Artificial Worlds and
Agent-Based Simulation

INTRODUCTION

Agent-based simulations (ABS) are often
hailed as a new way of doing social science.
By generating ‘artificial societies” on the
computer, social scientists may generate a
new object of study, or a new tool for sci-
entific study. This article investigates these
claims by examining in detail the methods
of ABS and its uses in the social sciences. It
starts out by illustrating the different uses of
ABS, and giving a short historical overview
of its emergence. ABS is then contrasted
with related practices in the social sciences
and other disciplines. A brief philosophi-
cal discussion of some of its basic concepts
follows.

After this overview, the article addresses
the novelty claim head on, and discusses it
in relation to existing scientific practices.
The general position here will be cautious:
the author’s view is that ABS does not so
much constitute a novel scientific practice,
but is closely linked to the existing model-
ling practices in the social sciences. Thus
the view of ABS as experiments or as
theory will be treated critically, while the
interactions between these practices will be
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shown to be fruitful. The view of ABS as
models, in contrast, will be presented in a
more favourable light, but important differ-
ences that concern the way of construction,
the validation and link to the target system
are pointed out. Finally, potential reasons
for the notable difference with which dif-
ferent disciplines have adopted ABS will be
discussed.

Based on these results, the uses of ABS
in the social sciences are investigated and
appraised. This discussion will clarify the
differences between the various ABS models.
In particular, it is shown that uses deter-
mine many characteristics of ABS models, in
terms of their level of abstraction, their nec-
essary validation and their need for replica-
tion. Again, the position presented here will
be cautious: against the many enthusiastic
claims made about ABS, this article points
out the various deficits that many contempo-
rary simulation studies exhibit, particularly
when in the business of explanation or fore-
casting. Instead, the articles points out uses
with somewhat lesser profiles, like delib-
eration support and heuristic application, as
important areas where ABS can be fruitfully
employed.
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USES OF ARTIFICIAL SOCIETIES

To generate a pattern or regularity with the
tools of agent-based simulation is to ‘situate
an initial population of autonomous hetero-
geneous agents in a relevant special environ-
ment; allow them to interact according to
simple local rules, and thereby generate — or
“grow” — the macroscopic regularity from
the bottom up’ (Epstein, 1999: 41). The
‘agents’ referred to are structural entities of
the simulation model. They are ‘heterogene-
ous’, because the model can specify different
attributes for different agents. The simulation
updates these attributes solely on the basis of
the agents’ interaction with each other and
their environment. Agents are ‘autonomous’,
because their interactions are determined by
individual behavioural rules. ‘Macroscopic
regularities’ concern the regular behaviour of
many or all agents in certain environments,
Because the simulation only computes the
updating of individual agents’ attributes, and
the macroscopic events are only summaries
of the individual changes, the simulation
is said to ‘grow’ the regularities ‘from the
bottom up’. The tool of agent-based simula-
tion has found many applications in the sci-
ences. For illustrative purposes, a few will be
described here.

Uses in the Social Sciences

ABS are used in the social sciences to gener-
ate regularities akin to social phenomena.
For this reason, ABS employed in the social
sciences are often called artificial societies.
Epstein and Axtell (1996) present a general
recipe for their construction in the book
Growing Artificial Societies: Social Science
from the Bottom Up. Their simulation pro-
gramme Sugarscape is a kind of simulation
laboratory. Agents move over a two-dimen-
sional rectangular grid. Their existence, their
movement and their interaction is conditional
on certain agent attributes and regulated by
certain rules. By manipulating the initial
number and position of agents, and their

attributes and rules, different patterns arise
on parts or the whole of the grid. Epstein and
Axtell interpret these patterns as similar to
certain social phenomena. They claim that
their artificial society experiences migration,
population developments, cultural identities,
markets, wealth inequalities, wars and epi-
demics. Crucially, they claim that they can
generate such (representations of) social
phenomena by the manipulation of agent
attributes and rules alone. The social thus
emerges from the interaction of individuals
in their agent-based simulations.

Many social scientists have adopted ABS
as useful tools or as interesting objects of
study. Today, one finds agent-based simula-
tions of crowd dynamics (Pan et al., 2007),
epidemics (Eubank et al., 2004), consumer
markets (Moss, 2002), electricity markets
(Bunn and Oliveira, 2003), stock markets
(LeBaron, 2001; Samanidou et al., 2007),
geopolitical change (Cederman, 2002) and
even ancient societies (Dean et al., 2000;
Axtell et al., 2002). As will be discussed later,
the application of ABS in these fields follows
a variety of objectives. Sometimes the goal
is to be explained what is simulated, as for
example, in the case of the ancient society
simulation. In some other cases, the goal is
to predict outcomes, for example, of strate-
gic withholding behaviour in the electricity
market. Finally, in many cases simulations
are used to assess the outcomes of different
policy interventions, as for example through
crowed control or vaccination programmes.

Uses in Other Sciences

ABS have been widely used in disciplines
outside the social sciences. First and fore-
most is ecology, which has produced as many
agent-based models as all other disciplines
together over the last 30 years (Grimm
et al.,, 2005). Ecological applications range
from modelling the spatiotemporal dynamics
of beech forests of central Europe (Wissel,
1992; Rademacher, 2005), spatial distribu-
tion of animals (Catling and Coops, 2002) to
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agricultural change (Happe et al., 2006).
Another important application is found
in behavioural ecology, which studies the
behaviour of animal groups, swarm and
flocks. The most famous of these is Reynolds
‘boid’ model (Reynolds, 1987)

Other Artificial Systems

Computer simulations do not only aim at
constructing artificial societies (AS), but are
also, and perhaps better, known to be used for
the construction of artificial intelligence (AI)
and artificial life (ALife). It is clear that all
these attempts have the same roots (see sec-
tion on other simulation approaches), how-
ever, the branches have developed important
differences.

Al is the attempt to build or construct
computers to do the sort of things minds
can do. Major textbooks define the field as
‘the study and design of intelligent agents’
where an intelligent agent is a system that
perceives its environment and takes actions
that maximise its chances of success (Poole
et al., 1998: 1; cf. also Nilsson, 1998; Russell
and Norvig 2003). Classical Al differs from
AS in its focus on top-down processing. In
top-down processing, a high-level descrip-
tion of the task (e.g. a goal or a grammar) is
employed to start, supervise or guide detailed
actions. In bottom-up processing, in contrast,
it is the detailed input of the system that
determines what will happen next. In clas-
sical Al, the top-down approach dominates,
while AS exclusively operates on bottom-up
processing.

Although connectionist Al works bottom
up, it still differs from AS because it cannot
alter its fundamental organisation. The
behaviour of a connectionist model depends
on the local interactions of the individual
units, none of which have an overall view of
the task. In that respect, it resembles AS. But
all a connectionist system can do is to change
the weights of different connections; while
the fundamental organisation of the connec-
tions remains unchanged (Boden, 1996: 4).

AS, in contrast, can completely reorganise
its own social structure — in fact, it can even
cease to exist as a consequence of its own
actions.

ALife employs computer simulation to
study systems of life, its processes and
its evolution. Although the concept of life
has no universally agreed definition, certain
properties are often associated with it, includ-
ing autonomy, reproduction and metabolism
(Boden, 1996: 1). These concepts give a first
distinction of ALife from AS: while ALife
studies systems that are autonomous, are
reproducing and have a metabolism, none of
that can be said of systems studied by AS.
Although agents in AS may be autonomous,
and may reproduce, artificial societies are not
assumed to do so — and of course, they do
not metabolise either. Further, ALife is beset
with the question of strong ALife: whether
the entities created in the computer could be
genuinely said to be Alife (Ray, 1996; Sober,
1996). A similar question does not exist for
AS, which generally is left burdened with
less metaphysical baggage.

Other Simulation Approaches

Many different computer simulation tech-
niques are used in the social sciences. ABS
must be distinguished from equation-based
and micro-simulations. Sometimes, ABS are
also distinguished from Cellular Automata
(CA), although the difference is not so
clear-cut.

Equation-based simulations describe the
dynamics of a target system with the help
of equations that capture the deterministic
features of the whole system. Typical exam-
ples of such equation-based simulations are
system dynamics simulations, which use a
set of difference or differential equation that
derive the future state of the target system
from its present state. System dynamics sim-
ulations are restricted to the macro level: they
model the target system as an undifferenti-
ated whole. The target system’s properties
are then described with a set of attributes in
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the form of ‘level’ and ‘rate’ variables repre-
senting the state of the whole system and its
dynamics. ABS, in contrast, lack an overall
description of the system'’s macro-properties.
Instead of simulating the system’s dynamics
by numerically calculating the equations that
describe the system’s dynamics, ABS gener-
ate the system’s dynamics by calculating the
dynamics of the system’s constituent parts,
and aggregating these dynamics into the
system dynamics.

Micro-simulations predict the effect of
aggregate changes (e.g. taxation changes)
on aggregate results (e.g. tax revenue) by
calculating the effect of the aggregate change
on sub-groups or individuals and then aggre-
gating the individual results. No interaction
between groups or individuals is taken into
account here; rather, the effect on each
group is determined by equations pertaining
to this group. Thus, despite its focus on the
micro-level, and the subsequent constitu-
tion of the macro-result as an aggregate of
the micro-level, micro-simulations belong in
the equation-based category. What sets ABS
apart from such micro-level equation-based
simulations is that they model interactions
between autonomous agents, thus including
a level of complexity not existent in equation-
based models.

Cellular automata (CA) share this com-
plexity with ABS. CAs consist of cells in a
regular grid with one to three dimensions.
Every cell has a number of states, which
change in discreet time. The states of a cell
at a given time period are determined by the
states of that same cell and of neighbour-
ing cells at earlier times. The specific kind
of these influences is laid down in behav-
ioural rules, which are identical for all cells.
A famous example of a CA is Conway’s
Game of Life (Berlekamp et al., 1982), in
which each cell is either ‘dead’ or ‘alive’.
‘Dead” cells with exactly three neighbours
become ‘alive’, and ‘alive’ cells with fewer
than two or more than three neighbours die.
Conway’s Game of Life has attracted much
interest because of the surprising ways in
which patterns can evolve. It illustrates the

way that complex patterns can emerge from
the implementation of very simple rules.

When the internal processing abilities of
automata are sufficiently high, one speaks
about ‘agents’, and agent-based simulations,
not cellular automata. Agents share with CA
their autonomy from others’ direct control,
their ability to interact with others, react to
environmental changes and actively shape
the environment for themselves and others.
In contrast to CA, agents are not fixed on
a grid, can change their neighbours, may
have multiple relations with different agents
and can change on multiple levels. Because
the agents’ processing abilities are a matter
of degree, it is difficult to draw a clear line
between CA and ABS.

History

While the history of CA begins in the late
1940s with von Neumann’s construction of a
self-replicating machine on a paper grid, the
beginnings of agent-based models lie with
Thomas Schelling’s model of segregation
(Schelling, 1969, 1971)." Schelling origi-
nally used coins and graph paper rather than
computers, but his models embody the basic
concept of agent-based models as autono-
mous agents interacting in a shared environ-
ment with an observed aggregate, emergent
outcome. Shortly afterwards, and apparently
completely independent of Schelling, the
British biologist Maynard Smith and the
American chemist George R. Price devised
a simulation technique for their novel solu-
tion concept of an ‘evolutionary stable strat-
egy’ (Maynard Smith and Price, 1973; cf.
also Sigmund, 2005). This method was very
much at odds with the analytic methods used
by game theorists at the time, and now stands
as one of the earliest examples of an agent-
based model. ABS thus had close links with
evolutionary game theory and the study of
adaptive systems early on and has retained
them since (see Chapter 20).

ABS gained serious attraction with the
advent of more powerful computers, and
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the development of agent-based simulation
packages like SWARM and Sugarscape in
the 1990s. It is noteworthy that the majority
of applications in the social sciences can be
found in sociology (cf. Chapter 18), while
economics has been rather slow in adopting
these computational methods (for an over-
view of the development in economics, see
Tesfatsion, 2006).

CONCEPTUAL FOUNDATIONS

In this brief overview of ABS and its related
fields, a number of concepts were used to
characterise and differentiate ABS. However,
these notions are often philosophically prob-
lematic. In the following, some of these
problems are addressed.

Agents and Agency

The central difference between CA and ABS
is the presence of autonomous agents in the
latter (see also Chapters 8 and 14). However,
cells in a CA are also often said to enjoy a
degree of autonomy, so that the central dif-
ference must lie in the agency of ABS ele-
ments. But what does that mean?

Agency and action are related to the
intuitive distinction between the things that
merely happen to people — the events they
suffer — and the various things they genu-
inely do. These latter doings are the actions
of the agent. Philosophers have discussed at
length about the nature of action, in particu-
lar, what distinguishes an action from a mere
happening or occurrence. Yet most of these
discussions are too fine-tuned for the current
purpose. Here, it is sufficient to point out that
an often used criterion for agency is goal-
directedness: In artificial intelligence, for
example, an intelligent agent is a unit which
observes and acts upon an environment and
directs its actions towards achieving certain
goals (e.g. Russell and Norvig, 2003). Such
agents may be very simple: a thermostat

is an intelligent agent, for example, which
measures the environment and interferes in
the heating mechanisms, with the goal of
maintaining a constant temperature in the
room. Further, the purposeful behaviour of
animals constitutes a low-level type of pur-
posive action. When a spider walks across
the table, the spider directly controls the
movements of his legs, and they are directed
ar taking him from one location to another.
Those very movements have an aim or
purpose for the spider, and hence they are
subject to a kind of teleological explanation
(Frankfurt, 1978).

Most ABS, in contrast, fail to endow their
agents with a purpose. Agents in ABS com-
monly behave according to homogenous
behavioural rules. They may differ in their
attributes (e.g. age, sex, home address, occu-
pation) and may exhibit different behaviour
to the same situation due to these differences
in attributes, yet these attributes are not dis-
tinguished into purposive and non-purposive
ones. In the Anasazi simulation (Dean et al.,
2000), for example, there is no difference
when an agent moves place of settlement
to when an agent dies of old age. Both are
direct functions of environmental variables,
and the settlement decision is — contrary to
one’s intuitive identification as a purposeful
action — not mediated by any kind of utility
function of the agent. Similarly in the small-
pox simulation (Eubank et al., 2004): there
is no difference between the agents’ going
to work and them getting infected. Although
many would say that the first is a purpose-
ful action, and the second is not, the ABS
does not make a difference between them.
This lacking attribution of any goal or utility
function to the ABS agents makes it difficult
to subject them to any teleological explana-
tion; and hence the agency of ABS agents is
somewhat insecure.

Artificiality

The results of ABS in the social sciences are
often called ‘artificial societies’. The nature
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of these societies” artificiality is ambiguous.
Depending on its interpretation, not all ABS
in the social sciences may be artificial socie-
ties, or artificial societies may be the results
not only of ABS. At least three different
interpretations can be distinguished: artifici-
ality as (1) non-realisticness, (2) constructed-
ness or (3) computer-generated.

Artificial societies may refer to the classes
of unrealistic simulations. In some sense,
all ABS-generated societies are artificial in
this sense: they are codes on a computer
platform and not societies in the world. Yet
some of these ABS yield societies realistic
at least in some respects, in that they closely
resemble aspects of human societies. The
Anasazi ABS (Dean et al., 2000), for exam-
ple, is claimed to resemble the housckeep-
ing, reproductive and migration behaviour
of actual ancient people on the micro-level,
and it is also claimed to resemble its popula-
tion and settlement dynamics on the macro-
level. In contrast to this, other ABS are not
intended as simulations of human societies
at all. Doran (1998), for example, simulates
a society in which agents have perfect fore-
sight (i.e. they know what will befall them
in the future). Such a society may be called
artificial in the sense that it is largely based
on assumptions known to be false in the real
world. While such a distinction would have
certain merits, it would exclude many ABS,
despite the fact that these ABS are commonly
called artificial societies.

It may therefore be more adequate to
interpret ‘artificial” as ‘constructed’ or ‘man-
made’. Artificial societies are the result of
modelling and programming efforts, while
real societies have evolved without the inten-
tional input of a designer or constructor. Such
a distinction, however, would include under
the term artificial societies social phenomena
created in the laboratory, as for example
produced by experimental economists. This
does not seem to comply with standard usage
of the term.

One may therefore be forced to narrow the
interpretation further to computer simula-
tions. Artificial society refers to processes

in silico, which model social phenomena,
as opposed to material exemplars of these
processes themselves. However, the material
basis of social phenomena could be chal-
lenged. While this issue has not arisen in the
context of artificial societies so far, a lively
debate exists with respect to artificial life.
The strong Alife position claims that life is
a process that can be abstracted away from
any particular medium. Defenders of such a
position avoid the term artificial and instead
prefer ‘synthetic biology’ (Ray, 1996). In a
similar vein, it could be argued that sociality
is a process independent of its material basis,
and that computer-generated interactions
between agents constitute social phenomena
in the same way as interactions of real-world
agents.

Emergence

ABS generate macroscopic patterns from
‘the bottom up’ — from the interactions of
many microscopic agents. It is often said
that these macroscopic patterns or properties
emerge from the microscopic ones. The term
‘emergence’ has a long history, which unfor-
tunately makes its use more difficult. Some
conceptual clarification is necessary.

In early twentieth century philosophy,
emergence came to denote a metaphysical
position on higher-level properties. Emergent
properties, it was claimed, ‘arise’ from some
lower-level properties and yet are ‘irreduc-
ible’ to them. The positions varied in the way
properties arose and were said to be irreduc-
ible. Although different in detail, both Mill
(1843) and Broad (1925) claimed that these
properties are associated with irreducible
higher-level causal powers; while Alexander
(1920) claimed that although the emergent
properties were primitive, their causal powers
do not supersede more fundamental interac-
tions. It is controversial whether Alexander’s
proposal is coherent as an ontological
position, while Mill’s and Broad’s imply
downward causation, which sits uncomfort-
able with many. According to downward
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causation, the emergent property’s causal
influence is irreducible to the micro-prop-
erties from which it emerges; it bears its
influence in a direct downward fashion, not
through the aggregation of its micro-level
powers (for a defence, see O’Connor, 1994).

One way to avoid downward causation is
to re-interpret emergence as an epistemic,
not an ontological notion. Emergent proper-
ties then are characterised in terms of limits
on human knowledge of complex systems.
A property is thought of as emergent, accord-
ingly, if it could not have been predicted
from knowledge of features of its parts. More
specifically, it could not have been predicted
without the help of simulation (Bedau, 1997:
378). Such a concept of weak emergence is
conceptually unproblematic, but does not
capture the metaphysical spirit of previous
notions.

ABS IN THE CONTEXT OF
SCIENTIFIC PRACTICE

Simulation, Models and Theory

Simulations rest on models (see Chapter 28).
Without models of the networks through
which epidemics spread, or the landscape on
which the Anasazi settle, the examples of the
previous section could not have simulated
anything, But while it is uncontroversial
that models are important and possibly con-
stitutive elements of simulations, it is less
clear whether simulations themselves can
be treated as models. Of course, in a collo-
quial sense, models and simulations are not
properly delineated. For example, most econ-
omists think of Schelling’s (1971) check-
erboard model as a model, while it is also
considered to be one of the earliest examples
of an agent-based simulation. However, a
number of differences can be identified.

One difference is the temporal dimension
of simulations. Scientists often speak about a
model ‘underlying’ the simulation. The recent
smallpox infection simulation of Eubank

et al. (2004), for example, is based on a
model of Portland, OR, consisting of around
181,000 locations, each associated with a
specific activity, like work, shopping, school
and maximal occupancies. Additionally, each
model inhabitant is characterised by a list
of the entrance and exit times into and
from a location for all locations that person
visited during the day. This huge database
was developed by the traffic simulation tool
TRANSIMS, which in turn is based on US
census data. When speaking about the model
underlying the simulation, people often have
such a static model in mind. The simulation
itself proceeds by introducing a hypotheti-
cal ‘shock’ into the system (in this case, a
number of infected inhabitants) and then
observing how the infection spreads through
the population. This dynamic aspect is often
not included when people speak about the
underlying model. This may be a sensible
distinction, as the dynamic aspect of the
simulation makes various diachronic stabil-
ity assumptions that were not included in
the static model (Griine-Yanoff, 2010). Of
course, the dynamic aspects may be referred
to as the ‘dynamic model’ which includes the
‘static model’, yet common practice in such
cases seems to be that the ‘static model’ is
referred to as the ‘underlying model’.

A second difference lies in the methods by
which models can be analysed. The common
way that mathematical models in the natural
science or in economics are analysed is to
find a solution to the set of equations that
make up the model. For this purpose, cal-
culus, trigonometry and other mathematical
techniques are employed. Being able to write
down the solution this way makes one abso-
lutely sure how the model will behave under
any circumstances. This is called the analytic
solution, because of the use of analysis. It is
also referred to as a closed-form solution.

However, analytic solutions work only for
simple models. For more complex models,
the maths becomes much too complicated.
Instead, the model can be ‘solved’ by simu-
lation. For, say, a differential equation that
describes behaviour over time, the numerical
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method starts with the initial values of the
variables, and then uses the equations to
figure out the changes in these variables over
a very brief time period. A computer must be
used to perform the thousands of repetitive
calculations involved. The result is a long list
of numbers, not an equation. Appropriately
presented, numerical simulation is often con-
sidered a ‘solution’ of the model.

Some proponents of simulation have
argued that for every computation, there is
a corresponding logical deduction (Epstein,
1999), hence from a technical standpoint,
deductive modelling is but a special case of
simulative modelling. However, this claim
neglects important epistemic and psychologi-
cal differences. As Lehtinen and Kuorikoski
(2007) point out, economists largely shun
simulations for epistemic and understanding-
related reasons. They explain this observation
by arguing that economists place a high value
on the derivation of an analytical result, based
on their belief that the cognitive process of
solving a model constitutes the understand-
ing of the model. In most simulations, the
computer is a necessary tool: humans could
not, even if they wanted to, perform the com-
putations needed. The derivation of resulls in
these simulations is outside of the reach of
human agents. They leave the solution proc-
ess, in the words of Paul Humphreys, ‘epis-
temically opaque’. This opaqueness makes
economists shun simulation when they seek
understanding from the analytic solution
process itself. It also constitutes an important
difference between standard (analytically
solvable) models and simulations.

To summarise, simulations differ from
models mainly in their temporal expansion
(and sometimes also in their representa-
tion of a temporal process) as well as in their
epistemic opacity.

Simulations versus Experiments

Another perspective on simulations links
them to experiments (see Chapter 30; see
also Dowling, 1999; Rohrlich, 1991: 507).

Because simulations are typically based on
calculations that are intractable, the results of
a simulation cannot be predicted at the time
when the simulation is constructed or manipu-
lated. This allows seeing the simulation as an
unpredictable and opaque entity, with which
one can interact in an experimental manner.
However, the legitimacy of a computer simu-
lation still relies on the analytic understand-
ing of at least the underlying mathematical
equations, if not the computation process
itself. Thus the experimental approach to
simulations consists in a strategic move to
‘black-box’ (Dowling, 1999: 265) the known
programme, and to interact ‘experimentally’
with the surface of the simulation.

Whether this observation suffices to sub-
sume simulations under experiments, remains
an open question. Most scientists agree that
simulations have experimental moment, but
hasten to add a qualifier, for example, that
simulations are ‘computer experiments’.
Along these lines, many philosophers of
science have pointed out that despite their
experimental moment simulations differ
from experiments in important ways.

The first argument for such a difference
points to a perceived difference in the simi-
larity relations of experiments and simula-
tions to their targets. Gilbert and Troitzsch
(1999: 13), for example, argue that in a
real experiment, one controls for the actual
object of interest — while in a simulation
one is experimenting with a model rather
than the object itself. Following a thought
of Herbert Simon (1969), Guala (2005: 215)
addresses a similar issue, arguing that in a
real experiment, the same material causes are
at work as those in the target system; while
in simulations, not the same material causes
are at work, and the correspondence between
the simulation and its target is only abstract
and formal.

Parker (2009) contradicts these claims.
She points out that the use of simulations in
what she calls ‘computer simulation stud-
ies” involves intervention, just as laboratory
experiments do. Computer simulation studies
intervene on a material system, namely the
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programmed computer. Such studies are thus
material experiments in a straightforward
sense.

The second argument for the difference
between experiments and simulations points
out the different epistemological challenges
that experiments and models face. Morgan
(2003: 231) argues that they differ in their
‘degree of materiality’, and that this makes
experiments epistemically privileged com-
pared to simulations. One can argue for
the external validity of laboratory experi-
ments by pointing out that they share ‘the
same stuff’ with their targets. Simulations,
however, only have a formal relation to
their targets, which makes establishing their
external validity that much harder. Note that
this argument draws on the ontological dif-
ference identified above; yet Morgan stresses
the epistemological implications of these dif-
ferences, and does not claim that simulations
are otherwise fundamentally different from
experiments.

Winsberg (2009) offers another version
of this epistemological argument. Instead
of drawing on the make-up of simulations,
he argues that the justification for the claim
that a simulation stands for a target rests
on something completely different from a
similar justification for experiments. The jus-
tification for simulation rests on our trust in
the background knowledge that supports the
construction of the simulation, in particular
principles deemed reliable for model con-
struction. The justification for experiments,
in contrast, relies on a variety of factors, the
most prominent maybe being that experi-
mental object and target are of the same kind.
Thus, Winsberg denies, pace Morgan, that
experiments are epistemically privileged, but
insists that the knowledge needed for a good
simulation is different from the knowledge
needed for a good experiment.

The Novelty Claim

Related to the above discussions is the ques-
tion whether and to what extent simulation

poses a novelty for philosophy of science.
While it is obvious that simulation has
brought many innovations to science, it is
more controversial whether simulation poses
new problems for the philosophy of science.
Schweber and Wichter (2000) for example,
suggest that the widespread use of simulation
in the sciences constitutes a ‘Hacking-type
revolution’. By this they mean that model-
ling and simulation have achieved a quali-
tatively new level of effectiveness, ubiquity
and authority. Consequently, new problems
arise for philosophy of science. Rohrlich
(1991: 507) argues that computer simula-
tions require a new and different methodol-
ogy for the physical sciences. Humphreys
(1991: 497) agrees that computer simula-
tions require ‘a new conception of the rela-
tion between theoretical models and their
application’. He advances similar arguments
in his 2004 book. Finally, Winsberg (2001:
447) claims that ‘computer simulations have
a distinct epistemology’.

Against these novelty claims, others have
argued that simulations are very similar
to traditional tools of science, and do not
constitute a revolution in the principles of
methodology (Stockler, 2000). To understand
these arguments better, it is helpful to ana-
lyse in which way simulations are supposed
to pose new problems for the philosophy
of science. Frigg and Reiss (2009: 595)
present the following list of purportedly
novel problems:

1 Metaphysical: Simulations create some kind of
parallel world in which experiments can be con-
ducted under more favaurable conditions than in
the ‘real world'.

2 Epistemic:  Simulations
epistemology.

3 Semantic: Simulations demand a new analysis
of how models/theories relate to concrete
phenomena.

4 Methodological: Simulating is a sui generis
activity that lies ‘in between’ theorising and
experimentation.

demand a new

Against (1) Frigg and Reiss argue that the
parallel world claim already has been made
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with respect to standard deductive models
(cf. Sugden, 2000). Against (2) they argue
that the issues with simulation are part
of the larger problem from where (com-
plex) models get their epistemic credentials.
Against (3) they argue that first, simulations
do not clash with either the semantic or the
syntactic view, and second, that the dynamic
aspect of simulation is not new. Against
(4) they argue, first, that simulation does not
have an ‘in-between status’ with respect to its
reliability, but that, second, other interpreta-
tions of simulations being ‘in-between’ - like
being a hybrid or a mediator — are not new
and have been claimed for models already.

Against this sceptical position, Humphreys
(2009) argues for the truth of at least (2) and
(3). He argues that the epistemic opacity of
simulations and their dynamic aspects are
new features that are not sufficiently cap-
tured by existing accounts of philosophy of
science. In addition, he claims that the appli-
cation process of the simulation to the real
world requires a new conceptual framework,
and that the limitations of what is comput-
able and hence simulatable in a given time
have important implications for the philo-
sophical debate as well.

In this debate, a lot obviously depends
on how simulation is defined (cf. section on
Uses in the Social Sciences). Frigg and Reiss
prefer a more abstract account of simula-
tion that is not strongly differentiated from
models, while Humphreys prefers an account
that is clearly embedded in the programming
and computer implementation of simulation.
We feel that both positions have their merits.
The sceptical position helps one not get
too distracted when trying to explain how
modern science works: it avoids the aban-
donment of central but enduring problems
for novel but possibly superficial problems
of current practice. The novelty position
takes the actual practices of scientists very
seriously, as have previous philosophers of
science (e.g. Kuhn or Hacking). We believe
that the debate between these two factions
will not be resolved soon. Many of the
problems of more traditional practices of

science, which the sceptics claim can account
for simulation as well, have not been given a
satisfactory solution so far. Whether there
are special problems of simulation remaining
may only come into high relief once these
more general issues have been adequately
addressed, and the relevance of their answers
for simulations explored.

THE SCIENTIFIC USES OF
SIMULATIONS

The sciences use simulations for multiple
purposes. In this section, we first explicate
how scientists pursue their aims with the
help of simulations, and secondly point out
the conditions necessary to justifiably pursue
these uses with simulations.

PREDICTION

A prediction is a claim that a particular
event will occur (with certain probability)
in the future (see also Chapter 34). A simu-
lation may predict a phenomenon without
explaining it. For example, a model bridge
may show that a design will work without
explaining why it will work. A model car’s
performance in a wind tunnel simulation
may indicate the car’s wind resistance with-
out explaining its wind resistance. However,
such cases might be restricted to material
simulations: one may be able to success-
fully exploit the material causes operating
in such a simulation for predictive purposes,
without being able to identify these causes,
and hence without being able to explain
why the system operates in the way it does.
In non-material simulations, in particular in
computer simulations, one has to explicitly
construct the principles governing the simu-
lation. Claiming that such a simulation could
predict without explaining would then raise
the ‘no miracles’ argument: predictive suc-
cess would be miraculous if the simulation



ARTIFICIAL WORLDS AND AGENT-BASED SIMULATION 623

and its underlying principles did not identify
the actual causes at work in the real system.
Full structural validity of the model — that is,
the model not only reproduces the observed
system behaviour, but truly reflects the way
in which the real system operates to produce
this behaviour — vouches for both predictive
and explanatory success.

Yet there are different ways in which
simulations are based on ‘underlying princi-
ples’. The simplest is the case in which the
simulation is based on natural laws. Take for
example vehicle crash simulations. A typi-
cal ‘first principle’ crash simulation takes as
input the structural geometry of a vehicle and
the material properties of its components.
The vehicle body structure is analysed using
spatial discretisation: the continuous move-
ment of the body in real time is broken up
into smaller changes in position over small,
discrete time steps. The equations of motion
hold at all times during a crash simulation.
The simulation solves the system of equa-
tions for acceleration, velocities and the dis-
placements of nodes at each discrete point in
time, and thus generates the deformation of
the vehicle body (cf. Haug, 1981).

Such ‘first principle’ simulations were
built to predict effects of changes in vehicle
composition on the vehicle’s crash safety.
They analyse a vehicle ‘system’ into its com-
ponents and calculate the behaviour of these
components according to kinematic laws
(partly expressed in the equations of motion).
Because the computational generation of the
behaviour strictly adheres to the causal laws
that govern the behaviour in reality, the gen-
eration also causally explains it.

The builders of crash simulations are in
the lucky position that the generated events
match the findings of empirical crash tests
very precisely, while their models are fully
based on laws of nature. This is often not the
case. One reason may be the absence of true
generalisable statements about the domain
of interest. Take for example Coops and
Catling’s (2002) ecological simulation. Their
aim is to predict the spatial distribution and
relative abundance of mammal species across

an area in New South Wales, Australia. They
proceed in the following steps. First, they
construct a detailed map of the area indicat-
ing for each pixel the ‘habitat complexity
score’ (HCS), which measures the structural
complexity and biomass of forested vegeta-
tion. This map is estimated from the relation-
ship between HCS observed from selected
plots and aerial photographs taken of the
whole area. Second, they estimate a fre-
quency distribution of HCS for each selected
plot. From this they predict the HCS of each
pixel at any time period. This prediction in
effect constitutes a simulation of the HCS
dynamics for the whole area. Finally, they
estimate a linear regression model that links
HCS to spatial distribution and relative abun-
dance of the relevant mammal species. Based
on this model, they simulate the dynamics of
the mammal population throughout the area.

Clearly, Coops and Catling cannot base
their simulation on natural laws, because
there aren’t any for the domain of phenomena
there are interested in. Instead, their research
paper has to fulfil the double task of estimat-
ing general principles from empirical data,
and then running the simulation on these
principles. Understanding this also makes
clear that the main predictive work lies in
the statistical operations, i.e. the estimations
of the HCS frequency distributions and the
linear regression model. The simulation of
the HCS dynamics is a result of the HCS
frequency estimations. It then helps provide
the data for the linear regression model; but
it can only do so (and one would accept the
data it provides as evidence only) if the HCS
frequency distributions were estimated cor-
rectly. The predictive power of the simulation
thus clearly depends on the principles used in
it, and the validity of these principles seems
not very secure in this case.

Another reason for failing to incorporate
independently validated principles is that
many simulations do not successfully match
the target events or history when relying
solely on laws, even if those laws are avail-
able. Take for example the following case
from climate research (described in Kiippers
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and Lenhard, 2005). In 1955, Norman Phillips
succeeded in reproducing the patterns of
wind and pressure of the entire atmosphere
in a computer model. Phillips used only six
basic equations in his model. They express
well-accepted laws of hydrodynamics, which
are generally conceived of as the physical
basis of climatology.

Phillips’ model was a great success,
because it imitated the actually observed
meteorological flow patterns well., But the
model also exhibited an important failure:
the dynamics of the atmosphere were stable
only for a few weeks. After about four
weeks, the internal energy blew up. and the
system ‘exploded’ — the stable flow patterns
dissolved into chaos.

Subsequent research searched for adequate
smoothing procedures to cancel out the errors
before they could blow up. This strategy was
oriented at the ideal of modelling the true
process by deriving the model from the rel-
evant laws in the correct fashion. Instabilities
were seen as resulting from errors — inaccu-
rate deviations of the discrete model from the
true solution of the continuous system.

The decisive breakthrough, however, was
achieved through the very different approach
of Akio Arakawa. It involved giving up
on modelling the true process, and instead
focused on imitating the dynamics. To guar-
antee the stability of the simulation procedure,
Arakawa introduced further assumptions,
partly contradicting experience and physical
theory. For example, he assumed that the
kinetic energy in the atmosphere would be
preserved. This is definitely not the case in
reality, where part of this energy is trans-
formed into heat by friction. Moreover, dis-
sipation is presumably an important factor
for the stability of the real atmosphere. So, in
assuming the preservation of kinetic energy,
Arakawa “artificially’ limited the blow-up of
instabilities. This assumption was not derived
from the theoretical basis, and was justified
only by the results of simulation runs that
matched the actually observed meteorologi-
cal flow patterns over a much longer period
than Phillips” model.

This last example requires us to be more
precise when talking about the validity of a
model. Structural validity we encountered
before: it requires that the model both repro-
duces the observed system behaviour and
also truly reflects the way in which the real
system operates to produce this behaviour.
But Phillips® model obviously violates struc-
tural validity, and still seems to be successful
at predicting global weather. In that case, we
must speak of predictive validity, in which
the simulation matches data that was not
used in its construction. (One may add that
Coops and Catling’s 2002 simulation may
not be predictively but replicatively valid:
it matches data already acquired from the
real system). By distinguishing structural
and replicative validity, we admit that some
simulations may predict but do not explain.

Explanation

Agent-based simulations are often claimed
to be explanatory (Axtell et al., 2002;
Cedermann, 2005; Dean et al., 2000; Epstein,
1999; Sawyer, 2004; Tesfatsion, 2006). Often
these claims are ambiguous about how agent-
based simulations are explanatory, and what
they explain. In the following, we discuss
three possible accounts of what kind of
explanations ABS may provide (see also
Chapters 13 and 33).

Full Explanations
Some simulations are claimed to explain
concrete phenomena. Such singular explana-
tions purport to explain why a certain fact
occurred at a certain time in a certain way,
either by providing its causal history, or by
identifying the causal relations that produced
it. For example, Dean et al. (2000) claim
that by simulating actual population dynam-
ics and settlement densities of the Anasazi,
they manage to explain these population
dynamics.

Although the simulation matches data
during most of the period studied, it does not
match data at the period’s end. Dean et al.
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conclude that some factor outside the simu-
lation influenced population and its distribu-
tion at that time. They conjecture that some
houscholds left the valley because of social
ties to other households leaving the valley
and not because potential maize production
was not enough to sustain them.

Thus, by the author’s own account, the
simulation fails as a full explanation of the
particular Anasazi history. It omits, besides
social pull, social institutions and property
rights. It may nonetheless yield a partial
explanation that treats some explanatory
factors, such as maize production, and con-
trols for other explanatory factors, such as
social pull. It may control for an explanatory
factor by, say, treating a period during which
that factor does not operate. Elaboration of
the simulation may add explanatory factors,
such as social pull, to extend the simula-
tion’s range and make its explanation more
thorough. The next section further explores
simulations’ power as partial explanations of
particular phenomena.

However, as Griine-Yanoff (2009 argues,
it is unlikely that this history could ever be
explained via simulation, as it is unlikely
that the underlying model could ever be suf-
ficiently validated. Instead of providing full
or partial explanations of particulars, simula-
tion may only provide possible explanations.
Such possible explanations, which will be
discussed in 4.3.3, may help in the construc-
tion of actual explanations, but do not consti-
tute actual explanations themselves.

Partial Explanation
A partial explanation describes the opera-
tion of some factors behind a phenomenon’s
occurrence. This requires the model to suc-
cessfully isolate these explanatory factors
(Maki, 1994). For a partial explanation, each
assumption must control for an explanatory
factor, or else the theorem’s results must
be robust with respect to variation in the
assumption. Yet it turns out that many ABS
fail to be robust.

Lacking robustness is a widespread prob-
lem for the success of partial explanations

with simulation studies. Take for example
Huberman and Glance (1993), who exam-
ine simulations of generations of players
in Prisoner’s Dilemmas. The simulations
use cellular automata, with cells located
in a square. One simulation treats time as
discreet and has all cells update at the same
time to produce the next generation. Another
simulation, more realistically, treats time
as continuous so that at a moment at most
one cell updates to produce an offspring.
Suppose that both the synchronous and the
asynchronous simulations begin with the
same initial conditions: a single defector
surrounded by cooperators. The synchro-
nous simulation maintains widespread coop-
eration even after 200 rounds, whereas the
asynchronous simulation has no cooperation
after about 100 rounds. Cooperation is not
robust with respect to the updating’s timing
in these simulations. So unless timing is an
explanatory factor in the world and not just
an artifact of the simulation, a simulation that
generates cooperation using synchronous
updating does not yield a partial explanation
of cooperation.

Consequently, proponents of the explana-
tory value of a simulation show that the
simulation robustly generates the target
phenomenon’s representation. That is, the
simulation generates the phenomenon’s rep-
resentation over a wide range of variation
in the simulation’s unrealistic assumptions.
The robustness may be with respect to varia-
tion in initial conditions, dynamical laws, or
values of the simulation’s parameters. Justin
D’Arms et al. (1998: 89-92), for example,
use robustness as a guideline for assess-
ment of simulations and models of adaptive
behaviour. They say that a result is robust if it
is achieved across a variety of different start-
ing conditions and/or parameters. They take
robustness as necessary but not sufficient for
a successful simulation.

However, a model’s robustness with respect
to all assumptions is neither necessary nor
sufficient for a phenomenon’s partial expla-
nation. A partial explanation requires robust-
ness with respect to variation in assumptions
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that introduce features irrelevant to the
model’s target phenomenon. Altering those
assumptions should not make a difference to
the model’s results. In contrast, robustness
need not hold with respect to assumptions
that control for explanatory factors. In fact, a
good model, as it becomes more realistic by
incorporating more explanatory factors, does
not robustly yield the same results. When it is
completely realistic, it exhibits a limited type
of robustness. It steadfastly yields its target
phenomenon as the model’s parameters vary
in ways that replicate the phenomenon’s
natural range of occurrence. Thus, a partial
explanation requires only limited robustness,
namely, robustness with respect to varia-
tion in assumptions that do not control for
explanatory factors.

Potential Explanation

We have argued that many simulations often
do neither fully nor partially explain any
particular phenomenon. Nevertheless, many
authors of simulation studies claim that their
simulations are in some way explanatory.
It may therefore make sense to expand the
notion of explanatoriness to include not
only full or partial explanations, but also
potential explanations. A model or theory
may be considered a potential explanation
if it shares certain properties with actual
explanations, but where the explanans is not
true (cf. Hempel, 1963: 338). In that sense,
simulations may be potential explanations, or
as some simulation authors prefer, ‘candidate
explanations’ (Epstein, 1999: 43), and hence
may be considered explanatory.

Emrah Aydinonat (2008) offers a good
example of such reasoning. He argues that
Menger’s theory of the origin of money, and
more recent simulations building on Menger’s
work, are partial potential explanations.

Carl Menger (1982) investigated the ques-
tion how money arose as a medium of
exchange. His question was theoretical in that
it asked for the general underlying causes for
the origin of money, and not for the causal
history of any particular instance of money.
Envisioning a world of direct exchange,

Menger postulated that some goods are more
saleable than others, depending on proper-
ties like their durability, transportability, etc.
Self-interested economic agents, he then
argued, would tend to purchase the most
saleable good, even if they do not need it, in
cases where they cannot directly exchange
their goods for goods that they do need.
Because everyone would gravitate towards
the most saleable good in the marketplace in
such situations, it is that good that emerges as
the medium of exchange — as the unintended
consequences of economising agents.

Aydinonat admits that Menger’s model
neglects many institutional particularities,
and in general is not able to verify its
assumptions. It thus cannot offer a full
or partial explanation. However, he argues
that ‘Menger’s conjecture alerts us to cer-
tain explanatory factors that may have been
important in the development of a medium of
exchange’ (Aydinonat, 2008: 48, my empha-
sis). In particular, Menger’s model identifies
some factors, not all; hence his model offers
only a partial explanation. Furthermore, the
model identifies only possible factors, not
actual ones; hence it offers only a potential
explanation.

Many authors have since tried to develop
Menger’s model further. As an example,
take the simulation study by Marimon et al.
(1990); they model the trade interactions
of three types of agents in the population.
Each type consumes a different good, which
she does not produce herself. To be able to
consume, the agents have to exchange with
others. Yet each agent can only store one
kind of good, and storage costs for a specific
kind of good depends on the type of agent
who stores it. In the simulation, agents are
matched pairwise at random, offer their
goods simultaneously, and decide whether
to accept the trade offer. Offers of an agent’s
consumption goods are always accepted.
But if they are not offered their consump-
tion goods, they have to decide whether to
accept a good they cannot consume, Agents
know a menu of behavioural rules (including
‘accept if storage costs are low’, ‘accept if
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other agents accept’, etc.) and attach strength
to each rule. This strength index determines
how probable it is that an agent chooses a
certain rule. After each round, agents update
the strength index according to the success of
the rule used.

Marimon et al. find that under specific
conditions, the population converges on an
equilibrium where every agent prefers a
lower-storage-cost commodity to a higher-
cost-commodity, unless the latter is their
own consumption good. Thus, they show
that under these conditions, a medium of
exchange emerges as an unintended conse-
quence of the agents’ economising behaviour.
However, they also find that this conver-
gence is rather sensitive to the initial condi-
tions. Aydinonat therefore concludes that the
simulation ‘teaches us what we may con-
sider as possible under certain conditions. Yet
they do not tell us whether these conditions
were present in history or whether there are
plausible mechanisms that may bring about
this possibility” (Aydinonat, 2008: 112). The
simulation offers neither a full nor a partial
explanation of the origin of money. But it
makes more precise the possible worlds in
which Menger’s conjecture holds; it speci-
fies in precise detail some environments, and
some sets of causal relations under which a
medium of exchange emerges. In this sense,
the simulation may be considered progress
with the possible explanation offered by
Menger.

In a similar vein, one may consider the
Anasazi simulation progress with possible
explanation of the population dynamics. Yet
what does the progress consist in? What
distinguishes serious contenders for such
possible explanations from mere fantastic
constructs? Hempel had the formal rigor of
the Deductive-Nomological account to fall
back onto when referring to the ‘other char-
acteristics” of an explanation. But in the age
of simulation, indefinite numbers of potential
explanations can be produced. With so many
possible causes identified, simulation may
confuse instead of clarify, and reduce under-
standing instead of improving it.

One problem, Griine-Yanoff (2009)
argues, may lie in the focus on causes and
mechanisms. Aydinonat, for example, claims
that simulations ‘try to explicate how certain
mechanisms ... may work together’ (2008:
115). Yet these simulations operate with
thousands of agents, and indefinitely many
possible mechanisms. Identifying a single
set of possible mechanisms that produce
the explanandum therefore does not, pace
Aydinonat improve the chances of identify-
ing the actual mechanisms. The numbers
of possible mechanisms is just too large to
significantly improve these chances.

Instead, Griine-Yanoft suggests that a sim-
ulation run offers an instance of the simu-
lated system’s functional capacities and its
functional organisation. Functional analysis
shows how lower-level capacities constitute
higher-level capacities. The capacity of the
Anasazi population to disperse in times of
draught, for example, is constituted by the
capacities of the household agents to opti-
mise under constraints, and their capacity to
move. The dispersion is nothing but the indi-
vidual movings. Yet there are many different
household capacities that constitute the same
higher level capacity. The role of simulation
studies, Griine-Yanoff (2009) argues, is not
to enumerate possible household capaci-
ties (or mechanisms), but to explore the
system’s possible functional organisations
under which different sets of household
capacities constitute higher-level capacities,
and hence the ‘working’ of the whole system.
This is in line with current practice. Reports
of simulations do not offer comprehensive
lists of possible mechanisms that produce
the explanandum. Rather, they offer one or
a few selected settings, and interpret these
as instances of how the system may be
functionally organised in order to yield the
explanandum. Occasionally, they also con-
clude from such singular simulation settings
that the simulation is not correctly organised
and that additional functional components
are needed. In the Anasazi case, for example,
the authors conclude that additionally push
and pull factors are needed. For this reason,
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it may be preferable to think of simulations
as providing potential functional instead of
potential causal explanations.

Policy Formulation

Simulations have long been used to support
policy formulation. Drawing on economic
theory, Jan Tinbergen constructed a macr-
oeconomic model of the Dutch economy. It
led to simulations of six policies for allevi-
ating the Great Depression. Because of the
results of the simulations, Tinbergen recom-
mended that the Dutch government abandon
the gold standard, which it did.

Today, agent-based models are widely
used to simulate the impact of external
shocks on complex social phenomena. For
example, a number of recent papers have
investigated how a smallpox epidemic would
spread through a population, and how dif-
ferent vaccination policies would affect
this spread. Some of these simulations stay
on a relatively abstract level, while others
become incredibly detailed and in fact pur-
port to simulate the population behaviour
of a whole city (Eubank et al., 2004, who
simulate Portland, OR) and even a whole
country (Brouwers et al., 2006, who simu-
late Sweden). Authors of such simulations,
in particular from the latter category, often
give policy advice based on the simulation
results alone.

What kind of policy decisions can be
made of course depends on the validity of
the simulation (Griine-Yanoff, 2010). If cor-
rect predictions can be made on the basis
of the simulation, a straightforward utility
maximisation or cost—benefit analysis can be
performed. But with most ABS, such point-
predictions are out of reach. Instead, ABS
at best offer possible scenarios, and allow
weeding out certain scenarios as inherently
inconsistent or not co-tenable (Cederman,
2005). The goal of simulation studies then is
exploratory modelling, in which researchers
run a number of computational experiments
that reveal how the world would behave if the

various conjectures about environments and
mechanisms were correct.

The results of exploratory modelling are
sets or ensembles of possible worlds. This
leads to the question how such resulting
sets of scenarios can be used as the basis
of policy decisions. If the parties to the
decision do not know the probabilities of
the models in the ensemble, situations of
‘deep uncertainty’ arise (Lempert, 2002:
7309-7313). Under deep uncertainty, models
of uncertain standing produce outcomes with
uncertain relevance. Instead of predicting
the future of the system with one model
or with a set of probabilistically weighted
models, simulations only vield a ‘land-
scape of plausible futures’ (Bankes et al.,
2001: 73).

How can the policy maker base her deci-
sions on such a set? Two different strategies
have been discussed. The first focuses on
worst-case scenarios, against which policies
should be hedged. This approach is similar
to the maximin decision rule: the policy
maker chooses that policy that maximises
the minimal (worst) outcome. The second
approach pays equal attention to all models,
and chooses that policy which performs
relatively well, compared with the alterna-
tives, across the range of plausible futures.
If ‘performs relatively well’ is interpreted
as performing well against a set minimal
threshold, then this approach is similar
to the satisficing decision rule: the policy
maker sets a threshold in the light of the
specific policy goals, and then evaluates the
different policy alternatives by their per-
formance in a sufficiently large number of
simulation runs.

Both maximin and satisficing are very
sensitive to the number of models consid-
ered. The wider the scope, the more likely
the inclusion of some outlandish terrible
future, which will affect maximin choice.
Similarly, the wider the scope, the more
likely the inclusion of some outlier below
the threshold, which will affect satisficing
choice. Given the uncertain status of many
model specifications, exploratory modelling
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is prone to such misspecifications. This leads
to the question how the scope of the model
ensemble can be constrained.

Griine-Yanoff (2010) argues that neither
references to the actual world, nor references
to intuitions are sufficient to appropriately
restrict the scope of model ensembles. Only
through integrating the simulation ensemble
under a theory does exploratory modelling
gain sufficient systematicity. In such a set-
ting, simulations would unpack the impli-
cations of their theoretical hypotheses. If
implications are found untenable, the authors
can go back to the theory, which provides
constraints on how alternative hypotheses
can be constructed. Yet current modelling
practice rarely follows this approach. For
this reason, the usefulness of explora-
tory modelling for policy formation is not
entirely clear.

CONCLUSION

In this article, we argued that agent-based
simulation is an important new tool for the
social scientist. Although it shares many
features with both models and experiments,
its dynamic aspects, its ability to compute
vast amounts of data, and its epistemic
opacity are novel features that set it apart
from other scientific tools. This novelty
leads to a number of potentially new uses in
the sciences. Yet the conceptual foundations
for these new employments are still shaky.
In particular, we pointed out the potential,
but also the difficulties of explaining with
simulations, and of supporting policy advice.
We hope that this article helps sharpen the
understanding of these problems, which may
eventually lead to their solution.
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NOTE

1 A possible connection is James M. Sakoda, who
apparently was the first person to develop a CA-based
model in the social sciences. He published his model
in Sakoda 1971, but the basic design of the model
was already present in his unpublished dissertation of
1949 (Hegselmann and Flache, 1998: 3.2). However,
Schelling has stated to never have heard of Sakoda
{(Aydinonat, 2005: 5).
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