
Synthese
DOI 10.1007/s11229-010-9863-7

Preference change and conservatism: comparing
the Bayesian and the AGM models of preference
revision

Till Grüne-Yanoff

Received: 10 March 2010 / Accepted: 9 December 2010
© Springer Science+Business Media B.V. 2011

Abstract Richard Bradley’s Bayesian model of preference kinematics is compared
with Sven Ove Hansson’s AGM-style model of preference revision. Both seek to
model the revision of preference orders as a consequence of retaining consistency
when some preferences change. Both models are often interpreted normatively, as
giving advice on how an agent should revise her preferences. I raise four criticisms of
the Bayesian model: it is unrealistic; it neglects an important change mechanism; it
disregards endogenous information relevant to preference change, in particular about
similarity and incompleteness; and its representational framework, when expanded
with similarity comparisons, may give misleading advice. These criticisms are based
on a principle of conservatism, and on two proposals of similarity metrics for the
Bayesian model. The performance of the Bayesian model, with and without the simi-
larity metrics, is then tested in three different cases of preference change, and compared
to the performance of the AGM model.
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0 Introduction

Bayesian and AGM-style models are both used for modelling preference revision.1

In this paper, I compare and critically discuss both modelling approaches. In doing
so, I focus on three cases of pure preference change, which will help to highlight the
differences between the approaches. The aim of this comparison is to identify the
respective advantages and disadvantages of the two accounts, and to suggest possible
improvements.

AGM and Bayesian models share significant core features. They are both con-
sistency-preservation models (Grüne-Yanoff and Hansson 2009, pp. 17–19), which
proceed in three steps:

(1) The agent’s mental state is represented by some formal structure. Certain ratio-
nality constraints (e.g., transitivity) are imposed on that representation.

(2) A local change is introduced into the representation. This change is commonly
interpreted as a certain preference or probability judgement arising from some
learning experience.

(3) The representation is adjusted to incorporate this local change, retain overall
consistency with the constraints, and remain maximally similar to the prior rep-
resentation.

Consistency-preserving models of this kind often have a normative function: they
tell an agent how to revise her mental attitudes in order to successfully incorporate
the local change while retaining consistency and remaining as close as possible to her
prior judgements.

Yet the two approaches employ different modelling strategies. On the one hand,
Bayesian models represent an agent’s state of mind as a probability and a desirability
function. The probability function represents the agent’s beliefs, and the desirabil-
ity function her preferences. Revision operations are defined on these two functions.
AGM-models, on the other hand, represent an agent’s state of mind as sets of sentences
or set-theoretic models that make these sentences true. More specifically, knowledge
sets or knowledge models represent the agent’s certain beliefs, and preference sets or
preference models represent her preferences. Revision operations are defined on these
sets of sentences or on these models.

Whereas Bayesian and AGM models have been compared with respect to their mod-
elling of epistemic change (e.g., Gärdenfors 1988, pp. 36–40), the respective models
of preference revision have not, to the best of my knowledge, been compared in the
literature thus far. This paper provides such a comparison, the aim being three-fold:
first, to shed light on an important but rarely discussed problem in preference revision;
second, to critically assess the performance of the respective approaches in modelling
this problem; and third, to propose improvements to these models.

1 AGM models are named after the three authors of an influential early model of belief change, Alchourrón,
Gärdenfors and Makinson. The preference-revision models discussed here use the same approach and sim-
ilar logical machinery. Because the AGM authors have not explicitly endorsed these preference-revision
models, it is better to speak of AGM-style models. For reasons of simplicity, I simply use ‘AGM model’ in
this article.
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Fig. 1 The relations between
AGM and Bayesian models

The comparison in this paper is restricted to pure preference changes, which con-
cern changes of preference that are not driven by a change in beliefs. Further, I will
restrict myself to those pure preference changes that are initiated by a change in a
single preference between two alternatives. By way of illustration, take the follow-
ing example. An agent prefers having dinner in an Afghan rather than a Bangladeshi
restaurant, and prefers the Bangladeshi to a Chinese restaurant. Then, after having
recently sampled both menus, she comes to prefer Chinese over Afghan cuisine. Yet
her prior preferences require her, on pain of inconsistency, not to hold a preference
for Chinese over Afghan. If she wants to hold the new preference she must re-adjust
her other preferences as well. This re-adjustment is a case of pure preference change,
as it is driven solely by the acquisition of a new preference and not by any change in
beliefs.

One of the strengths of Bayesian models is that they treat preference and belief revi-
sion at the same time. It is nevertheless possible to conceptually separate the two within
the Bayesian framework, and exclusively focus on the latter. This makes comparison
between Bayesian and AGM models feasible. When the focus is on pure preference
change, disregarding belief changes and preference changes driven by beliefs, the two
models are based on two different representations of the same thing, namely preference
orderings.2 Figure 1 shows AGM models defining a revision operator (X ) between
preference relations. Bayesian models, on the other hand, represent these preference
relations as desirability functions, and define the revision operator (Y ) between them.

I compare two specific models in this paper—Bradley (2007, 2009a,b) Bayesian
preference kinematics and Hansson (1995, 2001) AGM-style preference revision.3

I will show that there are cases in which the Bayesian change operator (Y ) gives
more ambiguous advice than the AGM operator (X ). Beyond this ambiguity, there
also are cases in which the Bayesian operator gives incorrect advice and the AGM
operator gives correct advice. I argue that this is partly attributable to differences in
the representational frameworks of the two models.

I develop my argument as follows. Sections 1 and 2 present the basics of the
Bayesian and the AGM accounts, respectively. Section 3 introduces the principle of
conservatism, and discusses why it is normatively relevant to preference revision.
Section 4 proposes some possible similarity metrics that would allow the Bayesian

2 This restriction is largely at the expense of the Bayesian model, which is designed to deal with informa-
tionally richer inputs. Nevertheless, the criticism derived from this partial comparison is still valid as long
as the features neglected here do not promise to remedy the shortcomings detected in it.
3 Bradley recently linked his model to AGM-style preference revision (Bradley 2009c, p. 245). I therefore
refer to the particular kind of preference change modelled in both approaches as preference revision.
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model to satisfy conservatism. Section 5 presents three cases, which help in testing
the performance of the two models. The significance of these findings are discussed
in the concluding section. In particular, I criticise the Bayesian model for neglecting
pure preference change, for neglecting important endogenous information, and for
offering unnecessarily ambiguous conclusions. Consequently, I propose expanding
the Bayesian model with a model of pure preference change.

1 The AGM account

Hansson’s model represents the motivational part of an agent’s state of mind as a
preference model R. R is a set of preference relations. A preference relation R is a set
of binary tuples 〈X, Y 〉, in which each element X of such a tuple is a proposition of
a Boolean algebra !. Each preference relation validates certain preference sentences.
The set [R] of these sentences is defined recursively according to the usual semantic
interpretation of propositional logic:

A # B ∈ [R] ⇔〈 A, B〉 ∈ R (1)

¬α ∈ [R] ⇔ α &∈ [R] (2)

. . .

The preference model R then validates those sentences that are validated by each
of its preference relations: [R] = ⋂{[R]|R ∈ R}. R is called T -obeying if [R] is
consistent and [R] = CnT ([R]). CnT stands for the closure under propositional logic
and preference rationality postulates.

When agents, as a result of some learning experience, adopt a new preference sen-
tence that is not in [R], Hansson proposes #-prioritised revision as the updating rule.
This operation revises R by a preference sentence α, yielding the revised preference
model R∗

!α. R∗
!α must validate the sentence α and must be maximally similar to R,

giving priority in similarity comparison to preferences between propositions not in #.4

Hansson constructs #-similarity as follows. # is the set of prioritised preferences
that should be changed last. A preference relation R1 is more #-similar to R2 than to
R3 if and only if the symmetric difference between R1 and R2 is smaller than between
R1 and R3 for those Ri s not in #, or if these symmetric differences are equal, then
for all Ri s. More specifically,

(#) Let µ be a numerical function such that if $ ⊂ %, for any $,% ∈ ! × !,
then µ($) < µ(%). Let $&% = ($\%)∪(% \$). Then R1 is more #-similar
to R2 than to R3 if and only if either:
µ(R1&R2) < µ(R1&R3) for R1, R2, R3 ∈ #, or
µ(R1&R2) = µ(R1&R3) for R1, R2, R3 ∈ # and µ(R1&R2) < µ(R1&R3).

4 Multiple preference revisions are interpreted as α consisting of a conjunction of (finite) preference sen-
tences (Hansson 2001, pp. 47–48).
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R∗
!α has many properties that make it a plausible rule for preference revision

(Hansson 2001, p. 50). Crucially, it explicitly adopts a version of conservatism in
insisting on maximal similarity between R and R∗

!α. The notion of conservatism is
explained in Sect. 3, and an outline of its normative relevance is given.

2 The Bayesian account

Bradley’s model represents an agent’s state of mind as a pair of functions 〈p, v〉,
defined on a Boolean algebra ! of propositions. Thus, p is a probability measure of
the agent’s degrees of belief, and v is a real-valued (desirability) measure of the agent’s
preferences. This mode of representation is based on Jeffrey–Bolker decision theory
(Jeffrey 1983).

When agents, as a result of some learning experience, change the probabilities or
desirabilities of elements of a partition Ai of !, Bradley proposes generalised con-
ditioning as the updating rule. In the following equations, 〈p, v〉 are the probability
and desirability functions before the change, and 〈p∗, v∗〉 are the functions after the
change. X is any proposition from ! that is assigned a new probability and desirability
according to these two rules.

v∗(X) =
n∑

i=1

[v(X Ai ) + v∗(Ai ) − v(Ai )] × p∗(Ai |X) (3)

p∗(X) =
n∑

i=1

p(X |Ai ) × p∗(Ai ) (4)

Equation 3 states that when the desirability and probability of elements of a par-
tition Ai of ! changes, then the posterior desirability of any proposition X in ! is
computed as the sum of the prior desirabilities of the conjunctions of X and Ai , plus
the difference between the posterior and the prior desirabilities of Ai , weighted by
the posterior probabilities of Ai , given X . Equation 4, in turn, states that when the
probability of elements of a partition Ai of ! changes, then the posterior probability
of any proposition X in ! is computed as the sum of the prior probabilities of X , given
Ai , weighted by the posterior probability of Ai .

Generalised conditioning is the appropriate updating rule if and only if the prefer-
ences satisfy the Jeffrey–Bolker preference axioms, and the conditional preferences
are rigid with respect to some partition Ai in ! (Bradley 2007, p. 523). Rigidity of
conditional preferences requires that X #Ai Y ⇔ X #∗

Ai Y . In other words, the
preference judgement #Ai , made on the supposition that Ai is true, must cohere with
unconditional preferences after revision by Ai .

Furthermore, all preference revision can be modelled as generalised conditioning.
For any two pairs of preferences 〈p, v〉 and 〈p∗, v∗〉, there exists some partition {Ai }
such that 〈p∗, v∗〉 is obtained from 〈p, v〉 through generalised conditioning on this
partition (Bradley 2009a, p. 236).

In instances of pure preference change, learning experience only affects the agent’s
preferences, and leaves her beliefs intact. In such cases, p∗(·) = p(·) and Eq. 3 of
generalised conditioning can be simplified.
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v∗(X) =
n∑

i=1

[v(X Ai ) + v∗(Ai ) − v(Ai )] × p(Ai |X)

=
n∑

i=1

[v(X Ai ) × p(Ai |X) + (v∗(Ai ) − v(Ai )) × p(Ai |X)]

= v(X) +
n∑

i=1

(v∗(Ai ) − v(Ai )) × p(Ai |X) (5)

Thus, the revised desirability of a prospect X varies from the prior desirability
by virtue of the change in taste for prospect Ai , and the probabilistic dependence of
Ai on X (Bradley 2009b, p. 232). Equation 5 specifies how a pure preference change
affects the evaluation of other propositions probabilistically dependent on the partition
elements whose evaluation had changed.

What does this model say about the three-restaurant example given in the intro-
duction? In that case, the question concerned how prior preferences are affected by
a new preference for Chinese over Afghan cuisine. Equation 5 does not help here.
The example starts with the change of a preference over two of the three elements of
the partition {Afghan,Bangladeshi,Chinese}. It then investigates how the preference
comparisons of the other elements are affected. Equation 5, in contrast, becomes trivial
when X is identical to some Ai .5 Bradley’s approach thus merely suggests modelling
the change as a re-assignment of desirabilities to (some of) the elements of the partition
{Ai }. This can be done in at least three different ways: desirabilities may be assigned
to the three elements such that either (i) Chinese is preferred to Afghan, Afghan is
preferred to Bangladeshi, or (ii) Bangladeshi is preferred to Chinese, Chinese is pre-
ferred to Afghan, or (iii) Chinese is preferred to Bangladeshi, Bangladeshi is preferred
to Afghan. Any of these options accommodates the new preference for Chinese over
Afghan, but the Bayesian model does not indicate which way of redistributing the
desirabilities is the correct one.

Yet it is exactly with respect to these bare-bone cases of pure preference change
that the Bayesian model is comparable to the AGM model. The AGM model shows
how R must be adjusted in order to validate some preference sentence α, while satis-
fying consistency and conservatism. It models the rational reaction to accommodating
a perturbing judgement α into one’s preference state. The Bayesian approach spec-
ifies—albeit in an ambiguous way—how the desirability function v(·) over ! must
be adjusted to be consistent with new desirability assignments on some elements
of {Ai }.

The ambiguity of this model, I will argue, stems from its neglect of conservatism.
It is this principle that I discuss next.

5 If X is equal to e.g. B ∈ {A, B, C}, then p(A|B) = p(C |B) = 0 and Eq. 5 reduces to v∗(B) =
v(X) + ∑n

i=1(v∗(B) − v(B)) × p(B|B). But this is equivalent to v∗(B) = v∗(B).
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3 The principle of conservatism

The principle of conservatism has been discussed largely in the context of epistemic
attitudes (see McCain 2008 and the references therein). Yet it also applies to evalu-
ative attitudes such as preferences. In the latter context, the principle of preference
conservatism could be defined as follows:

(PPC) If S prefers A to B, and A , B is consistent with S’s preferences, then S
is justified in retaining A , B, and remains so as long as A , B is not defeated
for S.

A preference A , B is defeated for S if S has better reasons not to hold A , B,
or equally good reasons not to hold A , B as to hold it, and ¬(A , B) is consis-
tent with S′ preferences. Thus, conservatism acknowledges that agents change their
preferences as a consequence of changing reasons, and it acknowledges that in order
to successfully adopt these changed preferences, other adjustments to the preference
state may be necessary. But it mandates that no unnecessary adjustments be performed,
and hence that the revision be minimal. Three main justifications are given in support
of the principle of conservatism.

First, the cognitive process of revision is costly, and adhering to the principle keeps
these costs at a minimum. Costs are incurred both through determining what one’s
rational commitments are, and through seeing to it that these commitments are hon-
oured. Determining what needs to be adjusted in order to retain consistency may be
computationally demanding, and hence costly. These costs rise rapidly in accordance
with the number of adjustments necessitated. Honouring commitments is likely to be
even more costly than computing them. Human agents often find it hard to ‘give up’
some of their preferences. Preferences driven by visceral factors, such as appetites,
sexual desire and addiction are examples: agents may acknowledge that they should
give them up (in this case for the sake of consistency), and may commit to doing
so, yet find that they still influence their decisions and actions. Successfully remov-
ing such preferences from one’s mental state can be extremely costly, involving large
amounts of resources and occupying the agent for long periods of time. Adhering
to the principle of conservatism helps in minimising both the computational and the
commitment-honouring costs of preference revision.

Secondly, one’s preferences constitute some kind of accumulated capital of one’s
past reasoning. For example, one may have forgotten the reasons why one adopted a
preference, and the preference serves as a reminder of such past reasoning processes.
Adhering to the principle of conservatism preserves this capital as much as possible.

Thirdly, preferences may fulfil certain functions that require their stability. For
example, they constitute part of an individual’s personal identity. To the extent that
personal identity is a value in itself, one should avoid destabilising it by unnecessar-
ily changing one’s preferences. Furthermore, given that most people make long-range
future plans, and regularly check their optimality by comparing planned results against
current preferences, the unnecessary changing of preferences would make consistent
long-term planning very difficult, or near-impossible.
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Consistency-preserving models of preference revision should therefore respect the
principle of conservatism, the satisfaction of which, in PPC terms, ranks lexicograph-
ically after the maintenance of consistency, and after the successful incorporation of
a local preference change.

4 Similarity measures for the Bayesian model

The application of the principle of conservatism depends on the availability of infor-
mation about prior and posterior preference orderings, in particular similarity com-
parisons and defeaters. If the principle is normatively relevant, then the information
needed for the similarity comparisons is also normatively relevant. Depending on how
much of this relevant information each model makes use of, one can judge how well
each model performs its normative function.

AGM models offer concrete proposals for the measurement of similarity between
prior and posterior preference relations. In the following I use Hansson’s #-similarity,
as presented in Sect. 1. #-similarity satisfies PCC in the sense that it seeks to min-
imise the number of binary preference comparisons that need to be changed in a
revision. Bayesian models, in contrast, do not offer similarity measures between prior
and posterior desirabilities. For this reason, Bradley’s Bayesian model does not give
unambiguous advice on how to redistribute desirabilities in the three-restaurant exam-
ple. This section proposes two possible similarity measures for the Bayesian model in
order to fill this gap.

The first question to address when considering possible similarity measures
concerns what is to be compared. Because the model is based on Jeffrey–Bolker
decision theory, it is, in principle, possible to translate the desirability/probability
functions into a preference ordering, and to compare these underlying prior and pos-
terior orderings with respect to their similarity, in a similar way as the AGM model
does. However, as Fig. 1 illustrates, the Bayesian model defines its revision operation
on the desirability function, not the underlying preference ordering. It is therefore
natural to seek a measure of similarity on this functional level, too. There are at least
two different ways of doing this.

One kind of similarity measure compares desirability functions by the number of
alternatives to which they assign the same desirability. A desirability function u is said
to be more SA-similar to w than another function v if and only if u and w assign the
same desirability to a larger number of alternatives than u and v do.6 More precisely,
it is defined as follows.

(SA) Let u, v and w be desirability functions defined over the same domain of
alternatives !. Let Suv be the set of alternatives on which u and v assign different
desirability: Suv = {X ∈ !|u(X) &= v(X)}. Then u is more SA-similar to w

than v if and only if #Suw < #Svw.

6 This metric is related to the Levenshtein, Needleman-Wunsch and Smith-Waterman distances, known
from information theory and computer science.
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In the context of preference revision, let u and v be two posterior desirability
functions, and w the prior desirability function. SA-revision chooses those posterior
functions that are most SA-similar to the prior desirability function. It satisfies PPC
in the sense that it seeks to minimise the number of desirability re-assignments in a
preference revision.7 This interpretation of PPC is most plausible if alternatives and
desirabilities are seen as cognitively realistic: if alternatives and desires are real cog-
nitive entities, the cost of revision consists in ‘picking up’ the relevant alternative,
‘erasing’ the assigned desirability and ‘inscribing’ a new one.

Another kind of similarity measure compares desirability functions by the differ-
ences between prior and posterior desirabilities. A desirability function u is said to be
more SD-similar to w than another function v if and only if the sum of desirability
differences between u and w is smaller than between v and w.8 More precisely, it is
defined here as follows.

(SD) Let u, v and w be desirability functions defined over the same domain of
alternatives !. Let δuw = ∑

i | u(xi )
U − w(xi )

W | be the average-weighted differences
between the desirability functions u and w, where U and W are the average val-
ues of the sets {u(xi )} and {w(xi )}, respectively. Then u is more SD-similar to
w than v if and only if δuw < δvw.9

In the context of preference revision, let u and v be two posterior desirability func-
tions of w. SD-revision chooses those posterior functions that are most SD-similar to
the prior desirability function. It satisfies PPC in the sense that it seeks to minimise
the overall difference in evaluation between the two functions. Similar approaches are
to be found in curve-fitting techniques in statistics. This interpretation of PPC is most
plausible if desirability degrees are seen as cognitively realistic: if they are the main
cognitive entities, the cost of revision consists in ‘distancing’ the posterior from the
prior degree.

There are numerous other ways of calculating the distance between two discrete
functions through their respective values at each argument. For example, SD may be
weighted by the probability of each alternative, hence giving priority to desirabil-
ity differences between the alternatives that are more probable. Alternatively, instead
of computing differences, one may compute weighted products, such as the cosine
similarity cos(θuv) =

∑
u(xi )v(xi )√∑

u(x j )
2
√∑

v(x j )
2
. I do not discuss these alternatives in the

following for two reasons. First, some of these metrics require inputs that are not
readily available in the comparison made in this paper, such as the probability of alter-
natives. Secondly, the aim is not to resolve the technical question of which metric may

7 In the most common interpretation, desirability functions are identical up to positive affine transforma-
tions. Thus, no special meaning is assigned to something having a desirability number 0, and there is no
highest or lowest bound on a desirability function. Desirability reassignments, then, only serve to revise the
relative positions of the prospects. SA-similarity measures the minimal number of necessary reassignments
for each preference revision.
8 Related metrics are the taxicab metric and Euclidean distance. More specifically, SD is an average-
weighted taxicab distance. The weighting acts as a normalisation, which accommodates the identity of
desirability functions up to positive affine transformations.
9 I am indebted to Richard Bradley for suggesting this measure to me.
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be most suitable. The focus is rather on the conceptual question of what kind of simi-
larity comparison would be most appropriate, how these comparisons satisfy PPC, and
how much they are influenced by the modes of representation of the respective AGM
and Bayesian models. For this it matters whether similarity applies to binary prefer-
ence comparisons, desirability reassignments, or desirability differences. #-, SA- and
SD-similarity are merely exemplars of these different kinds of similarity measures.

5 Comparing model performance

In the following I discuss three stylised cases of preference revision. Each case high-
lights how the particularities of the respective representational frameworks influence
the modelling. In particular, these differences affect the kind of information about the
perturbatory judgements and prior orderings that is available for similarity compari-
sons. I argue on the basis of these cases that the AGM model sometimes outperforms
the Bayesian model in its normative function.

Case 1 Let there be only three mutually exclusive alternatives, {A, B, C}. These prop-
ositions are ordered as follows:

As in the three-restaurant example given in the introduction, the agent comes to prefer
C over A. How do the two modelling approaches recommend revising the prior order-
ing? Given that the preference C , A must be represented in the posterior ordering,
three solutions are possible, as presented in Table 1.

Hansson’s AGM approach represents the prior ordering in Table 1 by the set

R = {{〈A, B〉, 〈B, C〉, 〈A, C〉}}

R can be manipulated in three ways, which correspond to the three solutions given
in Table 2.

Ri = {{〈B, A〉, 〈B, C〉, 〈C, A〉}}
Rii = {{〈A, B〉, 〈C, B〉, 〈C, A〉}}
Riii = {{〈B, A〉, 〈C, B〉, 〈C, A〉}}

Ri and Rii are more similar to R than Riii is because they differ in only two elements
from R, whereas Riii differs in three elements. Given a #-similarity interpretation of
conservatism, with # either empty or identical to !, the AGM approach can dismiss

Table 1 An ordering of three alternatives
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Table 2 Three possible solutions

solution iii as violating PPC. It does with reference to endogenous information—by
counting the number of tuples that differ between the prior and the posterior orderings.

The Bayesian account, in contrast, does not explicitly offer any such measure. It rep-
resents the prior ordering with the desirability function v(X) shown in the right-hand
column in Table 2. Bradley merely suggests modelling the revision as the redistribu-
tion of desirabilities over the relevant partition of !, which in this case is {A, B, C}.
Such a redistribution leaves unspecified the relative positions of C and A with respect
to B on the desirability scale. Satisfying v∗(C) > v∗(A), one may assign values to
v∗(C) and v∗(A) that leave v∗(B) (i) larger than v∗(C), or (ii) smaller than v∗(A), or
(iii) smaller than v∗(C) but larger than v∗(A). The numbering of these possibilities
corresponds to the solutions given in Table 3. From the Bayesian perspective, none of
these solutions seem preferable over the others.

The Bayesian model can be expanded by one of the similarity measures discussed
in Sect. 4. Table 3 shows the distances between the solutions given in Table 2 and the
prior ordering. The respective similarities are the inverse of these distances.

I first explain how these numbers come about. The computation of #- and SA-
similarity is straightforward. According to #, the symmetric difference between, say
R and Ri is R&Ri = {〈A, B〉, 〈B, A〉, 〈A, C〉, 〈C, A〉}.10 R&Ri has a cardinality of 4,
as shown in the table. Now to SA: solution i is obtained by reassigning A a desirability
lower than C . Hence the two functions differ only in one desirability assignment. The
same holds for ii. Solution iii, however, requires reassigning two desirabilities.

The computation of SD is complicated by the way new desirabilities are assigned.
Within the Jeffrey–Bolker framework, if desirabilities have been assigned to at least
two alternatives, and if preferences and beliefs satisfy certain conditions, the desir-
abilities are assigned as follows. A gamble is constructed that includes the alternative
requiring desirability reassignment. The probability of this gamble is set in such a way
that the agent in question is indifferent between the gamble and one of those alterna-
tives requiring no reassignment. Then, one solves for the desirability of the reassigned
alternative as a function of the gamble’s probability. Finally, the posterior desirability
function is co-scaled with the prior function by normalising it to the same point of
origin.

For example, solution i is obtained by reassigning a lower desirability to A than to
C , such that C is now located between B and A. Therefore, the agent will be indifferent
between C , and gamble (A, p; B, 1 − p) between A and B with some probability p.

10 Here and in Table 5 I disregard exogenous information and assume # to be either empty or containing
all elements of !.
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Table 3 Three possible
solutions and their distances
from the prior ordering

i ii iii

#-distance 4 4 6

SA-distance 1 1 2

SD-distance 2
3

2
3

2
3

In other words, in the posterior ordering,

v∗(C) = v∗(A, p; B, 1 − p) = p × v∗(A) + (1 − p) × v∗(B) (6)

Because the positions of C and B remain the same, v∗(C) = v(C) and v∗(B) =
v(B). Substituting these into (6) yields

v∗(A) = 2 − 1
p

(7)

In order to keep things simple I assume desirability equidistance between all alter-
natives. Cases 1 to 3 all start with equidistant prior orderings. In order to maintain this
for posterior orderings I assume that the probability p of gamble (A, p; B, 1− p) is 1

2 .
From (7) it then follows that v∗(A) = 0.

In the final step, this posterior desirability function needs to be co-scaled with
the prior function. In order to do that I calculate the desirability of the tautology

T ≡ A ∨ B ∨ C . Assuming equiprobability of all options, v(T ) =
∑n

i Xi
n for all

Xi from the partition ! = {Xi }. Then for the prior function, v(T ) = 2, and for
solution i, v∗

i (T ) = 1. I therefore normalise v∗
i (·) by adding a constant of c = 1 to

the function. Hence the newly assigned posterior desirability function v∗
i (·) assigns

v∗
i (C) = 3, v∗

i (B) = 2 and v∗
i (A) = 1. Comparing v(·) and v∗

i (·) through SD yields
the numbers in the last row of Table 3.

Two observations arise from Table 3. First, SA-similarity and #-similarity make
the same distinctions: they both identify i and ii as more conservative than iii. This is
because with only three alternatives in the partition, #’s focus on pair-wise compari-
sons and SA’s focus on reassignments are equivalent. This is not the case with more
than three alternatives, as I show in the next case.

Secondly, SA and #-similarity on the one hand, and SD-similarity on the other,
diverge. SD-similarity assigns the same distance to all three solutions, in contrast to
the intuition that iii is a stronger revision of the prior ordering than either i or ii.

Let me go back to the illustrative example. If one preferred Afghan to Banglade-
shi and Bangladeshi to Chinese cuisine, and then came to prefer Chinese to Afghan,
one could accommodate this new preference in the three ways described. Why would
one choose iii and give up all of one’s prior preferences? In the absence of defeaters,
such a choice violates PPC. It would create more computation and realisation costs,
destroy more preference capital, and obstruct the functions of preference more than
necessary. The AGM model satisfies this intuition. The Bayesian model does not, and
when expanded by similarity metrics, only the SA model gets it right.
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Of course, there may be defeaters present. Suppose, for instance, that prospects
A and B are very similar (both restaurants have a Pakistani chef, say), whereas C is
different from both. Then coming to prefer C over A could be grounds for changing
ones preference between B and C as well. In this case, the solution Hansson rejected
is in fact the one that best respects conceptual coherence.

The answer is that in this case the similarity of A and B are taken to be a reason for
changing ones preference between B and C . Such a reason constitutes a defeater of
B , C . Hence PPC does not apply, and the models must not exclude iii on the basis
of similarity considerations.

Admittedly, the AGM model does not easily accommodate such forms of defeat-
ers. It can introduce supplementary information through adjusting #, but this does not
work for conditional restrictions such as ‘if A , B is changed, then B , C must also
be changed’. Thus there is room for improvement in the AGM model as well. However,
the main lesson of this case remains: in the absence of defeaters, AGM and the SA-
expanded Bayesian model satisfy PPC, whereas the standard and the SD-expanded
Bayesian model do not.

Case 2 Let there be only four mutually exclusive alternatives, {A, B, C, D}. The order
of these propositions is shown in Table 4.

The Bayesian model represents this ordering with the desirability function v(X) as
shown in the right-hand column of Table 4. This ordering is represented in Hansson’s
model by the preference model

R = {{〈A, B〉, 〈A, C〉, 〈A, D〉, 〈B, C〉, 〈B, D〉, 〈C, D〉}}

Now the agent comes to prefer C over A. How do the two modelling approaches
recommend revising the prior ordering? Given that the preference C , A must be
validated by the posterior ordering, twelve solutions are possible (see Table 5).

I will point out the most notable aspects of this table by comparing the results of
the different distance measures in pairs. First, the #- and SA-distances—although
agreeing on the most distant solution (xii) and on some of the most similar solutions,
(i and iii)—diverge on xi: SA identifies it as a most similar solution, whereas # does
not. Why is that?

SA-distance counts the number of alternative positions that have to be altered against
the whole ordering. This is a technically simple way to describe the revision, but it
is intuitively difficult to see which changes actually occur in such a positional shift.
#-distance, in contrast, counts the number of binary comparisons that are changed.

Table 4 An ordering of four alternatives
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Table 5 Twelve possible solutions and their distances to the prior ordering

i ii iii iv v vi vii viii ix x xi xii

C C B D B D C C C C B D

A A C C D B B B D D C C

B D A A C C A D A B D B

D B D B A A D A B A A A

#-distance 4 6 4 10 8 10 6 8 8 10 6 12

SA-distance 1 2 1 2 2 2 2 2 2 2 1 3

SD-distance 2
5

3
5

2
5

4
5

3
5

3
5

2
5

3
5

4
5

4
5

3
5

4
5

Only A’s position is changed in solution xi, which is why SA identifies it as maximally
similar. In fact, though, three pair-wise preference comparisons are changed through
this positional shift, namely A , B, A , C , and A , D. This is why #-similarity
does not identify xi as a maximally similar solution.

Secondly, the SA- and SD-distances, although in accord with regard to some of the
most similar solutions (i and iii), and some of the most distant (xii), are not with regards
to solutions vii and xi: SA identifies xi as the most similar but SD does not, whereas
SD identifies vii as the most similar but SA does not.11 I have already explained
the SA-result for xi. SD picks up on the large distance between the prior and pos-
terior desirability of A, and hence seems the better indicator here. Nevertheless, vii
is an interesting case that exposes the irreconcilability of similarity intuition focus-
ing on pair-wise comparisons, desirability reassignments and desirability distances,
respectively. In vii, A and C swap places. This creates a sufficiently small desirability
difference for SD to group it with i and iii as the most similar. Yet for SA, this swap
involves reassigning desirabilities to two alternatives, and for #, it involves changing
three pair-wise comparisons.

Third, #-distance offers five levels of differentiation, whereas both SA and SD
only offer three. This follows directly from the fact that there are only four different
desirability levels, while there are six binary preference relations in each solution.
This mostly affects the middle-sections of SA and SD, which lump together what #

differentiates, but it also evident in additional identifications of the most similar and
most distant solutions, with regard to both.

Finally, # is in accord with both SA and SD on the most similar and most distant
solutions in the very same cases where SA and SD are in accord. It is therefore tempt-
ing to consider those solutions as correct that are identified by both SA and SD, or
that are identified by #.

I subscribe to this position. Whereas considering the relative position of an alter-
native vis-à-vis a whole set of options is often a convenient way of summarising
one’s preferences or making a preference-informed choice, pair-wise preference rep-
resentation is the more natural and intuitive way of making similarity comparisons

11 As in Case 1, I assume desirability equidistance and equiprobability of alternatives in order to simplify
the computation.
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between preference orderings. In particular, it is the number of changed binary pref-
erence judgements that is salient for considering the costs of preference revision, not
the relative position of an option in relation to everything else.

AGM’s #-similarity captures this intuition in a way that the Bayesian model
achieves only when the two proposed similarity metrics correct each other. As the
above two cases show, both of these similarity measures are suspect in themselves.
Under the assumption that conservatism is normatively relevant, and that the above
intuitions are correct, I therefore conclude that the AGM model contains more nor-
matively relevant information than the Bayesian model in these kinds of cases, and
hence performs its normative function better.

Case 3 So far, I have discussed only cases with complete orderings. However, the
explicit representation of preference incompleteness can provide relevant informa-
tion on how preferences should be revised. The AGM account is capable of handling
incomplete preference orderings. AGM belief states, for example, are explicitly not
required to contain every sentence or its negation (cf. Gärdenfors 1988). In a similar
fashion, it does not require that every alternative is part of an ordering.

Similarly, the Bayesian model can be expanded to represent incomplete prefer-
ences, by representing an agent’s state of mind as a set of functions 〈pi , vi 〉 (Bradley
2009c). Each of these function pairs can be thought of as a permissible sharpening of
an agent’s actual beliefs and desires. Bradley refers to an equivalence class of such
a sharpening as an avatar of an agent. However, this framework cannot represent
the special case of acyclical, non-transitive preferences discussed here. According to
Bradley (2009c, p. 242), for all avatars i of an agent:

X # Y ⇔ vi (X) ≥ vi (Y ) (8)

However, Y # Z implies vi (Y ) ≥ vi (Z) for all i , and from that and (7) it follows that
vi (X) ≥ vi (Z), from which it follows that X # Z . Consequently, Bradley’s expanded
model cannot represent preference incompleteness where this implies intransitivity
(but not cyclicity). I will now discuss a case in which the representation of incomplete
preference makes a difference for the modelling of minimal revision.

Let there be only three mutually exclusive alternatives {A, B, C}. Now there are
two agents. Agent 1 has explicit preferences between A and B and between B and C ,
but not between A and C . Agent 2 has the same explicit preferences as agent 1, and
also holds an explicit preference between A and C .12

Thus, their preference orderings are represented differently in Hansson’s AGM
model. The Bayesian model, for the reasons discussed above, cannot distinguish
between these two cases. The two orderings give rise to the same desirability function
(Table 6).

12 Representing R1 and R2 differently requires giving up the claim that R is transitive. As discussed
in Sect. 1, Hansson’s definition (1) implies that if R1 = {{〈A, B〉, 〈B, C〉}}, then A , C &∈ [R], and
according to his definition (2) it follows that ¬(A , C) ∈ [R]. Yet if transitivity is part of T, A ,
C ∈ CnT {〈A, B〉, 〈B, C〉}, hence CnT = ⊥. If T includes acyclicity but not transitivity, however, then
¬(C # A) ∈ CnT {〈A, B〉, 〈B, C〉}, but not A , C ∈ CnT {〈A, B〉, 〈B, C〉}, and hence the above incon-
sistency is avoided.
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Table 6 Two preference bases

Now both agents revise their preference ordering by C , B. This is trivial for
both the AGM and the Bayesian model. From the AGM perspective there is a unique
most similar preference model that contains 〈C, B〉 for both agents, whereas from the
Bayesian perspective, either the desirability of C is raised or the desirability of B is
reduced, neither of which affects the relation of B and C to A (Table 7).

However, now both agents revise their preference orderings by B , A. From the
AGM perspective this is trivial only for agent 1: for her, there is a unique preference
model that includes 〈B, A〉 and is most similar to her prior preference model, namely
R∗∗

1 = {〈B, A〉, 〈C, B〉}.
For agent 2, however, the same problems with transitivity as in Case 1 arise. From

the AGM perspective, there are two consistent preference models that include 〈B, A〉
and are most similar to her prior preference model:

R∗∗
2 = {〈B, A〉, 〈B, C〉, 〈A, C〉}

R∗∗∗
2 = {〈B, A〉, 〈C, B〉 〈C, A〉}

From the Bayesian perspective, three possible and equally legitimate solutions exist
(Table 8).

Without the use of a similarity metric, even under incomplete preferences, the
Bayesian framework does not give any further advice on how to choose a solution.
With regard to SA the Bayesian model arrives at the same conclusion as the AGM
model under complete preferences, whereas with regard to SD it consider all solutions
equally similar. Nevertheless, I believe that given the information about preference

Table 7 Two preference bases revised by C , B

Table 8 Three solutions for v∗(x)

123



Synthese

incompleteness, and in the absence of any defeaters, R∗∗
1 is the solution that satisfies

PPC best. There is no reason to change C , B rather than A , C , because the agent
does not hold A , C . Hence the accommodation of B , A does not give rise to
problems related to realising the elimination of A , C , its loss as reasoning capital,
or for its functioning in plans and identity.

Consequently, the AGM model with relaxed transitivity makes most use of norma-
tively relevant information about conservative preference revision, the AGM model
with transitivity ranks second (possibly joint by an SA-expanded Bayesian model),
and the standard Bayesian model makes the least use of such information of all three
approaches.

6 Conclusion

The menu of my favourite lunch spot contains 23 items. I have fairly extensive pref-
erences over these. One day I realise that I have changed preferences over two of the
options. The question arises how this affects my other preferences related to the menu,
given that I would like to remain consistent.

Bayesian models of preference revision do not answer this question. They rather
require the complete and consistent redistribution of desirabilities over all menu items.
As I have argued in this paper, this approach makes the Bayesian revision model unreal-
istic, negligent of important change mechanisms, negligent of important endogenous
information—and hence unnecessarily ambiguous—and possibly leads to incorrect
conclusions when one tries to expand the model.

The model is unrealistic because it commences modelling preference revision with
a desirability redistribution over a complete partition. In contrast, I hope to have shown
in the examples that preference change often starts with a change in a single binary
preference comparison. Whereas the AGM approach can model such an initial impulse
to preference revision, the Bayesian model cannot.

The Bayesian approach neglects important change mechanisms, exactly because it
starts with a desirability redistribution over a complete partition. This begs the ques-
tion of how a single preference reversal affects other preferences over the partition.
Because the specification of a desirability function over the partition implies the con-
sistency of the underlying preference ordering, the Bayesian model ‘exogenises’ an
important part of the question: the effect of the single preference reversal on the order-
ing of the partition must be answered before the model is used. In contrast, the AGM
model explicitly models the selection of the posterior ordering that accommodates the
preference reversal.

The standard Bayesian model ignores important endogenous information that would
help in modelling the effect of a single preference reversal on the ordering of the par-
tition. As I have argued, conservatism (in the form of PPC) is a normatively relevant
principle for preference revision, and is implemented through similarity comparisons
between prior and posterior preference orderings. The standard Bayesian model does
not offer such a similarity comparison, and hence ignores information that is norma-
tively relevant for conservatism. This does not exclude the possibility that such simi-
larity measures can be developed, but defenders of Bayesianism have not proposed any
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such measure so far. Furthermore, I have argued (Case 3) that information about incom-
plete preferences—in particular acyclical but intransitive preferences—is normatively
relevant for preference revision. Although expanded versions of the Bayesian model
are capable of representing incomplete preferences, they are not able to represent acyc-
lical, intransitive preferences. Thus, the Bayesian representational framework makes
only limited use of information that is relevant for preference revision, and therefore
gives unnecessarily ambiguous advice.

Finally, attempts to expand the Bayesian model with similarity metrics may possi-
bly lead to incorrect conclusions. The Bayesian approach models preference revision
through changing desirability functions. Possible similarity metrics are therefore likely
to be defined on these functions. This puts the focus of similarity comparisons on the
number of desirability reassignments, or on desirability differences, as the SA and
SD examples show. The AGM model, in contrast, focuses on pair-wise comparisons.
As I have argued, similarity comparisons based on these two perspectives sometimes
yield different results. I also point out that the arguments for conservatism favour the
pair-wise perspective: as far as the costs of preference revision are concerned, the
number of changed binary preference judgements is salient. Thus, correct application
of the conservatism principle requires information that is more readily available from
the representational framework of the AGM model than from the representational
framework of the Bayesian model.

My comparison of the AGM and the Bayesian models has highlighted these con-
cerns about the latter, but it should not hide the shortcomings of the former. Obvious
concerns include the difficulty in defining a proper representation of PPC defeaters, as
mentioned at the end of Case 1. Another criticism is the difficulty of efficiently deal-
ing with instrumental influences on preference changes in AGM. Finally, the Bayesian
model contains a lot of normatively relevant information about degrees of desirability
and belief, and about the connection between the two, which the AGM model does
not.

The goal in this paper thus was not so much to promote the AGM over the Bayesian
approach, but rather to open up perspectives on possible improvements to Bayesian
models. One such possibility is to model the effect of a single preference reversal on
the ordering of the partition, and another is to develop a similarity metric for desirabil-
ity functions that satisfies PPC. In both these perspectives, Bayesians could do worse
than study the AGM approach in more detail.
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