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as Policy Decision Tools: 
The Case of Smallpox 
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Till Grüne-Yanoff1

Abstract
Agent-based simulation (ABS) studies have recently been employed to support policy 
decisions. This article addresses the particular potentials and problems that ABS faces 
in this usage. First, the author warns against taking “familiarity” with specific ABS as 
a criterion for having confidence in the model’s policy recommendations. Second, he 
shows that specific epistemic issues—in particular the high number of detailed simulated 
systems—require additional reflection on which decision rules to choose for policy deci-
sions based on ABS. Third, the author points out directions in which the construction 
and uses of ABS in policy decision could be improved. Each of these issues is illustrated 
by simulation studies undertaken to investigate smallpox vaccination policies.

Keywords
agent-based simulations, decision making, epidemics, exploratory modeling, methodology, 
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As part of the broader trend toward evidence-based policy making, scientists have 
begun designing agent-based simulation (ABS) studies with the explicit goal of sup-
porting policy decision making. ABS has recently been used to develop vaccination 
policies, crowd control measures, evacuation plans, market designs, industrial and fiscal 
policies, and many more. This contrasts with the common practice of using highly 
stylized, analytically tractable models, and introduces new epistemic problems, which 
I discuss in this article.
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Unlike standard models, ABS simulation studies often incorporate vast amounts of 
detail, allow modeling and computing levels of complexity unreachable for unaided 
human capacities, and present their results in easily comprehensible and convincing 
ways. Furthermore, and in contrast to other simulation studies, ABS studies generate 
the social dynamics “from the bottom up” (Epstein, 1999). That is, the social dynamics 
are not formulated as an aggregate in the model itself (for example as a differential 
equation) but, rather, arise from the modeled interactions of microelements (i.e., agents) 
in the simulation.

The wealth of detail in these models and their “bottom-up” approach are often taken 
as features that make agent-based models particularly suited for policy decision support. 
For example, it is often claimed that

decision makers might be more willing to trust findings based on rather detailed 
simulation models where they see a lot of economic structure they are familiar 
with than in general insights obtained in rather abstract mathematical models. 
(Dawid & Fagiolo, 2008, p. 354)

However, these very features are also the source of specific epistemic problems, creating 
an illusory familiarity. In particular, the greater detail and higher complexity of ABS 
increase the numbers of assumptions and parameters that need to be specified. This gives 
many more degrees of freedom to the ABS modeler and makes it difficult to restrict the 
ranges of model parameters based on empirical data. Consequently, the result of such 
simulation studies is likely not a unique model but an ensemble of models. This poses 
a problem for assessing the external validity of the models, which is already aggravated 
by their increased specificity. Furthermore, it requires new methods for making policy 
decisions based on such ensembles.

This article discusses the use of ABS for policy decision making at the hand of five 
simulation studies of smallpox epidemics. I focus on the smallpox case for the follow-
ing reasons. First, it offers clear and well-understood decision alternatives. Second, 
the policy objectives are unambiguous: What counts is saving lives at reasonable costs. 
Third, a number of studies with similar focus, but differing models, have recently been 
published. Their similarities and differences illustrate well the specific issues with ABS. 
Last, the studies are somewhat extreme in that empirical data on their subject is very 
scarce, thus allowing us to identify the issues of external validity particularly clearly.

The discussion of these case studies is supposed to serve three purposes.

1. I warn against taking “familiarity” with specific ABS as a criterion for having 
confidence in the model’s policy recommendations.

2. I show that specific epistemic issues—in particular the high number of detailed 
simulated systems—require additional reflection on which decision rules to 
choose for policy decisions based on ABS.

3. I point out directions in which I believe the construction and uses of ABS in 
policy decision could be improved.
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The article is structured as follows: The second section introduces the specific policy 
issues regarding smallpox epidemics and distinguishes two modeling styles that may 
support policy decision making in this context. The third section surveys five agent-based 
smallpox models. The fourth section discusses how rational policy decisions can be made 
on the basis of these simulations. In particular, it is argued that standard expected-utility 
rules cannot be applied and that nonprobabilistic rules such as maximin or satisficing are 
sensitive to the scope of possible models. In the fifth section, I therefore suggest that the 
construction of ABS be theory guided to increase the systematicity of decision making 
based on them. The conclusion completes the article.

Modeling Epidemics
Imagine that smallpox viruses were intentionally released in an industrialized country. 
What should the government do to mitigate the effects of such an attack? With the recent 
surge in security concerns, this question has gained some urgency. The answer is not 
straightforward. The only known medication against smallpox is vaccination with cowpox 
virus. However, a significant minority of individuals experience severe (and often fatal) 
adverse affects to the vaccine, such that a national preventive mass vaccination (MV) 
may cause more deaths than an isolated smallpox epidemic (Kemper, Davis, & Freed, 
2002). To make a rational policy decision, more information is needed about the potential 
development of an epidemic and the effects of different vaccination policies.

Unfortunately, the available empirical data are limited. Smallpox outbreaks have 
not occurred in the Western world since 1972; the virus has been eradicated globally 
since 1977. Most of the World Health Organization’s policies, which led to its eradica-
tion, were employed in societies very different from those of the industrialized world. 
Differences in mobility, health infrastructure, and medical education made these cases 
difficult to compare with potential outbreaks in industrialized countries. As a remedy 
to this lack of relevant empirical data, scientists have proposed to study the effects of 
different vaccine policies on computer-simulated epidemics. Recent simulation attempts 
have focused on ABS studies to simulate smallpox epidemics and assess policy options 
(Brouwers, Mäkilä, & Camitz, 2006; Burke et al., 2006; Eidelson & Lustick, 2004; 
Epstein, Cummings, Chakravarthy, Singa, & Burke, 2004; Eubank et al., 2004; Halloran 
et al., 2002). These models explicitly track the progression of the disease through each 
individual and track the contacts of each individual with others in the relevant social 
networks and geographical areas.

The smallpox policy interventions most prominently discussed are MV and trace 
vaccination (TV). An MV involves vaccinating a large part of the population, either 
before any cases of smallpox are confirmed (preventive MV) or after the first confirmed 
case (postrelease MV). In TV, also called ring vaccination or targeted vaccination, every 
contact of a confirmed smallpox case is traced and vaccinated.1

These policy options were first discussed on the basis of standard, non-agent-based 
epidemiological simulations. An often-cited example is Kaplan et al.’s (2002), which 
simulates an attack of 1,000 initial smallpox cases on a population of 10 million. The 
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population is assumed to mix homogeneously—that is, to consist of identical individu-
als, who have an equal chance of interacting with any other population member. R0, 
the rate of infections that a single infectious agent generates among susceptibles, is 
assumed to be uniform throughout the simulation. R0 ! 3 is derived from historical 
data. An infected agent undergoes four stages. Only in the first is he or she vaccine 
sensitive; only in the third and fourth is he or she infectious; in the fourth, however, he 
or she shows symptoms (scabs) and is automatically isolated. Additionally, administra-
tion of vaccination is modeled under logistical constraints: MV of the whole population 
is achieved in 10 days. Tracking and vaccinating an infected person in TV, however, 
takes four times as many nurse-hours as simple vaccination.

Kaplan et al. (2002) thus offer an example of a classical equation-based simulation 
study. By assuming homogeneous mixing, the infection rate R0 becomes a parameter 
characterizing the population. Policy effects then are modeled directly on this population 
parameter, and the main question is whether vaccine administration can outpace the 
random spread in the population. Unsurprisingly, maybe, the results heavily favor MV 
over TV. Both initiated on Day 5 after the initial attack, MV leads to 560 deaths, while 
TV leads to 110,000 deaths. Sensitivity analysis shows that TV is more sensitive than 
MV to the size of initial attack and changes in R0, further supporting the strong results 
in favor of MV. The time to identify and then vaccinate the exposed is simply too long 
for the specified R0 and for the assumed period in which the exposed are still sensitive 
to the vaccine.

Models like this, which assume homogenous population mixing, have been criticized 
for neglecting important causal mechanisms of an epidemic. Smallpox is spread almost 
exclusively by extended face-to-face contact. Therefore, it is not just the number of 
infected individuals in a population that matter but the patterns of exposure. These 
patterns are constituted by the social interactions of infectious and susceptible individu-
als. Explicitly modeling social contacts can have crucial impact on the result of a model:

Changing the pattern of connections between exposed and unexposed individuals 
can often affect population infection levels more than changing the exposure status 
of individuals in that population. (Koopman & Lynch, 1999, p. 1170)

The so-called small-world effects illustrate the importance of such patterns. To model 
them, social connections are represented as a network on a population. Assuming that 
each population member has the same number, 2K, of contacts, these contacts can be 
arranged in different ways. A maximally ordered network consists of a ring on which 
each agent is connected to her immediate K neighbors to her left and right. Less ordered 
networks are achieved by “rewiring” each link of every agent (in clockwise order) with 
probability p to any other agent in the system. Thus a maximally ordered network is 
characterized by p ! 0, and a completely disordered network (similar to the case of 
homogeneous mixing) is characterized by p ! 1. Kuperman and Abramson (2001) simu-
lated the transmission of a (nonfatal) epidemic with a number of stages in such networks. 
They found that the evolution of epidemics undergoes a phase transition at some degree 
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of disorder: while networks with small p produce a low-amplitude evolution, networks 
with large p produce wide and very regular oscillations. In such abstract investigations, 
the kind of social connection occurring in a population matters greatly.

Results from Kuperman and Abramson (2001) and others make an important contribu-
tion to the vaccination policy discussion. They show that results such as Kaplan et al.’s 
(2002) must be taken with caution, because there may be causal factors at work that 
disturb the stability assumed in those models. Specifically, while the Kaplan et al. article 
claims that MV is advantageous over TV in all relevant epidemic contexts, the Kuperman 
and Abramson (2001) article cautions that in networks with a high degree of disorder, the 
occurring oscillations in the evolution of the epidemic may disturb the advantageousness 
of MV in some way. Thus the Kuperman and Abramson article can be used as evidence 
against the conclusiveness of models such as Kaplan et al.’s (2002; for further analysis 
of such models, see Grüne-Yanoff, 2009). Yet they do not themselves offer conclusions 
immediately useful for making policy decisions. Instead, by identifying causal tenden-
cies that potentially contravene the results of those models, they make obvious the need 
for further investigation before a well-founded policy decision can be made.

Such further investigations can take various directions. Which direction is taken 
depends on the modeling style that is preferred by the modeler and the discipline in 
which he or she works. For example, one may investigate the dynamics of historical 
smallpox epidemics or the dynamics of other epidemics that are in relevant ways similar 
to smallpox. Such investigations may provide evidence whether the small-world effect 
is indeed relevant for vaccination policies. This modeling style is often found in eco-
nomics, where a possible causal factor is isolated in a theoretical model (see Cartwright, 
1989, Mäki, 2009) and the relevance of this possible factor for a particular context tested 
in an empirical model (by regression analysis on a particular data set). Should the inves-
tigation yield evidence that the small-world effect is not relevant in these contexts, it 
may give policy makers reason to make their decision based on the Kaplan model. Should 
it yield evidence for its relevance, however, it may also give further clues what the 
conditions are under which it becomes efficacious. These results can then also be included 
in the decision making process.

However, as I mentioned above, the empirical data on smallpox or similar epidemics 
is very limited.2 Testing the efficaciousness of an isolated factor in a particular context, 
without access to relevant empirical data, is difficult. This may have been one reason 
why all the articles discussed here chose a different modeling style. Instead of inves-
tigating the relevance of the possible causes investigated in the theoretical models, they 
fill the theoretical model with more detail and investigate the result of these enriched 
models. Figuratively speaking, they take a model of the kind Kuperman and Abramson 
(2001) presented and concretize the abstract network into something that recognizably 
resembles a social structure. These attempts vary in detail, as I will show in the next 
section. The general purpose of this modeling style is to increase the amount of detail 
in tendency models in order to learn how the tendency plays out in the specific circum-
stances. Computer simulations here are of help, as they allow a massive inclusion of 
detail in the model.
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This raises the question how such a concretization aids policy decision making. ABS 
offer the possibility to study the small-worlds effect in detail-rich settings, with a large 
degree of “familiar” structure replicated in the simulation. When a smallpox epidemic is 
simulated in these settings, and different vaccination policies tested, the simulations show 
how many people die, how high the costs are, how fast the epidemic disappears (in contrast 
to, e.g., Kaplan et al., 2002, who replace much structure and detail with stylized assump-
tions of homogeneous mixing). This detail and attention to “familiar” structure may help 
convince a policy maker of the significance of the model’s recommendations.

Yet the possibility of detail richness and “familiar” structure also has a reverse side. 
The more detail is included in the model, the more effort the modelers must make to 
justify the external validity of the model. This is an issue for all models, but because 
of their extra detail and structure, it is a particularly pressing issue for ABS. Principally, 
three questions arise:

1. In which ways does the ABS model relate to the real-world situation that the 
policy maker is interested in? Unlike with highly stylized models, the relation 
between ABS and world cannot be an abstraction relation. The ABS model 
presents a concrete simulated world; hence the relation is between two 
particulars.

2. Where differences between model and world appear, how does the policy maker 
justify decisions based on a model? Because of the massive detail in the ABS, 
it is implausible that it is an isolation relation, as sometimes argued for stylized 
models. Isolation simplifies the context and neutralizes disturbing factors 
(Mäki, 2005), while an ABS tries to replicate the complexity of the environment 
and include many different factors.

3. Where relations between model and world are unclear, how does the policy 
maker justify decisions based on a model? ABS is analytically not tractable 
and hence lacks the clarity needed for conceptual exploration, a common func-
tion for stylized models. Instead, as I will discuss in the fourth and fifth sections, 
ABS studies are sometimes used to map the space of possible futures.

Several smallpox ABS models have been developed. They build the epidemic macro 
phenomenon “from the bottom up”—by designing agents with heterogeneous attributes 
and heterogeneous behavioral rules interacting in discrete time in an explicitly modeled 
landscape. Five such models are surveyed in the next section.

Five Smallpox Models
Model 1

Halloran et al. (2002) simulate an attack of 10 infected agents on a stochastically gener-
ated community of 2000.3 The community consists of four neighborhoods, each containing 
large day care centers and small playgroups. Two neighborhoods share an elementary 
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school, and all four share a middle and a high school. Households in each neighborhood 
contain up to seven people. Agents are characterized by age, family ID, disease status, 
and vaccination status. Household size and age distributions are based on the U.S. 2000 
Census. During the course of a day, agents visit different spaces according to age and 
family ID and then return home. If sick, agents stay home with a probability conditional 
on their age. Within the visited spaces, they meet others with a fixed probability. The 
model is thus a variant of the homogeneous mixing hypothesis, only separated into 
smaller subgroups.

Transmission rates from infectious to susceptible agents are dependent on place of 
contact and age of the agents involved. Halloran et al. (2002) first derive a general 
household transmission rate from African/Asian data of the 1960s and 1970s. On that 
basis, they then derive relative magnitudes for adult-adult, adult-child, and similar 
transmissions from influenza data. Transmission rates for other places of contact were 
derived from influenza infection rates.

Because of its stochastic nature, the results from the simulated intervention can only 
be compared with respect to their distributions. Two hundred simulations were performed 
for each intervention. At 80% MV after the first confirmed case, on average 0.9 out 
of 1,000 individuals died, while at 80% TV, 10.9 out of 1,000 died. Similar differences 
were found if vaccinations were administered after the 15th (9.4 vs. 19.6 deaths) and 
the 25th case (13.7 vs. 28.2 deaths). However, while MV prevented 0.5 cases per dose 
given, TV prevented 2.01 (both administered after the first case).

Model 2
Burke et al. (2006), based on Epstein et al. (2004), simulate a single initial infected 
person attack on a town network of either 6,000 or 50,000 people. Town networks either 
consist of one town (uniform), a ring of six towns, or a “hub” with four “spokes.” Each 
town consists of households up to seven persons, one workplace, and one school. All 
towns share a hospital. Each space is represented as a grid, so that each cell in the grid 
has eight neighbors (the so-called Moore neighborhood). Agents are distinguished by 
type (child, health care worker [5% of adult population], commuter [10%], and non-
commuter [90%]), by family ID, and by infectious status. Each “day,” agents visit 
spaces according to their type and then return home. On the first “day” of the simula-
tion, the position in schools and workplaces is randomly assigned, but after that agents 
remember their positions. During a “day,” agents interact with all of their immediate 
neighbors: 10 times at home, 7 times at work, and 15 times in hospital. After each 
interaction, they will move positions to the first free cell in their neighborhood. Homo-
geneous mixing is thus completely eschewed; instead, agents interact in a number of 
dynamic neighborhoods.

Transmission occurs with a certain rate at each of the agents’ interactions. It can both 
infect contacter and contactee. Transmission rates depend on the stage the infectious 
person is in, the type of disease he or she has, and whether the susceptible agent has 
partial immunity.
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Burke et al. (2006) assess only TV as a first policy intervention and MVs of varying 
degrees only as “add-on” measures. Results for all three town networks showed sub-
stantial concordance. Contrasted with a “no response” scenario, TV in combination with 
hospital isolation was sufficient to limit the epidemic to a mean of fewer than 48 cases 
and a mean duration of less than 77 days. Postrelease MV of either 40% or 80% of the 
total population added some additional protection, reducing the mean of infected people 
to 33 and shortening the mean duration to less than 60 days.

Model 3
Eidelson and Lustick (2004) simulate a single infected agent attack on a population of 
1,764. Their model consists of a 42 " 42-cell lattice, representing social relationships, not 
geographic ones. Agents occupy a fixed position on the lattice. An agent is characterized 
by its coordinate address, its identity repertoire (a finite set of affiliations) and its currently 
activated identity. At each time step, identities change in response to neighbors’ identities. 
If sufficient neighbors display an identity that is in the agent’s repertoire, but is not her 
current identity, the agent will switch to this identity. If it is not in his or her repertoire 
but above a certain threshold, he or she will adopt the identity into the repertoire. If it is 
above a higher threshold, he or she will switch to this identity at the same time.

Transmissions occur between direct neighbors. Transmission probabilities depend 
not only on the stage an infected agent is in but particularly on whether a susceptible 
agent shares identities with an infected agent. Once infected, the agent goes through 
the various disease stages, becoming increasingly infectious to others, but also becom-
ing increasingly likely to be detected and removed from the population.

Simulation results show that TV rivaled MV if a very substantial proportion of small-
pox cases could be detected and isolated almost immediately after infection or if residual 
herd immunity in the population was relatively high. At 80% MV, 15 days after the first 
case, approximately 3.5% of the population is infected, while at 80% TV, approximately 
6% is infected.

Model 4
Eubank et al. (2004) simulate an attack of 1,000 infected agents on the population of 
Portland, Oregon, of 1.5 million. Portland is represented by approximately 181,000 
locations, each associated with a specific activity, such as work, shopping, school, and 
maximal occupancies. Each agent is characterized by a list of the entrance and exit times 
into and from a location for all locations that person visited during the day. This huge 
database was developed by the traffic simulation tool TRANSIMS, which in turn is 
based on U.S. census data.

Smallpox is modeled by a single parameter, disease “load” (analogous to a viral titer). 
Agents have individual thresholds, above which their load leads to infection (and load 
growth at individual growth rates), symptoms, infectiousness, and death. Every hour, 
infectious agents shed a fixed fraction of their load to the local environment. Locations 
thus get contaminated with load, which is distributed equally among those present. 
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Shedding and absorption fractions differ individually. Infected individuals withdraw to 
their homes 24 hours after becoming infectious.

Eubank et al. (2004) model is deterministic. MV with a 4-day delay resulted in 
0.39 deaths per initially infected person; TV, with the same delay, in 0.54 deaths. 
Varying delays, they found that delay in response is the most important factor in limit-
ing deaths, yielding similar results for TV and MV.

Model 5
Brouwers et al. (2006) simulate an attack of 50 infected individuals on the population 
of Stockholm plus 1/10th of the Swedish population. The model is based on a 100 " 
100-meter grid of Sweden, each cell of which contains households, kindergartens, schools, 
offices, and hospitals according to the 1998 census. Agents are characterized by their 
age, sex, family ID, workplace, immunity, disease stage, and hospital affiliation.

Transmission from infected to susceptible agents in a place of contact depends on a 
predefined transmission probability for that type of place, the stage in which the infec-
tious person is in, and the number of infected present at this place. For large places, the 
number of maximal contacts is restricted.

Brouwers et al. (2006) simulate four policy interventions: Hospital staff vaccination, 
TV, MV, and a combination of TV and hospital staff vaccination. While TV yields a 
considerably higher number of infections than MV (average 34.77 vs. 17.43), the authors 
argue that this difference is insignificant in the light of the average of needed vaccina-
tions (125 vs. 6,897,378) and that therefore TV is preferable to MV.

All the surveyed articles predict results for MV and TV that differ much less drasti-
cally than the results from Kaplan et al. (2002). How much the two policies differ in 
terms of average death rates—and hence how cost-intensive the prevention of additional 
deaths is—depends on the details of the respective models.

The studies obviously differ in the details of their model. More significantly, they 
also differ in the way these details are determined and (implicitly) justified. Studies 1 
(Halloran et al., 2002) and 2 (Burke et al., 2006) rely on intuitive notions of “households,” 
“neighborhoods,” “towns,” and so on, to furnish the models. Study 3 (Eidelson & Lustick, 
2004) appeals to a theory of agent identity formation that regulates social interaction in 
the model. This theory is empirically not well confirmed; as I will discus in the fifth, it 
systematizes the model construction but does not justify it. Studies 4 (Eubank et al., 
2004) and 5 (Brouwers et al., 2006) rely on large amounts of empirical data to determine 
many details of the model. Yet even these studies have to make many assumptions about 
model details that are not supported by empirical evidence and thus revert to appeals to 
intuition. The external validity of each model is thus a serious issue. How this issue 
affects the models’ use in policy decision making I discuss in the next section.

Making Decisions With ABS
The surveyed articles give more or less unconditional policy advice. To quote just two 
examples, “contact tracing and vaccination of household, workplace and school contacts, 
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along with effective isolation of diagnosed cases, can control epidemics of smallpox” 
(Burke et al., 2006, p. 1148); and “outbreaks can be contained by a strategy of targeted 
vaccination combined with early detection without resorting to mass vaccination of a 
population” (Eubank et al., 2004, p. 180). These recommended measures evidently 
refer to interventions taken by real policy makers, not to manipulations of a model. Yet 
the recommendations are based only on the results that simulated interventions had in 
simulated worlds. So how can a (real) policy maker justify a policy choice on the basis 
of such simulation results?

The surveyed ABSs demonstrate—in minute detail—the effects of diverse policy 
measures on otherwise identical worlds. It thus presents policy interventions in the clas-
sical form of a decision problem (Luce & Raiffa, 1957, p. 275): a list of possible alterna-
tive policy actions, each associated with either a single effect or a list of possible alternative 
effects. The policy maker then just needs to rank these effects, find a way to weight 
effects if more than one effect is associated with a policy, and derive the ranking of 
policy actions from this ranking of effects.

In the simplest and most ideal possible scenario, the ABS successfully imitates the 
relevant causal processes of the world in all its details and thus can be treated as a sur-
rogate for the real system. One may be tempted to interpret Eubank et al. (2002) this 
way: The model they offer simulates the outbreak in the minutely represented city space 
of Portland, involving city inhabitants whose every move is determined by data derived 
from recent censuses. If the model successfully imitated the relevant processes, the 
simulation results could be interpreted as showing how the real world would change 
under the simulated policy interventions. Furthermore, because the model they present 
is deterministic, it associates only one effect (i.e., the description of one final world) 
with each policy intervention. The policy maker would then face a decision under cer-
tainty: Each policy action would lead to one effect; each effect would be ranked (e.g., 
according to number of deaths); and the ranking of effects would trivially imply a rank-
ing of policy interventions. Eubank’s et al. policy conclusions seem to be based on such 
a view: They recommend TV over MV based on the results that their ABS yields.

However, this interpretation turns out to be unwarranted. At closer inspection, it 
becomes clear that many model assumptions are unjustified. For example, the authors 
make uniform assumptions about the occupancy rate of locations within a city block that 
are, the authors admit, “nothing more than reasonable guesses” (Eubank et al., 2004). 
Location occupancy rates crucially influence the number of possible contacts (and hence 
may be relevant for the disease spread). Furthermore, the contact data on which the simu-
lation is based give a detailed account of social interaction only at one point in time. The 
model lacks any account how these social contacts may change under external shocks. 
The arrival of a threatening epidemic is, arguably, such a shock: It may well have important 
influence on how often people appear in public, go to work, or go to the hospital. Assum-
ing that social interactions remain stable under such conditions is questionable.

Concerns about the correctness of modeling assumptions in ABS differ in two ways 
from concerns about idealization assumption in stylized, analytically tractable models. 
First, such models make idealizing assumptions for the purpose of simplicity, understand-
ing, and computational tractability. That is, they make assumptions that may be false of 
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the target systems they are modeling, yet these assumptions facilitate the comprehension 
of what is modeled as well as the application of analytic solutions techniques. In contrast, 
ABSs are not in need of simplicity or tractability. The computer implementation implies 
that even very complicated models can be represented in comprehensible ways and that 
even very complex dependencies can be computed.4 Instead, ABSs face the problem that 
it is very difficult to determine whether all the detail necessary to run the simulations is 
justified or not. The need for detail thus raises the issue of uncertainty about the modeling 
assumptions, and this differs notably from the need for idealization in standard models.

Second, idealizing assumptions in standard models can often be justified. For example, 
it can be argued that the idealized parts of the model were never intended as representa-
tions of the world but instead were used to create a “neutral” environment in which the 
workings of some factor could be studied without impediment (see Mäki, 2005). Or, it 
could be argued that the idealizing assumptions do not affect the model result in relevant 
ways, in comparison with less simple and less tractable alternative assumptions. These 
justifications require that the processes though which the assumptions influence the 
model results are open to inspection and verification by the model user. Unfortunately, 
this is not the case with ABS, as these simulations are “epistemically opaque” (Humphreys, 
2004, p. 147). Even a modeler with a very good understanding of a particular ABS will 
typically not be able to say how a specific assumption (say, of a behavioral rule) will 
affect the simulation outcome. ABS, after all, was designed to deal with high degrees 
of computational complexity. Thus, while the complex dependencies are programmable 
in an ABS, the effect of adjusting a certain assumption can typically not be foreseen but 
must be found out through renewed simulation runs. This increased dependency on the 
model makes it harder to justify the assumptions underlying ABS.

The need for detailed specifications, combined with uncertainty about the correct assump-
tions and the epistemic opacity of the derivation process, force decision makers to use 
ABS in a different way than they use standard models. It is unlikely that ABS modelers 
will be able to successfully argue for a unique specification of every micro-level detail. 
Empirical data will only act as filters of possible models. Observed macro patterns will 
exclude those simulations that fail to generate these patterns; and knowledge about micro 
properties will exclude those simulations that diverge from these properties. However, 
as I argued above, there are no data about actual smallpox epidemics in industrialized 
societies; hence pattern matching largely fails as a filter for the simulations discussed here.

What is left is the possibility to specify as many micro properties as possible and 
vary those properties whose specification cannot be justified across different simula-
tions. Instead of using one basic model, and investigating the effects of varying policy 
interventions on it, the decision maker is forced to investigate these effects on a set or 
ensemble of simulation studies. Using such ensembles in decision making has been 
dubbed exploratory modelling.5

Modellers . . . make guesses at details and mechanisms . . . [perform] a compu-
tational experiment that reveals how the world would behave if the various guesses 
were correct . . . [and use] series of such computational experiments to explore 
implications of varying assumptions and hypotheses. (Bankes, 1993, p. 435)
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Policy makers may use such ensembles of models in different ways. In the simplest 
case, a probability distribution is specified over the set of models. If each model speci-
fication had a determined probability assigned, then the standard decision procedure 
under risk, expected utility maximization, could be applied. The policy maker could 
identify the outcomes of each vaccination policy, as obtained from different model 
specifications; he or she could then rank these outcomes with the help of a utility func-
tion (as a proxy, number of deaths may serve as such a numerical ranking). Finally, he 
or she could sum up the utilities of the outcomes of each policy, weighing them with 
the probability of the model in which they occur. This would yield a single expected 
utility ranking of policy, according to which the policy maker could justify his or her 
decisions.

However, for any of these models, specifying such a probability distribution would 
be difficult. The models’ probability cannot be identified directly. The simulated worlds 
are so detail rich and complicated that one cannot reasonably argue for a probability 
assignment simpliciter. Instead, such assignments must be derived from the models’ 
elements.6 Therefore, disregarding dependence effects, the models’ elements must have 
probabilities assigned, such that the probability of the whole can be derived from them. 
For many of the discussed models, some of the specific attribute values for each indi-
vidual and each interaction space can be drawn from an empirically supported distribu-
tion (e.g., census data). However, not all elements of the model thus receive a probability 
assignment. In particular, no such data are available for the agents’ behavioral rules. 
This is, first, because of a lack of data on “how people interact” on such a level of gen-
erality. Second, this is because the probability distributions over such behavioral rules 
are likely to be conditional on all sorts of things, such as environments, the frequency 
of others’ behavioral rules, and external shock. It would require an empirically well-
supported theory to justify the assignment of such conditional probabilities, and no such 
theory is currently available.

Without justified probability assignments, the method of explanatory modeling must 
explain how a decision can be reached on a nonweighted set of models. The lack of 
probabilistically weighted models makes simulations yield only a “landscape of plausible 
futures” (Bankes, Lempert, & Popper, 2001, p. 73). How can the policy maker base his 
or her decisions on such a set? Two different strategies have been discussed. The first 
focuses on worst-case scenarios, against which policies should be hedged. Such a deci-
sion procedure “develops an assortment of plausible worst cases [which] can be very 
useful for designing hedging strategies” (Bankes, 1993, p. 440). Each plausible model 
assigns an outcome to each vaccination policy. Instead of comparing the policies in all 
outcomes, the policy maker may “hedge” and only compare the policies with respect 
to their worst outcomes. The policy maker thus justifies his or her decision with refer-
ence to the maximin procedure: he or she chooses the policy that maximizes the minimal 
(worst) outcome.

An alternative approach would pay equal attention to all models and choose the policy 
that performs relatively well, compared with the alternatives, across the range of plausible 
futures. This robustness analysis of policies (Lempert, 2002) can be interpreted in two 
ways.7 If “performs relatively well” means that a certain policy P performs better than 
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other policies for each plausible future—that is, if the other strategies are dominated 
by P—such a decision procedure is a special case of the common expected utility frame-
work. However, it is highly unlikely that there will be only one nondominated policy 
when comparing policy outcomes in many possible futures (in the surveyed articles, 
the number lies between 35 and 200). Instead, “performs relatively well” must mean 
that the policy is satisficing. Such a decision procedure specifies minimal thresholds 
for simulated policy interventions. For example, a policy may be deemed acceptable if 
it yields (simulated) results above a certain threshold in at least two thirds of the cases. 
Thresholds must be argued for in terms of the specifics of the policy goals, and they can 
be refined in such a way that they are sufficiently selective.

Both maximin and satisficing are very sensitive to the number of models considered. 
The wider the scope, the more likely the inclusion of some outlandish terrible future, 
which will affect maximin choice. Similarly, the wider the scope, the more likely the 
inclusion of some outlier below the threshold, which will affect satisficing choice. Given 
the uncertain status of many model specifications, exploratory modeling is prone to such 
misspecifications.

Selecting the Model Ensemble
Because the scope of the model ensemble so crucially influences the decisions based on 
it, the question arises how this scope is determined. As I argued in the previous sections, 
all discussed models are seriously underdetermined by the empirical evidence. Conse-
quently, all surveyed studies must specify values of empirically undetermined parameters 
and behavioral rules. Yet by what strategies these values are set influences the scope of 
the model ensemble and hence the policy decision. In particular, these strategies (a) 
determine which models go into the model ensemble and (bi) determine which models 
are excluded from the model ensemble.

Most of the studies discussed here rely on intuition to specify the empirically unde-
termined parameters of their models. Eubank et al. (2004) offer “reasonable guesses,” 
and Burke et al. (2006) appeal to intuitive beliefs:

We include the level of social detail that we believe necessary to capture the 
transmission dynamics of smallpox. (p. 1148)

Yet such intuitions pose general problems for scientific practice, and particular problems 
for ABS. The general problem is that intuitions are difficult to account for and are dif-
ficult to share intersubjectively. That Eubank et al. (2004) think their guesses “reason-
able” and Burke et al. (2006) believe a certain level of detail to be relevant give only 
very limited support to these parameter determinations. One may claim that these are 
expert judgments; yet the reader is not presented with any evidence on which such 
judgments could be based and hence should remain skeptical. Furthermore, even if 
evidence was presented, the judgment itself is never accounted for. Because of the 
complicated nature of many modeling endeavors, such “intuitions” too easily become 
hidden receptacles for significant but dubious assumptions.
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This leads to the problems specific to ABS. First, intuitions tend to unduly restrict 
the scope of the model ensemble. Cognitive biases such as representative heuristics or 
confirmation biases show that people tend to confirm their preconceptions. Even experts 
are subject to such biases (see Baron, 2000). Scientists constructing simulations with 
particular results in mind (in the cases discussed here, the superiority of TV over MV) 
are likely to find those intuitions plausible that confirm their expected results. Such 
biases are of course operative in all model building. Yet the complicated and detail rich 
nature of ABS makes it easier for such biases to remain undetected. The fact that an 
ensemble of models is constructed makes this detection even more difficult.

Second, one should be less confident about modelers’ intuition concerning ABS than 
about simpler models. I have argued elsewhere (Grüne-Yanoff, 2009) that intuition is an 
important guide for constructing models of the traditional type. However, I also pointed out 
that intuition is formed at the specifics of the model world. One does not have independent 
intuitions about how people behave in abstracto but instead forms intuitions when confronted 
with the specifics of the world the model describes. This makes intuition a difficult basis 
for ABS. The large number of and the enormous details in the possible worlds simulated 
do not allow the kind of mental immersion that traditional modeling thrives on. ABSs, after 
all, are constructed to be processed by a computer and not by human minds. Judging ensem-
bles of simulated worlds may simply go beyond human intuitive capacities.

Thus, intuitions are difficult to account for, prevent intersubjective standards, and 
are subject to cognitive biases. For ABS in particular, they are likely to restrict the 
model ensemble unduly or misspecify it altogether. For these reasons, intuition seems 
a nonoptimal strategy to determine and manage model ensembles.

Instead, I suggest the alternative strategy of theory guidance. Theories are sets of 
general principles that are intended to account for certain phenomena. Because of their 
generality, theories also constrain what is believed to be possible. They exclude certain 
simulated worlds, because these worlds conflict with their principles; and they mandate 
the inclusion of other worlds into the set of possible models, as these models conform 
to the theoretical principles.

In comparison with a strategy guided by intuitions, the theory guided strategy has 
five advantages.

1. It makes explicit the assumptions that are often hidden behind the appeal to 
intuitions. These assumptions thus become accountable.

2. A theory allows judging such assumptions in an intersubjectively agreeable way. 
Even if empirical confirmation is lacking, a theory can show how an assumption 
is derived from other assumptions and what the most basic assumptions look like.

3. A cognitive bias is more easily detectable in theories that make the basis of 
certain assumptions explicit than in intuitive judgments. To avoid criticism 
of such bias, it is likely that theory-guided ensemble construction will increase 
the ensemble’s scope.

4. The explicit formulation of guiding theoretical principles allows for a more 
effective application of computational resources than an intuition-based strategy. 
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Intuitions mix structural and quantitative judgments, because human intuitions 
are biased toward concrete situations. In contrast, theoretical hypotheses can 
abstract from many concrete aspects of a situation. For example, they can 
determine only the abstract structure of all models in a model ensemble, leav-
ing the parameter values open. This would allow for modelers to “sweep the 
parameter space” (Epstein, 1999, p. 51)—that is, compute the result for all 
possible parameter sets.

5. Theory-guided model ensembles are much easier to adjust when new informa-
tion becomes available. The theoretical hypothesis that selected all members 
of the ensemble can be tested against the new information, and adjusted if 
needed; the adjustment of the ensemble in accordance with the hypothesis 
adjustment is then just a technicality. In contrast, adjusting an intuition-guided 
model ensemble in the light of new information is a much messier affair.

Of the cases studied, only Eidelson and Lustick (2004) derive the crucial behavioral 
assumptions in their model from a general theory. This theory—the agent-based identity 
repertoire model (Lustick, 2000)—is not well confirmed and therefore does not warrant 
the use of these assumptions. Nevertheless, exploratory modeling guided by agent-based 
identity repertoire is more accountable, intersubjectively accessible, less cognitively 
biased based, more compatible with computational methods, and more adjustable in the 
light of new information than modeling guided by intuitive judgment.

To promote theory guidance is an attempt to explicitly formulate a strategy for ABS 
modeling for policy decision purposes. Modelers should explicitly state (or develop) 
theoretical hypotheses first and then construct ABS in compliance with these hypotheses. 
Any maximin or satisficing decision taken on the basis of such a model ensemble will 
be much better understood than if the model ensemble is based on empirical data alone 
or based on intuitive judgments.

Conclusion
In discussing five cases of smallpox ABS studies, I argued that policy decision making 
faces particular and novel problems when based on ABS. In particular, the epistemic 
opaqueness of the simulation processes and the uncertainty about the simulations’ assump-
tions are issues that are more pressing for ABS than for traditional modeling styles. 
Consequently, in many cases—and in particular in the smallpox simulations discussed—
policy decisions cannot reasonably be based on expected utility calculations from a 
single simulation. Instead, alternative, nonprobabilistic decision rules have to be applied 
to ensembles of models. Yet as I show, the exploratory modeling approach that propagates 
such model ensembles lacks a systematic strategy how to construct these ensembles. As 
a first step in the direction of a more systematic strategy, I propose that model ensembles 
be constructed in compliance with a theoretical hypothesis. While the chosen theoretical 
principles are unlikely to justify the model construction, they make the scope and limita-
tions of the model ensemble explicit and hence systematize the construction process.
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Notes
1. The Centers for Disease Control and Prevention (2002) defines contacts as “Persons who 

had . . . close-proximity contact (#2 meters) with a confirmed or suspected smallpox patient 
after the patient developed fever and until all scabs have separated.”

2. Small-world effects are a reason why data from other contagious diseases cannot easily be 
adopted for modeling smallpox epidemics. Common flue and others differ from smallpox in 
their incubation period, their modes of transmission, and the relation of infectiousness and 
symptomatic periods—that is, exactly in those properties that influence the causal relevance 
of the patterns of exposure.

3. An extension of the model for larger populations and with a more detailed disease natural 
history is presented in Longini et al. (2007).

4. Of course, ABSs are also constrained, namely, by the computing power available to current 
modelers. But the analytic tractability is a much stricter limitation than computing power 
(and one that is unlikely to go away).

5. Exploratory modeling is different from sensitivity analysis. Commonly, sensitivity analysis 
varies only one parameter at a time and records the effect of this variation on the outcome of 
the model. Exploratory modeling, in contrast, allows varying all parameters, also simultane-
ously, that are not constrained by our present knowledge. The set of models produced by 
sensitivity analysis is thus a proper subset of the set produced by exploratory modeling.

6. A Bayesian may argue that the derivation of a probability distribution over models from proba-
bility distributions over models’ elements is unnecessary. Instead, the modeler may just assign 
subjective probabilities and update these probabilities as he or she obtains new information. 
With repeated updating, so the Bayesian claim, different subjective probability assignments of 
different modelers will eventually converge. However, even if a Bayesian may assign subjec-
tive priors to the rules, he or she would lack a procedure by which one could assure that such 
subjective probability judgments will eventually converge. Specifically, we cannot simulate 
past data models of epidemics with the given ABM, because such epidemic data are lacking. 
Thus, the practice of updating subjective priors through this method is impossible for the kinds 
of simulations at hand. A justified assignment of probabilities to stochastic models of this sort 
therefore seems out of reach.

7. Note the difference between robustness analysis of policies (checking the value variation of 
different possible outcomes of a policy) and sensitivity analysis of a model (which is also often 
called robustness analysis).
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