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Linear eigenvalue problem

Definition of the problem
Given A, B € C"™" find pairs (A, x) € C x C" such that

Ax = ABx

The number A is called eigenvalue
The vector x is called eigenvector

In practical applications:

@ matrices are big sized, sparse and/or structured and/or (reducible to) small
bandwidth etc.

@ the task is to compute a well defined subset of eigenvalues, e.g. dominant
eigenvalues, eigenvalue in a subset Q C C etc.



Shift—invert Arnoldi algorithm

Chosen a point (called shift) o € C, this algorithm compute eigenvalues near o. J

Observation

If (0, x) is an eigenpair of (A — oB) !B, then (o + 1/6, x) is an eigenpair of the
pencil (A, B).

Definition (Krylov subspace)

Given a vector x € C", a shift ¢ € C and a natural number m

Km(A, B, o, x) = span (x, (A—oB) 'Bx,(A—0B) *Bx,...,(A— aB)—’"“Bm—lx)

is the Krylov subspace

The idea is to project the matrix (A — ocB) !B in the Krylov subspace and solve
the projected problem.



Shift—invert Arnoldi algorithm

Gram-Schmidt orthogonalization
Given x € C" define

vi = x/||x|

h,'yj = (A — O'B)_IBVJ' - Vi

Wis1 = (A= 0B) 'By; — hijvi — hyjva — - — by
hjs1j = [[Wjsal|

Vit1 = W1/ i1,

Then vq,..., vy is an orthonormal basis of Ky,(A, o, x).

Arnoldi sequence

In a vectorial form
(A—UB)_IBV,T, = m+1Hm+1’m




Shift—invert Arnoldi algorithm

Observation
The matrix H,  is the projection of (A — oB)~1B in K,,(A,o,x), that is

VH(A—oB) BV, = Hym

Definition
Given an eigenpair (6,s) of Hp m, the value A := o+ 1/6 is called Ritz value and
the vector z := V,,s Ritz vector.

Proposition
If (0,s) is an eigenpair of H, , then

ocB—A

Az — \Bz = < ) hmt1,mSmVm1-

If Amt1 mym is small, then (6, Vi,s) is an approximation of an eigenpair of the the
linear problem defined by A and B.




Shift—invert Arnoldi algorithm

Algorithm

1: Chose a starting vector x and a shift o

2: for m=1,... till convergence do

3. Compute the Arnoldi sequence (A — oB)™*BV,, = Vipi1Hmi1,m

4 Compute eigenpairs (6, yi) of Hmm

5. if |Ame1.m(ellyi)| < tol then

6: Store (o + 1/6;, Viny;) as approximation of an eigenpair of (A, B)
7. end if

8. end for




Shift—invert Arnoldi algorithm

Algorithm

1: Chose a starting vector x and a shift o
2: for m=1,... till convergence do
3. Compute the Arnoldi sequence (A — oB)™*BV,, = Vipi1Hmi1,m

4:  Compute eigenpairs (6;,yi) of Hmm
5. if |Ame1.m(ellyi)| < tol then
6: Store (o + 1/6;, Viny;) as approximation of an eigenpair of (A, B)
7. end if
8. end for
Questions:

@ How big must be m to get a good approximation of an eigenpair?
@ How to choose a starting vector x7

@ Which eigenpairs will be firstly approximated?




Convergence of the algorithm

o Eigenvalues near o will be firstly well approximate by Ritz values [Saad].

@ The closer (o, x) to the eigenpair (A, u) the faster the convergence to (A, u)
[Saad].

@ For many applications, after a few steps, Ritz values converges linearly to
eigenvalues.



Thick restart

Problem

When the Arnoldi sequence grows too long, every step of the Arnoldi iteration
gets slower. Moreover orthogonality is numerically lost.




Thick restart

Problem

When the Arnoldi sequence grows too long, every step of the Arnoldi iteration
gets slower. Moreover orthogonality is numerically lost.

Thick restart

Let (A—0B) !BV, = Vipr1Hmi1,m be an Arnoldi sequence with A1, ..., A« a
subset of Ritz values, where at least one has not converged yet. Then it is
possible to build another Arnoldi sequence (A — JB)*IBWk = Wii1Hk41,k such
that Ay, ..., Ak are the Ritz values.

The generation of the new sequence is numerically stable since it is done using
Householder transformations.



Shift—invert Arnoldi algorithm for the linear eigenproblem

Task: compute eigenvalues of the pair (A, B) in .

@ Select (enough) shifts: og,...,0: € Q,

@ use shift—invert Arnoldi's algorithm for every shift.

Problem

Every time we change shift we need to restart the algorithm.
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Rational Krylov algorithm for linear eigenvalue problem

Theorem (Ruhe)

In O(m®) it is possible change shift in the Arnoldi sequence, in particular
(A= 00B) BV = Vins1Hmir,m = (A— 01B) " BWp = Wini1Himi1m

moreover span( V1) = span(Wy,11). These operations are numerically stable if
oo and o7 are far enough from the eigenvalues of the original problem.




Rational Krylov algorithm for linear eigenvalue problem

Rational Krylov algorithm

1: Chose a starting vector x and a starting shift oo and define v; = x/||x||.

2: for i =1,...,till convergence do

3. Extend the Arnoldi sequence (A — 0;B) "BV, = Vipi1Hmyi1,m till enough
Ritz values near o; numerically converge. When needed, perform a thick
restart.

4. Chose the next shift ;11 and transform the previous Arnoldi sequence in
(A—0i11B)"1BVyy = Viyy1Hmi1,m ny using O(m?®) ops.
5: end for




Rational Krylov algorithm for linear eigenvalue problem

Rational Krylov algorithm

1: Chose a starting vector x and a starting shift oo and define v; = x/||x||.

2: for i =1,...,till convergence do

3. Extend the Arnoldi sequence (A — 0;B) "BV, = Vipi1Hmyi1,m till enough
Ritz values near o; numerically converge. When needed, perform a thick
restart.

4. Chose the next shift ;11 and transform the previous Arnoldi sequence in
(A—0i11B)"1BVyy = Viyy1Hmi1,m ny using O(m?®) ops.
5: end for

Practical issues
@ When shift changes, an LU factorization of (A — 0,41 B) is performed

@ Heuristically, a good choice of the next shift is taking the average of cstep
(small) Ritz values not yet converged and near the previous shift.

@ Thick restart is performed.



Numerical experimentation

Tubolar reactor model

The conservation of reactant and energy in a homogeneous tube of length L in
dimensionless form is modeled by

B.C. :

Ldy 1 9% 0y T

vt~ Penox2 Tax TDre

LdT 1 T 0T e
vdt T Peyoxe Tax AT T o) = By

y/(O) = Pem}/(o)a T/(O) = Pey, T(O)ay,(l) =0, T/(l) =0.

Where y is the concentration, T the temperature and 0 < X < 1 the spatial
coordinate. The setting of the problem is
Pe,, = Pe, =5,B=0.5,v=25,5=3,5,D =0,2662 and L/v = 1.

The task is to solve numerically the equation with the method of lines.




Numerical experimentation

Stability of the time discretization

With a semi-discretization in space, setting x = (y1, T1,y2, To, ..., ¥n/2, Tny2)
we get

Iy—Ax  AcRMN,
dt

where h = 1/N is the discretization step. A is a banded matrix with bandwidth 5.
In order to chose a stable time discretization it is needed to compute the
rightmost eigenvalues of A.




Numerical experimentation

N =500, Rational Krylov algorithm to compute 60 rightmost eigenvalues
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Numerical experimentation

Convergence of the rightmost eigenvalues with shift—invert Arnoldi and with

Rational Krylov

Wanted eigenvalues Shift—invert Rational Krylov Savings percentage
( number of steps ) | ( number of steps ) (steps)
20 45 38 16 %
40 79 64 19 %
60 112 89 21 %
80 144 113 22 %




Numerical experimentation

Iterations convergence history (60 eigenvalues)
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Numerical experimentation

Time convergence history (60 eigenvalues)
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Numerical experimentation

With Rational Krylov it is possible to perform a thick restart. With shift—invert
Arnoldi, if we do not lock all converged Ritz values, there is a loop.

We restart the Arnoldi sequence when the length is more than 40 and we lock the
20 Ritz values near the current shift.

This restarting strategy is not possible with shift—invert Arnoldi.



Numerical experimentation

converged Ritz values

60

50

40

30

20

10

Iterations convergence history (60 eigenvalues)

—o— Rational Krylov a9 - 8 &

- ©- Restarted rational Krylov 8’@

2 | \
20 40 60 80 100 120

iteration



Numerical experimentation

Time convergence history (60 eigenvalues)
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Numerical experimentation

Stability of a flow in a pipe

{(D? — a)? — iaRelty(D? — o?) — UY]} V = —icaRe(D? — o)V
7(1)=0,  Dy(l)y =0
7(—-1) =0, Di¥(-1)=0

The setting is « = 1 and Re = 10000.



Numerical experimentation
Stability of a flow in a pipe
— a)? — iaRe[lp(D? — o) —Ug]} V = —icaRe(D? — o?)¥

{(D
7(1)=0,  Di¥(l)y=0
7(-1)=0, D¥(-1)=0

The setting is « = 1 and Re = 10000.

Discrete problem

Using finite differences, we discretized with discretization step h = 1/N
AV = cBV

Where A, B € RVXN  det(A) # 0, rank(B) = N — 4 because of B.C.
A and B are banded matrices with bandwidth respectively 5 and 3.

The spectrum of the continuum problem has a branch structure, in particular it
looks like a Y. The task is to compute the branch connected to zero.



Numerical experimentation

Continuous spectrum
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Numerical experimentation

N = 100, Ritz values computed with shift—invert Arnoldi.
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Numerical experimentation

N =100, Ritz values computed with Rational Krylov.
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Nonlinear eigenvalue problem and linearization

Nonlinear eigenvalue problem (NLEP)

Given a nonlinear application
A():C—C™"

the task is to compute (A, x) € C x C” such that A(A\)x =0 with A€ Q C C
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Nonlinear eigenvalue problem (NLEP)

Given a nonlinear application
A():C—C™"

the task is to compute (A, x) € C x C” such that A(A\)x =0 with A€ Q C C

Linearization

Given a nonlinear eigenvalue problem, a linearization is a linear eigenvalue problem
such that its eigenpairs in £ are a good estimation of eigeinpairs in Q of the
nonlinear problem.




Nonlinear eigenvalue problem and linearization

Nonlinear eigenvalue problem (NLEP)

Given a nonlinear application
A(-): C—cCmn

the task is to compute (A, x) € C x C" such that A(A)x =0with A e QC C

Linearization

Given a nonlinear eigenvalue problem, a linearization is a linear eigenvalue problem
such that its eigenpairs in  are a good estimation of eigeinpairs in Q of the
nonlinear problem.

We can every time express the nonlinear eigenvalue problem as

B; € Cnxn
A=Y e PECT




Linearization by means of Hermite interpolation

Consider the NLEP defined by

m

A =D (VB

i=1

and select a set of points oy, ...,on € Q (repetitions are allowed)
Hermit u
f‘ )\ ermite @ Al )\
i) interpolation ;0 i)

then we can approximate the NLEP with a PEP defined by

N m
PN()\) = Z n,-()\)A,- where A,‘ = Zai’ij
; =i




Linearization by means of Hermite interpolation

Theorem (Companion-type linearization)

The pair (A, x) # 0 is an eigenpair of the PEP if and only if Ayyn = AByyn
where

A AL Ay ... Ay 0 X

ool I I 0 "18;X

Ay = ol 1 By — I o0 N S

N = _ _ y ON = o Y YN 2= | ms(A)x
on—1/ l i 0

an(A)x




Linearization by means of Hermite interpolation

Theorem (Companion-type linearization)

The pair (A, x) # 0 is an eigenpair of the PEP if and only if Ayyn = AByyn
where

A AL Ay ... Ay 0 X
ool I I 0 "1(§)X
o ol 1 ._ I o0 || o
Ay = _ _ By : o SN = | ns(M)x
on—1l 1 I 0 nN(:)\)x
Advantages

@ Since A; = ijzl a; jB;j, it is not needed to store A;, it is sufficient to store

the interpolation coefficients a; ;.

@ If it is needed to add an interpolation point, we just need to one can just

compute (implicitly) Ay,1 and add a column and a row to the linearization
matrices.

@ Only the coefficients «;; are stored, all the other matrices are implicitly built.



Rational Krylov algorithm to solve the linearized problem

Lemma

Consider the linear problem defined by the linearization (Ay, By), apply the
rational Krylov algorithm by using as shifts the interpolation points and

vi = vec (vl[l],O7 e ,0) , v e CN+n v1[1] eC”

as starting vector. Then at the j-th step of the rational Krylov algorithm the
vectors of the Arnoldi sequence have the following structure

Vi = vec (v,[(l],v,?],...,v,Ej],O,...,O)7 for k<j<N,

where V,Ei] eCfori=1,...,J.




Building the basis of the Krylov subspace

Size of linearization: N = 8 (blocks)
Nodes/shifts: 0o 0o oo o1 o1

02

02

w=( v o0 0 0 0 0



Building the basis of the Krylov subspace

Size of linearization: N = 8 (blocks)

NOdES/Shif‘tSZ oo oo 0o o1 o1 [op)} [op}
w=( v o0 0 0 0 0 0 0
w=( v Ao 0 0 0 0 0
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Building the basis of the Krylov subspace

Size of linearization: N = 8 (blocks)

NOdES/Shif‘tSZ oo oo oo o1 o1 [op)} [op}
w=( v o 0 0 0 0 0 0o )
w=( v Ao 0 0 0 0 o)
w=( v BB 0 0 0 0o )
vy = ( VF] VF] vf’] VF] 0 0 0 0 )



Building the basis of Krylov subspace

Size of linearization: N = 8 (blocks)

Nodes/shifts: oo 09 0o o1 o1 oo 09
wy = ( W1[1] W1[2] W1[3] W1[4] 0 0 0 0 )
wy = ( W2[1] W2[2] W2[3] W2[4] 0 0 0 0 )
ws = ( W3[1] W3[2] W3[3] W3[4] 0 0 0 0 )
wy = ( WF] WF] WF'] WF] 0 0 0 0 )



Building the basis of Krylov subspace

Size of linearization: N = 8 (blocks)

Nodes/shifts: 09 00 0o o1 o1 09 0>
wy = ( W1[1] W1[2] W1[3] W1[4] 0 0 0 0 )
wy = ( W2[1] W2[2] W2[3] W2[4] 0 0 0 0 )
ws = ( W3[1] W3[2] W£3] W3[4] 0 0 0 0 )
wy = ( WF] WF] WF'] WF] 0 0 0 0 )
ws = ( W5[1] W5[2] W5[3] WFEA] W5[5] 0 0 0 )



Building the basis of Krylov subspace

Size of linearization: N = 8 (blocks)
Nodes/shifts:

(o) (o) (o) o1 o1 02 02

w=( w! oW ow? w0 0 0 0 )
wy = ( W2[1] W2[2] W2[3] W2[4] 0 0 0 0 )
ws = ( W3[1] W3[2] W£3] W3[4] 0 0 0 0 )
wi=( w! oW w? w0 0 0 0 )
ws = ( W5[1] W5[2] W5[3] WEEA] W5[5] 0 0 0 )
we = ( W6[1] W6[2] WE] W(£4] W6[5] Wéﬁ] 0 0 )



Building the basis of Krylov subspace

Size of linearization: N = 8 (blocks)

Nodes/shifts: o) oo o) o1 o1 o2
721 =( z{l] z{z] 21[3] 21[4] 21[5] z{6] 0 0 )
7= 22[1] 22[2] 22[3] 22[4] 22[5] 22[6] 0 0 )
z3 = ( 23[1] 23[2] 23[3] 23[4] 23[5] 23[6] 0 0 )
2z, = ( zz[ll] ZE] 24[13] ZF] ZF] ZP 0 0 )
z5 = ( 25[1] 25[2] 25[3] 25[4] 25[5] 25[6] 0 0 )
lo( AN B e e o o)



Building the basis of Krylov subspace

Size of linearization: N = 8 (blocks)

Nodes/shifts: 09 00 0o o1 o1 0>
B
7 = ( 22[1] z£2] z£3] z£4] 22[5] z£6] 0 0 )
z3 = ( 23[1] zg] z£3] 23[4] 23[5] zgﬂ 0 0 )
B R
z5 = ( zéll 25[2] 25[3] zé4] zéS] 25[6] 0 0 )
75 = ( 26[1] zézl zf[f] zgl] 26[5] zgjl 0 0 )
T I



Building the basis of Krylov subspace

Size of linearization: N = 8 (blocks)

Nodes/shifts: 09 00 0o o1 o1 09
B
7 = ( 22[1] z£2] z£3] z£4] 22[5] z£6] 0 0 )
z3 = ( 23[1] zg] z£3] 23[4] 23[5] zgﬂ 0 0 )
B R
z5 = ( zéll 25[2] 25[3] zé4] zéS] 25[6] 0 0 )
75 = ( 26[1] zézl zf[f] zgl] 26[5] zgjl 0 0 )
T I
T I



Rational Krylov algorithm to solve the linearized problem

Lemma

At each iteration j of the rational Krylov algorithm, only the top-left parts of the

matrices Ay — 0;Bn are used to compute the nonzero top parts Vi, of the
vectors vj1, i€,

(Aj = 0i8))Vj11 = Bj,
where
o [ el li+1]
G = vee (Vv ),

and

5= vee (W uf, ... \f1,0),




Rational Krylov algorithm to solve the linearized problem

Lemma

The linear system (A;j —

B;j)Vj+1 = B;V; can be efficiently solved by using the
following equations

1 _
Ao, =y,

where

gl o))

and

2 1 j 1
v =V 0

3 2 2
Vj[] —v[]+u°) J[+I7

U+1 _ [J] G Ul
Vi M2 Vi




HIRK (Hermite Interpolation Rational Krylov Method)

1: Choose the shift op and starting vector v;.
2 forj=1,...,mdo
3: EXPANSION PHASE.

4 Choose the shift o;.
5: Compute the next divided difference: A;.
6: Expand A;, Bj and V.
7 RATIONAL KRYLOV STEP
8: if gj—1 7£O'j then
o: Change basis V; — \N/J and matrix H; ;1 — F@-,j,l
(according to the Rational Krylov algorithm)
such that the Arnoldi sequence becomes
(Aj = 0;B) ' B;V; = Hjj1 Vi1
10: end if
11 Compute the next vector of the sequence:
r= (A = 0;B) " By,
r=v— Vjh, where h; = \/jHr orthogonalization,
Vit1 = r/hjy1j, where hjy1j = ||r]| normalization.
12: Compute the eigenpair (0;, y;) for i = 1,...,j of H; j_1 and then the Ritz pairs (0;, Vjy;).

13: Test the convergence for the NLEP.
14: end for




Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: oo 0o 0o o1 o1

02

02

n=( vl )



Building the basis of Krylov subspace
Execution of the algorithm
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Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: oo oo oo o1 o1 [op)}

02

n=( vl 0o )
[2] )

va = ( V2[1] V2



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: o) oo oo o1 o1 [op)}

02

vi = ( vl[ll 0 0 )

va = ( v2[1] v2[2] 0

~



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: oo oo oo o1 o1 [op)}

02

vi = ( vl[ll 0 0 )



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: oo oo oo o1 o1 [op)}

02

w=( v o0 o 0 )



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1

02

02

1o VY

Y v, v, Y
4 4 4 4



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: o) oo oo o1 o1 [op)} [op)}
wi=( wow® W W
PR T T N T
w=(wf W wf W
PRI N



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: oo oo oo o1 o1 [op)} [op)}
wi=C wfl oW W w0 )
PRRE T N TN T
ws = ( W3[1] W3[2] W3[3] W3[4] 0 )
PRI TN N



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1 09 09
wi=C wfl oW W w0 )
= Wl W WP W o)
= Wl WP W W o)
I I
ws=( wdlow® Wl W)



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1 09 09
B N
wy = ( W2[1] W2[2] W2[3] W2[4] 0 0 )
ws = ( W3[1] W3[2] W3[3] W3[4] 0 0 )
I I I I IR
w=( wow?wdw w0



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1 09 09
B N
wy = ( W2[1] W2[2] W2[3] W2[4] 0 0 )
ws = ( W3[1] W3[2] W3[3] W3[4] 0 0 )
I I I I IR
ws=( oww?wd e w0
we = ( W6[1] Wéz] W([f] w4 W6[5] Wéﬁl )



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 0o oo 1o o1 o1 09 o9
R R
A I
ao( A1 e
as( A1 PP
wo( AV B P E
wm( A A e



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1 09
ac( A B B @ o)
as( A P P A o)
N I I I T
am( A P o)
we( A AP g
R A I R



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1 09
ac( A B B @ o)
as( A P P A o)
N I I I T
am( A P o)
we( A AP g
R A I R
T R I I I



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1 09
B
2 = 22[1] 22[2] z£3] z£4] 22[5] 22[6] 0 0 )
z3=( 23[1] zg] z£3] 23[4] 23[5] zgs] 0 0 )
B
B T
75 = ( 26[1] zﬁ[f] 25[53] 26[54] 26[5] zgj] 0 0 )
ao( A PP B e g



Building the basis of Krylov subspace
Execution of the algorithm

Nodes/shifts: 09 0o 0o o1 o1 09
B
2 = 22[1] 22[2] z£3] z£4] 22[5] 22[6] 0 0 )
z3=( 23[1] zg] z£3] 23[4] 23[5] zgs] 0 0 )
B
B T
75 = ( 26[1] zﬁ[f] 25[53] 26[54] 26[5] zgj] 0 0 )
ao( A PP B e g
B I



Hermite Interpolation Rational Krylov Method

Comments
@ At every step it is solved a system of the size of the original NLEP and not of
the size of the linarization.

@ The computation of the interpolation coefficients is numerically unstable.
These coefficients must be computed semianalitically.

@ Applying this method to a NLEP is like to solve a linear eigenvalue problem
of infinite size.

@ The bottleneck of the algorithm is the Gram—Schmidt process.
@ At every step, the vectors of the basis of Krylov space get longer.

@ Exploiting the low rank structure of the matrix coefficients can speedup the
algorithm.



Outline

@ Shift—invert Arnoldi algorithm for linear eigenproblems
@ Rational Krylov algorithm for linear eigenproblems
@ Applications of Rational Krylov algorithm for nonlinear eigenproblems

- Linearization by means of Hermite interpolations
- Nonlinear Rational Krylov



Nonlinear Rational Krylov

Definition (Generalized Arnoldi's sequence)

Given a pole 0 € Q and a sequence of shifts Aq,..., A, it holds

A(U)_lA(Am) Vm — Vm+1 Hm+1,m




Nonlinear Rational Krylov

Definition (Generalized Arnoldi's sequence)

Given a pole 0 € Q and a sequence of shifts Aq,..., A, it holds

A(U)_lA(Am) Vm — Vm+1 Hm+1,m

Generation of the sequence

_ li _
A(0)PAN-1) Vo1 = ViHp o1 ————— A(0) TTAN) Y =

interpolation

X

+1Hj+1,-




Nonlinear Rational Krylov

Observation
o With a linear Lagrange—interpolation between \; and o we get the linearized

problem
A=A A—o

A(O’) + )\j — UA(/\J)

AN =

g — )\j
e If (0,x) is such that
A(o) TTAN)x = Ox
then (Aj+1, x) is an eigenpair or the linearized problem, where

0

17_9()\1—0)

Ajtr = Aj +

The closer 6 to 0 the closer A\j 1 to A;.




Nonlinear Rational Krylov

Nonlinear Rational Krylov algorithm (Preliminary version)

1: Choose a starting vector vy

2. for j =1,... till convergence do

3. Compute the Arnoldi sequence A(c) *A(N))V, = Vji1Hjt1,
4: Compute the smallest eigenpairs (6, s) of H; j

5 N1 =N+ 15\ — o)

6 Hij =ty — 12501

7: end for




Nonlinear Rational Krylov

Nonlinear Rational Krylov algorithm (Preliminary version)

1: Choose a starting vector vy

2. for j =1,... till convergence do

3. Compute the Arnoldi sequence A(c) *A(N))V, = Vji1Hjt1,
4: Compute the smallest eigenpairs (6, s) of H; j

5 N1 =N+ 15\ — o)

6 Hij =ty — 12501

7: end for

It turns out that this algorithm does not work well.



Nonlinear Rational Krylov

Proposition

It holds

A(@) L A1)V, — ViH;j = A(o) LAV 1) Vs el




Nonlinear Rational Krylov

Proposition

It holds
A(0) TP AN 1)V — ViH)j = Alo) TTAN ) Vs €.

Observation
In the linear case it holds

A(0) TAN 1) Vis = sihjia v

that is, the residual is orthogonal to V/,. This property does not hold in the
nonlinear case. We can introduce INNER ITERATIONS to enforce it.




NLRK

1. Choose a starting vector vi with ||vi|| = 1, a starting shift A; and a pole o and set
j=1.
OUTER ITERATION
Set hy =0;s=¢ =(0,...,0,1)" e R/; x = v;
Compute r = A(o) "A(N)x and k; = V/'r
while | k,|| > ResTol do

INNER ITERATION

Orthogonalize r = r — Vk;

Set hj = h; + sj_lkj

Compute the smallest eigenpair (0, s) of H;;
10: X = VJ'S
1 Update A = A+ ;2,(A —0)
1 Update Hjj = 25 H;; — 125!
15 Compute r = A(o) "A(N)x and k; = V/'r
1. end while

© ® N o g & w N

15 Compute hj1j = [|r||/s;
16 if |hj+1,j5j| > EI'gTO/ then
w v =r/|rll; j=j+1, GOTO 3

18 end if
1. Store (6, x) as eigenpair
20: If more eigenvalues are requested, choose next 6 and s, and GOTO 10




Nonlinear Rational Krylov

Practical issues

This version of the algorithm works but there are two important points to make it
more efficient:

@ Change of pole
@ Hard purging




Nonlinear Rational Krylov

Practical issues

This version of the algorithm works but there are two important points to make it
more efficient:

@ Change of pole
@ Hard purging

Theorem

In O(m3) it is possible to change pole in the generalized Arnoldi sequence, in
particular

A(0) P AN Vo = Vips1Hms1.m = A(G) LAY Woy = Wiy 1Himi1m

moreover span( V1) = span(Wp,11). These operations are numerically stable if
o and & are far enough from the eigenvalues of the original problem.

@ When enough Ritz values near a pole have converged we can change the pole.

@ Heuristically a good strategy to change the pole is to take a convex
combination of the next shift and the old pole.




Nonlinear Rational Krylov

Thick restart

Let A(o) LA\ V,, = m+1Hm+1,m be an Arnoldi sequence with 61,...,6; a
subset of Ritz values, where at least one has not (numerically) converged yet.
Then it is possible to build another generalized Arnoldi sequence

A(o) LA W, = Wk+1/:lk+17k such that 61, ..., 0, are the Ritz values.




Nonlinear Rational Krylov

Thick restart

Let A(o)"YA(N) Vi = Vinr1Hms1.m be an Arnoldi sequence with 61, ..., 0k a
subset of Ritz values, where at least one has not (numerically) converged yet.
Then it is possible to build another generalized Arnoldi sequence

A(o) LA W, = Wk+1lzlk+17k such that 61, ..., 0, are the Ritz values.

Hard purging
When a Ritz value has numerically converged, then all converged Ritz values and

the nearest to convergence Ritz values must be locked. All the others will be
purged. After that the algorithm continues.

Hard purging is heuristically proposed but it seems a necessary step of the
algorithm. Without this process, the algorithm has a loop for a while on the same
eigenvalue and after that it encounters a breakdown.



Numerical experimentation

GUN problem

This is a large-scale NLEP that models a radio frequency gun cavity and is of the
form

F(A\)x = (K—/\M—i-i A— oWy +i A—ang)x:o

Where M, K, Wy, W, € R99%6%9956 3re real symmetric, K is positive semidefinite,
and M is positive definite. The domain of interest is

Q ={A € Csuch that [\ —u| <~ and Im(\) > 0}.

The parameters are set to o7 = 0,0, = 108.8774,~ = 50000 and p = 62500.

Before solving the problem we applied shift and rescaling in order to transform Q
into the upper part of the unit circle.



Numerical experimentation: HIRK

o NLRK diverges
@ HIRK succeeds to compute eigenvalues

Eigenvalues of the gun problem are computed with 60 iterations. The same node
is used 12 times.

150 -
* Converged eigenvalues
+ Shifts
—— Border of the region of interest
100 -
50 -
0 [




Numerical experimentation

Vibrating string with elastically attached mass

Consider the system of a limp string of unit length, which is clamped at one end.
The other end is free but has a mass m attached to it via an elastic spring of

stiffness k. The eigenvibrations of the string are governed by the eigenvalue
problem

—u"(x) = Au(x)

u(0)=0
u'(1) + kx=%7mu(l) = 0

u




Numerical experimentation

Eigenvalues of the continuum problem

With easy computations, we found that the eigenvalues are the solution of the

equation
1 VA
tan(\/X) = m—)\ — T




Numerical experimentation

Eigenvalues of the continuum problem

With easy computations, we found that the eigenvalues are the solution of the

equation
1 VA
tan(\/X) = mi)\ — T

Discrete problem

Discretizing the problem by means of the finite element method using P1
elements we arrive at the nonlinear eigenproblem

A

A-AB+k———C=0
* A—k/m ’
2 -1 4 1
_1-1 _h)1 — el
Aih , 876 , C=ene,.

N
I
—
=
N =



Numerical experimentation: NLRK

Task

Compute the second smallest eigenvalue A\,

Se set EigTol = 1075 and ResTol = 107°.
For m =1 and k = 0.01 we have \, ~ 2.4874.

N |A2 — X2| | Outer iterations | Average of inner iterations
100 10-3 5 2
10000 107 6 2

For m =1 and k = 0.1 we have X\, ~ 2.6679.

N |A2 — A2| | Outer iterations | Average of inner iterations
100 1072 5 3
10000 1073 6 3

For m=1 and k = 1 NLRK diverges.

HIRK succeeds to compute A, but it is slow. On the other hand it works also for
m=1and k=1.



Numerical experimentation

Fluid-solid structure interaction

The study of free vibrations of a tube bundle immersed in a slightly compressible
(under a few simplifications) leads to the following continuum eigenproblem.
Find A € R and u € H'() such that for every v € H'(y)

c2 QOVu.Vvdx: / uvdx—i—zk )me/ unds - /vnds

All the constants in the above problem are set equal to 1.



Numerical experimentation

Fluid-solid structure interaction

The study of free vibrations of a tube bundle immersed in a slightly compressible
(under a few simplifications) leads to the following continuum eigenproblem.
Find A € R and u € H'() such that for every v € H'(y)

c2 Vu-Vvdx =\ / uvdx—i—zk )me/ unds - /vnds

Qo

All the constants in the above problem are set equal to 1.

Discrete problem

After discretization by means of finite elements we obtain

A(MN)x = —Ax + ABx + A)\CX:O

1 =

where C collects the contributions of all tubes. A, B, and C are symmetric
matrices, A and C are positive semidefinite, and B is positive definite




Numerical experimentation

In our setting there are 9 tubes. We discretized the problem with FreeFem++
using P1 triangular elements. Example of discretization of domain with
FreeFem++
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Convergence history of Ritz values computed with the discretization of FreeFem--+
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(c) n=200, m=10, N = 3277 (d) n =400, m = 10, N = 5604



Thank you for your attention.




