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Synopsis

• To efficiently improve speech technology, we need to know which
parts that work well, and which parts that are flawed

• Perceptual debugging provides the answers, e.g.,
• Why DNN-based synthesis beats HMM-based synthesis
• What major bottlenecks affect statistical parametric speech
synthesis

• Methodological innovation: Manipulating repeated speech
• We can listen to synthesisers that do not exist yet(!)
• This can answer questions previously considered unanswerable
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Design choices in speech synthesis

Practical statistical speech synthesis involves many design decisions:
• Training corpus
• Text processing
• Speech parameter representation (waveform-level or vocoder,
MGCs, etc.)

• Probabilistic models
• Output generation method

Inappropriate design choices degrade (for example) output
naturalness
• Statistical parametric speech synthesis (SPSS) is not
convincingly natural
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Perceptual debugging

“Isolating the perceptual effects of design decisions in speech
synthesis”

• Software debugging: Tying behavioural flaws to the code
segments that cause them
• Finding faults is necessary to eliminate them

• Perceptual debugging: Tying perceptual flaws to the design
decisions that cause them
• Fault-finding for model assumptions rather than code
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Similar to software profiling
Highlight hotspots of poor performance in design decisions, not code
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Why perceptual debugging?

• Guide speech synthesis research and development
• Which innovations are most important for observed perceptual
improvements?

• Which design aspects limit current synthesis performance?
• How much better could synthesis get if specific bottlenecks were
eliminated?

• Shed light on human perception
• Which properties of speech do humans attend to?
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Great perceptual debugging is. . .

• Quantitative, comprehensive, and precise
• Numerically quantifies degradation severities
• Can partition the entire gap between natural and synthetic
speech, attributing each piece to a specific design decision

• Different from correlating human judgements and low-level signal
properties (e.g., correlating naturalness and global variance)
• Perceptual debugging finds problems not with the signal, but
with the design

• Perceptual debugging establishes causation, not just correlation
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Two debugging approaches

1. Listen to existing synthesisers
• Build and compare synthesisers with minimal differences

• Special cases: Exploring enhancements; ablation analysis
• Traditional fault-finding approach
• Constructive lower bound on performance

2. Simulate hypothetical future synthesisers
• Possible to do using repeated speech
• Novel, model-free approach!
• Non-constructive upper bounds on performance

We will look at an example of each approach in turn
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Co-author credit

This section is based on:

Watts, O., Henter, G. E., Merritt, T., Wu, Z., and King, S. (2016).

From HMMs to DNNs: where do the improvements come from?
In Proc. ICASSP, pages 5505–5509
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Benefits of perceptual debugging

• Guide speech synthesis research and development
• Which innovations are most important for observed perceptual
improvements?

• Which design aspects limit current synthesis performance?
• How much better could synthesis get if specific bottlenecks were
eliminated?

• Shed light on human perception
• Which properties of speech do humans attend to?
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Whence the recent improvements?

• DNN-based statistical speech synthesisers are more natural than
older HMM/decision-tree systems
• (Zen et al., 2013; Qian et al., 2014; Wu et al., 2015; Hashimoto
et al., 2015)

• Many factors differ between systems
• It is not just DNNs/RNNs vs. decision trees!

• Idea: Compare different acoustic models by stepping gradually
from HTS (Zen et al., 2007) to Merlin (Wu et al., 2016)
• Measure output naturalness side by side
• What are the important factors for the recent improvements?
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Differences between HTS and Merlin

• Regression tree or deep/recurrent neural network
• (Zen et al., 2013; Merritt et al., 2015)

• State-level or frame-level granularity
• (Zen et al., 2013)

• Parameter streams modelled separately or jointly
• (Chen et al., 2015)

• Context-dependent or fixed variance
• (Zen and Senior, 2014)

• Duration-independent or dependent acoustics
• (Zen et al., 2013; Wu et al., 2015)

• Full or reduced question set
• Multi-space or interpolated F0

• (Chen and Yu, 2014)
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Graphical comparison of HTS and Merlin
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Setup in brief

• Data:
• Hurricane corpus: 2400 studio-recorded (48 kHz) newspaper
sentences read by “Nick” (native British male RP speaker)

• Evaluate on 60 Harvard sentences (6 balanced sets)
• Features (HTS/Merlin):

• 2926/863 binary + 1/9 continuous linguistic features based on
Festvox

• 60×3 MCCs, 25×3 baps, 1×3 log F0 acoustic features based on
STRAIGHT (Kawahara, 2006)

• 5 ms frame shift

• HTS setup: 5 sub-phone states, MDL penalty factor 1.0
• Merlin setup: 6 FF tanh layers with 1024 units, MDN output
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Systems built

Numerous synthesisers were built with slight variations between each:
ID Reg. Gran. Streams Var. Dur. feats. Enhance
T1 RT state sep. context-dep. no (1) GV
T2 RT state sep. context-dep. no (1) PF
N1 DNN state sep. context-dep. no (1) PF
N2 DNN state sep. fixed no (1) PF
N3 DNN state joint fixed no (1) PF
N4 DNN frame sep. fixed no (2) PF
N5 DNN frame joint fixed no (2) PF
N6 DNN frame joint fixed yes (9) PF

The listening test also included vocoded natural speech (V)
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A spectrum of models
Studied acoustic models step gradually from HTS demo to Merlin

HTS demo Merlin

T1

T2 N1 N2

N3

N4

N5 N6
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Listening examples

V: Hvd. 651 Hvd. 652
T1: Hvd. 651 Hvd. 652
T2: Hvd. 651 Hvd. 652
N1: Hvd. 651 Hvd. 652
N2: Hvd. 651 Hvd. 652
N3: Hvd. 651 Hvd. 652
N4: Hvd. 651 Hvd. 652
N5: Hvd. 651 Hvd. 652
N6: Hvd. 651 Hvd. 652

(More at dx.doi.org/10.7488/ds/1316)
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Naturalness test
MUSHRA test for parallel, fine-grained naturalness assessment
• ITU standard; better resolution than MOS (Ribeiro et al., 2015)
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Naturalness results

Box plot of 400 MUSHRA comparisons (20 subjects):
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Naturalness results

Pairwise Wilcoxon signed-rank tests (α = 0.05) separate five groups
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Differences identified
Red arrows highlight significant differences

HTS demo Merlin

T1

T2 N1 N2

N3

N4

N5 N6
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Findings

Several factors significantly improved rated naturalness:
1. Regression tree → deep neural network (big effect)
2. State-level → frame-level granularity (big effect)
3. Duration-dependent acoustics (smaller effect)

• Only evaluated using oracle (not predicted) durations

Other factors did not have a significant effect
• Enhancement method, context-dependent variance, separate or
joint stream modelling
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Co-author credit

This section is based on:

Henter, G. E., Merritt, T., Shannon, M., Mayo, C., and King, S.

(2014). Measuring the perceptual effects of modelling assumptions in
speech synthesis using stimuli constructed from repeated natural
speech.
In Proc. Interspeech, pages 1504–1508
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Benefits of perceptual debugging

• Guide speech synthesis research and development
• Which innovations are most important for observed perceptual
improvements?

• Which design aspects limit current synthesis performance?
• How much better could synthesis get if specific bottlenecks were
eliminated?

• Shed light on human perception
• Which properties of speech do humans attend to?
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An impossible(?) dream

Wouldn’t it be cool to extend the model-stepping approach to
evaluate models that are better than those we have right now?

HTS demo Merlin

T1

T2 N1 N2

N3

N4

N5 N6

Perfect
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Speech from the future

It turns out that we can listen to speech synthesisers before we build
them!

• We can simulate the output of hypothetical, future synthesisers
• Not science fiction, but science fact!
• Unlike traditional fault finding, comparisons occur in the context
of an otherwise highly-accurate model
• The perceptual effects of different design choices are no longer
masked by other imperfections
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Our insight

Synthesisers are statistical models we can listen to, but there are
many better models we do not have access to

Perfect
Accuracy

M1 M2 M3 ?? ?? ?? MN

S1 S2 S3

Model

Output
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Our insight

We can, however, listen to the output of the true speech model

Perfect
Accuracy

M1 M2 M3 ?? ?? ?? MN

S1 S2 S3 SN

Model

Output
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Our insight

This makes it possible to simulate the output of models in between
the two extremes

Perfect
Accuracy
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Our insight

This makes it possible to simulate the output of models in between
the two extremes

Perfect
Accuracy

M1 M2 M3 ?? ?? ?? MN

S1 S2 S3 SN

Model

Output S4 S5 S6
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More specifically

• Natural speech is a sample from the true acoustic model

• By manipulating repeated natural speech we can simulate output
from
• Better models than those we have today

• That only incorporate certain, specific modelling assumptions
• And otherwise are close to perfect

• Given a particular parameter representation (including vocoder)
• And a particular output generation method
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Repeated speech

Even when controlling for context, the same text can be realised
acoustically in many different ways

“Rice is often served in round bowls”
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The value of repeated speech

Repeated speech under carefully controlled conditions reflects the
inexorable acoustic variation of natural speech:
• Same talker
• Same text
• Same place
• Same time
• Same equipment
• Same manner of speaking
• . . . just different realisations
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REHASP 0.5 corpus

• “REpeated HArvard Sentence Prompts”
• Female native British English speaker “Lucy”
• 30 Harvard sentence prompts
• Each read aloud 40 times

• Presented in random order

• Recorded at 16 bit 96 kHz
• Publicly available under a permissive license

• datashare.is.ed.ac.uk/handle/10283/561
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In pictures

0. Start with natural speech repetitions:
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In pictures

1. Extract parameters:

Repetition 1
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Speech representation

Standard parametric speech representation used for experiments:
• 16 kHz sampling frequency
• Matlab STRAIGHT for parameter extraction
• 46-dimensional parameter vector with three streams:

• 40 MCEPs (0–39), representing filter coefficients
• log F0
• 5 band aperiodicities (baps)

• 5 ms frame shift
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In pictures

1.b. Resynthesise (baseline “V”):

Repetition 1
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In pictures

1. Extract parameters:

Repetition 2

Repetition 3

Repetition 1
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Match timings

2.a. Match frames:

Repetition 2

Repetition 3

Repetition 1
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Match timings

2.b. Warp timings:
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Match timings

2.b. Warp timings:
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Match timings

2.c. Resynthesise (baseline “D”):
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Match timings

2.d. Optionally remove reference:
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Match timings

2.d. Optionally remove reference:
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Match timings

We now have “LEGO pieces” of aligned repetitions
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Create chimeric speech

3.a. Combine parameters from independent repetitions:
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Create chimeric speech

3.a. Combine parameters from independent repetitions:

Filter 3

Source 1

Filter 1

Source 3
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Create chimeric speech

3.a. Combine parameters from independent repetitions:

Filter 1
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Create chimeric speech

3.a. Resynthesise chimeric speech (here condition “SF”):

Filter 1

Source 3
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Create mean speech

3.b. Take the mean of all repetitions:
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Create mean speech

3.b. Take the mean of all repetitions:

Repetition 3

Repetition 1

Mean
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Create mean speech

3.b. Resynthesise mean speech (condition “M”):

Repetition 3

Repetition 1

Mean
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Interpretation

More than methodology: Our manipulations are meaningful because
they have deep and important mathematical interpretations

• Repeated speech ≈ independent samples from a “perfect”
acoustic model

• Chimeric speech ≈ samples from a model making certain
independence assumptions but no distributional assumptions

• Mean speech ≈ the mean of a probabilistic model
• Same mean regardless of feature independence assumptions
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Overview

1. Introduction
2. Debugging contemporary synthesisers

2.1 Example study
3. Debugging future synthesisers

3.1 New methodology
3.2 Example study

4. Outlook
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First investigation

• Two model-assumption classes:
1. Stream independence assumptions

1.1 Source and filter parameters conditionally independent
1.2 Filter, pitch, aperiodicities conditionally independent

2. Conditional independence among filter coefficients

• Two output-generation methods:
1. Random sampling from probability distribution
2. Mean parameter generation

= 12 conditions (4 baselines: “N”, “VU”, “V”, “D”)
• For each of our 30 Harvard sentences
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First investigation

• Two model-assumption classes:
1. Stream independence assumptions

1.1 Source and filter parameters conditionally independent “SF”
1.2 Filter, pitch, aperiodicities conditionally independent “SI”

2. Conditional independence among filter coefficients “I” etc.
• Two output-generation methods:

1. Random sampling from probability distribution
2. Mean parameter generation “M”

= 12 conditions (4 baselines: “N”, “VU”, “V”, “D”)
• For each of our 30 Harvard sentences
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Listening examples

Sampling-based generation:
Database examples: 3 7 26 32
Baselines: N VU V D
Stream independence: SF SI
Filter coefficient independence: L1 L2 H1 H2 I

Mean-based generation:
Averaging: M

(More at homepages.inf.ed.ac.uk/ghenter)
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Naturalness results

Box plot of 549 MUSHRA comparisons rating natural speech at 100:

S
u
b
je
ct
iv
e
sc
o
re

VU V D SF SI I M
0

10

20

30

40

50

60

70

80

90

100

G. E. Henter (KTH) Perceptual debugging of TTS 2018-06-27 46 / 59



Naturalness results

Wilcoxon signed-rank tests (α = 0.01) separate most conditions
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Findings

• When sampling from models:
1. Source-filter independence assumption reduces naturalness
2. Independence assumptions among filter coefficients further

reduce naturalness

• Using mean-based parameter generation:
1. Better than sampling for poor models
2. Less natural than sampling for accurate models

Note: Since x̂MMSE = argminx̂ E (X − x̂)2 = E (X ) for any
X -distribution, any approach that successfully minimises the
squared error of the predicted speech features will sound like M
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Mean vs. sampling generation
Mean-based generation (=MMSE) may never sound perfectly natural

Acoustic model (sorted by increasing accuracy)
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Mean vs. sampling generation
Not until WaveNet (van den Oord et al., 2016) did crossover occur

Acoustic model (sorted by increasing accuracy)
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Study limitations

Study conclusions not directly applicable to:
• Other speakers
• Other speech representations

• Different vocoders, waveform-level synthesis, . . .
• Other parameter generation methods

• Postfiltering, global variance modelling (GV), modulation
spectrum, . . .

. . . but the same methodology is still applicable
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Methodological limitations

The repeated-speech methodology has broad applicability
• Both positive and negative results are of interest

Key limitations:
• Can only speak pre-recorded prompts

• Not a general-purpose TTS system

• Needs accurate time-alignment of repetitions
• Manipulation artefacts must be kept in check
• Applies in the limit of accurate models

• Higher modelling accuracy 6⇒ perceptually preferred
• E.g., GV gives a less accurate model, but better-sounding mean
speech (Shannon and Byrne, 2013)
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Limitations of accurate models

Not all accuracy-naturalness combinations are attainable
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Limitations of accurate models

Well-produced audio can be preferred over raw natural recordings
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Limitations of accurate models

TTS with GV is exaggerated (less accurate), but sounds better
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Limitations of accurate models

Not clear if repeated speech can explore models above the dotted line
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Overview

1. Introduction
2. Debugging contemporary synthesisers

2.1 Example study
3. Debugging future synthesisers

3.1 New methodology
3.2 Example study

4. Outlook
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Outlook

Starting point: Perceptual debugging is not isolated papers, but an
entire line of research!
• Many things left to explore
• The use of repeated speech, especially, allows new questions to
be answered

• Let me know if you are interested!
• We have an unreleased database (REHASP 1.0) with 40×100
repetitions + newspaper sentences
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Future directions: Modelled speech

• Extended synthesiser comparison
• RNNs as well as DNNs and HMMs
• Include question set and F0 handling
• Evaluate with predicted durations
• Include GV-based output generation

• Which factors are necessary for DNN success?
• Opinions differ on why DNNs work so well
• Dataset size, computational resources, depth, pretraining?
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Future directions: Repeated speech I

• Finding speech signals that optimise objective measures
• Mean speech approx. minimises mel-cepstral distortion (MCD)
• Iterate alignment and minimisation, similar to EM-algorithm
• Estimate the expected MCD of sampled and mean speech
• What is the MCD gap to modelled speech?
• What does minimum-MCD speech sound like?

• Directly approximating the most likely speech parameters
• Standard SPSS parameter generation (Tokuda et al., 2000) is
derived from seeking the most probable output

• The peak is different from the mean if the distribution is skewed
• Apply mode-seeking algorithms

• Measuring human consistency
• How precisely do humans control speech signal properties?
• What is consistent, and what is not?
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Future directions: Repeated speech II

• Perceptual debugging beyond naturalness
• How do design decisions affect intelligibility in noise, speaker
similarity, or completion rates and times on complex task?

• Example: Transcription of chimeric/mean stimuli in noise

• Perceptual debugging of other TTS paradigms
• Hybrid synthesis (trajectory tiling) parameter generation
• Waveform-level alignments for waveform-level synthesis

• Perceptual debugging of TTS prosody
• Transplanting prosody between man and machine

• Multimodal data, e.g., lip/body motion synthesis. . .
• Use repeated recordings to test independence assumptions
beyond TTS
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Future directions: Both

• Partition the entire perceptual gap between natural and
synthetic speech
• Text analysis
• Speech representation

• Vocoder; MGCs vs. PCA dimensionality reduction
• Independence assumptions
• Distribution assumptions
• . . . all under different generation methods

• Sampling, mean generation (Tokuda et al., 2000),
state-of-the-art GV compensation (Nose, 2016)
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A unified approach

We can score the entire spectrum of design decisions in TTS:

M1 M2 M3 ?? ?? ?? MN

S1 S2 S3 WN

Model

Output S4 S5 S6

Modelled Manipulated Recorded

SN

Represented

G. E. Henter (KTH) Perceptual debugging of TTS 2018-06-27 58 / 59



The end



The end

Thank you for listening!



The end

Any questions?
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Pairwise differences

Box plot of score differences when stepping from HTS to Merlin:
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Interpretation

• Repeated speech ≈ independent samples from a “perfect”
acoustic model

D = {xn} X n ∼ fX n | L (x | l) = fX | L (x | l) X =

[
S
F

]
• Chimeric speech ≈ samples from a model making certain
independence assumptions but no distributional assumptions

fX | L (x | l) = fS | L (s | l) fF | L (f | l)
fS1 | L (s1 | l) fF 1 | L (f 1 | l) · fS2 | L (s2 | l) fF2 | L (f 2 | l)

= fS1 | L (s1 | l) fF1 | L (f 2 | l) · fS2 | L (s2 | l) fF2 | L (f 1 | l)
• Mean speech ≈ the mean of a probabilistic model

(E (X | l))d =

∫
xd fX | L (x | l) dx =

∫
xd fXd | L (xd | l) dxd
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REHASP 1.0 corpus

• “REpeated HArvard Sentence Prompts”
• Professional male native British English speaker “Nick”
• 40 Harvard sentence prompts
• Each read aloud 100 times

• Presented in random order

• 24 bit 96 kHz
• To be made available under a permissive license
• Also includes ≈3000 news prompts
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Recent synthesis breakthroughs

• WaveNet (van den Oord et al., 2016)
• Naturalistic generative signal model

• Tacotron (Wang et al., 2017)
• Forced alignment (decision tree) → jointly learned attention
(neural network)

• No need for a duration model
• Tacotron 2, others

• WaveNet as a signal generator for SPSS
• Tacotron 2 (Shen et al., 2018)

• Faster, simpler, 16-bit WaveNet
• Learns to map speech parameters with SPSS artefacts to
naturalistic signals, thus circumventing the bound we found
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