated elimination showed, mutual knowledge is too weak for
some solution concepts. For example, condition iii insists that Row not only know
her own strategies, but also knows that Col knows. In the limit, this chain of one
player knowing that the other knows that p, that she knows that he knows that she
knows that p,etc. is continued ad infinitum. In this case, one says that players have
common knowledge of the proposition p. When discussing common knowledge, it
is important to distinguish of what the players have common knowledge. It is
standard to assume that there is common knowledge of the structure of the game
and the rationality of the players.

Analysing the epistemic conditions of other solution concepts requires more
space and technical apparatus than available here. Instead of discussing the deriva-
tion, we list the results for the central solution concepts in Figure 14. As shown
there, for the players to adhere to solutions provided by rationalizability, common
knowledge is sufficient. Sufficient epistemic conditions for pure-strategy Nash equi-
libria are even stronger. Common knowledge of the game structure or rationality
is neither necessary nor sufficient for the justification of Nash equilibria, not even
in conjunction with epistemic rationality. Instead, it is required that all players
know what the others will choose (in the pure-strategy case) or what the others
will conjecture all players will be choosing (in the mixed-strategy case). This is
rather counter-intuitive, and it shows the limitations of the epistemic interpreta-
tion of solution concepts. Alternative interpretations of the Nash equilibrium are
discussed in the next section. For further discussion of epistemic conditions of
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Solution Concept Structure
of the
game

Rationality Choices or
beliefs

Simple elimination of
dominated strategies

Each player
knows her
payoffs

Fact of ratio-
nality

—

Iterated elimination of
dominated strategies

Knowledge
to the degree
of iteration

Knowledge
to the degree
of iteration

—

Rationalizability Common
Knowledge

Common
Knowledge

—

Pure-strategy Nash
equilibrium

— Fact of ratio-
nality

Mutual
knowledge of
choices

Mixed-strategy equi-
librium in two-person
games

Mutual
knowledge

Mutual
knowledge

Mutual
knowledge of
beliefs

Figure 16. (adapted from [Brandenburger, 1992]): Epistemic requirements for
solution concepts

solution concepts, see [Bicchieri, 1993, Chapter 2].

3.2 Justifying the Nash Equilibrium

The Nash equilibrium concept is often seen as “the embodiment of the idea that
economic agents are rational; that they simultaneously act to maximize their util-
ity” [Aumann, 1985, p. 43]. Yet the previous analysis of the Nash equilibrium’s
sufficient epistemic conditions showed how strong these conditions are, and that
they are too strong to derive the Nash equilibrium from decision theoretic princi-
ples. Claiming the Nash equilibrium to be an embodiment of rationality therefore
needs further justification. We discuss three kinds of justifications in different
contexts: in one-shot games, in repeated games, and in the evolutionary context
of a population.

3.2.1 Nash Equilibria in One-Shot Games

It seems reasonable to claim that once the players have arrived at an equilibrium
pair, neither has any reason for changing his strategy choice unless the other
player does too. But what reason is there to expect that they will arrive at
one? Why should Row choose a best reply to the strategy chosen by Col, when
Row does not know Col’s choice at the time she is choosing? In these questions,
the notion of equilibrium becomes somewhat dubious: when scientists say that a
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physical system is in equilibrium, they mean that it is in a stable state, where
all causal forces internal to the system balance each other out and so leave it “at
rest” unless it is disturbed by some external force. That understanding cannot be
applied to the Nash equilibrium, when the equilibrium state is to be reached by
rational computation alone. In a non-metaphorical sense, rational computation
simply does not involve causal forces that could balance each other out. When
approached from the rational interpretation of game theory, the Nash equilibrium
therefore requires a different understanding and justification. In this section, two
interpretations and justifications of the Nash equilibrium are discussed.

Often, the Nash equilibrium is interpreted as a self-enforcing agreement. This
interpretation is based on situations in which agents can talk to each other, and
form agreements as to how to play the game, prior to the beginning of the game,
but where no enforcement mechanism providing independent incentives for com-
pliance with agreements exists. Agreements are self-enforcing if each player has
reasons to respect them in the absence of external enforcement.

It has been argued that being a self-enforcing agreement is neither necessary
nor sufficient for a strategy to be in Nash equilibrium. That it is not necessary is
obvious in games with many Nash equilibria: not all of the equilibria could have
been self-enforcing agreements at the same time. It also has been argued that Nash
equilibria are not sufficient. Risse [2000] argues that the notion of self-enforcing
agreements should be understood as an agreement that provides some incentives
for the agents to stick to it, even without external enforcement. He then goes on
to argue that there are such self-enforcing agreements that are not Nash equilibria.
Take for example the game in Figure 16.

C1 C2
R1 0,0 4,2
R2 2,4 3,3

Figure 17.

Let us imagine the players initially agreed to play (R2, C2). Now both have
serious reasons to deviate, as deviating unilaterally would profit either player.
Therefore, the Nash equilibria of this game are (R1, C2) and (R2, C1). However,
in an additional step of reflection, both players may note that they risk ending up
with nothing if they both deviate, particularly as the rational recommendation for
each is to unilaterally deviate. Players may therefore prefer the relative security
of sticking to the strategy they agreed upon. They can at least guarantee 2 utils
for themselves, whatever the other player does, and this in combination with the
fact that they agreed on (R2, C2) may reassure them that their opponent will in
fact play strategy 2. So (R2, C2) may well be a self-enforcing agreement, but it
nevertheless is not a Nash equilibrium.

Last, the argument from self-enforcing agreements does not account for mixed
strategies. In mixed equilibria all strategies with positive probabilities are best
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replies to the opponent’s strategy. So once a player’s random mechanism has
assigned an action to her, she might as well do something else. Even though
the mixed strategies might have constituted a self-enforcing agreement before the
mechanism made its assignment, it is hard to see what argument a player should
have to stick to her agreement after the assignment is made [Luce and Raiffa, 1957,
p. 75].

Another argument for one-shot Nash equilibria commences from the idea that
agents are sufficiently similar to take their own deliberations as simulations of their
opponents’ deliberations.

The most sweeping (and perhaps, historically, the most frequently in-
voked) case for Nash equilibrium. . . asserts that a player’s strategy
must be a best response to those selected by other players, because
he can deduce what those strategies are. Player i can figure out j’s
strategic choice by merely imagining himself in j’s position. [Pearce,
1984, p. 1030]

Jacobsen [1996] formalizes this idea with the help of three assumptions. First, he
assumes that a player in a two-person game imagines himself in both positions
of the game, choosing strategies and forming conjectures about the other player’s
choices. Second, he assumes that the player behaves rationally in both positions.
Thirdly, he assumes that a player conceives of his opponent as similar to himself;
i.e. if he chooses a strategy for the opponent while simulating her deliberation, he
would also choose that position if he was in her position. Jacobsen shows that on
the basis of these assumptions, the player will choose his strategies so that they
and his conjecture on the opponent’s play constitute a Nash equilibrium. If his
opponent also holds such a Nash equilibrium conjecture (which she should, given
the similarity assumption), the game has a unique Nash equilibrium.

This argument has met at least two criticisms. First, Jacobsen provides an
argument for Nash equilibrium conjectures, not for Nash equilibria. If each player
ends up with a multiplicity of Nash equilibrium conjectures, an additional coordi-
nation problem arises over and above the coordination of which Nash equilibrium
to play: now first the conjectures have to be matched before the equilibria can be
coordinated.

Secondly, when simulating his opponent, a player has to form conjectures about
his own play from the opponent’s perspective. This requires that he predict his own
behaviour. However, Levi [1998] raises the objection that to deliberate excludes
the possibility of predicting one’s own behaviour. Otherwise deliberation would
be vacuous, since the outcome is determined when the relevant parameters of the
choice situation are available. Since game theory models players as deliberating
between which strategies to choose, they cannot, if Levi’s argument is correct,
also assume that players, when simulating others’ deliberation, predict their own
choices.

Concluding this sub-section, it seems that there is no general justification for
Nash equilibria in one-shot, simultaneous-move games. This does not mean that
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there is no justification to apply the Nash concept to any one-shot, simultaneous-
move game — for example, games solvable by iterated dominance have a Nash
equilibrium as their solution. Also, this conclusion does not mean that there are
no exogenous reasons that could justify the Nash concept in these games. How-
ever, the discussion here was concerned with endogenous reasons — i.e. reasons
derived from the information contained in the game structure alone. And there
the justification seems deficient.

3.2.2 Learning to Play Nash Equilibrium

People may be unable to play Nash equilibrium in some one-shot games, yet they
may learn to play the equilibrium strategy if they play the same game repeatedly.7
Playing the same game repeatedly may have different learning effects, depending
on the cognitive abilities of the players and the variability of the matches. My-
opic learners observe the results of past stage games and adjust their strategy
choices accordingly. They are myopic because (i) they ignore the fact that their
opponents also engage in dynamic learning, and (ii) they do not care about how
their deviations from equilibrium strategies may affect opponents’ future play. So-
phisticated learners take this additional information into account when choosing a
strategy. Yet most game theory abstracts from the effects of type (ii) information
by focussing on games in which the incentive to influence opponents’ future play
is small enough to be negligible.

An important example of modelling sophisticated learners is found in Kalai and
Lehrer [1993]. In an n player game (with a finite strategy set), each player knows
her payoffs for every strategy taken by the group of players. Before making her
choice of a period’s strategy, the player is informed of all the previous actions
taken. The player’s goal is to maximise the present value of her total expected
payoff.

Players are assumed to be subjectively rational: each player commences with
subjective beliefs about the individual strategies used by each of her opponents.
She then uses these beliefs to compute her own optimal strategy. Knowledge as-
sumptions are remarkably weak for this result: players only need to know their
own payoff matrix and discount parameters. They need not know anything about
opponents’ payoffs and rationality; furthermore, they need not know other play-
ers’ strategies, or conjectures about strategies. Knowledge assumptions are thus
weaker for learning Nash equilibria in this kind of infinite repetition than those
required for Nash solutions or rationalizability in one-shot games.

Players learn by updating their subjective beliefs about others’ play with in-
formation about previously chosen strategy profiles. After each round, all players
observe each other’s choices and adjust their beliefs about the strategies of their op-
ponents. Beliefs are adjusted by Bayesian updating : the prior belief is conditioned

7People may also be able to learn the equilibrium strategy in a game G from playing a game
similar but not identical to G. Because similarity between games is not sufficiently conceptualised,
the literature has largely eschewed this issue and focussed almost exclusively on the case of
identity (for exceptions, see [LiCalzi, 1995; Rankin et al., 2000]).
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on the newly available information. Kalai and Lehrer portray Bayesian updating
as a direct consequence of expected utility maximisation [Kalai and Lehrer, 1993,
p. 1021]. Importantly, they do not assume common priors, but only that players’
subjective beliefs do not assign zero probability to events that can occur in the play
of the game. On the basis of these assumptions, Kalai and Lehrer show that (i)
after repeatedly playing a game, the real probability distribution over the future
play of the game is arbitrarily close to what each player believes the distribution
to be, and (ii) the actual choices and beliefs of the players, when converged, are
arbitrarily close to a Nash equilibrium. Nash equilibria in these situations are thus
justified as potentially self-reproducing patterns of strategic expectations.

Kalai and Lehrer model sophisticated learners. Unlike myopic learners, who
assume that their opponents’ strategies are fixed, these sophisticated learners at-
tempt the strategies of the infinitely repeated game. These strategies, which re-
main fixed, contain the reaction rules that govern all players’ choices. Thus Kalai
and Lehrer’s model deals with the problem that players’ opponents also engage in
dynamic learning.

However, as Fudenberg and Levine [1998, p. 238] point out, Kalai and Lehrer’s
model assumes that the players’ prior beliefs are such that there is a plausible
model that is observationally equivalent to opponents’ actual strategies — in the
sense that the probability distribution over histories is the same (the so-called
absolute continuity assumption). For players to ‘find’ these beliefs in principle
requires the same kind of fixed point solution that finding a Nash equilibrium
does. Thus the problem of justifying the Nash equilibrium has not been solved,
but only transferred to the problem of finding appropriate beliefs.

3.2.3 Nash Equilibrium in a Population

The epistemic and cognitive assumptions underlying the Nash equilibrium under
the standard, individualist interpretation have led some to look for an alternative
interpretation based on ideas from biology:

Maynard Smith’s book Evolution and the Theory of Games directed
game theorists’ attention away from their increasingly elaborate defini-
tions of rationality. After all, insects can hardly be said to think at all,
and so rationality cannot be so crucial if game theory somehow man-
ages to predict their behavior under appropriate conditions. (Binmore,
foreword in [Weibull, 1995, x])

Thus, the evolutive approach proposed that the driving force behind the arrival and
maintenance of equilibrium states was a non-cognitive mechanism — a mechanism
that operated in population of interacting individuals, rather than a cognitive effort
of the individual (Binmore 1987). If it is valid to model people as maximisers, this
can only be because ‘evolutionary forces, biological, social and economic, [are]
responsible for getting things maximised’ [Binmore, 1994, p. 11].

This leads to an evolutionary perspective on the Nash equilibrium. Evolutionary
game theory studies games that are played over and over again by players drawn
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from a population. These players do not have a choice between strategies, but
rather are “programmed” to play only one strategy. It is thus often said that the
strategies themselves are the players. Success of a strategy is defined in terms of
the number of replications that a strategy will leave of itself to play in games of
future generations. Rather than seeing equilibrium as the consequence of strategic
reasoning by rational players, evolutionary game theory sees equilibrium as the
outcome either of resistance to mutation invasions, or as the result of a dynamic
process of natural selection. Its interpretation of the equilibrium concept is thus
closely related to the natural scientific concept of the stable state, where different
causal factors balance each other out, than that under the eductive interpretation.

Evolutionary game theory offers two ways to model this evolutionary mech-
anism: a static and a dynamic one. The former specifies strategies that are
evolutionary stable against a mutant invasion. Imagine a population of players
programmed to play one (mixed or pure) strategy A. Imagine further that a small
fraction of players “mutate” — they now play a strategy B different from A. Let
the proportion of mutants in the population be p. Now pairs of players are repeat-
edly drawn to play the game, each player with equal probability. Thus, for any
player that has been drawn, the probability that the opponent will play Bis p, and
the probability that the opponent will play A is 1-p. A strategy A is evolutionary
stable if it does better when playing against some player of the invaded popula-
tion than the mutant strategy itself. More generally, a strategy is an evolutionary
stable strategy (ESS) if for every possible mutant strategy B different from A, the
payoff of playing A against the mixed strategy σ(1-p,p) is higher than the payoff
of playing B against σ(1-p,p).

With these assumptions, the players’ cognitive abilities are reduced to zero: they
simply act according to the strategy that they are programmed to play, persevere
if this strategy is stable against mutants, or perish. It has been shown that every
ESS is a strategy that is in Nash equilibrium with itself [van Damme, 1991, p.
224]. However, not every strategy that is Nash equilibrium with itself is an ESS.

The dynamic approach of evolutionary game theory considers a selection mech-
anism that favours some strategies over others in a continuously evolving popu-
lation. Imagine a population whose members are programmed to play different
strategies. Pairs of players are drawn at random to play against each other. Their
payoff consists in an increase or decrease in fitness, measured as the number of
offspring per time unit. Each ‘child’ inherits the parent’s strategy. Reproduction
takes place continuously over time, with the birth rate depending on fitness, and
the death rate being uniform for all players. Long continuations of tournaments
between players then may lead to stable states in the population, depending on
the initial population distribution. This notion of dynamic stability is wider than
that of evolutionary stability: while all evolutionary stable strategies are also dy-
namically stable, not all dynamically stable strategies are evolutionary stable.

In the standard literature, these results have often been interpreted as a justifi-
cation of the Nash equilibrium concept (e.g., [Mailath, 1998]). This was foreshad-
owed by Nash himself, who proposed a ‘mass action interpretation’ in his Ph.D.
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thesis [Leonard, 1994]. Yet there are at least two criticisms that can be put forward
against such an interpretation. First, one can question why the Nash equilibrium,
which is based on rational deliberation, should match with the evolutionary con-
cepts, even though completely different causal mechanisms operate in the rational
choice and the evolutionary scenarios. Against this criticism, game theorists have
offered an ‘as if defence’: Although there is a more fundamental story ‘behind’
human behaviour, they claim, it is perfectly justifiable to treat this behaviour ‘as
if’ it was indeed driven by cognitive maximisation efforts.

Even if strategically interacting agents do not meet these epistemic
conditions, their long-run aggregate behavior will nevertheless conform
with them because of the workings of biological or social selection pro-
cesses. [Weibull, 1994, p. 868]

Just as Friedman [1953] had used an evolutionary argument to defend the profit
maximisation assumption, evolutionary ideas are used in game theory to prop up
the classical theory - with the fine difference that formal identity proofs for results
from evolutionary and classical game theory now seem to offer a much more precise
foundation (cf. [Vromen, forthcoming]).

The second criticism of this interpretation concerns the functions of the Nash
equilibrium that are thus justified. Sometimes, the claim is that the evolutionar-
ily justified Nash equilibrium has a predictive function: it shows that people do
play Nash equilibrium. This claim is somewhat dubious, however, because it is
ultimately an empirical claim that cannot be established by investigating highly
stylised models. It seems common practice to accept the evolutionary interpre-
tation as a justification of the normative functions of the Nash equilibrium (see
[Sugden, 2001] for anecdotal evidence of this claim). In the evolutionary models,
players are not assumed to have preferences that they want to maximise, and for
whose efficient maximisation game theory could prescribe the most efficient course
of action. When it is claimed that evolutionary stability lends legitimacy to the
Nash equilibrium concept, and when this concept is then used in order to pre-
scribe efficient behaviour, the danger of committing Hume’s naturalistic fallacy is
obvious — an ‘ought’ is derived from an ‘is’.

3.3 Backward Induction

Backward induction is the most common Nash equilibrium refinement for non-
simultaneous games. Backward induction depends on the assumption that rational
players remain on the equilibrium path because of what they anticipate would
happen if they were to deviate. Backward induction thus requires the players
to consider out-of-equilibrium play. But out-of-equilibrium play occurs with zero
probability if the players are rational. To treat out-of-equilibrium play properly,
therefore, the theory needs to be expanded. Some have argued that this is best
achieved by a theory of counterfactuals [Binmore, 1987; Stalnaker, 1999] which
gives meaning to sentences of the sort “if a rational player found herself at a
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node out of equilibrium, she would choose . . . ”. Alternatively, for models where
uncertainty about payoffs is allowed, it has been suggested that such unexpected
situations may be attributed to the payoffs’ differing from those that were originally
thought to be most likely [Fudenberg et al., 1988].

The problem of counterfactuals cuts deeper, however, than a call for mere theory
expansion. Consider the two-player non-simultaneous perfect information game in
Figure 17, called the “centipede”. For representational convenience, the game is
depicted as progressing from left to right (instead of from top to bottom as is usual
in extensive-form games). Player 1 starts at the leftmost node, choosing to end
the game by playing down, or to continue the game (giving player 2 the choice)
by playing right. The payoffs are such that at each node it is best for the player
who has to move to stop the game if and only if she expects that the game will
end at the next stage if she continues (by the other player stopping the game or
by termination of the game). The two zigzags stand for the continuation of the
payoffs along those lines. Now backward induction advises to solve the game by
starting at the last node z, asking what player 2 would have done if he ended
up here. A comparison of player 2’s payoffs for his two choices implies that he
would have chosen down, given that he is rational. Given common knowledge of
rationality, the payoffs that result from player 2 choosing down can be substituted
for node z. One now moves backwards to player 1’s decision node. What would
she have done had she ended up at node y? She would have chosen down. This line
of argument then continues all the way back to the first node. Backward induction
thus recommends player 1 to play down at the first node.

Figure 18.

So what should player 2 do if he actually found himself at node x? Backward
induction tells him to play “down’, but backward induction also tells him that if
player 1 was rational, he should not be facing the actual choice at node xin the first
place. So either player 1 is rational, but made a mistake (‘trembled’ in Selten’s
terminology) at each node preceding x, or player 1 is not rational [Binmore, 1987].
But if player 1 is not rational, then player 2 may hope that she will not choose
down at her next choice either, thus allowing for a later terminal node to be
reached. This consideration becomes problematic for backward induction if it also
affects the counterfactual reasoning. It may be the case that the truth of the
indicative conditional “If player 2 finds himself at x, then player 2 is not rational”
influences the truth of the counterfactual “If player 2 were to find himself at x, then
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player 2 would not be rational”. Remember that for backward induction to work,
the players have to consider counterfactuals like this: “If player 2 found himself
at x, and he was rational, he would choose down”. Now the truth of the first
counterfactual makes false the antecedent condition of the second: it can never
be true that player 2 found himself at x and be rational. Thus it seems that by
engaging in these sorts of counterfactual considerations, the backward induction
conclusion becomes conceptually impossible.

This is an intensely discussed problem in game theory and philosophy. Here
only two possible solutions can be sketched. The first answer insists that common
knowledge of rationality implies backward induction in games of perfect informa-
tion [Aumann, 1995]. This position is correct in that it denies the connection
between the indicative and the counterfactual conditional. Players have common
knowledge of rationality, and they are not going to lose it regardless of the counter-
factual considerations they engage in. Only if common knowledge was not immune
against evidence, but would be revised in the light of the opponents’ moves, then
this sufficient condition for backward induction may run into the conceptual prob-
lem sketched above. But common knowledge by definition is not revisable, so the
argument instead has to assume common belief of rationality. If one looks more
closely at the versions of the above argument (e.g., [Pettit and Sugden, 1989], it
becomes clear that they employ the notion of common belief, and not of common
knowledge.

Another solution of the above problem obtains when one shows, as Bicchieri
[1993, Chapter 4] does, that limited knowledge of rationality and of the structure
of the game suffice for backward induction. All that is needed is that a player,
at each of her information sets, knows what the next player to move knows. This
condition does not get entangled in internal inconsistency, and backward induction
is justifiable without conceptual problems. Further, and in agreement with the
above argument, she also shows that in a large majority of cases, this limited
knowledge of rationality condition is also necessary for backward induction. If her
argument is correct, those arguments that support the backward induction concept
on the basis of common knowledge of rationality start with a flawed hypothesis,
and need to be reconsidered.

3.4 Bounded Rationality in Game Players

Bounded rationality is a vast field with very tentative delineations. The funda-
mental idea is that the rationality which mainstream cognitive models propose is
in some way inappropriate. Depending on whether rationality is judged inappro-
priate for the task of rational advice or for predictive purposes, two approaches can
be distinguished. Bounded rationality which retains a normative aspect appeals
to some version of the “ought implies can” principle: people cannot be required to
satisfy certain conditions if in principle they are not capable to do so. For game
theory, questions of this kind concern computational capacity and the complexity-
optimality trade-off. Bounded rationality with predictive purposes, on the other



500 Till Grüne-Yanoff and Aki Lehtinen

hand, provides models that purport to be better descriptions of how people actu-
ally reason, including ways of reasoning that are clearly suboptimal and mistaken.
The discussion here will be restricted to the normative bounded rationality.

The outmost bound of rationality is computational impossibility. Binmore
[1987; 1993] discusses this topic by casting both players in a two-player game
as Turing machines. A Turing machine is a theoretical model that allows for spec-
ifying the notion of computability. Very roughly, if a Turing machine receives
an input, performs a finite number of computational steps (which may be very
large), and gives an output, then the problem is computable. If a Turing ma-
chine is caught in an infinite regress while computing a problem, however, then
the problem is not computable. The question Binmore discusses is whether Tur-
ing machines can play and solve games. The scenario is that the input received
by one machine is the description of another machine (and vice versa), and the
output of both machines determines the players’ actions. Binmore shows that a
Turing machine cannot predict its opponent’s behaviour perfectly and simultane-
ously participate in the action of the game. Roughly put, when machine 1 first
calculates the output of machine 2 and then takes the best response to its action,
and machine 2 simultaneously calculates the output of machine 1 and then takes
the best response to its action, the calculations of both machines enter an infinite
regress. Perfect rationality, understood as the solution to the outguessing attempt
in “I thank that you think that I think. . . ” is not computable in this sense.

Computational impossibility, however, is very far removed from the realities
of rational deliberation. Take for example the way people play chess. Zermelo
[1913] showed long ago that chess has a solution. Despite this result, chess players
cannot calculate the solution of the game and choose their strategies accordingly.
Instead, it seems that they typically “check out” several likely scenarios and that
they employ some method for evaluating the endpoint of each scenario (e.g., by
counting the chess pieces). People differ in the depth of their inquiry, the quality
of the “typical scenarios” they select, and the way in which they evaluate their
endpoint positions.

The justification for such “piecemeal” deliberation is that computing the solu-
tion of a game can be very costly. Deliberation costs reduce the value of an out-
come; it may therefore be rational to trade the potential gains from a full-blown
solution with the moderate gains from “fast and frugal” deliberation procedures
that are less costly (the term “fast and frugal” heuristics was coined by the ABC
research group [Gigerenzer, Todd and ABC Research Group, 1999]. Rubinstein
[1998] formalizes this idea by extending the analysis of a repeated game to include
players’ sensitivity to the complexity of their strategies. He restricts the set of
strategies to those that can be executed by finite machines. He then defines the
complexity of a strategy as the number of states of the machine that implements
it. Each player’s preferences over strategy profiles increase with her payoff in the
repeated game, and decrease with the complexity of her strategy’s complexity (He
considers different ranking methods, in particular unanimity and lexicographic
preferences). Rubinstein shows that the set of equilibria for complexity-sensitive
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games is much smaller than that of the regular repeated game.

4 GAME THEORY AS A PREDICTIVE THEORY

Game theory can be a good theory of human behaviour for two distinct reasons.
First, it may be the case that game theory is a good theory of rationality, that
agents are rational and that therefore game theory predicts their behaviour well.
If game theory was correct for this reason, it could reap the additional benefit of
great stability. Many social theories are inherently unstable, because agents adjust
their behaviour in the light of its predictions. If game theory were a good predic-
tive theory because it was a good theory of rationality, this would be because each
player expected every other player to follow the theory’s prescriptions and had no
incentive to deviate from the recommended course of action. Thus, game theory
would already take into account that players’ knowledge of the theory has a causal
effect on the actions it predicts [Bicchieri, 1993, chapter 4.4]. Such a self-fulfilling
theory would be more stable than a theory that predicts irrational behaviour.8
Players who know that their opponents will behave irrationally (because a theory
tells them) can improve their results by deviating from what the theory predicts,
while players who know that their opponents will behave rationally cannot. How-
ever, one should not pay too high a premium for the prospect that game theoretical
prescriptions and predictions will coincide; evidence from laboratory experiments
as well as from casual observations often cast a shadow of doubt on it.

Second, and independently of the question of whether game theory is a good
theory of rationality, game theory may be a good theory because it offers the
relevant tools to unify one’s thought about interactive behaviour [Gintis, 2004;
2007]. This distinction may make sense when separating our intuitions about how
agents behave rationally from a systematic account of our observations of how
agents behave. Aumann for example suggests that

[P]hilosophical analysis of the definition [of Nash equilibrium] itself
leads to difficulties, and it has its share of counterintuitive examples.
On the other hand, it is conceptually simple and attractive, and math-
ematically easy to work with. As a result, it has led to many important
insights in the applications, and has illuminated and established rela-
tions between many different aspects of interactive decision situations.
It is these applications and insights that lend it validity. [Aumann,
1985, p. 49]

These considerations may lead one to the view that the principles of game theory
provide an approximate model of human deliberation that sometimes provides
insights into real phenomena (this seems to be Aumann’s position). Philosophy
of Science discusses various ways of how approximate models can relate to real

8This was Luce and Raiffa’s [1957] justification of the Nash Equilibrium.
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phenomena, each of which has its specific problems which cannot be discussed
here.

Aumann’s considerations can also lead one to seek an alternative interpretation
of the Nash concept that does not refer to human rationality, but retains all the
formally attractive properties. In section 3.3.3 we already discussed evolutive ap-
proaches to game theory as a possible way to justify the normative use of the Nash
equilibrium. While this normative use was marred by a number of serious doubts,
the positive use of the evolutionary stability concepts seems more promising.

4.1 The Evolutive Interpretation

Evolutionary game theory was developed in biology; it studies the appearance,
robustness and stability of behavioural traits in animal populations. Biology, ob-
viously, employs game theory only as a positive, not as a normative theory; yet
there is considerable disagreement whether it has contributed to the study of par-
ticular empirical phenomena, and whether it thus has any predictive function. One
may get the impression that many biologists consider evolutionary game theory
useful merely to studying what general evolutionary dynamics are or are not possi-
ble; or that, at best, evolutionary game theory provides an abstract mathematical
language in terms of which the empirical study of biological phenomena may be
described.

In contrast to this widespread scepticism in biology, many economists seem to
have subscribed to the evolutive interpretation of game theory (Binmore 1987 pro-
posed this term in order to distinguish it from the eductive approaches discussed in
Section 3), and to accept it as a theory that contributes to the prediction of human
behaviour. Proponents of the evolutive interpretation claim that the economic, so-
cial and biological evolutionary pressure directs human agents to behaviour that
is in accord with the solution concepts of game theory, even while they have no
clear idea of what is going on.

This article cannot do justice even to the basics of this very vibrant and ex-
panding field [Maynard Smith, 1982; Weibull, 1995; Gintis, 2000], but instead
concentrates on the question of whether and how this reinterpretation may con-
tribute to the prediction of human behaviour.

Recall from section 3.3.3 that evolutionary game theory studies games that are
played over and over again by players who are drawn from a population. Play-
ers are assumed to be ‘programmed’ to play one strategy. In the biological case,
the relative fitness that strategies bestow on players leads to their differential re-
production: fitter players reproduce more, and the least fittest will eventually go
extinct. Adopting this model to social settings presents a number of problems,
including the incongruence of fast social change with slow biological reproduction,
the problematic relation between behaviour and inheritable traits, and the differ-
ence between fitness and preference-based utility (as already discussed in section
2.1). In response to these problems, various suggestions have been made concern-
ing how individual players could be ‘re-programmed’, and the constitution of the
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population thus changed, without relying on actual player reproduction.
One important suggestion considers players’ tendency to imitate more successful

opponents (Schlag 1998, see also Fudenberg and Levine 1998, 66f.). The results of
such models crucially depend on what is imitated, and how the imitation influences
future behaviour. More or less implicitly, the imitation approach takes the notion
of a meme as its basis. A meme is “a norm, an idea, a rule of thumb, a code of
conduct – something that can be replicated from one head to another by imitation
or education, and that determines some aspects of the behaviour of the person in
whose head it is lodged” [Binmore, 1994, p. 20]. Players are mere hosts to these
memes, and their behaviour is partly determined by them. Fitness is a property
of the meme and its capacity to replicate itself to other players. Expected utility
maximization is then interpreted as a result of evolutionary selection:

People who are inconsistent [in their preferences] will necessarily be
sometimes wrong and hence will be at a disadvantage compared to
those who are always right. And evolution is not kind to memes that
inhibit their own replication. [Binmore, 1994, p. 27]

This is of course a version of the replicator dynamics approach. To that extent,
the theory of the fittest memes becoming relatively more frequent is an analytic
truth, as long as “fitness” is no more than high “rate of replication”. But Binmore
then transfers the concept of strategy fitness to player rationality. Critics have
claimed that this theory of meme fitness cannot serve as the basis for the claim
that the behaviour of human individuals as hosts of memes will tend towards a
rational pattern. The error occurs, Sugden [2001] argues, when Binmore moves
from propositions that are true for memes to propositions that are true for people.
In the analogous biological case — which is based on genes instead of memes —
the reproductive success of phenotype depends on the combination of genes that
carry it. Genes have positive consequences in combination with some genes but
bad consequences in combination with others. A gene pool in equilibrium therefore
may contain genes which, when brought together in the same individual by a ran-
dom process of sexual reproduction, have bad consequences for that individual’s
survival and reproduction. Therefore, genes may be subject to natural selection,
but there may be a stable proportion of unfit phenotypes produced by them in the
population. It is thus not necessarily the case that natural selection favours phe-
notype survival and reproduction. The same argument holds for memes: unless
it is assumed that an agent’s behaviour is determined by one meme alone, nat-
ural selection on the level of memes does not guarantee that agents’ behavioural
patterns are rational in the sense that they are consistent with expected utility
theory. But the relation between memes and behaviour is ultimately an empirical
question (once the concept of meme is clarified, that is), which remains largely
unexplored. It therefore remains an empirical question whether people behave in
accord with principles that game theory proposes.

Of course, the imitation/meme interpretation of strategy replication is only
one possible approach among many. Alternatives include reinforcement learning
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[Börgers and Sarin, 1997] and fictitious play [Kandori et al., 1993]. But the lesson
learned from the above discussion also applies to these approaches: buried in the
complex models are assumptions (mainly non-axiomatised ones like the meme-
behaviour relation mentioned above), which ensure the convergence of evolutionary
dynamics to classic equilibria. Until these assumptions are clearly identified, and
until they are shown to be empirically supported, it is premature to hail the
convergence results as support for the predictive quality of game theory, either
under its eductive or its evolutive interpretation.

4.2 The Problem of Alternative Descriptions

While intuitions about rational behaviour may be teased out in fictional, illus-
trative stories, the question of whether prediction is successful is answerable only
on the basis of people’s observed behaviour. Behavioural game theory observes
how people behave in experiments in which their information and incentives are
carefully controlled. With the help of these experiments, and drawing on further
evidence from psychology, it hopes to test game-theoretic principles for their cor-
rectness in predicting behaviour. Further, in cases where the tests do not yield
positive results, it hopes that the experiments suggest alternative principles that
can be included in the theory.9 To test game theory, the theory must be specified
in such detail that it may predict particular behaviour. To construct specific ex-
perimental setups, however, particular interactive phenomena need to be modelled
as games, so that the theory’s solution concepts can be applied. The problem of
interpretation discussed in section 2.4 then surfaces. The most contentious aspect
of game modelling lies in the payoffs. The exemplary case is the disagreement over
the relevant evaluations of the players in the Prisoners’ Dilemma.

Some critics of the defect/defect Nash equilibrium solution have claimed that
players would cooperate because they would not only follow their selfish interests,
but also take into account non-selfish considerations. They may cooperate, for
example, because they care about the welfare of their opponents, because they
want to keep their promises out of feelings of group solidarity or because they would
otherwise suffer the pangs of a bad conscience. To bring up these considerations
against the prisoners’ dilemma, however, would expose a grave misunderstanding
of the theory. A proper game uses the players’ evaluations, captured in the utility
function, of the possible outcomes, not the material payoff (like e.g. money). The
evaluated outcome must be described with those properties that the players find
relevant. Thus either the non-selfish considerations are already included in the
players’ payoffs (altruistic agents, after all, also have conflicting interests — e.g.
which charitable cause to benefit); or the players will not be playing the Prisoners’
Dilemma. They will be playing some other game with different payoffs.

Incorporating non-material interests in the payoffs has been criticized for mak-
ing game theory empirically empty. The critics argue that with such a broad

9For more details on Behavioural Game Theory, their experimental methods and results, see
[Camerer, 2003].
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interpretation of the payoffs, any anomaly in the prediction of the theory can be
dissolved by a re-interpretation of the agents’ evaluations of the consequences.
Without constraints on re-interpretation, the critics claim, the theory cannot be
held to any prediction.

To counter this objection, many economists and some game theorists claim to
work on the basis of the revealed preference approach. At a minimum, this ap-
proach requires that the preferences — and hence the utility function — of an agent
are exclusively inferred from that agent’s choices.10 This ostensibly relieves game
modellers from the need to engage in “psychologising” when trying to determine
the players’ subjective evaluations.

However, it has been argued that the application of the revealed preference
concept either trivializes game theory or makes it conceptually inconsistent. The
first argument is that the revealed preference approach completely neglects the
importance of beliefs in game theory. An equilibrium depends on the players’
payoffs and on their beliefs of what the other players believe and what they will do.
In the stag hunt game of Figure 1, for example, Row believes that if Col believed
that Row would play R2, then he would play C2. But if the payoff numbers
represented revealed preferences, Hausman [2000] argues, then they would say
how individuals would choose, given what the other chose, period. The payoffs
would already incorporate the influence of belief, and belief would play no further
role. Game theory as a theory of rational deliberation would have lost its job.

The second criticism claims that it is conceptually impossible that games can
be constructed on the basis of revealed preferences. Take as an example the simple
game in Figure 18.

Figure 19. A game tree

How can a modeller determine the payoffs z1 − z4 for both players according
to the revealed preference method? Let us start with player 2. Could one con-
struct two choice situations for player 2 in which he chooses between z1 and z2
and between z3 and z4 respectively? No, argues Hausman [2000]: the two thus
constructed choice situations differ from the two subgames in Figure 17 in that

10For a discussion of the revealed preference account, see [Grüne, 2004]. Binmore [1994, pp.
105-6, 164, 268] discusses revealed preferences in game theory. See also [Binmore, 1998, pp. 280,
358-362] and [Ross, 2005, pp. 128-136; 2006b].
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they are not preceded by player 1’s choice. Hence it is perfectly possible that
player 2 chooses z1 over z2 in the game but chooses z2 over z1 in the constructed
choice situation. Assume, for example, that player 2 considers player 1’s choice of
U unfair and chooses L in the game in order to take revenge. In that case she may
prefer z1 over z2, but if there is no preceding choice by player 1, she may prefer z2
over z1. Thus, her choice of L merely reflects the relative desirability of z1 over
z2. The problem here is that the players have state-dependent preferences: player
2 prefers z1 over z2 in one set of circumstances but z2 over z1 in another.11 What
makes this problem particularly vicious is the fact that the relevant circumstance
is another player’s choice in the game.

More problematically still, player 2 must be able to compare z1 with z3 and z2
with z4if one is to assign a utility function for him over all these outcomes on the
basis of his choices. But it is logically impossible that she will ever face such a
choice in the game, as player 1 will choose either U or D, and he will choose either
between z1 and z2 or between z3 and z4. A similar argument applies to player
1. She never faces a choice between the final outcomes of this game at all, only
between U and D. So the revealed preference theorist cannot assign preferences
over outcomes to player 1 at all, and to player 2 only partially. This difficulty
is clearly exposed in some recent efforts to provide revealed-preference conditions
under which the players’ choices rationalise various solution concepts.12 These
accounts start from the premise that preferences cannot be observed, and aim
to provide conditions under which the players’ choices may falsify or verify the
solution concept.

Finally, assuming that the game has been properly modelled, what the modeller
really can observe in a game are only its equilibria. Thus, by observing actual play,
it would be possible to observe just that, say, player 1 chose U, and player 2 chose
L.

We conclude that it seems conceptually impossible to construct players’ payoffs
by observing their choices in actual play. Further, preference elicitation procedures
that partition the game into simpler subgames and infer revealed preferences from
choices in those subgames are constrained by the required state-independence of
preferences. As we showed, state-dependence prevents the success of such a elici-
tation procedure. As we have already seen, there are good reasons to believe that
such state-independence is not likely because real people often care about how the
other player has affected the outcome.

Further, determining whether or not preferences are state-dependent poses a
problem itself. Even if the modeller were able to elicit preferences for ‘Ling-
with-revenge’ and distinguish this from ‘Ling-without-revenge’ and ‘Ling’, he will
not be able to elicit preferences for ‘Ling-with-revenge-in-the-game-in-Figure-18-
where-player-1-played-U’ without assuming state-independence of some sort. The
reason is that the only way of not making a state-independence assumption is to

11See Drèze and Rustichini [2004] for an overview on state-dependence.
12See [Sprumont, 2000] for an account of normal form games, and [Ray & Zhou, 2001] for

extensive form games. Carvajal et al. [2004] provide an overview and additional references.
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provide the game itself as the context of choice.
These problems may have contributed to a widespread neglect of the problem

of preference ascription in game theoretic models. As Weibull [2004] observes:

While experimentalists usually make efforts to carefully specify to the
subject the game form . . . they usually do not make much effort to
find the subject’s preferences, despite the fact that these preferences
constitute an integral part of the very definition of a game. Instead,
it is customary to simply hypothesize subjects’ preferences. [Weibull,
2004]

Despite the problems of applying revealed preferences to game theory, the method-
ological rationale for the injunction to include all motivating factors into the pay-
offs is sound. It is just important to see its proper role in different contexts. If
theoretical game theory has something to contribute, it is in providing interesting
analyses of solution concepts in interesting games. For this purpose, the injunction
is perfectly legitimate, and it matters very little whether or not anybody is able to
find some actual situation in which preferences corresponding to the game could
be elicited. It would perhaps be best to drop reference to revealed preferences
and formulate the methodological argument in terms of the distinction between
modelling and analysing games. One can then interpret payoffs as dispositions to
choose (cf. [Ross, 2006a]).

The problem of preference identification has been insufficiently addressed in
rational choice theory in general and in game theory in particular. But it is
not unsolvable. One solution is to find a criterion for outcome individuation.
Broome offers such a criterion by justifiers: “outcomes should be distinguished
as different if and only if they differ in a way that makes it rational to have a
preference between them” (Broome 1991, 103). This criterion, however, requires a
concept of rationality independent of the principles of rational choice. A rational
choice is no longer based on preferences alone, but preferences themselves are
now based on the rationality concept. This constitutes a radical departure of
how most rational choice theorists, including game theorists, regard the concept
of rationality. Another option that Hausman [2005] suggests is that economists
can use game theoretic anomalies to study the factors influencing preferences.
By altering features of the game forms and, in particular, by manipulating the
precise beliefs each player has about the game and about others’ conjectures,
experimenters may be able to make progress in understanding what governs choices
in strategic situations and hence what games people are playing.

4.3 Testing Game Theory

Whether game theory can be tested depends on whether the theory makes any
empirical claims, and whether it can be immunized against predictive failure.

Does the theory make testable claims? At first, it does not seem to do so.
The solution concepts discussed in section 2.3 mainly takes the form of theorems.



508 Till Grüne-Yanoff and Aki Lehtinen

Theorems are deductive conclusions from initial assumptions. So to test game
theory, these assumptions need to be tested for their empirical adequacy. In this
vein, Hausman [2005] claims that game theory is committed to contingent and
testable axioms concerning human rationality, preferences, and beliefs. This claim
remains controversial. Many economists believe that theories should not be tested
with regard to their assumptions, but only with respect to their predictions (a
widespread view that was eloquently expressed by Friedman [1953]). But the
theory only makes empirical claims in conjunction with its game models.

Further, testing game theory through its predictions is difficult as such tests
must operate through the mediation of models that represent an interactive situ-
ation. Here the issue of interpreting the modelled situation (see section 2.4) and
of model construction drives a wedge between the predicting theory and the real
world phenomena, so that predictive failures can often be attributed to model
misspecification (as discussed in section 4.2).

Francesco Guala [2006] recently pointed to a specific element of game theory
that seems to make an empirical claim all by itself, and independent of auxiliary
hypotheses. For this purpose, he discusses the phenomenon of reciprocity. Agents
reciprocate to other agents who have exhibited “trust” in them because they want
to be kind to them. Reciprocation of an agent 1 to another agent 2 is necessarily
dependent on 2 having performed an action that led 1 to reciprocate. Reciproca-
tion is thus clearly delineated from general altruism or justice considerations.

The question that Guala raises is whether reciprocity can be accounted for in
the payoff matrix of a game. The ‘kindness’ of an action depends on what could
have been chosen: I think that you are kind to me because you could have harmed
me for your benefit, but you chose not to. This would mean that the history of
chosen strategies would endogenously modify the payoffs, a modelling move that
is explicitly ruled out in standard game theory. Guala shows that the exclusion of
reciprocity is connected right to the core of game theory: to the construction of
the expected utility function.

All existing versions of the proofs of the existence of a utility function rely on
the so-called rectangular field assumption. It assumes that decision makers form
preferences over every act that can possibly be constructed by combining conse-
quences with states of the world. However, if reciprocity has to be modelled in
the consequences, and reciprocity depends on others’ acts that in turn depend on
the players’ own acts, then it is conceptually impossible to construct acts in accord
with the rectangular field assumption, because the act under question would be
caught in an infinite regress. The problem is that in these cases, the Savagean dis-
tinction between consequences, states and acts cannot be consistently maintained
in game theory. It follows from this that reciprocity is not the only consideration
that game theory cannot put into the consequences. Things like revenge, envy,
and being-suckered-in-Prisoner’s-Dilemma suffer from the same problem (see also
[Sugden, 1991; 1998]).

If Guala’s argument is correct, it seems impossible to model reciprocity in the
payoffs, and game theory is not flexible enough to accommodate reciprocity con-
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siderations into its framework. Game theory then could be interpreted as asserting
that reciprocity is irrelevant for strategic interaction, or at least that reciprocity
could be neatly separated from non-reciprocal strategic considerations. With this
claim, game theory would be testable, and - if reciprocity were indeed an integral
and non-separable factor in strategic decisions, as the evidence seems to suggest –
would be refuted.

5 CONCLUSION

Game theory, this survey showed, does not provide a general and unified theory of
interactive rationality; nor does it provide a positive theory of interactive behaviour
that can easily be tested. These observations have many implications of great
philosophical interest, some of which were discussed here. Many of the questions
that arise in these discussions are still left unanswered, and thus continue to require
the attention of philosophers.

BIBLIOGRAPHY

[Aumann, 1999a] R. J. Aumann. Interactive Epistemology I: Knowledge, International Journal
of Game Theory, vol. 28, no. 3, pp. 263-300, 1999.

[Aumann, 1999b] R. J. Aumann. Interactive Epistemology II: Probability, International Journal
of Game Theory, vol. 28, no. 3, pp. 301-314, 1999.

[Aumann, 1998] R. J. Aumann. Common Priors: A Reply to Gul, Econometrica, vol. 66, no. 4,
pp. 929-938, 2998.

[Aumann, 1995] R. J. Aumann. Backward Induction and Common Knowledge of Rationality,
Games and Economic Behavior, vol. 8, no. 1, pp. 6-19, 1995.

[Aumann, 1987] R. J. Aumann. Correlated Equilibrium as an Expression of Bayesian Rational-
ity, Econometrica, vol. 55, no. 1, pp. 1-18, 1987.

[Aumann, 1985] R. J. Aumann. What is Game Theory Trying to Accomplish? In Frontiers of
Economics, K.J. Arrow & S. Honkapohja, eds., Basil Blackwell, Oxford, pp. 28-76, 1985.

[Aydinonat, 2008] N. E. Aydinonat. The invisible hand in economics: how economists explain
unintended social consequences, Routledge, London, 2008.

[Bacharach, 1993] M. Bacharach. Variable Universe Games. In Frontiers of game theory, K.
Binmore, A.P. Kirman & P. Tani, eds., MIT Press, Cambridge Mass., pp. 255-275, 1993.

[Battigalli, 1996] P. Battigalli. The Decision-Theoretic Foundations of Game Theory: Comment.
In The rational foundations of economic behaviour: Proceedings of the IEA Conference held
in Turin, K. J. Arrow et al., eds., Macmillan Press, Hampshire, pp. 149-154, 1996.

[Bernheim, 1984] D. Bernheim. Rationalizable Strategic Behavior, Econometrica, vol. 52, no. 4,
pp. 1007-1028, 1984.

[Bicchieri, 1993] C. Bicchieri. Rationality and coordination, Cambridge University Press, Cam-
bridge England; New York, USA, 1993.

[Binmore, 2008] K. Binmore. Game theory: A very short introduction, Oxford University Press,
New York, 2008.

[Binmore, 2007] K. Binmore. Playing for Real, Oxford University Press, New York, 2007.
[Binmore, 1998] K. Binmore. Game theory and the social contract: Just playing, The MIT

Press, London, 1998.
[Binmore, 1994] K. Binmore. Game theory and the social contract: Playing fair, MIT Press,

Cambridge, Mass, 1994.
[Binmore, 1993] K. Binmore. De-Bayesing Game Theory. In Frontiers of game theory, K. Bin-

more, A.P. Kirman & P. Tani, eds., MIT Press, Cambridge Mass., pp. 321-339, 1993.
[Binmore, 1987] K. Binmore. Modeling Rational Players: Part 1, Economics and Philosophy,

vol. 3, no. 2, pp. 179-214, 1987.
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