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Synopsis

1. Data-generation tasks like statistical speech synthesis are
sensitive to bad data and bad assumptions

2. This is due to a largely unrecognised mismatch between
parameter estimation and output generation

◦ Maximum likelihood fits the outskirts (tails) of the data
distribution, where the bad datapoints sit

◦ The distribution peak – “typical data” – is assigned the lowest
importance, even though that is what is used to generate output

3. Robust statistics can de-emphasise the tails and better
describe the parts of the distribution used for generation

◦ This yields improved speech-sound durations in an application
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Take-home message

Theorist:
• Generation tasks (label to observation) have different priorities
from classification tasks (observation to label)

• Approaches tailored for data-generation problems is an
under-explored topic in machine learning

Practitioner:

• Bad data and assumptions are more dangerous than you think
• Common generation setups suffer from a hidden mismatch

◦ The methods work especially poorly on big/found/imperfect data

• Robust statistics can mitigate the resulting problems
• Make sure your approach has the same priorities as you have!
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Overview

1. Background
2. Theory
3. Application
4. Conclusion
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Background section

Setting the stage:

1. Introduction
2. Sensitivity issues
3. Error sources
4. Proposed solutions
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Speech synthesis

• Text input → speech audio output
◦ Text to speech (TTS)
◦ Low bitrate to high bitrate

• ...using parallel speech+text data and statistical models
◦ Statistical parametric speech synthesis (SPSS)

• This will be our running example of a data-generation task
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Input and output features

• In: Spoken text, e.g., “I was the sheep.”
◦ Phone sequence: “- AY W AA Z DH AH SH IY P -”

• Out: Audio waveform (16k samples per second or more), e.g.,
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◦ Vocoder analysis: Convert to acoustic feature vectors at 200 fps
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Two modelling stages

Task: Map “- AY W AA Z DH AH SH IY P -” to acoustic features
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Two modelling stages

Duration model: Predicts the duration of each phone
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Two modelling stages

Acoustic model: Fills in the acoustic features of each phone
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Statistical modelling

Two modelling stages:
1. Duration model (phoneme-level)
2. Acoustic model (frame-level)

Common elements:
• Sequence-valued data
• Linguistic (discrete, text-based) input feature vectors l
• Output feature vectors x (durations or acoustics; continuous)
• Probabilistic regression model fX | L (x | l ; θ)
◦ Unknown model parameters θ
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Main steps

There are three main steps of probabilistic text-to-speech:
1. Model specification: Propose a probabilistic model
2. Training: Estimate model parameters on training data
3. Synthesis: Generate output sequences from fitted model
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Training and synthesis

1. Training: Maximum likelihood parameter estimation (MLE)
◦ Aligned training data D = {(l t , x t)}

θ̂ML = argmax
θ

∏
(l t , x t)∈D

fX | L (x t | l t ; θ)

2. Synthesis: Maximum likelihood parameter generation (MLPG)
◦ Linguistic features {l t} from input text

{x̂ t} = argmax
{x t}t

∏
t

fX | L

(
x t

∣∣∣ l t ; θ̂ML

)
Training and synthesis functions appear to be well matched
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A general output principle

Returning the a-posteriori most probable outcome is exceedingly
common across output domains:
• Classification (label domain)
◦ Bayes classifier (minimum misclassification rate)
◦ Applied classifiers

• Generation and prediction (observation domain)
◦ Speech (text-to-speech, voice conversion, ...)
◦ Text (machine translation, captioning, ...)
◦ Any predictor based on minimising mean squared error (MSE)
• The MSE minimiser can be derived as the maximum-likelihood

estimate of the mode in a fixed-variance Gaussian model
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Standard choices

Traditional setup (Zen et al., 2007):
1. Assume output distribution fX | L is diagonal-covariance

Gaussian fN (x ; µ (l) , diag (σ2 (l)))
2. Estimate means and variances using MLE
3. Use an efficient algorithm (Tokuda et al., 2000) to generate

the most probable output sequence from the Gaussian
◦ For Gaussian models, the mode equals the mean: x̂ = µ̂
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Background section

Setting the stage:

1. Introduction
2. Sensitivity issues
3. Error sources
4. Proposed solutions
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Issues

Since the generated output sounds unnatural, something is wrong
in the standard approach
• Many sources contribute to unnaturalness (Henter et al., 2014;
Uría et al., 2015)

• Quality degrades further if the data isn’t completely pure
(Yamagishi et al., 2008)
◦ This necessitates careful quality control of synthesis data
◦ Large, found speech databases sit unused
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Toy example

Generate some datapoints D
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Toy example

Fit a Gaussian using maximum likelihood
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Toy example

Add an unexpected datapoint
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Toy example

The maximum likelihood fit changes a lot!
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What went wrong?

The data didn’t match the model!
• The theoretical results that make MLE appealing depend
crucially on a good match between model and data

Why did it have these consequences?
• If the model cannot fit the data well everywhere, we must
choose which part to prioritise

• MLE prioritises the tails over the peak
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Why is this a problem?

• All models are wrong and cannot be accurate everywhere
• MLE fits the tails of the distribution to the data
• Synthesis, meanwhile, only uses the peak of the model
⇒ The training is a poor match to the application!
◦ “Wagging speech by the tail”
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Practical consequences

Generally: A focus on the tails of the data ⇒ the fitted mode is
sensitive to ill-fitting points

Specifically: The mean, as used in synthesis, may not fall in a
high-probability region ⇒ output need not be like speech at all

We will see that robust methods can mitigate these issues
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Background section

Setting the stage:

1. Introduction
2. Sensitivity issues
3. Error sources
4. Proposed solutions
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A taxonomy of errors

Mismatch

MisspecificationContamination

True process f⋆

Model fData D

(Note that model-data mismatch is different from
estimation-generation mismatch)
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Sources of model-data mismatch

• Misspecification: The true process f ? does not match the
proposed model f (always a problem)
◦ E.g., skewed, non-Gaussian feature distributions

• Contamination: The data D is not from the true process of
interest f ? (big issue in large, found data)
◦ Audio issues, e.g., packet loss, background noise, clipping,

pronunciation errors
◦ Text issues, e.g., transcription mistakes, wrong file number
◦ Internal issues, e.g., out-of-vocabulary words, homograph

resolution, alignment failures
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Robust statistics

“Robust” can mean many things
• Here: Statistical techniques with low sensitivity to model-data
mismatch (Huber, 2011)

• Think: Modelling techniques that are able to disregard
poorly-fitting datapoints
◦ A change of priorities towards the peak
◦ This assumes at least some observed data is good

• Robust speech synthesis is speech synthesis incorporating
robust statistical techniques
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Background section

Setting the stage:

1. Introduction
2. Sensitivity issues
3. Error sources
4. Proposed solutions
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Some relevant proposals

Some TTS techniques for overcoming the mismatch in priorities:
1. Ensure high data quality
◦ Example: Recording procedures and data cleaning scripts

2. Fit the peak of the model
◦ Example: Minimum generation error training (MGE)

3. Ignore the tails of the data
◦ Example: Component selection in mixture models (GMM-MDNs)

4. Do both 2 and 3!
◦ β-estimation (Basu et al., 1998) rather than MLE
◦ Example: In this talk!
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Ensuring high data quality

Since TTS is so sensitive to data issues (Yamagishi et al., 2008),
only use high-quality speech data to train systems:
+ Statistically robust in some cases
− Good data is expensive
◦ Restricts synthesis to small and artificial datasets

− Does not address misspecification, only contamination

Exceedingly common, but seldom motivated through robustness
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Minimum generation error

Find parameters that maximise the similarity between the mode
x̂ and the training data (MGE; Wu and Wang, 2006):
+ Explicitly optimises the mode
◦ Only the mode matters at generation time, after all

− The MSE objective function is standard
◦ Mathematically the same as MLE with a fixed-variance Gaussian
◦ Not robust to contamination or misspecification

Not widely used
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Minimum generation error training

Minimum MSE MGE is just as fragile as Gaussian MLE!
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Mixture models

Additional mixture components can absorb garbage datapoints
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Component selection

Generate from the most massive mixture component:
+ Probabilistic
+ Greater modelling power than a single Gaussian
+ Can be statistically robust
− Different models for training and synthesis

While used in synthesis (Zen and Senior, 2014; Wang et al.,
2016), it had previously not been motivated through robustness
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A proposal

This talk describes a novel approach to the mismatch problem in
data generation, applied to speech synthesis in Henter et al.
(2016):

Use β-estimation, an alternative principle for parameter
estimation that reduces the focus on low-probability regions,
compared to MLE
+ Probabilistic
+ Robust
+ Directly addresses estimation-generation mismatch
+ Uses standard, Gaussian models
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β-estimation example

Gaussian distribution fit using β = 1/3
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Overview

1. Background
2. Theory
3. Application
4. Conclusion
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Theory section

A closer look at the theory behind the mismatch problem, and a
proposed solution:

1. Maximum likelihood estimation
2. The root of the problem
3. β-estimation
4. Properties of β-estimation
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The scenario

1. Consider X ∈ RD distributed according to f ? (x)
2. Let the model (parametric family) be specified by a pdf

f (x ; θ) with parameter θ ∈ Θ

3. Let the training data D = {xn}Nn=1 be i.i.d. samples from f ?

4. Parameter estimation is the task of finding θ̂ using D so that
f
(
x ; θ̂

)
approximates f ? (x) as well as possible
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Maximum likelihood estimation

Maximum likelihood parameter estimation maximises the joint
probability of the entire dataset:

θ̂ML (D) = argmax
θ∈Θ

P (D; θ)

= argmax
θ∈Θ

N∏
n=1

f (xn; θ)

= argmax
θ∈Θ

N∑
n=1

ln f (xn; θ)

Clearly, the model must explain every datapoint simultaneously:
if f (xn; θ) = 0 for any n, the likelihood is minimal
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Why MLE?

Asymptotically, maximum likelihood estimation is:
1. Unbiased
2. Consistent
3. Efficient
...assuming clean data and no misspecification
(∃θ? ∈ Θ : f ? (x) ≡ f (x ; θ?))
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Gaussian MLE

The maximum-likelihood estimate of the Gaussian mean is the
sample mean:

µ̂ML (D) =
1
N

N∑
n=1

xn

This is not robust: by changing only x1, µ̂ML can be forced to
equal any value
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Theory section

A closer look at the theory behind the mismatch problem, and a
proposed solution:

1. Maximum likelihood estimation
2. The root of the problem
3. β-estimation
4. Properties of β-estimation

39 of 80



The real issue with MLE

Theory will reveal the root of the problem:
1. Likelihood maximisation is KL-divergence minimisation

(Akaike, 1973)
2. The KL-divergence focusses on the tails of the distribution
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A simple fact

Write down the Kullback-Leibler divergence (KLD) between true
distribution and model:

DKL (f
? || f ) =

∫
f ? (x) ln

f ? (x)
f (x ; θ)

dx

=

∫
f ? (x) ln f ? (x) dx −

∫
f ? (x) ln f (x ; θ) dx

= h (f ?)− Ef ? (ln f (X ; θ))

where h (·) is the differential entropy
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A neat insight

Identify the parameter value that minimises the KLD:

argmin
θ∈Θ

DKL (f
? || f ) = argmin

θ∈Θ
(h (f ?)− Ef ? (ln f (X ; θ)))

= argmax
θ∈Θ

Ef ? (ln f (X ; θ))

≈ argmax
θ∈Θ

1
N

N∑
n=1

ln f (xn; θ)

since h (f ?) is a constant w.r.t. θ and the unknown expected
value can be approximated by the sample mean over D
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In other words

Likelihood maximisation ⇔ minimising the (empirical)
KL-divergence:

θ̂ML (D) = argmax
θ∈Θ

1
N

N∑
n=1

ln f (xn; θ)

→ argmin
θ∈Θ

DKL (f
? || f )

as N →∞
• Distribution estimation, not parameter estimation
• Now we know where MLE converges under misspecification
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MLE sensitivity explained

The KLD is highly sensitive to the tails of the data distribution:
1. The support of f must cover the support of f ?:

∃X0 :

∫
X0

f ? (x) dx > 0 =

∫
X0

f (x ; θ) dx ⇒ DKL (f
? || f ) =∞

so all possible outcomes must be explained by the model
2. For small differences f ≈ f ? the KLD is similar to a squared

error weighted by 1/f ? (Basu et al., 1998):

DKL (f
? || f ) ≈

∫
1

f ? (x)
(f ? (x)− f (x ; θ))2 dx

◦ “The less probable, the more important”
◦ The mode of f ? is given the lowest weight of all
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Huh?

Let’s take that again:
• MLE gives the mode of f ? – the only point that matters for
output generation – the lowest weight of all!

This deep-seated estimation-generation mismatch has not
previously been recognised in speech synthesis
• For classification, it is well known that accuracy matters most
near class boundaries (and that MLE should be avoided)

• Not common knowledge in data-generation tasks
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Theory section

A closer look at the theory behind the mismatch problem, and a
proposed solution:

1. Maximum likelihood estimation
2. The root of the problem
3. β-estimation
4. Properties of β-estimation
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A possible fix

Idea: Reduce the weight of the tails when fitting!

Try the β-divergences introduced by Basu et al. (1998) and
Eguchi and Kano (2001):

Dβ (f
? || f ) = 1

β

∫
(f ? (x))1+β dx +

∫
(f (x ; θ))1+β dx

− 1+ β

β

∫
f ? (x) (f (x ; θ))β dx

where β > 0 is a tuning parameter
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De-weighting the tails

When f ? (x) ≈ f , we have

Dβ (f
? || f ) ≈ 1+ β

2

∫
(f ? (x))β−1 (f ? (x)− f (x ; θ))2 dx

so the difference in weight between peak(s) and tails decreases as
β increases towards 1, as desired
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Two special cases

One can show that

lim
β→0

Dβ (f
? || f ) = DKL (f

? || f )

D1 (f
? || f ) =

∫
(f ? (x)− f (x ; θ))2 dx

so the β-divergences provide a continuum between the
KL-divergence and complete tail-peak equality
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Do the math

Similar to the KLD case, we work out the β-divergence between
the two distributions

Dβ (f
? || f ) = 1

β

∫
(f ? (x))1+β dx +

∫
(f (x ; θ))1+β dx

− 1+ β

β

∫
f ? (x) (f (x ; θ))β dx

=
1
β

∫
(f ? (x))1+β dx +

∫
(f (x ; θ))1+β dx

− 1+ β

β
Ef ?

(
(f (X ; θ))β

)
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β-estimation

Eliminate constants and substitute in the sample mean as before

argmin
θ∈Θ

Dβ (f
? || f )

= argmax
θ∈Θ

(
Ef ?

(
(f (X ; θ))β

)
− β

1+ β

∫
(f (x ; θ))1+β dx

)
≈ argmax

θ∈Θ

(
1
N

N∑
n=1

(f (xn; θ))
β − β

1+ β

∫
(f (x ; θ))1+β dx

)
= θ̂Mβ (D)

For lack of a better term, we will call this β-estimation
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Theory section

A closer look at the theory behind the mismatch problem, and a
proposed solution:

1. Maximum likelihood estimation
2. The root of the problem
3. β-estimation
4. Properties of β-estimation
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Sums versus products

• In MLE, we maximise the sum of datapoint log-probabilities

argmax
θ

N∏
n=1

f (xn; θ) = argmax
θ

N∑
n=1

ln f (xn; θ)

which is dominated by the worst-fitting points
• In β-estimation, we maximise the sum of datapoint
probabilities taken to a power

argmax
θ

N∑
n=1

(f (xn; θ))
β

so a poorly-fitting point will only give a finite penalty
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The Gaussian case

The β-estimate of the Gaussian mode is a weighted mean

µ̂Mβ (D) =
N∑

n=1

fN
(
xn; µ̂Mβ, Σ̂Mβ

)β
∑N

n′=1 fN
(
xn′ ; µ̂Mβ, Σ̂Mβ

)β xn

• Weights rapidly go to zero for points away from µ̂Mβ

• Unlike the sample mean from MLE, bad points receive very
small weight
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Statistical properties

Basu et al. (1998) show that β-estimation is:
1. Consistent
◦ If ∃θ? ∈ Θ : f ? (x) ≡ f (x ; θ?)

2. Robust
◦ θ̂Mβ (D) is a type of M-estimator (Huber, 2011)

3. Not maximally efficient
◦ Since observations are discarded, more data is required to reach

a certain estimation accuracy
◦ The expected amount of data discarded can be used to set β, as

a bias-variance trade-off
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Overview

1. Background
2. Theory
3. Application
4. Conclusion
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Application section

A first investigation into robust duration modelling for speech
synthesis, reported in Henter et al. (2016):

1. Basic framework
2. Experiment setup
3. Results
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TTS system overview

This application concentrates on the duration model
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Robust duration modelling

• Why duration modelling?
◦ Durations are important for sounding natural (stress, prosody)
◦ Durations are hard to predict
◦ Contrary to standard assumptions, durations are typically skewed

and non-Gaussian

• Application to found data (audiobook)
◦ Substantial transcription and alignment issues

• Phoneme-level robustness
◦ Disregarding sub-state duration vectors on a per-phone basis

60 of 80



Some definitions

• p is a phone instance
• l p is a vector of (input) linguistic features
• Dp ∈ RD is a vector of stochastic (output) sub-state durations
• d p is an outcome of Dp

• D = {(l p, d p)} is a training dataset
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Mixture density network

Assume phone durations are independent and follow a GMM

fD (d ; θ) =
K∑

k=1

ωk · fN (d ; µk , diag(σ
2
k))

• Distribution parameters θ = {ωk , µk , σ
2
k}Kk=1 depend on l via

a deep neural network (DNN) θ (l ; W ) with weights W
◦ This is a mixture density network (MDN; Bishop, 1994)
◦ Probabilistic regression with the functional form given by a DNN

• Setting K = 1 yields a conventional Gaussian duration model

62 of 80



Estimation and generation

Network weights are optimised to maximise the likelihood

ŴML (D) = argmax
W

∑
p∈D

ln fD(d p; θ(l p; W ))

Component selection is used for output (Zen and Senior, 2014;
Wang et al., 2016)

kmax (l) = argmax
k

ωk(l ; Ŵ )

d̂ (l) = µkmax(l)(l ; Ŵ )

• This reduces to standard generation when K = 1
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Application section

A first investigation into robust duration modelling for speech
synthesis, reported in Henter et al. (2016):

1. Basic framework
2. Experiment setup
3. Results
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Setup in brief

• Data: Vol. 3 of Jane Austen’s “Emma” (≈ 3 hours)
◦ Freely available at librivox.org/emma-by-jane-austen-solo
◦ Home recording with imperfect transcriptions, so the (estimated)

training-data durations are sometimes highly incorrect

• DNN: 6 tanh layers with MDN output
◦ Merlin TTS (Wu et al., 2016) in Theano
◦ Very simple to change from MLE to β-estimation
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Reference systems

VOC Vocoded held-out natural speech (top line)

Same acoustic DNN, but different phone duration models:
FRC Synthesised speech with durations from VOC
BOT Always use the mean duration of each phone

(bottom line)
MSE MMSE DNN (baseline)
MLE1 Gaussian, deep MDN maximising likelihood
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Robust systems

MLE3 Three-component (K = 3), deep MDN with MLE
• Synthesis from the maximum-weight component

B75 Gaussian, deep MDN optimising β-divergence
• Set to include approximately 75% of datapoints
(assuming data is Gaussian; this gives β = 0.358)

B50 Gaussian, deep MDN optimising β-divergence
• Set to include approximately 50% of datapoints
(assuming data is Gaussian; this gives β = 0.663)
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Application section

A first investigation into robust duration modelling for speech
synthesis, reported in Henter et al. (2016):

1. Basic framework
2. Experiment setup
3. Results
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Outlier rejection

RMSE with respect to real durations (FRC) on test-data subsets:
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Outlier rejection

Relative RMSE on test-data subsets (with BOT at 1.0):
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Subjective evaluation

21 listeners ranked parallel examples of the different systems
• 21 sentences, of which each listener ranked 18
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Subjective results

Listening test results, after converting to ranks:

S
u
b
je

ct
iv

e
ra

n
k

(h
ig

h
es

t
is

b
es

t)

VOC FRC BOT MSE MLE1 MLE3 B75 B50
1

2

3

4

5

6

7

8

71 of 80



Observations

• Robust duration models improve objective measures on the
majority of the datapoints
◦ Extreme examples are ignored, thus giving a better model of

typical speech

• There are also improvements in subjective preference
◦ Humans liked speech based on robust methods significantly more

• These advantages are not visible in objective error measures
that are not themselves robust (e.g., MSE on entire dataset)
◦ Be careful about how you evaluate performance!
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Overview

1. Background
2. Theory
3. Application
4. Conclusion
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Summary

1. Estimation and generation in data generation have
fundamentally mismatched priorities
◦ MLE cares most about the parts of the data that are the least

relevant as output
◦ This makes ML-estimated models highly sensitive to

misspecification and bad training material
◦ Minimum MSE-based prediction tasks are also affected

2. Robust statistics offer a solution to the problems
◦ A good fit for mode-based output generation
◦ β-estimation is a simple method that directly addresses the

estimation-generation mismatch
◦ Robustness provides improved objective and subjective results
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An aside on sampling

The KL-divergence (i.e., MLE) is inappropriate both for:
• Most probable output generation (Henter et al., 2016)
• Sampling from the fitted model (Theis et al., 2016)
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Sampling is also affected

MLE places a lot of probablity mass in low-probability regions
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Generative adversarial networks

Generative adversarial networks (GANs; Goodfellow et al., 2014):

• State-of-the art for sampling from models in many tasks
• Represent “learned perception”
◦ Models are scored based on distinguishability between real and

synthetic examples
• Change the optimisation procedure, not necessarily its goal
◦ Can optimise likelihood (Goodfellow, 2014), or robust error

measures like Jensen-Shannon divergence (Goodfellow et al.,
2014) or Wasserstein distance (Arjovsky et al., 2017)

◦ Robustness is not inherent, but still a choice we have to make
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Random or deterministic output?

Henter et al. (2014) found that the preferred generation strategy
may depend on model accuracy:

Acoustic model (sorted by increasing accuracy)
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• Only samples can become indistinguishable from real examples
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Outlook

β-estimation and robust data generation methods fill an empty
spot beside our best classification approaches:

Task Classification Data generation
(return label) (return observation)

Output Peak Peak Random
Approach Instantiation/example
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Outlook

β-estimation and robust data generation methods fill an empty
spot beside our best classification approaches:

Task Classification Data generation
(return label) (return observation)

Output Peak Peak Random
Approach Instantiation/example
Generic Generative MLE
Task- MMI MGE MLE-GANoriented (cond. MLE) (MMSE)

+ Robust MWE/MPE/MCE β-estimation JSD-GAN
(min. class. err.) Student’s-t WGAN
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The end



The end

Thank you for listening!
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Example audio

Example utterance from held-out audiobook chapter:

VOC FRC BOT MSE MLE1
MLE3 B75 B50
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Paths to robustness

1. Clean or improve the data (everyone does this already)
2. Change the model family
◦ Example: Richter distribution (Zen et al., 2016), Student’s

t-distribution (Aravkin et al., 2011)

3. Change the fitting principle
◦ Example: β-estimation (Henter et al., 2016), non-MLE GANs

(Goodfellow et al., 2014; Arjovsky et al., 2017)

4. Change the fitted model before generation
◦ Example: Discard mixture components (Zen and Senior, 2014)
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Fitting a fat-tailed distribution

Student’s t-distribution with ν = 2.5 fit using MLE
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Preventing singularities

• Unlike MLE, β-estimation incorporates an explicit
data-independent concentration penalty

Iβ (θ) =
β

1+ β

∫
(f (x ; θ))1+β dx

that prevents the estimation from explaining only a single
datapoint

• If fN (x ; µ, Σ) is the Gaussian pdf, the concentration penalty
can be computed from∫

(fN (x ; µ, Σ))1+β dx = (2π)−
Dβ
2 (1+ β)−

D
2 (detΣ)−

β
2
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Effective sample size

If the Gaussian model is correct, how much more data will the
robust procedure need to reach the same accuracy as MLE?

Results from Basu et al. (1998) give the effective sample size

Neff →
(
1+

β2

1+ 2β

)−D+2
2

N

• This gives an impression of the number of datapoints ignored
• If the data is not a perfect fit, more points are likely to be
discarded
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The robust trade-off

Robustness versus estimation accuracy is a kind of bias-variance
(Domingos, 2000) trade-off:
• β too small
◦ Sensitivity to bad data and bad assumptions (large bias)

• β too large
◦ Sensitivity to random variation (large variance)
◦ Uncommon behaviour might be ignored
• Difficult-to-predict speech sounds might not be modelled
• Another type of modelling bias
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Tuning β

Estimating tuning parameters from data – including the
necessary degree of robustness – is often not robust

We propose to choose β based on a certain target Neff, say 0.8,
with case-by-case modifications:
• The greater the data-model mismatch, the lower Neff

◦ In difficult situations, we need to be more robust

• With more data, Neff can probably be reduced
◦ Likely to give a lower bias for the same variance

91 of 80



TTS system overview

Training: Build models using parallel text and audio

Vocoder

Text
analysis

Forced
alignment

Train
duration
model

Train
acoustic
model

Training
speech

waveform

Training
text

Frame-level acoustic features (speech parameters)

Phoneme-level linguistic features

Phone durations
(in frames)

Convert to
frame level

Frame-level
linguistic
features
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TTS system overview

Synthesis: Use models to generate audio from input text

Vocoder

Text
analysis

Use
duration
model

Use
acoustic
model

Synthetic
speech

waveform

New
text

Frame-level acoustic features (speech parameters)

Phoneme-level linguistic features
Convert to
frame level

Frame-level
linguistic
features

Phone durations
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Data

Audiobooks are a classic source of found TTS data
• Jane Austen’s “Emma” from LibriVox
◦ Volume 3, chapters 1–10
◦ Read by Sherry Crowther (US English)

• 1739 utterances (92,025 non-silent phones)
◦ 175 minutes total, 6.06 s average utterance duration
◦ Train/dev/test sets: 1660/39/40 utterances
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Input and output features

• 200 frames per second at 44.1 kHz
• Linguistic features
◦ Based on Festvox
◦ One-hot encoding of 592 categorical features l (b)

◦ Nine continuous-valued features l (d), normalised to range
[0.01, 0.99]

• Acoustic features x
◦ STRAIGHT vocoder
• Log-F0, 60 spectrum mel-ceps, 25 baps

◦ Statics, deltas, and delta-deltas (≈ 250 dimensions total)
◦ Each dimension normalised to zero mean and unit variance
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Synthesis steps

1. ehmm for acoustics-based pause/silence insertion
◦ Oracle pausing strategy

2. text & pausing information → binary linguistic features l (b)

3. l (b) → DNN-predicted per-phone (rounded) Gaussian mean
state durations d

4. d → duration-based linguistic features l (d)

5. l (b) & l (d) → DNN-predicted per-frame static & dynamic
feature distributions

6. MLPG with postfiltering to generate acoustic parameter
trajectories
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Neural network design

• 6 hidden layers
◦ 256/1024 units each (duration/acoustic model)
◦ tanh activation function

• MDN parameter output layer
◦ Softmax outputs for weights
◦ Linear outputs for means
◦ Logarithmic outputs with variance flooring for diagonal

covariances
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Implementation

Deep MDN code based on Wu et al. (2016)
• Setup largely follows Zen and Senior (2014)
◦ Random initialisation
◦ Trained until development set likelihood peaked

• GPU implementation with Python + Theano
◦ Batched stochastic gradient descent
◦ β-estimation straightforward to implement
• Trained as refinements of less robust models (e.g., MLE)

◦ Log-sum-exp trick for safe GMM likelihood evaluation
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Listening test details

• 21 held-out sentences (2–8 seconds long) used
• MUSHRA/preference test hybrid
◦ Stimuli presented in parallel (unlabelled, random order)
◦ No designated reference stimulus
◦ Instructed to rank the different stimuli by preference

• 21 listeners
◦ Each ranked 18 sentences in a balanced design
◦ Remaining sentences used for training and GUI tutorial
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Minimum MSE is MLE is the mean

For a D-dimensional isotropic Gaussian distribution

fN (xn; µ, σ
2I ) =

(
2πσ2

)−D
2 e−

1
2 (xn−µ)ᵀ(σ2I)

−1
(xn−µ)

the maximum-likelihood estimate of the location parameter µ is

µ̂ML (D) = argmax
µ∈RD

∑N
n=1 ln fN (xn; µ, σ

2I ) (MLE of µ)

= argmax
µ∈RD

∑N
n=1 −

1
2σ2

(xn − µ)ᵀ (xn − µ)

= argmin
µ∈RD

∑N
n=1 ‖xn − µ‖22 (MMSE for µ)

= 1
N

∑N
n=1xn = x (sample mean)
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