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The Geometry of Data

Data naturally carry geometric structure.

A data-set-manifold

Question: How can the geometric structure be extracted statistically from data and
exploited for inference?
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Geometric Methods

Geometric structure can be extracted in several
forms.

▶ Combinatorial: graphs and simplicial
complexes [4]

▶ Fuzzy: density estimators [13]

▶ Smooth: representations [2]
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Symmetries and Metrics

Metrics Symmetries

▶ Local in nature

▶ Can be inferred from data

▶ Suitable for non-parametric
approaches

▶ Global in nature

▶ Unknown a priori

▶ Require powerful parametric
approaches
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II. Metric-Based Methods
Papers A, B and C
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Voronoi Tessellations

Definition
Let X be a metric space and P ⊆ X finite. The Voronoi cell of p ∈ P is

C (p) = {x ∈ X | ∀q ∈ P d(x , q) ≥ d(x , p)}.
The Delaunay triangulation is dual to the Voronoi tessellation.

✓ Arbitrary convex polytopes

✓ Locally adaptive

✗ Expensive to compute
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Nearest Neighbor Regressor (NNR)

NNR [5] approximates an unknown function f by the value at the closest datapoint. It is
locally constant on Voronoi cells.

We upgrade NNR to an active regressor by querying a novel datapoint pt+1 at step t
based on the current dataset Pt .
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Active Nearest Neighbor Regressor (ANNR)
Work A

Our querying strategy exploits the geometry of the graph of f discretized via the
Delaunay triangulation:

pt+1 = Circ(σ), σ = argmaxσ∈DelPt
Vol(σ̂).

Here σ̂ is the lifting of σ to the graph of λf , where λ controls exploration-exploitation.

Pt Query Pt+1
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Computation and Theory
Work A

We compute the Delaunay triangula-
tion approximately via a random walk
over the Voronoi boundaries [11].

We prove halting guarantees:

Theorem
If f is Lipschitz then
limt→∞maxσ∈DelPt

Vol(σ̂) = 0.

and provide a Riemannian interpretation:

Theorem
If f ∈ C 1(Ω) then
log Vol(Γλf ) ≳ Cλ2

∥∥f − ffl
Ω
f
∥∥2
2
+log Vol(Ω).
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Voronoi Density Estimator (VDE)

VDE [9] is inversely proportional to the volume of Voronoi cells.

VDE

Histograms [10] KDE [12]

11 / 35
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Compactified Voronoi Density Estimator (CVDE)
Work B

We compactify (unbounded) cells via a kernel K :

CVDE

ρ̂(x) =
K (x − p)

|P|
´
C(p) K (y − p)dy

, x ∈ C (p).
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Computation and Convergence
Work B

We compute the volumes via Monte-Carlo
spherical integration:

ˆ
Sn−1

ˆ lp(σ)

0
K (tσ)tn−1dtdσ

We prove convergence of CVDE to the
ground-truth density ρ.

Theorem
Suppose that ρ has support in the whole
Rn. For any K ∈ L1(Rn × Rn), CVDE,
seen as a random measure, converges to
ρ in distribution w.r.t x and in probability
w.r.t. P as |P| → ∞.
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An Improved Voronoi Density Estimator

CVDE is:

✓ Adaptive and convergent

✓ More efficient than VDE but less
than KDE

✗ Discontinuous

We improve this by exploiting the radial geometry of Voronoi tessellations: l(x) is
continuous and computable in O(|P|).

14 / 35



An Improved Voronoi Density Estimator

CVDE is:

✓ Adaptive and convergent

✓ More efficient than VDE but less
than KDE

✗ Discontinuous

We improve this by exploiting the radial geometry of Voronoi tessellations: l(x) is
continuous and computable in O(|P|).

14 / 35



Radial Voronoi Density Estimator (RVDE)
Work C

For a kernel K , we define a radial bandwidth β = β(l(x)) implicitly via an integral
equation:

RVDE

ρ̂(x) ∝ K (βd(x , p))

|P|
, x ∈ C (p),

ˆ l(x)

0
tn−1K (βt) dt︸ ︷︷ ︸

Conical integral

= const

In particular,
´
C(p) ρ̂(x) dx is constant,

implying convergence.
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Modes and Performance
Work C

The map l 7→ β(l) generalizes Lambert’s
function. In particular:

Theorem
The modes of RVDE are located among
nodes and edges of the Gabriel graph.

RVDE performs well:
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III. Symmetry-Based Methods
Papers D, E, F and G
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Symmetries of Data

Data naturally exhibit symmetries.

Symmetries are modelled as an unknown action G ×X → X by a group G on X .

18 / 35



Symmetries of Data

Data naturally exhibit symmetries.

Symmetries are modelled as an unknown action G ×X → X by a group G on X .

18 / 35



Equivariant Representations

A representation respecting symmetries is deemed equivariant.

They are related to:

▶ Convolutional and graph neural
networks [3]

▶ World models, incorporating
interactions into representations [7, 1]
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Geometry from Symmetries
Work D

▶ Group actions determine classes deemed orbits E = X/G

▶ For free group actions, each orbit is isomorphic to G and thus X ≃ E × G

▶ Every orbit-preserving equivariant map φ : X → E × G is an isomorphism

20 / 35
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Equivariant Isomorphic Networks (EquIN)
Work D

We propose to learn a representation φ : X → E × G by optimizing:

L(x , g , y = g · x) = dE(φE(y), φE(x))︸ ︷︷ ︸
Invariant/Contrastive

+ dG (φG (y), gφG (x))︸ ︷︷ ︸
Multiplication−Equivariant

At the optimum, φ is an isomorphism. In particular, it is:

✓ Lossless

✓ Disentangled [6]

✗ Based on the assumption that G known a priori

21 / 35
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Non-Free Group Actions

In general, it is necessary to consider stabilizer subgroups:

Gx = {g ∈ G | g · x = x}.
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EquIN with Stabilizers
Work E

▶ Each orbit O ⊆ X is isomorphic to the coset space G/GxO , xO ∈ O.

▶ Any orbit-preserving equivariant map

φ : X →
∐

O∈X/G

G/GxO

is an isomorphism.

▶ Stabilizers are unknown a priori. However, the outputs of an equivariant map
φ : X → 2G contain stabilizer subgroups.

We generalize EquIN to φ : X → E × 2G , with an entropy loss term for minimality.

23 / 35
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Extracting Geometry

EquIN extracts isometric maps of the world.
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Back to the Manifold
Work F

The extracted geometry can be exploited to
address problems via classical methods.

We propose to stabilize a policy by using
the estimated latent density ρ as a
potential:

π̃(x) = ∇zρ(φ(x)).

25 / 35
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Abstract Harmonic Analysis

Suppose that G is unknown. Is it possible to discover symmetries from data?
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Abstract Harmonic Analysis

Group theory is intimately related to harmonic analysis.

Definition
The Fourier transform is a linear isometric isomorphism of the form:

CG →
⊕

ρ : G→U(V )

End(V ),

where ρ is an irreducible unitary representation (irrep) of G in a Hilbert space V .
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Emergence of Harmonics

Harmonics are ubiquitous in both biological and artificial networks.

AlexNet Macaque
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Harmonics of Learning
Work G

We show that, under certain conditions, invariance of φ(W , x) in x w.r.t. to a finite
group G implies emergence of harmonics in W .

Informal Theorem
If φ is invariant then each component of
W is an irrep of G up to a linear
transformation. In particular, if W is
orthonormal, it (almost) coincides with
the Fourier transform.

Informal Theorem
If φ is ‘almost invariant’ and the W is
‘almost orthonormal’, then G can be
recovered from W up to isomorphism.
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Future Work

Extensions to other metric spaces, e.g.
Riemannian manifolds.

▶ Spheres for directional statistics.

▶ Hyperbolic spaces for hierarchical
data.

▶ Complex projective spaces: Kendall
shape space.

Extensions to algebraic structures beyond
groups:

▶ Groupoids for local symmetries.

▶ C ∗-algebras for more general
transformations.
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Tack!
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