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This talk in a nutshell
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• Automated character animation is a challenging and interesting problem

• The world is probabilistic; our motion models should be, too

• MoGlow is a new probabilistic model for motion
– Autoregressive sequence model with normalising flows
– Reaches the state of the art in a range of different applications

• Text-to-speech → text-to-behaviour
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Where do we need character animation?
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• Computer and video games

• Film and SFX

• Architectural visualisations

• Virtual avatars

• Social robots



Animation is a complex process
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• 3D character animation requires several steps
1. Planning motion

> Storyboarding, previsualisation

2. Creating motion
> Motion capture (mocap) or keyframing + inbetweening

3. Editing motion
> Cleanup, retargeting, etc.

• Issues
– Time-consuming
– Expensive

> Requires coordination among many different experts
> Director, mocap actors, technicians, animators…

– Rigid process



Character animation example
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Sketch to locomotion
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Sketch to locomotion



Speech to gesture
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Music to motion
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Why be probabilistic?
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Point estimation
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Understanding minimum mean squared error
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• In the limit of infinite data, the expected mean squared error (MSE) is 
minimised by the conditional mean

• Models trained to minimise the MSE loss converge on “average motion”
– “Mean collapse” or “regression to the mean”
– This does not necessarily look natural

by (x) = min
y

E
h
(Y � y)2

���X = x
i
= E [Y |X = x]



Motivating example 1: D6

2021-10-12 18Image source: https://commons.wikimedia.org/wiki/File:Dice_2005.jpg

Mean outcome 
= 3.5
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side with 3.5 

pips?



Motivating example 2: Speech
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G. E. Henter et al., ”Measuring the perceptual effects of modelling assumptions in speech synthesis using stimuli constructed from repeated natural speech”, Proc. Interspeech, 2014



Averaging in higher dimensions
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• In higher dimensions, the data typically sits on a low-dimensional manifold
– Additional information (context, control) helps narrow down the range of possible motion

• The (conditional) mean is the centre of gravity of the probability mass
– The greater the degree of averaging, the more noticeably unnatural the result



Control of different motion types

2021-10-12 21

• Lip motion
– Highly predictable from speech audio

> We call this a “strong control signal”

• Locomotion
– Not highly predictable from the path

> A “weak control signal”

– Highly predictable from path and, e.g., phase (cyclic locomotion) or foot contacts

• Head motion, hand gestures, stance in conversation, etc.
– Not well-determined by co-occurring speech
– No strong control signals are available

D. Holden et al., “Phase-functioned neural networks for character control” & D. Holden et al., “A deep learning framework for character motion synthesis and editing”, ACM Trans. Graph. 2018, 2016



Motion synthesis from weak control signals

2021-10-12 22

Deterministic (MMSE) Probabilistic (MoGlow)
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Desiderata
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• Tractable statistical inference
– It should be easy to compute the exact probability of an observation
– This enables efficient maximum-likelihood training

• Straightforward output generation
– Drawing random samples from the learned distribution should be fast and easy

• Flexibility
– Mathematically, all the probability distributions our model can represent constitute a 

parametric family
ℱ = 𝑝 𝑥!:#; 𝜃 $∈&

> Example: Multivariate Gaussians with diagonal covariance matrices
– We want this parametric family to be sufficiently rich to well fit the true distribution



Gaussian 
(MMSE)

MDN VAE GAN Normalising 
flow

Training ✓ ✓ ✗ ✗ ✓

Sampling ✓ ✓ ✓ ✓ ✓

Flexibility ✗ ✗ ✗ ✓ ✓
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Key idea of normalising flows
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• Change a simple distribution into a more complex distribution using an 
invertible transformation
– The change-of-variables formula gives the log-likelihood after transformation

• These invertible, nonlinear transformations can be chained together

– This is the same idea that gives power to neural networks and GANs
– The base, latent, or source distribution can be a standard Gaussian

ln pX (x) = ln pZ
�
f�1 (x)

�
+ ln

����det
@

@x
f�1 (x)

����

z = zN
fN! zN�1

fN�1! · · · f2! z1
f1! z0 = x
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X = f (Z)



An analogy to baking
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An analogy to baking
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A 2D toy example

2021-10-12 29Image source Eric jang: https://blog.evjang.com/2018/01/nf2.html

Z Xf

Simple base distribution Invertible transformation(s) Natural output distribution



Face generation using Glow

2021-10-12 30D. P. Kingma & P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions”, Proc. NeurIPS, 2018



The Glow invertible neural network
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– Also called “1x1 convolution”
– Extension of a learned permutation

• Coupling layer
– Nonlinearly transforms one half of 

the input variables, based on the 
remaining half

– Transformation is invertible
– A neural network computes the 

transformation parameters

D. P. Kingma & P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions”, Proc. NeurIPS, 2018
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The effect of the different substeps
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• Without activation normalisation

– The network may never learn to perform 
well due to poor initialisation

• Without the linear transformation
– Half of the output elements will follow a 

simple Gaussian distribution
> Since the elements have never been 

reordered, these elements have never 
been nonlinearly transformed

• Without the coupling layer
– The remaining network layers collapse to 

a simple affine transformation of the input 
distribution



Pros and cons of Glow
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• Advantages
– Exact inference
– Likelihood can be optimised using gradient-based methods
– Equally fast to compute the forward and backward transformations

• Disadvantages
– More computations than GANs since dim𝑍 = dim𝑋

> Hierarchical structure can reduce computation

– More layers needed since the transformations are weak
> Thus more parameters

• My view: “It’s easier to make a good model fast than it is to make a fast model 
good”

L. Dinh et al., “Density estimation using Real NVP”, Proc. ICLR, 2017



Graphical overview
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MoGlow: Probabilistic and controllable motion 
synthesis using normalising flows
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Effect of long memory on stability
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Without LSTMs With LSTMs
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Achieving control
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X. Wang et al., “Autoregressive neural f0 model for statistical parametric speech synthesis,” IEEE/ACM T. Audio Speech, 2018.



Effect of data dropout
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No dropout Pose dropout rate = 0.95



Effect of data dropout
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No dropout Pose dropout rate = 0.95



Complete MoGlow architecture
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MoGlow advantages
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• Probabilistic model
– Describes all possible outcomes, not just a single one

• Implicit generator structure
– Flexible and fast to sample from, like GANs

• Tractable statistical inference
– Can be trained to maximise likelihood

• General
– No assumptions about the nature of the motion (or even that the data is motion at all!)

• Interactively controllable
– No algorithmic latency

• Gives high-quality results



Experiments
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• Initial application: Locomotion synthesis with path control

• Studying locomotion has several advantages:
– It is easy to spot artefacts and poor adherence to the control
– Foot-sliding can be quantified objectively

• Control signal: Forward, sideways, and angular velocity of the root node
– Result: The root node exactly follows a given path through space; the model has to 

generate a consistent series of poses along the way
– The path dictated by the control signal is visualised as a blue curve projected onto the 

ground plane in videos
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Locomotion synthesis tasks
Bipedal locomotion Quadrupedal locomotion

Data from I. Habibie et al., “A recurrent variational autoencoder for human motion synthesis”, Proc. BMVC, 2017 & CMU Graphics MoCap Database & HDM05



2021-10-12 59Data from H. Zhang et al., “Mode-adaptive neural networks for quadruped motion control”, ACM T. Graphic., 2018

Locomotion synthesis tasks
Bipedal locomotion Quadrupedal locomotion



Pose representations
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Joint positions Joint angles/rotations



Systems trained
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Systems trained

2021-10-12 62D. Greenwood et al., “Predicting head pose in dyadic conversation”, Proc. IVA., 2017.



2021-10-12 63D. Pavllo et al., “QuaterNet: A quaternion-based recurrent model for human motion,” Proc. BMVC, 2018.

Systems trained



Systems trained

2021-10-12 64H. Zhang et al. “Mode-adaptive neural networks for quadruped motion control,” ACM Trans. Graph, 2018.



Systems trained
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Systems trained
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Comparisons
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Comparisons
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Comparisons

2021-10-12 69

Synthetic control signal

MoGlowVAELSTM



Comparisons
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QuaterNet on held-out control signals
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QuaterNet on synthetic control signals
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Evaluations
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• Footstep analysis
– In locomotion generation, the most noticeable artefacts are foot sliding, which is easy to 

quantify objectively
– Please see the paper for the results

• Crowdsourced subjective evaluation
– Figure Eight platform
– “Grade the perceived naturalness of the animation from 1 to 5”
– Held-out and synthetic control input
– Bad clips and too rapid responses were used to filter out unreliable raters
– 3,550/4,289 ratings analysed (human/dog)

• No foot stabilisation or other post-processing used



Results of user study on the human data
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Average subjective ratings
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Validating the probabilistic aspects
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• Can we get meaningfully different output for the same control input?

• Will more diverse data enable more diverse output motion?

• Also demonstrated on skinned characters
– Trained on two different motion-capture datasets for video games applications

> LaFAN1 dataset from Ubisoft
> Kinematica Demo dataset from Unity

– Joint angles (represented using the exponential map)
– 60% dropout rate gave smoother motion

LaFAN1 data from F. G. Harvey et al., “Robust motion in-betweening”, ACM Trans. Graph., 2020.



Random samples with the same control input
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Complicated and unusual motion
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What we learned
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• Normalising flows deliver on their promise
– Easy to train, fast to generate from, and flexible enough to describe believable motion

• Probabilistic motion modelling works!
– We can describe many different outcomes in one model

• Interactive motion control without algorithmic latency is possible

• Results score close to natural motion
– The same approach works for two different morphologies
– And different pose representations
– The model generalises well to synthetic motion trajectories



What we learned
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• Data dropout is a simple and effective trick to make autoregressive models 
respect the control

• Adding a recurrent hidden state (the LSTMs) stabilised synthesis

• There was no need to “reduce the temperature” to improve visual quality when 
drawing samples
– Unlike Glow, BigGAN, GPT-3, etc.

• Data augmentation helps
– Reversing the data in time taught the models to walk backwards

• Standing still was the most challenging control input for leading motion-
synthesis methods



Graphical overview

2021-10-12 81

Motion

MoGlow
MoGlow

for
gestures

Multimodal 
synthesis

Speech
synthesis

Human
communication Speech

Gesture
Probabilistic 

models

Auto-
regression

Normalising 
flows



Co-speech gesture example

2021-10-12 82Data from Y. Ferstl & R. McDonnell, “Investigating the use of recurrent motion modelling for speech gesture generation”, Proc. IVA, 2018



Synthetic gesture applications

2021-10-12 83Image sources: SoftBank Robotics (pepper) & Polygon.com (The Witcher 3: Wild Hunt by CD Projekt)



Speech and gesture in communication
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Hand-gesture categories
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• Deictic gestures
– Pointing gestures and similar references to the space of the interaction

• Iconic gestures
– Illustrate physical properties and actions 

• Metaphorical gestures
– Illustrate abstract meaning

• Beat gestures
– Follow speech prosody

> Rhythm, emphasis, etc.

• Beats primarily correlate with speech acoustics; the other categories primarily 
correlate with speech semantics

D. McNeill, Hand and Mind: What Gestures Reveal about Thought, University of Chicago Press, 1992



Gesture-generation paradigms
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• Hand-animated behaviour
• Triggered by rule

• More adaptable and generalisable
• More diverse output
• Less interpretable
• Requires more data

Classic human-designed approach Emerging data-driven approach

Image sources: J. Cassell et al. “BEAT: The behavior expression animation toolkit”, Proc. SIGGRAPH, 2001 & Y. Yoon et al. “Robots learn social skills”, Proc. ICRA, 2019



Graphical overview
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Style-controllable speech-driven gesture synthesis 
using normalising flows

Honourable mention at EUROGRAPHICS 2020

Simon 
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Problems with existing gesture synthesis
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• Gesture synthesis is challenging due to massive variation
– Rule-based methods cannot express this well
– Deterministic methods also fail to capture variation and are prone to artefacts

• Synthesisers provide limited control over output
– People gesture differently according to, e.g., personality and mood

• It is common to focus on hands and upper body only
– But we use our entire body to express ourselves!



Desired system
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Desired system
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Adapting MoGlow to gesture synthesis
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Adapting MoGlow to gesture synthesis

2021-10-12 97

… zt−3 zt−2 zt−1 zt zt+1

ht−3 ht−2 ht−1 ht ht+1

Base sequence

Hidden LSTM state

Normalising flowf

Autoregression

Conditioning info

… xt−2 xt−1 xt+1xtxt−3 Pose sequence

… ht+2

Concatenate

xt−2 xt−1xt−2 xt−1

zt+2

xt+2

Per-pose dropout

xt−4

… at−3 ct−2 ct−1 ct at+1 Acoustic featuresat+2ct−2 ct−1 ctat−2 at−1 atat−4



Adapting MoGlow to gesture synthesis

2021-10-12 98

… zt−3 zt−2 zt−1 zt zt+1

ht−3 ht−2 ht−1 ht ht+1

Base sequence

Hidden LSTM state

Normalising flowf

Autoregression

Conditioning info

… xt−2 xt−1 xt+1xtxt−3 Pose sequence

… ht+2

Concatenate

xt−2 xt−1xt−2 xt−1

zt+2

xt+2

Per-pose dropout

xt−4

… at−3 ct−2 ct−1 ct at+1 Acoustic featuresat+2ct−2 ct−1 ctat−2 at−1 atat−4



Adapting MoGlow to gesture synthesis

2021-10-12 99
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Co-speech gesture data
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• Trinity speech-gesture dataset
– One male actor speaking spontaneously
– 244 minutes of parallel audio and 3D motion capture
– Post-processed to correct synchronisation issues

> Corrected data available in the original repository
> Hands use a fixed pose due to low finger-capture quality

27 log-magnitude
mel-spectrogram features

45/65 joint 
rotations

Y. Ferstl & R. McDonnell, “Investigating the use of recurrent motion modelling for speech gesture generation”, Proc. IVA, 2018.



Style inputs
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• The database does not come with stylistic annotations
– For demonstration purposes, we used automatically-extracted hand-motion statistics

> E.g.: “The hand speed should be X m/s on average over in a 4 s time window”

SpeedHeight Radius Symmetry



Style inputs
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Moving average (4 s)

Height Radius Speed



Style inputs
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Correlation (4 s)

Symmetry



Constant-input style-controlled gestures
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Full-body gestures
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Subjective evaluations
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• Crowdsourced subjective evaluation
– Same Figure Eight platform and 1-to-5 MOS scale as before
– Bad clips and too rapid/slow responses were used to filter out unreliable raters
– 40 independent crowdworkers took part

• Two different aspects were rated
– Human-likeness

> “To what extent does the motion of the character look like the motion of a real human being?”

– Appropriateness
> “To what extent does the motion match the audio?”
> Evaluating appropriateness is not a solved problem



Subjective evaluation

2021-10-12 107The ARP system is T. Kucherenko et al., “Analyzing input and output representations for speech-driven gesture generation”, Proc. IVA, 2019.



What we learned
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• MoGlow works for gesture generation
– Appears to be a new state of the art in continuous gesture generation human-likeness
– Strong showing in the 2020 GENEA Challenge

> Like the Blizzard Challenge, but for gesture generation

• Gesture style control is possible without degrading motion quality

• Tuning gesture-generation models is tricky
– The output exhibits a large amount of random variation
– The only useful objective measure we found was the training set log-likelihood

• Validation-set likelihood does not reflect the visual quality of the motion
– Overfitted models look best
– Possibly due to data dropout
– Mismatch can be reduced by methods from robust statistics (see our INNF+ publication)
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Motion
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for
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Multimodal 
synthesis

Speech
synthesis

Human
communication Speech

Gesture
Probabilistic 

models

Auto-
regression

Normalising 
flows
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Speech synthesis vs. gesture synthesis

TTS

Gesture

Embodied agent

Incoherent!

Read

Spontaneous



Objective
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• Merge speech and gesture synthesis
– Enable multimodal communication from text input

TTS
+

gesture

Coherent!Speech + motion
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Spontaneous speech synthesis team
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Éva
Székely

Gustav Eje 
Henter

Jonas
Beskow

Joakim
Gustafson



Recent publications
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Casting to corpus: Segmenting and selecting spontaneous 
dialogue for TTS with a CNN-LSTM speaker-dependent breath 

detector
Spontaneous conversational speech synthesis from found data

Off the cuff: Exploring extemporaneous speech delivery with TTS
How to train your fillers: uh and um in spontaneous speech 

synthesis
Breathing and speech planning in spontaneous speech synthesis

Published at ICASSP 2019, 2020, Interspeech 2019, and SSW 2019



Spontaneous TTS from found data
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Training data

Text prompt source

Read speech 
(24 h found 
audiobooks)

Spontaneous 
(9 h found 
podcast)

Spontaneous
(1.5 h studio-
recorded)

Books

Public speaking

Casual conversation

É. Székely et al., “Spontaneous conversational speech synthesis from found data”, Proc. Interspeech, 2019 https://www.speech.kth.se/tts-demos/is19/
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Generating coherent spontaneous speech and 
gesture from text

IVA 2020

Éva
Székely

Gustav Eje 
Henter

Taras
Kucherenko

Jonas
Beskow

Simon 
Alexanderson



Objective
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• Merge speech and gesture synthesis
– Enable multimodal communication from text input

• First step: 
1. Text to spontaneous speech
2. Spontaneous speech to gesture

Using the same multimodal recordings

TTS
+

gesture

Speech + motion



Approach
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TEXT

Tacotron 2 + Griffin-Lim

Spontaneous
synthetic 
speech Gesture

Gesture MoGlow



Result
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Hand peak velocities across 300 samples
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Natural speech input

Synthetic speech input
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Generated from
natural speech input

Generated from 
synthetic speech input

In the 
training data

Gesture-space visualisation



Conclusion
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• Automated character animation is a challenging and interesting problem 

• The world is probabilistic; our motion models should be, too

• MoGlow is a new probabilistic model for motion
– Task-agnostic
– Meaningfully probabilistic
– No (or adjustable) algorithmic latency

• MoGlow reaches or surpasses the state of the art in a wide variety of 
applications

• Text-to-speech → text-to-behaviour



Project homepages

2021-10-12 124

https://simonalexanderson.github.io/
MoGlow

https://github.com/
simonalexanderson/StyleGestures

https://simonalexanderson.github.io/
IVA2020/

https://simonalexanderson.github.io/MoGlow
https://github.com/simonalexanderson/StyleGestures
https://simonalexanderson.github.io/IVA2020/


Additional gesture publications
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• T. Kucherenko, P. Jonell, Y. Yoon, P. Wolfert, & G. E. Henter, “A Large, crowdsourced evaluation of 
gesture generation systems on common data: The GENEA Challenge 2020”, Proc. IUI, 2021.

• T. Kucherenko, D. Hasegawa, N. Kaneko, G. E. Henter, & H. Kjellström, “Moving fast and slow: Analysis of 
representations and post-processing in speech-driven automatic gesture generation”, Int. J. Human 
Comput. Interact., 2021.

• P. Jonell, T. Kucherenko, G. E. Henter, & J. Beskow, “Let's face it: Probabilistic multi-modal interlocutor-
aware generation of facial gestures in dyadic settings”, Proc. IVA, 2020.

• T. Kucherenko, P. Jonell, S. van Waveren, G. E. Henter, S. Alexanderson, I. Leite, & H. Kjellström, 
“Gesticulator: A framework for semantically-aware speech-driven gesture generation”, Proc. ICMI, 2020.

• S. Alexanderson & G. E. Henter, “Robust model training and generalisation with Studentising flows”, Proc. 
INNF+, 2020.

• T. Kucherenko, D. Hasegawa, G. E. Henter, N. Kaneko, & H. Kjellström, “Analyzing input and output 
representations for speech-driven gesture generation”, Proc. IVA, 2020.

• T. Kucherenko, D. Hasegawa, N. Kaneko, G. E. Henter, & H. Kjellström, “On the importance of 
representations for speech-driven gesture generation”, Proc. AAMAS, 2019.



Thank you for listening!
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Thank you for listening
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Any questions?
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Backup slides



Probabilistic approaches compared

Gauss. 
(MSE)

MDN HMM
/ SLDS

Kalman 
filter

GP-LVM 
/ GPDM

VAE GAN Norm. 
flow

Rand. X Gauss. ℝ ℝ Gauss. Gauss. ℝ - -

Map 𝑓 Deep Deep Deep Linear Non-
linear

Deep Deep Invertible 
deep

Rand. 𝑍 - Discrete Discrete Gauss. ℝ ℝ ℝ ℝ

Map 𝑔 - Deep Deep Linear Non-
linear

Deep - -

Inference ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

Sampling ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Flexibility ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓
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Mathematical model
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• Probability of a sequence of vector-valued, continuous observations
– Assume limited memory – a Markov model

– The initial pose distribution is not modelled

• The next-step distribution also depends on a parameter
– Here, the parameters are the matrices and network weights inside Glow

p (xt |x1�p:t�1) ✓

p (x1:T ) = p (x1:p)
TY

t=p+1

p (xt | x1:t�1)

⇡ p (x1:p)
TY

t=p+1

p (xt | x1�p:t�1)

p (x1:T ; ✓) = p (x1:p)
TY

t=p+1

p (xt | x1�p:t�1; ✓)



Long-term memory
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• Introduce a hidden state      to the model that also influences the next-step 
distribution
– HMMs, Kalman filters, and LSTMs all do this

– Concretely, this is done by using LSTMs in the coupling layer neural network
– “Long memory” since 

• The main advantage appears to be avoid unstable autoregressive models
– Crucial to get the approach to work in practice

p (x1:T ; ✓) = p (x1:p)
TY

t=p+1

p (xt | x1�p:t�1, ht�1; ✓)

hp�1= 0

ht= g (x1�p:t�1, ht�1; ✓)

ht

p (xt |x1:t�1) = p (xt |x1�p:t�1; ✓) 6= p (xt |x1�p:t�1)

<latexit sha1_base64="vOGXQcD7WBT/V6wqszecYTrzL68="></latexit>



Achieving control
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• The next-step distribution now also depends on a per-frame control input
– No future control information is used

p (x1:T ; ✓) = p (x1:p)
TY

t=p+1

p (xt | x1�p:t�1, c1�p:t, ht�1; ✓)

hp�1 = 0

ht = g (x1�p:t�1, c1�p:t, ht�1; ✓)



Likelihood function
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• For completeness, the likelihood of a single sequence in MoGlow is

ln 𝑝& 𝑥; 𝜃 = const. +
1
2 𝑧'

( 𝑥 𝑧' 𝑥 +1
)*+

'

1
,*+

-

ln 𝑠′) , + ln𝑢) ,, + ln 𝑠) , 𝑥

– The constant is just the normalisation constant of a 𝐷-dimensional standard normal
– There’s one term each for the actnorm layer, the linear layer, and the coupling layer
– The contribution from the linear layer is fast to compute by parametrising the 

transformation (matrix multiplication) using an LU-decomposition
– Only the coupling term depends on 𝑥; the other terms are global and fixed



Results per motion clip (human locomotion)
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Footstep analysis
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Human Dog



Footstep analysis
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Additional examples
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Held-out control signal



Additional examples

2021-10-12 138

Sinusoidal heading, constant speed Sinusoidal heading and speed



Stability and recovery
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Stability and recovery
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Random samples with the same control input
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Random sample 1 Random sample 2



Objective evaluation
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Low right hand High right hand



Objective evaluation
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Low speed High speed



Objective evaluation
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Low symmetry High symmetry



Objective evaluation
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Low radius High radius


