KTH ROYAL INSTITUTE OF TECHNOLOGY

Move over, MSE! New probabilistic models of motion

Gustav Eje Henter

Division of Speech, Music and Hearing (TMH), KTH Royal Institute of Technology, Stockholm, Sweden

Motion and speech co-authors

Simon Alexanderson

Taras Kucherenko

Patrik Jonell

Sanne van Waveren

Éva Székely

Jonas Beskow

Joakim Gustafson

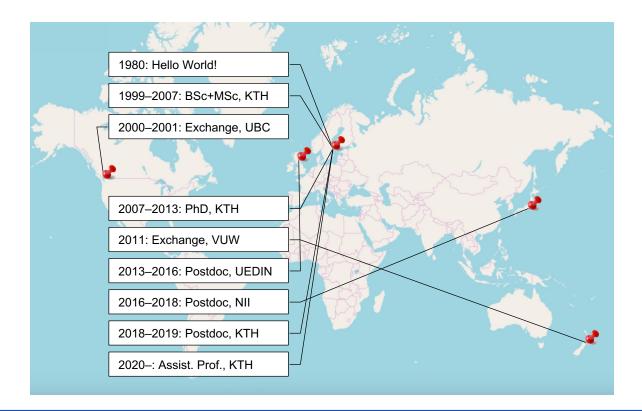
Dai Hasegawa

Naoshi Kaneko

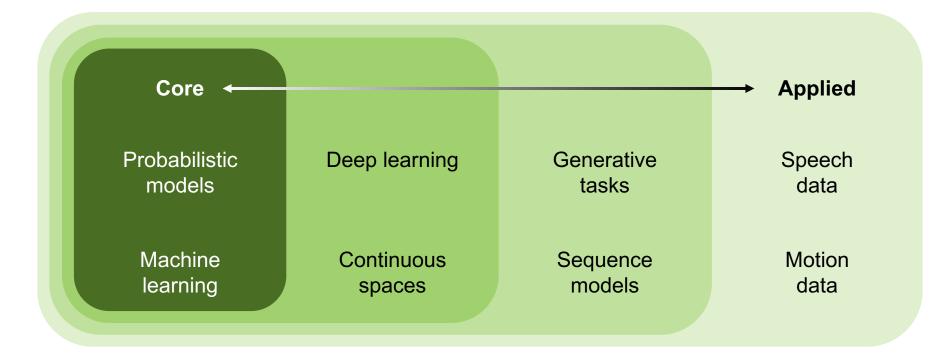
lolanda Leite

Hedvig Kjellström

Personal background



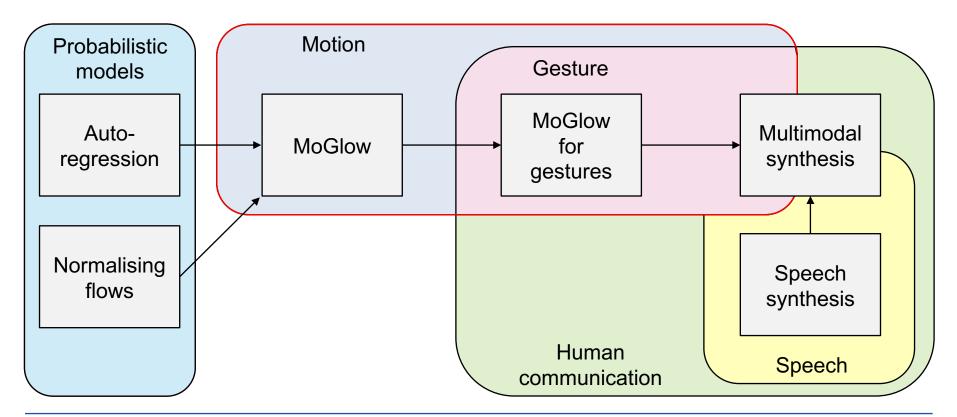
Research interests



This talk in a nutshell

- Automated character animation is a challenging and interesting problem
- The world is probabilistic; our motion models should be, too
- MoGlow is a new probabilistic model for motion
 - Autoregressive sequence model with normalising flows
 - Reaches the state of the art in a range of different applications
- Text-to-speech \rightarrow text-to-behaviour

Graphical overview of this talk

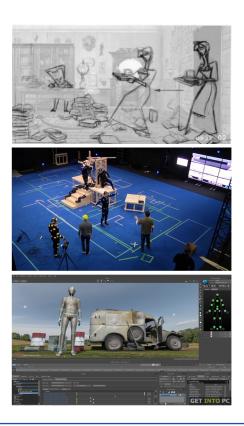


Where do we need character animation?

- Computer and video games
- Film and SFX
- Architectural visualisations
- Virtual avatars
- Social robots

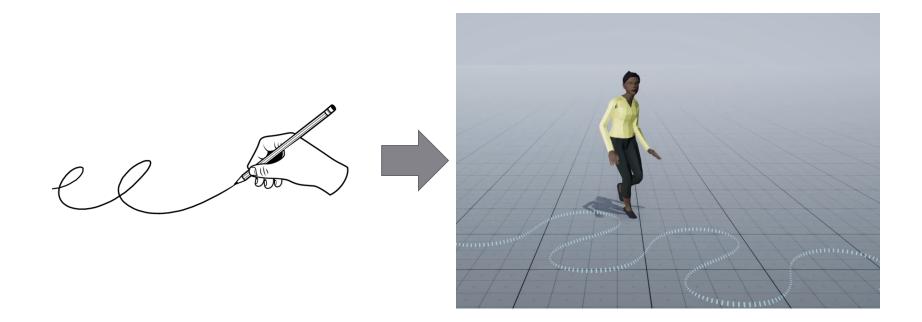
Animation is a complex process

- 3D character animation requires several steps
 - 1. Planning motion
 - > Storyboarding, previsualisation
 - 2. Creating motion
 - > Motion capture (mocap) or keyframing + inbetweening
 - 3. Editing motion
 - > Cleanup, retargeting, etc.
- Issues
 - Time-consuming
 - Expensive
 - > Requires coordination among many different experts
 - > Director, mocap actors, technicians, animators...
 - Rigid process

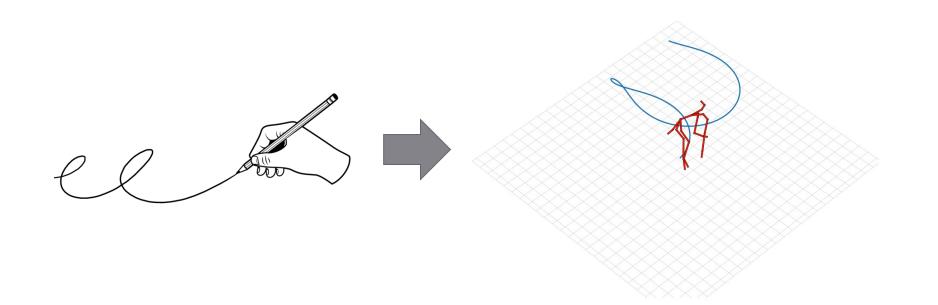


Character animation example

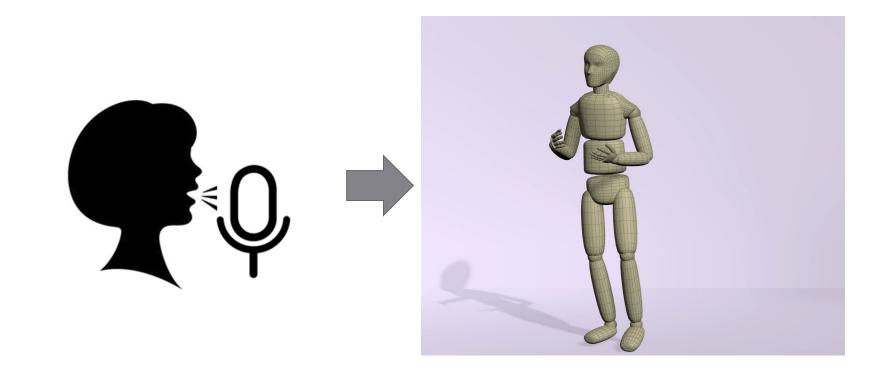
Sketch to locomotion

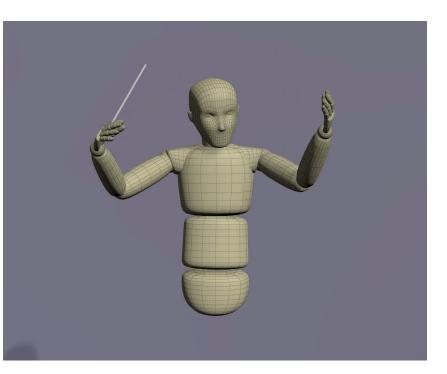


Sketch to locomotion

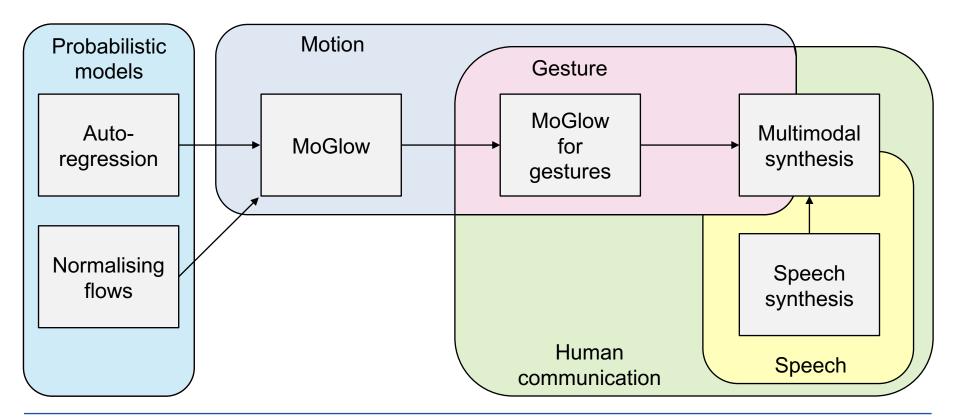


Speech to gesture

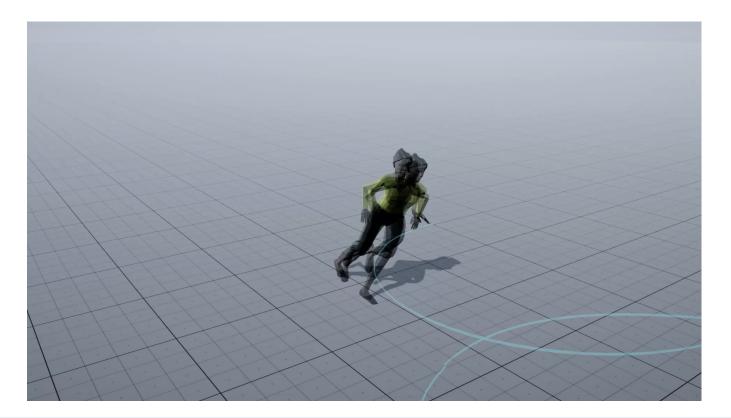




Graphical overview of this talk



Why be probabilistic?



Point estimation

Understanding minimum mean squared error

 In the limit of infinite data, the expected mean squared error (MSE) is minimised by the conditional mean

$$\widehat{y}(x) = \min_{y} \mathbb{E}\left[\left(Y - y\right)^{2} \mid X = x\right] = \mathbb{E}\left[Y \mid X = x\right]$$

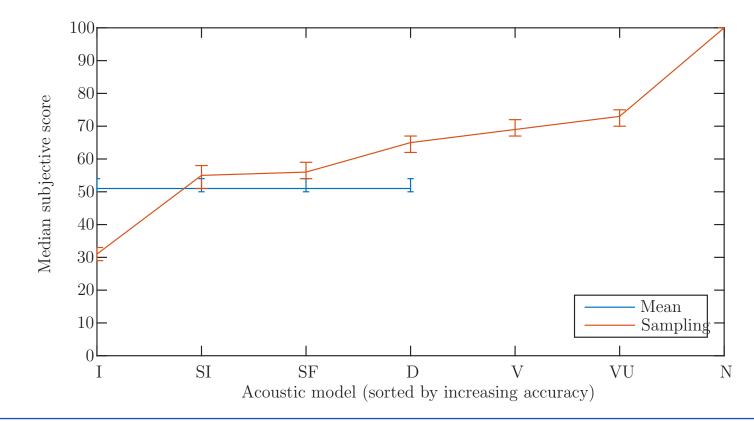
- Models trained to minimise the MSE loss converge on "average motion"
 - "Mean collapse" or "regression to the mean"
 - This does not necessarily look natural

Motivating example 1: D6

Mean outcome = 3.5

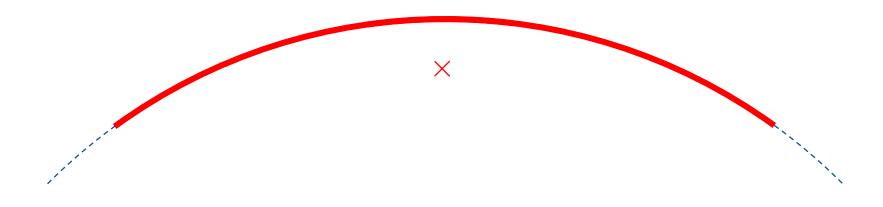
Where's the side with 3.5 pips?

Motivating example 2: Speech



Averaging in higher dimensions

- In higher dimensions, the data typically sits on a low-dimensional manifold
 - Additional information (context, control) helps narrow down the range of possible motion
- The (conditional) mean is the centre of gravity of the probability mass
 - The greater the degree of averaging, the more noticeably unnatural the result



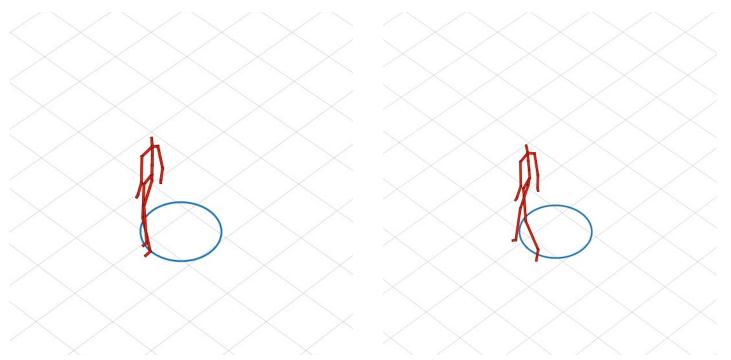
Control of different motion types

- Lip motion
 - Highly predictable from speech audio
 - > We call this a "strong control signal"
- Locomotion
 - Not highly predictable from the path
 - > A "weak control signal"
 - Highly predictable from path and, e.g., phase (cyclic locomotion) or foot contacts
- Head motion, hand gestures, stance in conversation, etc.
 - Not well-determined by co-occurring speech
 - No strong control signals are available

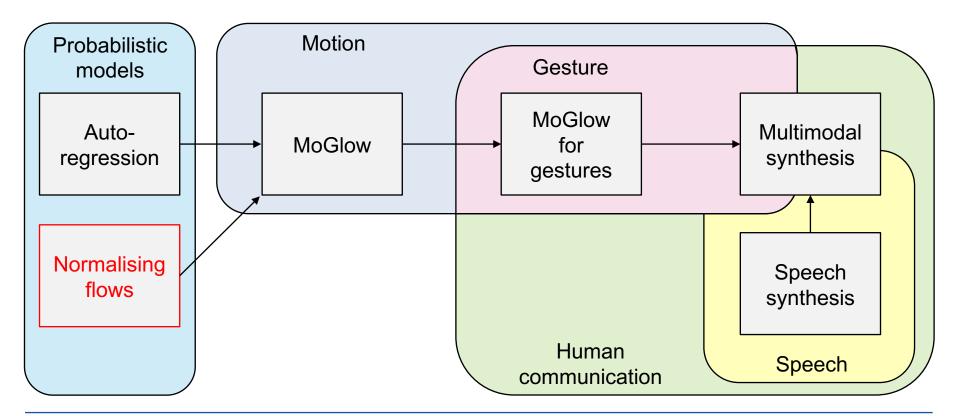
Motion synthesis from weak control signals

Deterministic (MMSE)

Probabilistic (MoGlow)



Graphical overview



Desiderata

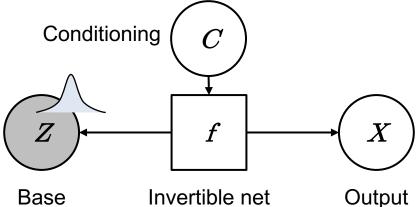
- Tractable statistical inference
 - It should be easy to compute the exact probability of an observation
 - This enables efficient maximum-likelihood training
- Straightforward output generation
 - Drawing random samples from the learned distribution should be fast and easy
- Flexibility
 - Mathematically, all the probability distributions our model can represent constitute a parametric family

 $\mathcal{F} = \{p(x_{1:T};\theta)\}_{\theta\in\Theta}$

- > Example: Multivariate Gaussians with diagonal covariance matrices
- We want this parametric family to be sufficiently rich to well fit the true distribution

Different probabilistic approaches

	Gaussian (MMSE)	MDN	VAE	GAN	Normalising flow
Training	\checkmark	\checkmark	Х	Х	\checkmark
Sampling	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Flexibility	Х	Х	Х	\checkmark	\checkmark



Key idea of normalising flows

- Change a simple distribution into a more complex distribution using an *invertible* transformation X = f(Z)
 - The change-of-variables formula gives the log-likelihood after transformation

$$\ln p_{\boldsymbol{X}}\left(\boldsymbol{x}\right) = \ln p_{\boldsymbol{Z}}\left(\boldsymbol{f}^{-1}\left(\boldsymbol{x}\right)\right) + \ln \left|\det \frac{\partial}{\partial \boldsymbol{x}}\boldsymbol{f}^{-1}\left(\boldsymbol{x}\right)\right|$$

• These invertible, nonlinear transformations can be chained together

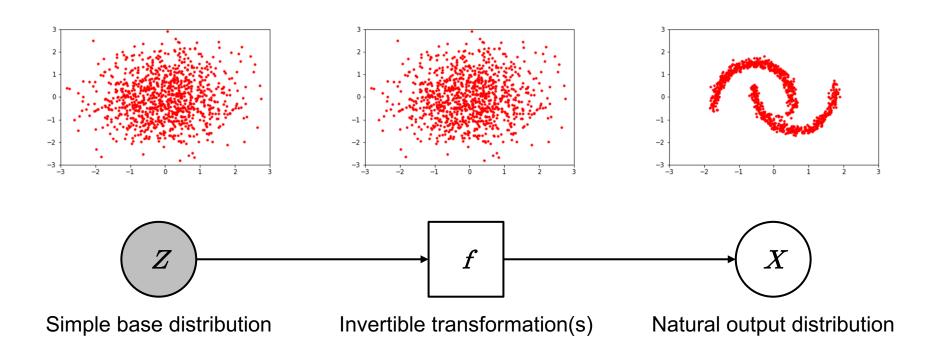
$$oldsymbol{z} = oldsymbol{z}_N \stackrel{oldsymbol{f}_N}{
ightarrow} oldsymbol{z}_{N-1} \stackrel{oldsymbol{f}_{N-1}}{
ightarrow} \cdots \stackrel{oldsymbol{f}_2}{
ightarrow} oldsymbol{z}_1 \stackrel{oldsymbol{f}_1}{
ightarrow} oldsymbol{z}_0 = oldsymbol{x}$$

- This is the same idea that gives power to neural networks and GANs
- The base, latent, or source distribution Z can be a standard Gaussian

An analogy to baking

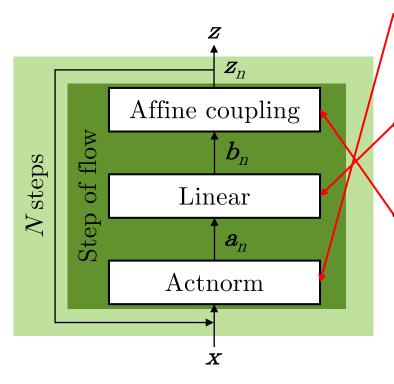
An analogy to baking

A 2D toy example



Face generation using Glow

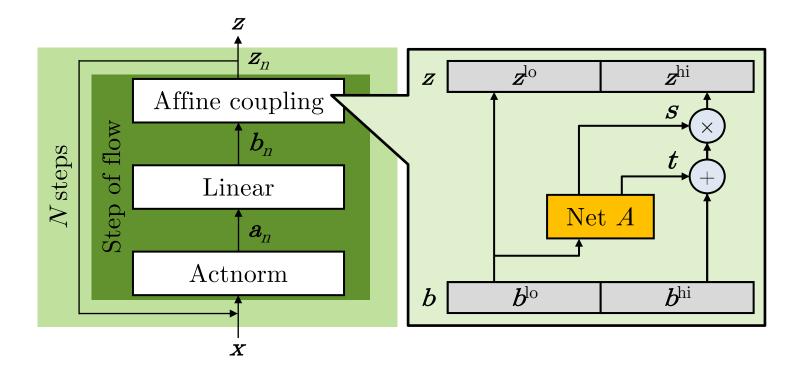
The Glow invertible neural network



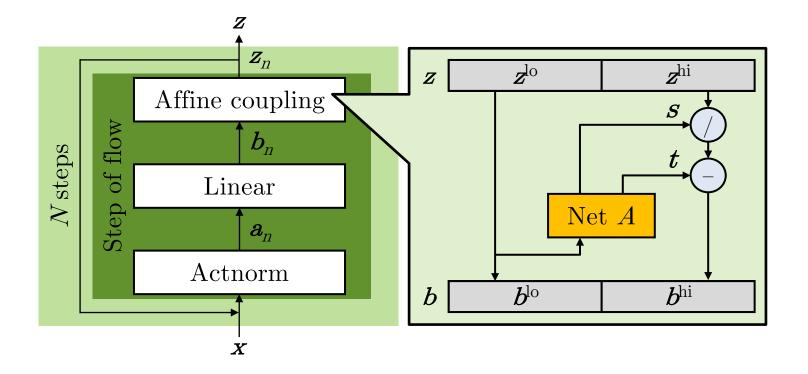
Activation normalisation

- Elementwise affine transformation
- Special initialisation to stand in for batch norm
- Linear transformation
 - Also called "1x1 convolution"
 - Extension of a learned permutation
- Coupling layer
 - Nonlinearly transforms one half of the input variables, based on the remaining half
 - Transformation is invertible
 - A neural network computes the transformation parameters

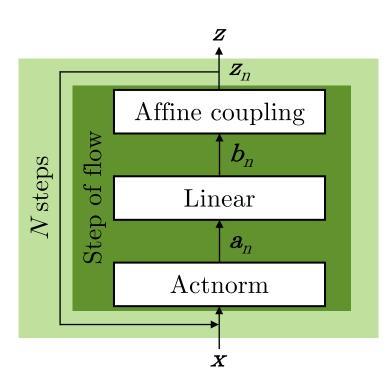
The affine coupling layer



Inverting the affine coupling layer



The effect of the different substeps

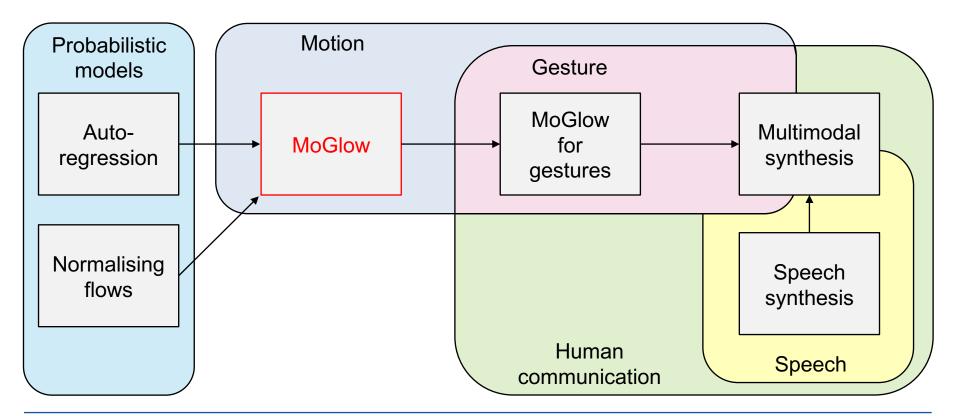


- Without activation normalisation
 - The network may never learn to perform well due to poor initialisation
- Without the linear transformation
 - Half of the output elements will follow a simple Gaussian distribution
 - Since the elements have never been reordered, these elements have never been nonlinearly transformed
- Without the coupling layer
 - The remaining network layers collapse to a simple affine transformation of the input distribution

Pros and cons of Glow

- Advantages
 - Exact inference
 - Likelihood can be optimised using gradient-based methods
 - Equally fast to compute the forward and backward transformations
- Disadvantages
 - More computations than GANs since $\dim Z = \dim X$
 - > Hierarchical structure can reduce computation
 - More layers needed since the transformations are weak
 - > Thus more parameters
- My view: "It's easier to make a good model fast than it is to make a fast model good"

Graphical overview



MoGlow: Probabilistic and controllable motion synthesis using normalising flows

Gustav Eje Henter

Simon Alexanderson

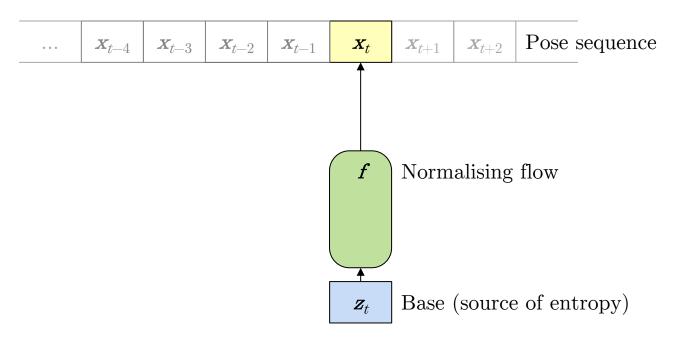
Jonas Beskow

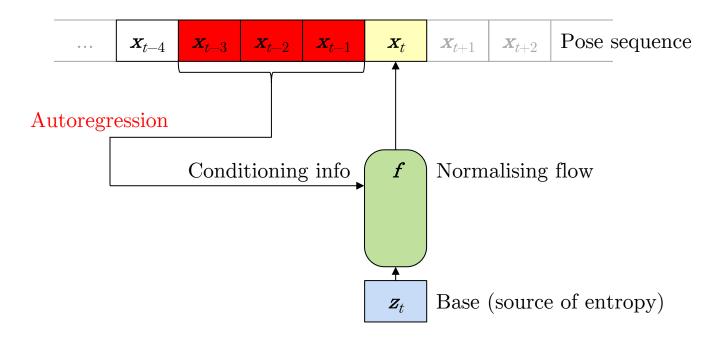
SIGGRAPH Asia 2020

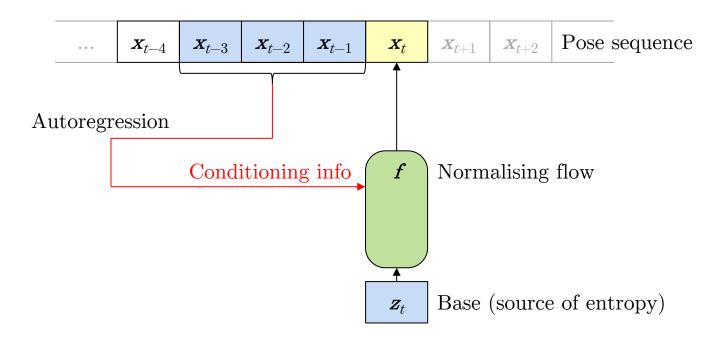
Sequence modelling

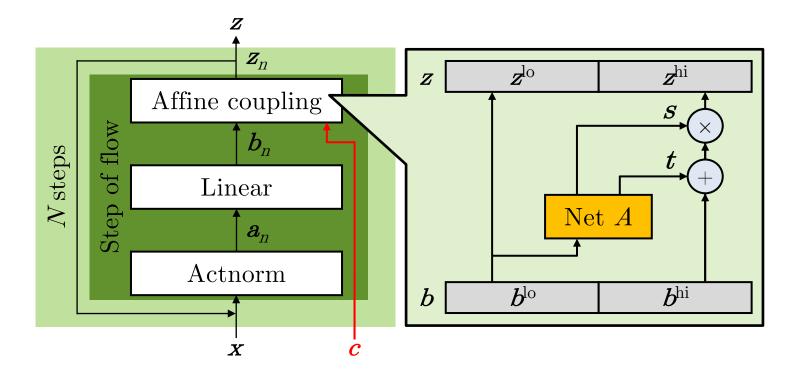
	\pmb{x}_{t-4}	\pmb{x}_{t-3}	$\pmb{x}_{t\!-\!2}$	\pmb{x}_{t-1}	$oldsymbol{x}_t$	\pmb{x}_{t+1}	\pmb{x}_{t+2}	Pose sequence
--	-----------------	-----------------	---------------------	-----------------	------------------	-----------------	-----------------	---------------

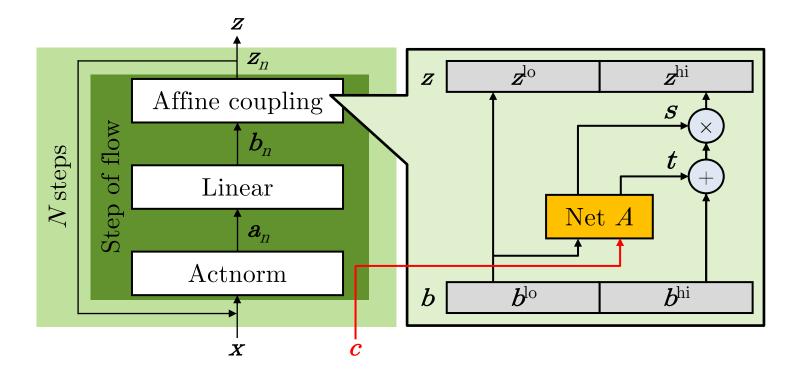
Sequence modelling

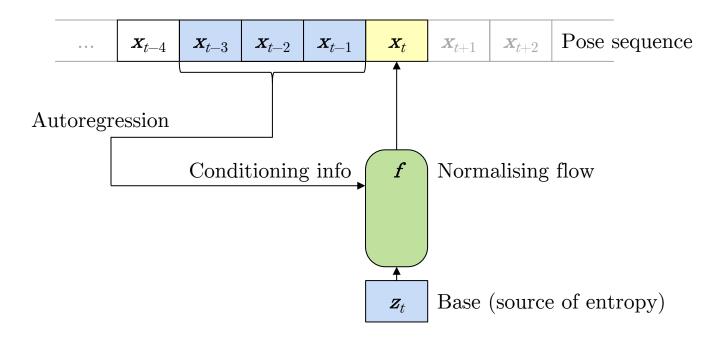


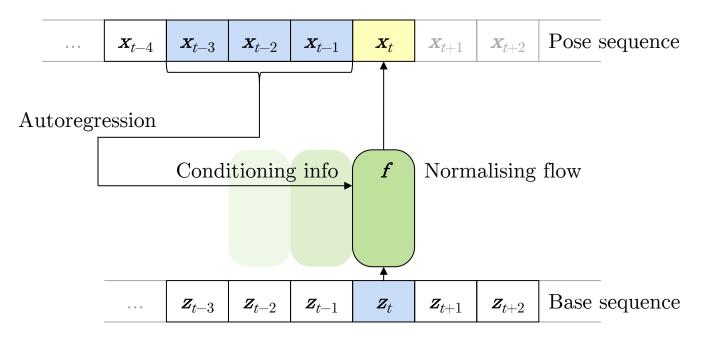


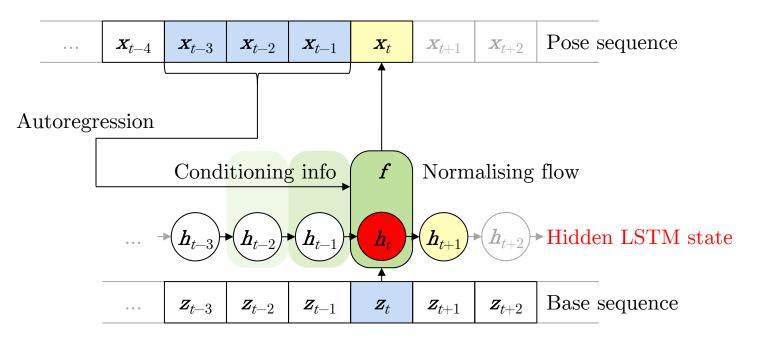






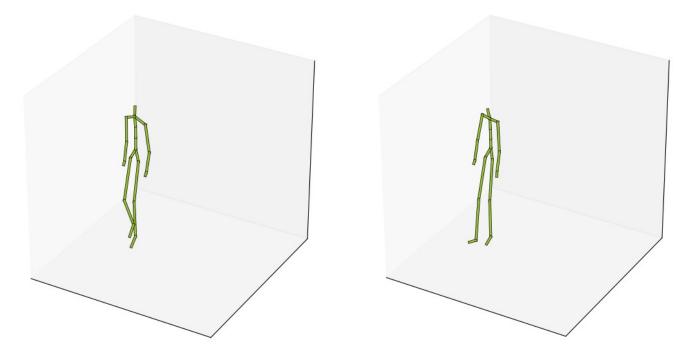


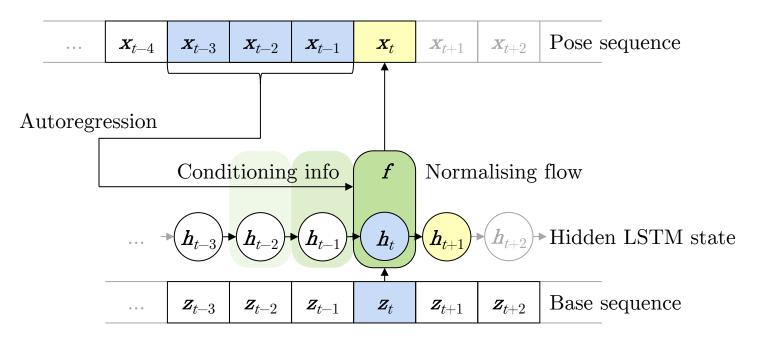


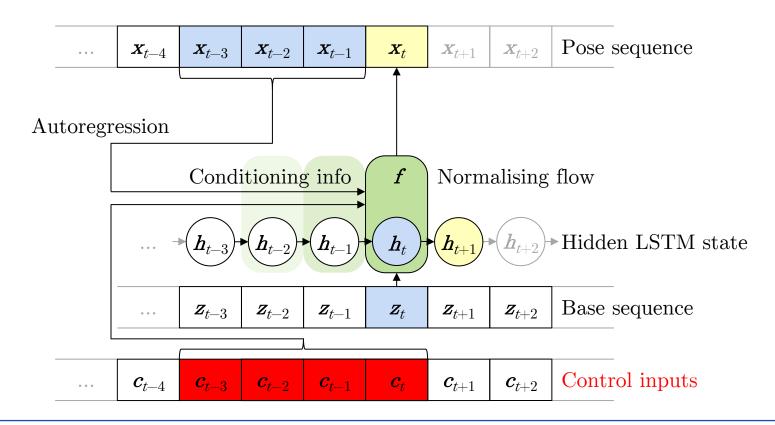


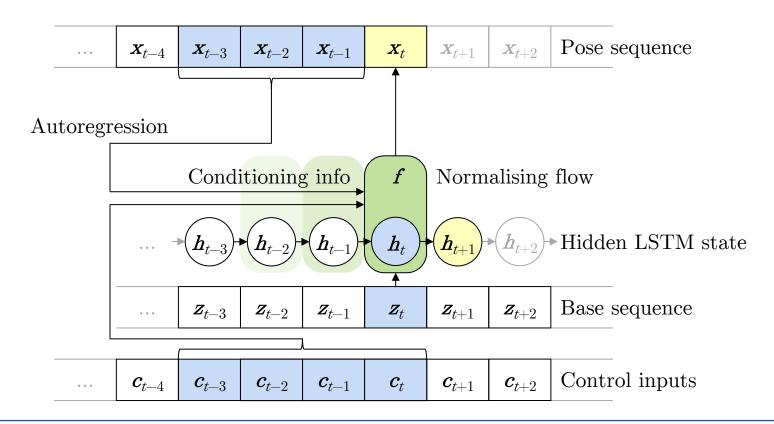
Effect of long memory on stability

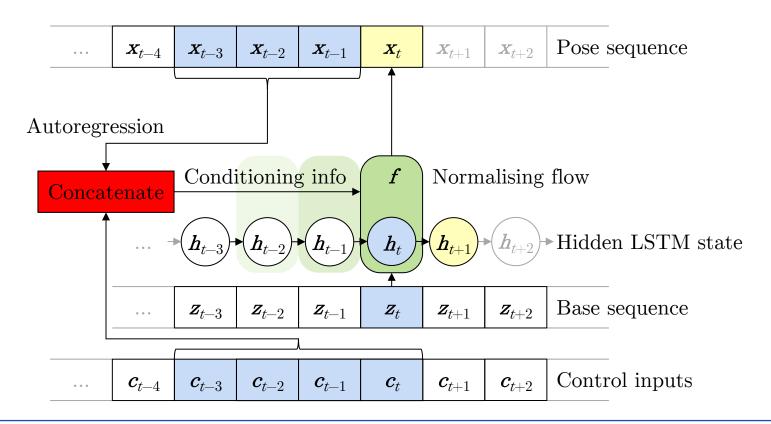
With LSTMs

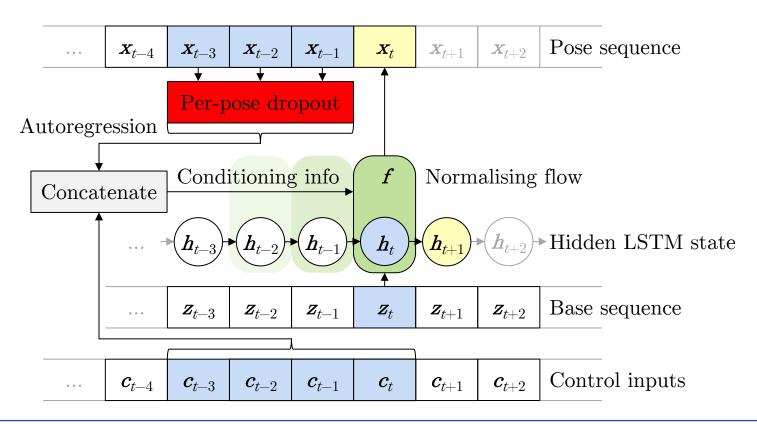








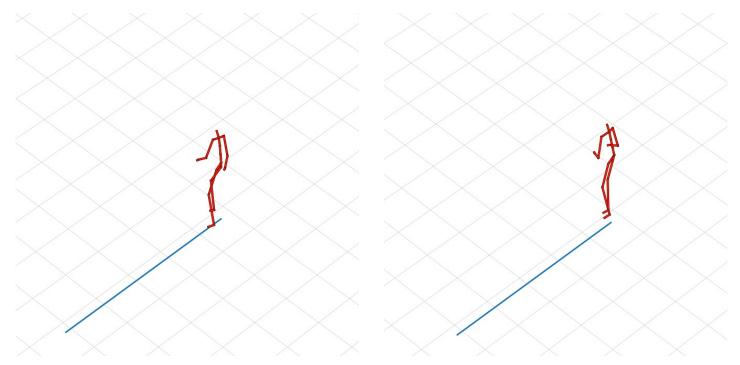




Effect of data dropout

No dropout

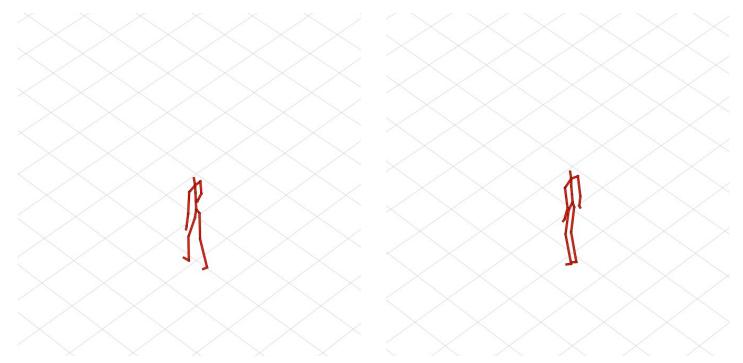
Pose dropout rate = 0.95



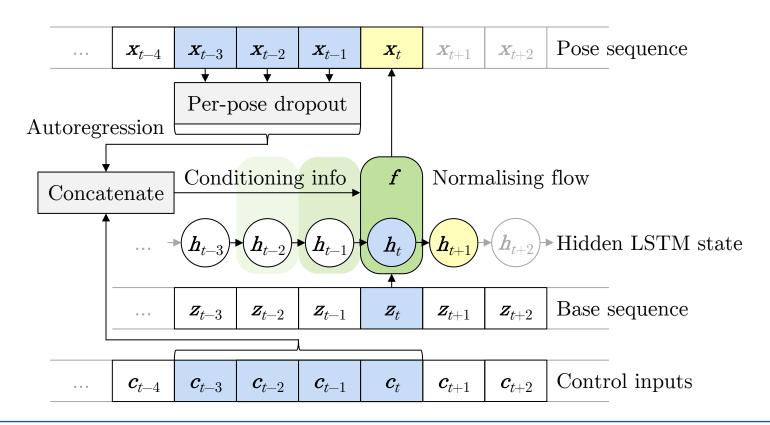
Effect of data dropout

No dropout

Pose dropout rate = 0.95



Complete MoGlow architecture



MoGlow advantages

- Probabilistic model
 - Describes all possible outcomes, not just a single one
- Implicit generator structure
 - Flexible and fast to sample from, like GANs
- Tractable statistical inference
 - Can be trained to maximise likelihood
- General
 - No assumptions about the nature of the motion (or even that the data is motion at all!)
- Interactively controllable
 - No algorithmic latency
- Gives high-quality results

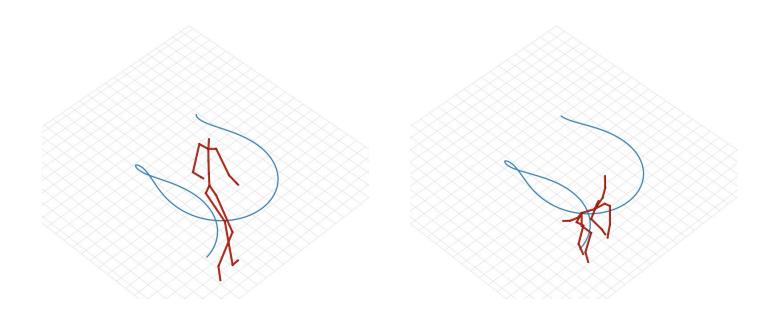
Experiments

- Initial application: Locomotion synthesis with path control
- Studying locomotion has several advantages:
 - It is easy to spot artefacts and poor adherence to the control
 - Foot-sliding can be quantified objectively
- Control signal: Forward, sideways, and angular velocity of the root node
 - Result: The root node exactly follows a given path through space; the model has to generate a consistent series of poses along the way
 - The path dictated by the control signal is visualised as a blue curve projected onto the ground plane in videos

Locomotion synthesis tasks

Bipedal locomotion

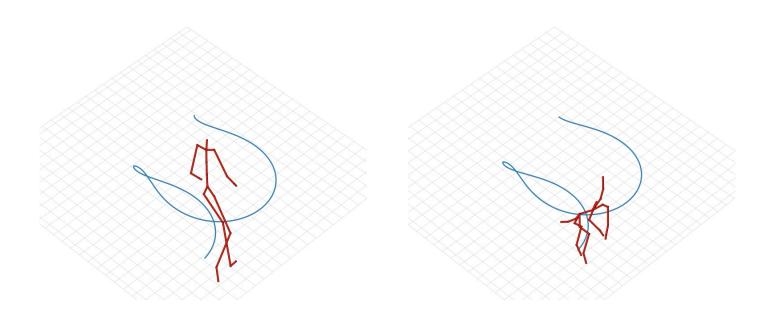
Quadrupedal locomotion



Locomotion synthesis tasks

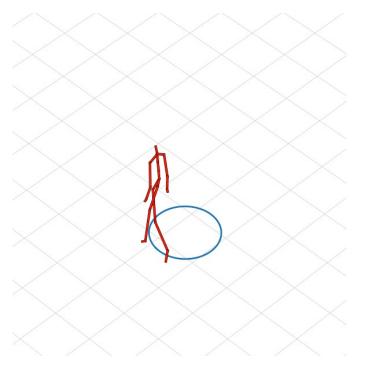
Bipedal locomotion

Quadrupedal locomotion



Pose representations

Joint positions



Joint angles/rotations

	Configuration	ID	Proba- bilistic?	Task- agnostic?	Algo. latency	Context frames	Hidden state	Pose dropout	Num. Man	params. Dog
es	Plain LSTM	RNN	×	1	None	-	LSTM	-	1M	1M
lin	Greenwood et al. [2017a]	VAE	Partially	\checkmark	Full seq.	-	BLSTM	-	4M	4M
Base	Pavllo et al. [2018]	QN	X	×	1 sec.	-	GRU		10M	-
В	Zhang et al. [2018]	MA	×	×	1 sec.	12	-	-	-	5M
_	MoGlow	MG	 ✓ 	1	None	10	LSTM	95%	74M	80M

	Configuration	ID	Proba- bilistic?	Task- agnostic?	Algo. latency	Context frames	Hidden state	Pose dropout	Num. Man	params. Dog
es	Plain LSTM	RNN	X	1	None	-	LSTM	-	1M	1M
line	Greenwood et al. [2017a]	VAE	Partially	1	Full seq.	-	BLSTM	-	4M	4M
ase	Pavllo et al. [2018]	QN	X	×	1 sec.	-	GRU	-	10M	-
В	Zhang et al. [2018]	MA	×	×	1 sec.	12	-	-	-	5M
	MoGlow	MG	 ✓ 	1	None	10	LSTM	95%	74M	80M

	Configuration	ID	Proba- bilistic?	Task- agnostic?	Algo. latency	Context frames	Hidden state	Pose dropout	Num. Man	params. Dog
es	Plain LSTM	RNN	×	1	None	-	LSTM	-	1M	1M
lin	Greenwood et al. [2017a]	VAE	Partially	\checkmark	Full seq.	-	BLSTM	-	4M	4M
Base	Pavllo et al. [2018]	QN	X	×	1 sec.	-	GRU	-	10M	-
В	Zhang et al. [2018]	MA	×	×	1 sec.	12	-	-	-	5M
	MoGlow	MG	 ✓ 	1	None	10	LSTM	95%	74M	80M

	Configuration	ID	Proba- bilistic?	Task- agnostic?	Algo. latency	Context frames	Hidden state	Pose dropout	Num. Man	params. Dog
es	Plain LSTM	RNN	×	1	None	-	LSTM	-	1M	1M
line	Greenwood et al. [2017a]	VAE	Partially	1	Full seq.	-	BLSTM	-	4M	4M
ase	Pavllo et al. [2018]	QN	X	×	1 sec.	-	GRU		10M	-
В	Zhang et al. [2018]	MA	×	×	1 sec.	12	-	-	-	5M
	MoGlow	MG	 ✓ 	1	None	10	LSTM	95%	74M	80M

	Configuration	ID	Proba- bilistic?	Task- agnostic?	Algo. latency	Context frames	Hidden state	Pose dropout	Num. Man	params. Dog
Baselines	Plain LSTM Greenwood et al. [2017a] Pavllo et al. [2018] Zhang et al. [2018]	RNN VAE QN MA	X Partially X X	✓ ✓ ×	None Full seq. 1 sec. 1 sec.	- - - 12	LSTM BLSTM GRU	- - -	1M 4M 10M	1M 4M - 5M
	MoGlow	MG		✓ ✓	None	10	LSTM	95%	74M	80M

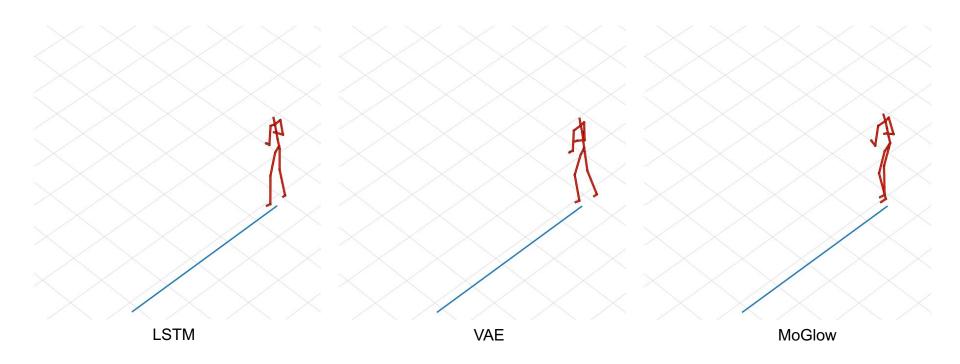
	Configuration	ID	Proba- bilistic?	Task- agnostic?	Algo. latency	Context frames	Hidden state	Pose dropout	Num. Man	params. Dog
es	Plain LSTM	RNN	×	1	None	-	LSTM	-	1M	1M
lin	Greenwood et al. [2017a]	VAE	Partially	\checkmark	Full seq.	-	BLSTM	-	4M	4M
Baselines	Pavllo et al. [2018]	QN	×	×	1 sec.	-	GRU	-	10M	-
В	Zhang et al. [2018]	MA	×	×	1 sec.	12	-	-	-	5M
	MoGlow	MG	1	1	None	10	LSTM	95%	74M	80M
ts.	No pose dropout	MG-D	"	"	"	10	"	0%	74M	-
Ablats.	No pose context	MG-A	"	"	"	10	"	100%	74M	-
A	Minimal history	MG-H	"	"	"	1	"	95%	54M	-

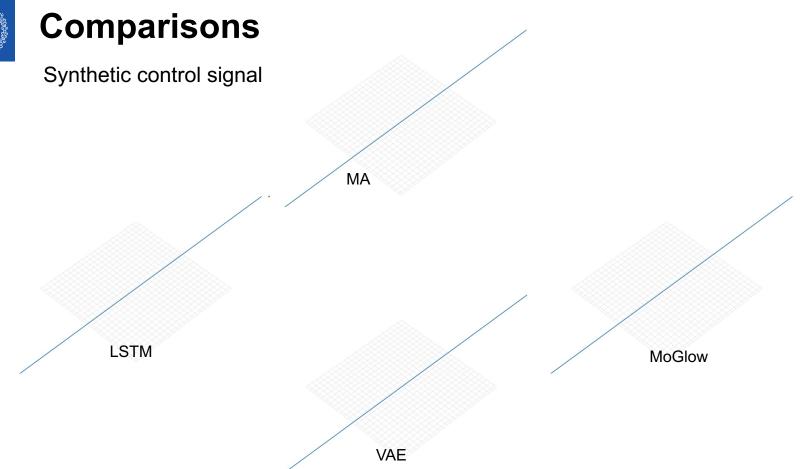
Comparisons Held-out control signal Motion capture LSTM MoGlow

VAE

Held-out control signal		
	Motion capture	
T		TT -
LSTM	AT -	MoGlow
	VAE	

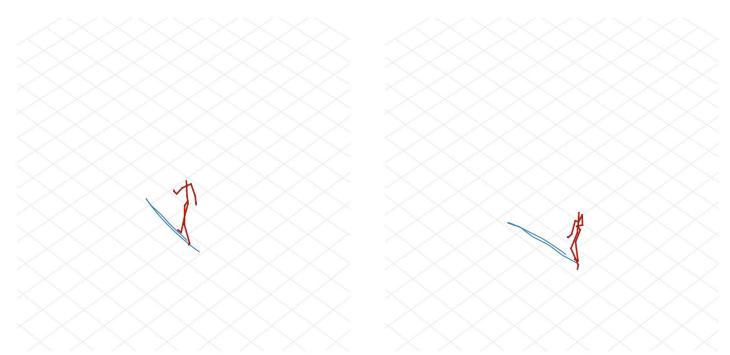
Synthetic control signal





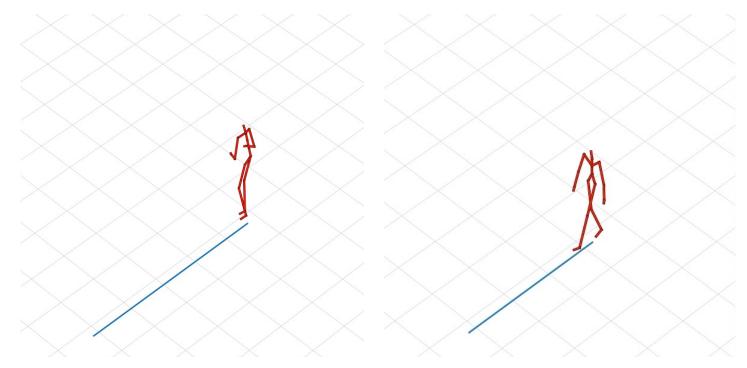
QuaterNet on held-out control signals

NAT



QuaterNet on synthetic control signals

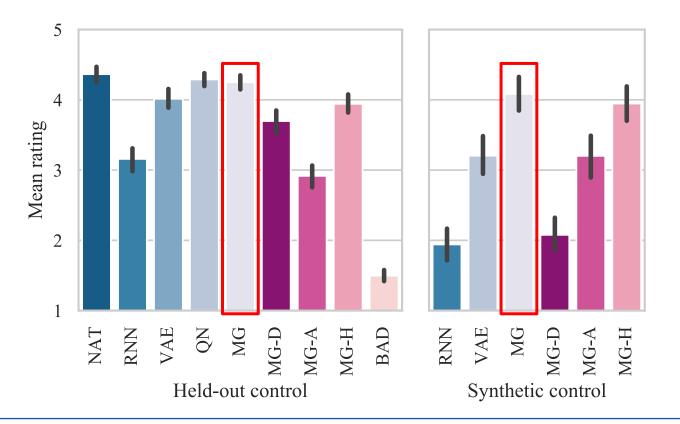
MG



Evaluations

- Footstep analysis
 - In locomotion generation, the most noticeable artefacts are foot sliding, which is easy to quantify objectively
 - Please see the paper for the results
- Crowdsourced subjective evaluation
 - Figure Eight platform
 - "Grade the perceived naturalness of the animation from 1 to 5"
 - Held-out and synthetic control input
 - Bad clips and too rapid responses were used to filter out unreliable raters
 - 3,550/4,289 ratings analysed (human/dog)
- No foot stabilisation or other post-processing used

Results of user study on the human data



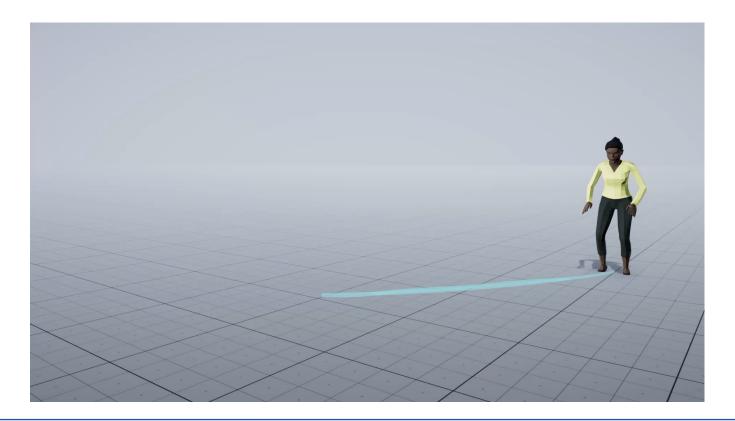
Average subjective ratings

	Human		Quadruped	
ID	Held-out <i>c</i>	Synthetic <i>c</i>	Held-out <i>c</i>	Synthetic c
NAT	$ 4.27 \pm 0.11$	_	$ 4.25 \pm 0.06^{**}$	-
RNN	$3.10\pm0.15^{**}$	$1.9 \pm 0.2^{**}$	$2.81 \pm 0.10^{**}$	$1.14 \pm 0.04^{**}$
VAE	3.95 ± 0.13	$3.1 \pm 0.3^{**}$	3.55 ± 0.08	$2.14 \pm 0.20^{**}$
QN	4.21 ± 0.10	-	-	-
MA	-	-	-	3.78 ± 0.10
MG	$ 4.17 \pm 0.11$	$4.0 {\pm} 0.2$	3.71 ± 0.18	3.57 ± 0.20
MG-D	$3.66 \pm 0.16^{**}$	$2.1 \pm 0.2^{**}$	-	-
MG-A	$2.86 \pm 0.16^{**}$	$3.2 \pm 0.3^{**}$	-	-
MG-H	$3.87 \pm 0.13^*$	3.9 ± 0.3	-	-

Validating the probabilistic aspects

- Can we get meaningfully different output for the same control input?
- Will more diverse data enable more diverse output motion?
- Also demonstrated on skinned characters
 - Trained on two different motion-capture datasets for video games applications
 - > LaFAN1 dataset from Ubisoft
 - > Kinematica Demo dataset from Unity
 - Joint angles (represented using the exponential map)
 - 60% dropout rate gave smoother motion

Random samples with the same control input



Complicated and unusual motion

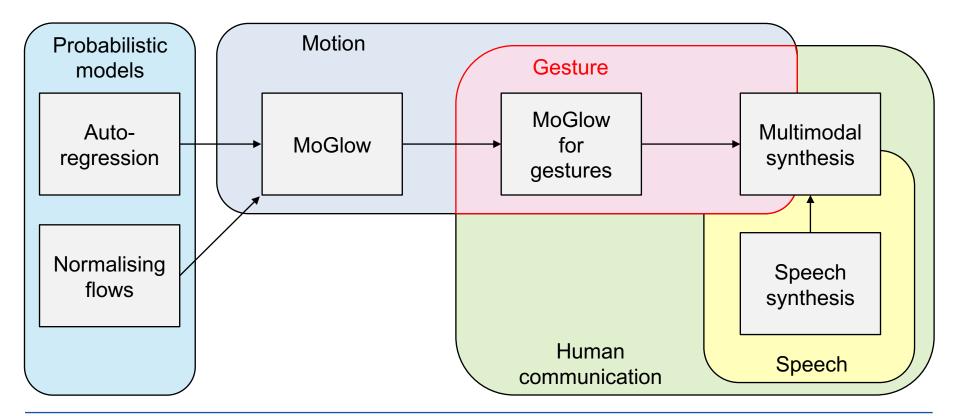
What we learned

- Normalising flows deliver on their promise
 - Easy to train, fast to generate from, and flexible enough to describe believable motion
- Probabilistic motion modelling works!
 - We can describe many different outcomes in one model
- Interactive motion control without algorithmic latency is possible
- · Results score close to natural motion
 - The same approach works for two different morphologies
 - And different pose representations
 - The model generalises well to synthetic motion trajectories

What we learned

- Data dropout is a simple and effective trick to make autoregressive models respect the control
- Adding a recurrent hidden state (the LSTMs) stabilised synthesis
- There was no need to "reduce the temperature" to improve visual quality when drawing samples
 - Unlike Glow, BigGAN, GPT-3, etc.
- Data augmentation helps
 - Reversing the data in time taught the models to walk backwards
- Standing still was the most challenging control input for leading motionsynthesis methods

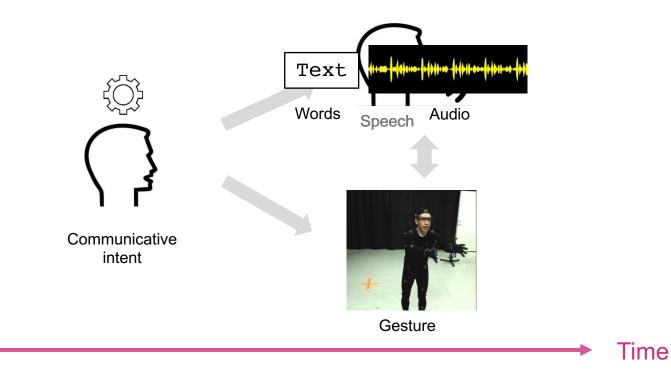
Graphical overview



Co-speech gesture example

Synthetic gesture applications

Speech and gesture in communication



Hand-gesture categories

- Deictic gestures
 - Pointing gestures and similar references to the space of the interaction
- Iconic gestures
 - Illustrate physical properties and actions
- Metaphorical gestures
 - Illustrate abstract meaning
- Beat gestures
 - Follow speech prosody
 - > Rhythm, emphasis, etc.
- Beats primarily correlate with speech acoustics; the other categories primarily correlate with speech semantics

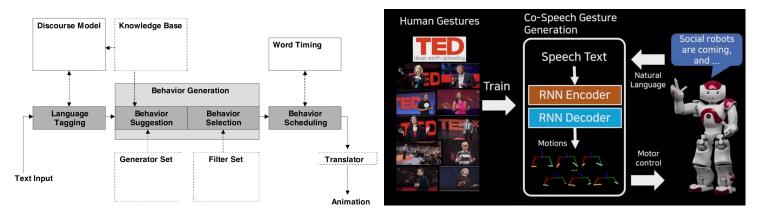
Gesture-generation paradigms

Classic human-designed approach

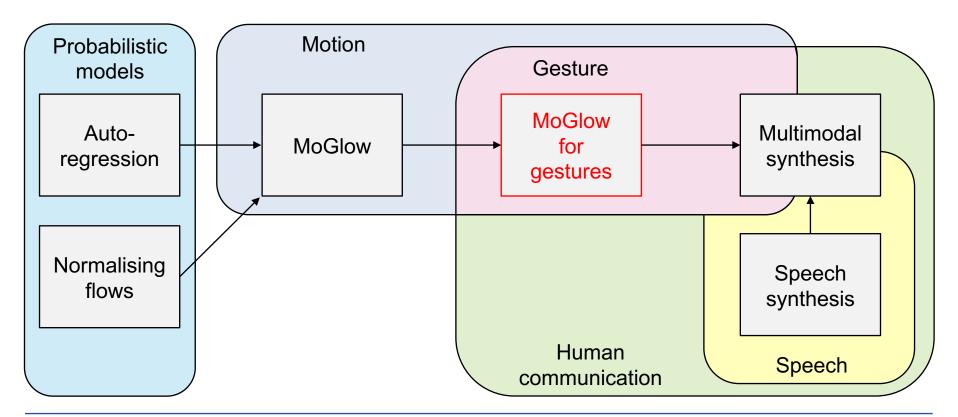
- Hand-animated behaviour
- Triggered by rule

Emerging data-driven approach

- More adaptable and generalisable
- More diverse output
- Less interpretable
- Requires more data



Graphical overview



Style-controllable speech-driven gesture synthesis using normalising flows

Simon Alexanderson

Gustav Eje Henter

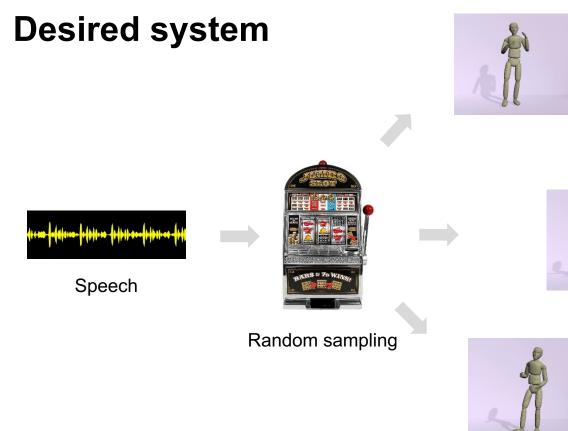
Taras Kucherenko

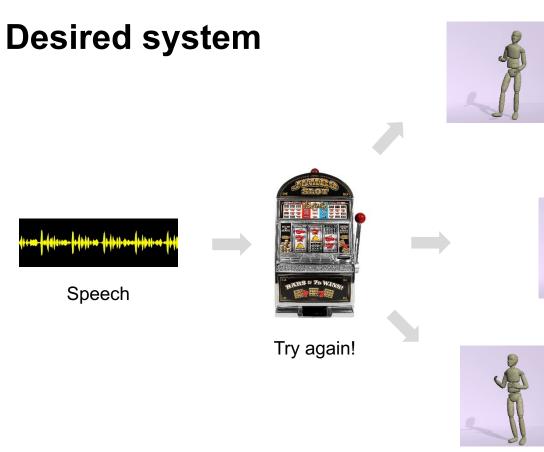
Jonas **Beskow**

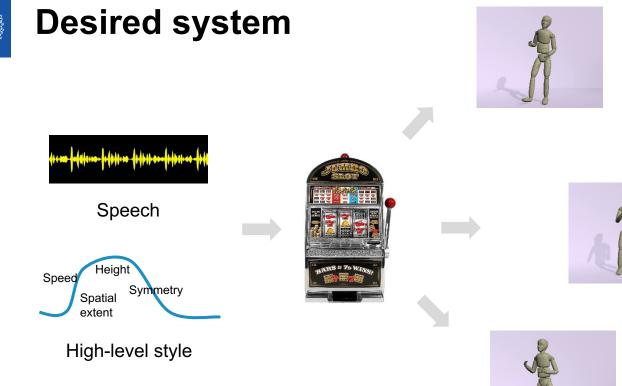
Honourable mention at EUROGRAPHICS 2020

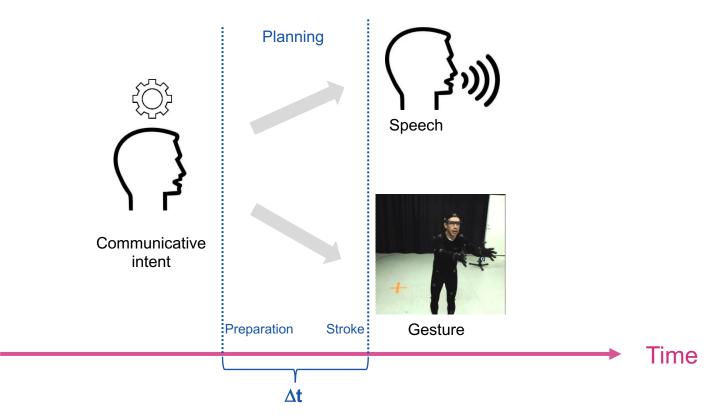
Problems with existing gesture synthesis

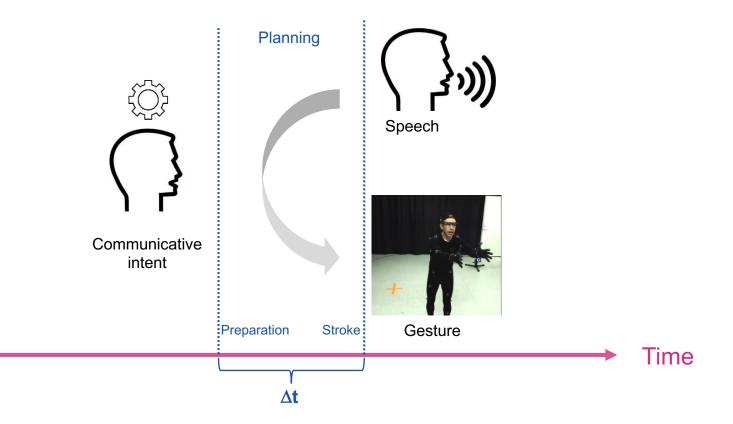
- Gesture synthesis is challenging due to massive variation
 - Rule-based methods cannot express this well
 - Deterministic methods also fail to capture variation and are prone to artefacts
- Synthesisers provide limited control over output
 - People gesture differently according to, e.g., personality and mood
- It is common to focus on hands and upper body only
 - But we use our entire body to express ourselves!

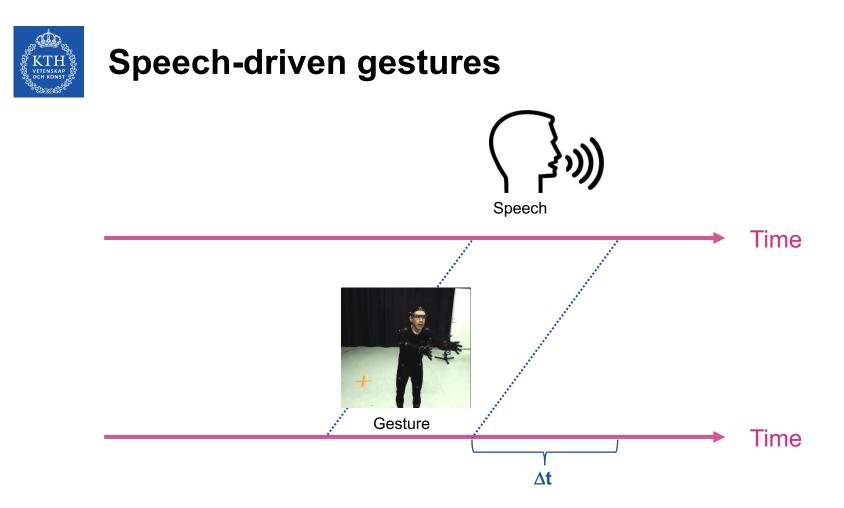


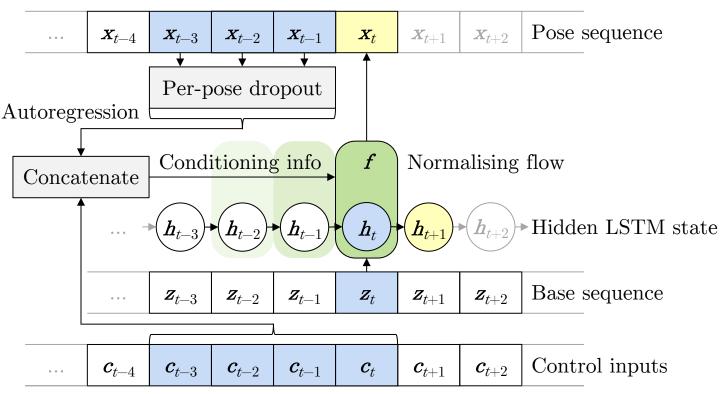


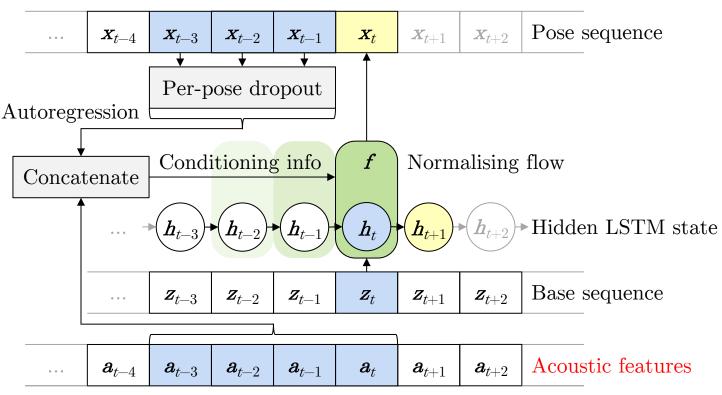


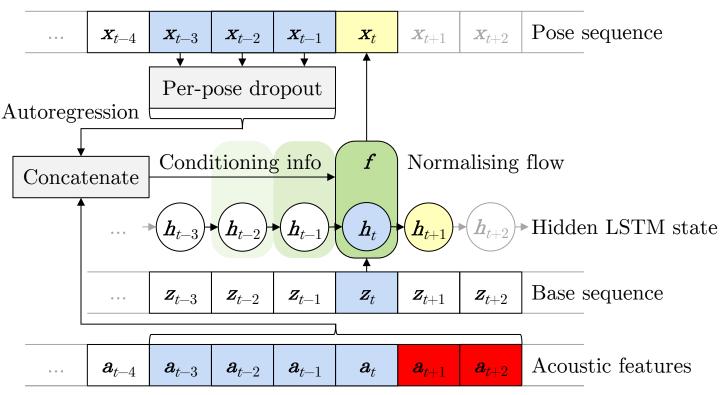


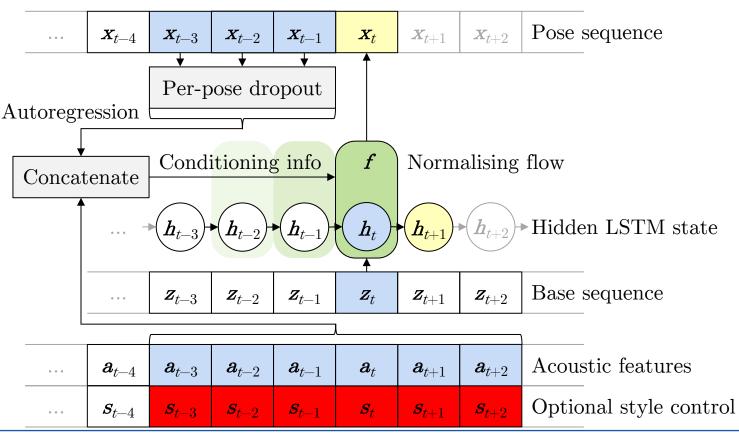






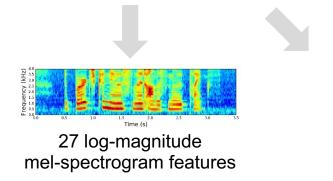


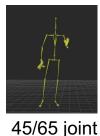




Co-speech gesture data

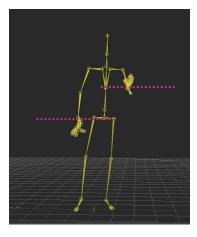
- Trinity speech-gesture dataset
 - One male actor speaking spontaneously
 - 244 minutes of parallel audio and 3D motion capture
 - Post-processed to correct synchronisation issues
 - > Corrected data available in the original repository
 - > Hands use a fixed pose due to low finger-capture quality

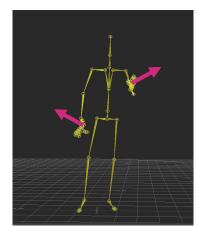




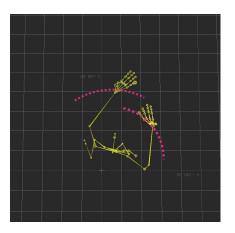
Style inputs

- The database does not come with stylistic annotations
 - For demonstration purposes, we used automatically-extracted hand-motion statistics
 - > E.g.: "The hand speed should be X m/s on average over in a 4 s time window"





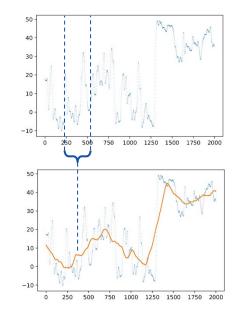
Speed



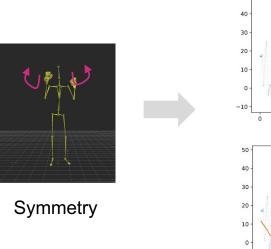
Symmetry

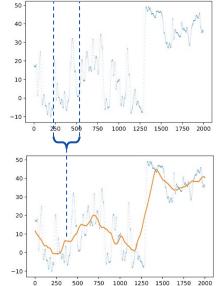
Image: HeightRadiusSpeed

Moving average (4 s)

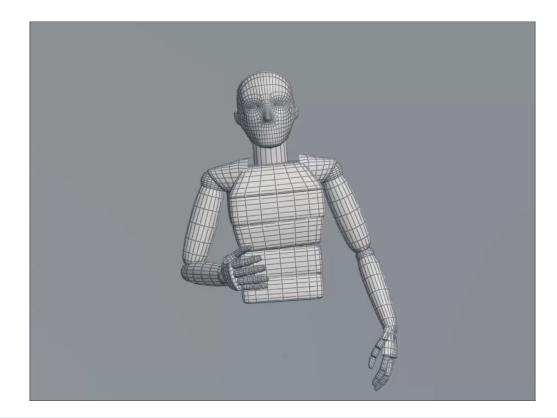


Correlation (4 s)





Constant-input style-controlled gestures

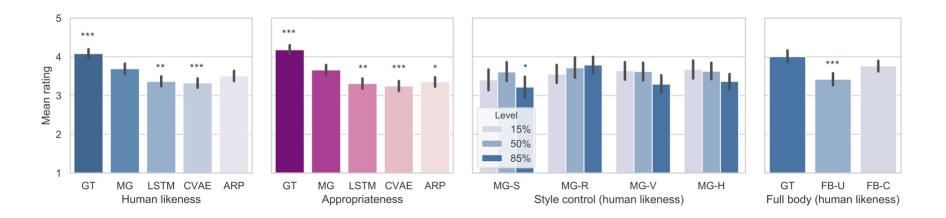


Full-body gestures

Subjective evaluations

- Crowdsourced subjective evaluation
 - Same Figure Eight platform and 1-to-5 MOS scale as before
 - Bad clips and too rapid/slow responses were used to filter out unreliable raters
 - 40 independent crowdworkers took part
- Two different aspects were rated
 - Human-likeness
 - > "To what extent does the motion of the character look like the motion of a real human being?"
 - Appropriateness
 - > "To what extent does the motion match the audio?"
 - > Evaluating appropriateness is not a solved problem

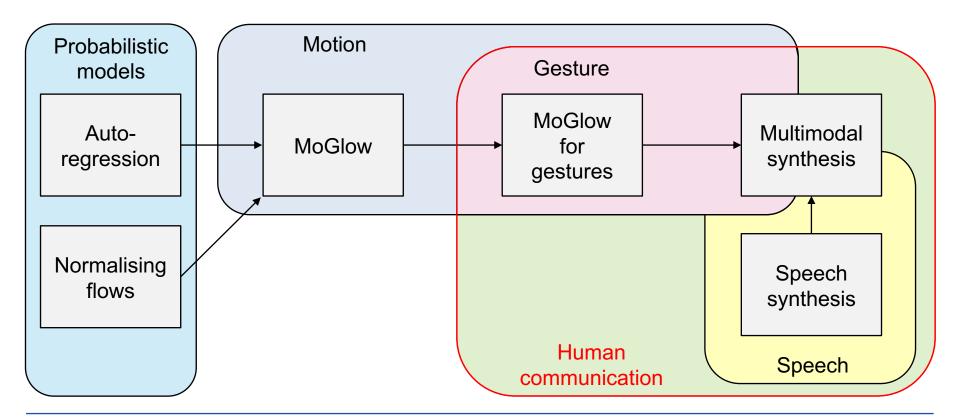
Subjective evaluation



What we learned

- MoGlow works for gesture generation
 - Appears to be a new state of the art in continuous gesture generation human-likeness
 - Strong showing in the 2020 GENEA Challenge
 - > Like the Blizzard Challenge, but for gesture generation
- Gesture style control is possible without degrading motion quality
- Tuning gesture-generation models is tricky
 - The output exhibits a large amount of random variation
 - The only useful objective measure we found was the training set log-likelihood
- Validation-set likelihood does not reflect the visual quality of the motion
 - Overfitted models look best
 - Possibly due to data dropout
 - Mismatch can be reduced by methods from robust statistics (see our INNF+ publication)

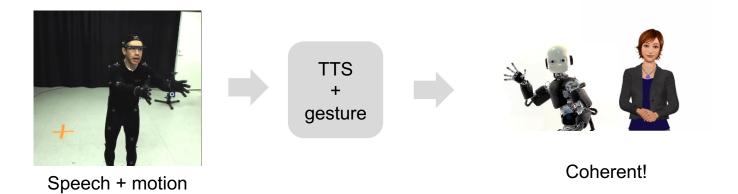
Graphical overview



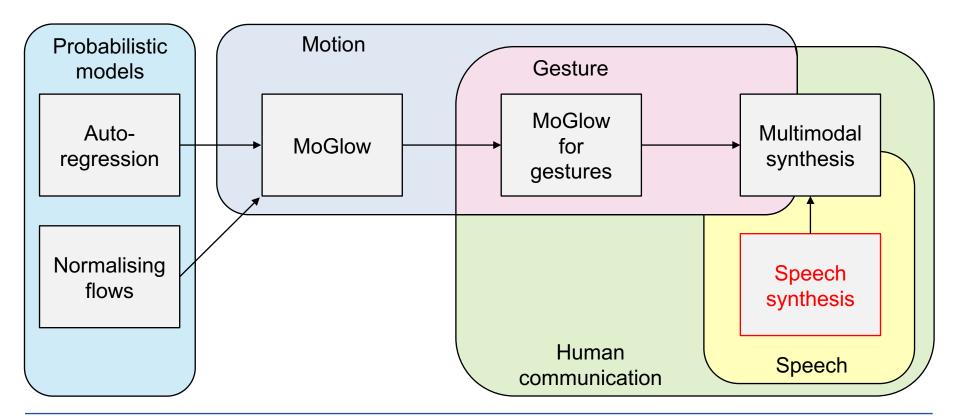
Speech synthesis vs. gesture synthesis



- Merge speech and gesture synthesis
 - Enable multimodal communication from text input



Graphical overview



Spontaneous speech synthesis team

Éva Székely

Gustav Eje Henter

Jonas Beskow

Joakim Gustafson

Recent publications

Casting to corpus: Segmenting and selecting spontaneous dialogue for TTS with a CNN-LSTM speaker-dependent breath detector

Spontaneous conversational speech synthesis from found data

 \bigstar Off the cuff: Exploring extemporaneous speech delivery with TTS \bigstar

How to train your fillers: uh and um in spontaneous speech synthesis

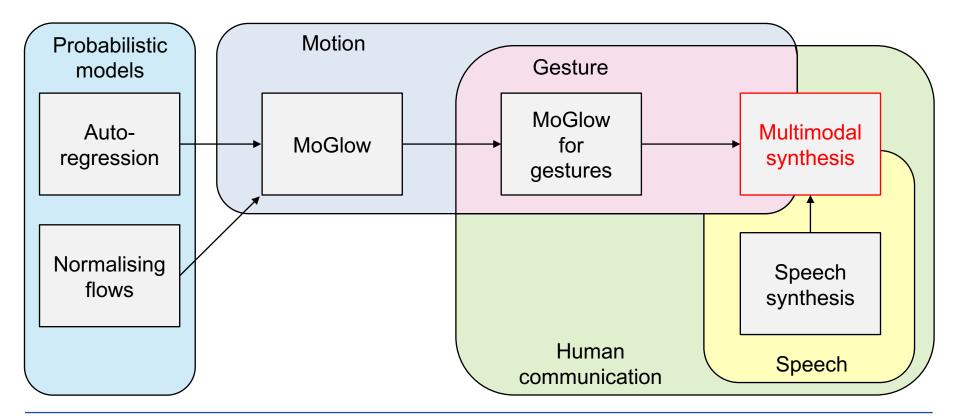
Breathing and speech planning in spontaneous speech synthesis

Published at ICASSP 2019, 2020, Interspeech 2019, and SSW 2019

Spontaneous TTS from found data

Training data Text prompt source	Read speech (24 h found audiobooks)	Spontaneous (9 h found podcast)	Spontaneous (1.5 h studio- recorded)		
Books	$\square ((\langle \nabla \rangle)) $	((<)))			
Public speaking					
Casual conversation					

Graphical overview



Generating coherent spontaneous speech and gesture from text

Simon Alexanderson

Éva Székely

Gustav Eje Henter

Taras Kucherenko

Jonas Beskow

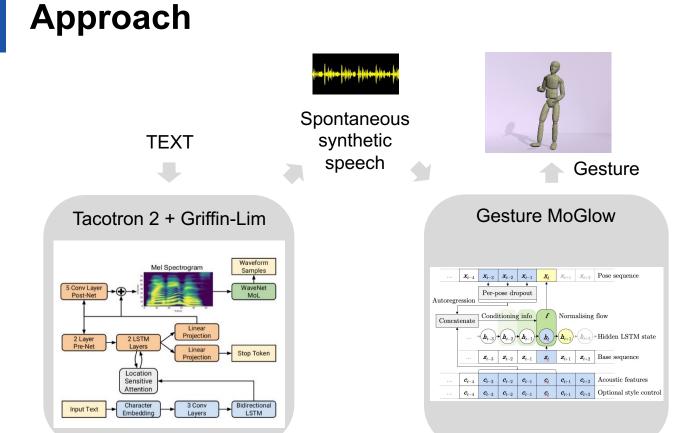
IVA 2020

Objective

- Merge speech and gesture synthesis
 - Enable multimodal communication from text input
- First step:
 - 1. Text to spontaneous speech
 - 2. Spontaneous speech to gesture

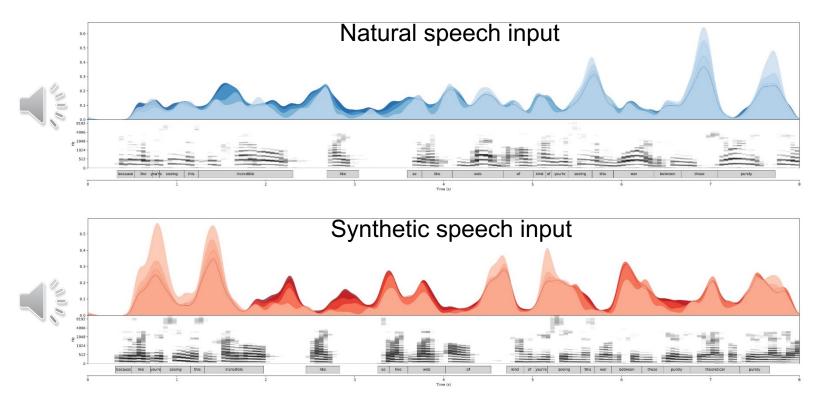
Using the same multimodal recordings

Speech + motion

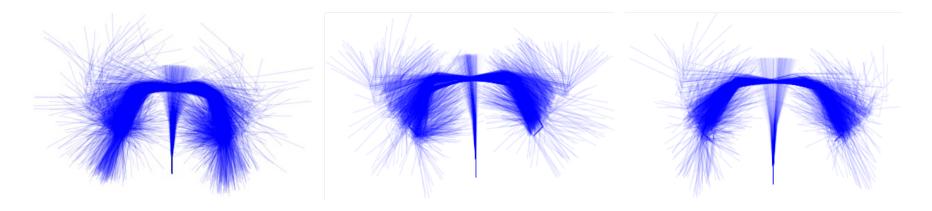


The following clip is generated from TEXT only

Hand peak velocities across 300 samples



Gesture-space visualisation



In the training data

Generated from natural speech input

Generated from synthetic speech input

Conclusion

- Automated character animation is a challenging and interesting problem
- The world is probabilistic; our motion models should be, too
- MoGlow is a new probabilistic model for motion
 - Task-agnostic
 - Meaningfully probabilistic
 - No (or adjustable) algorithmic latency
- MoGlow reaches or surpasses the state of the art in a wide variety of applications
- Text-to-speech \rightarrow text-to-behaviour

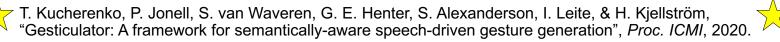
Project homepages

https://simonalexanderson.github.io/ MoGlow https://github.com/ simonalexanderson/StyleGestures https://simonalexanderson.github.io/ IVA2020/

Additional gesture publications

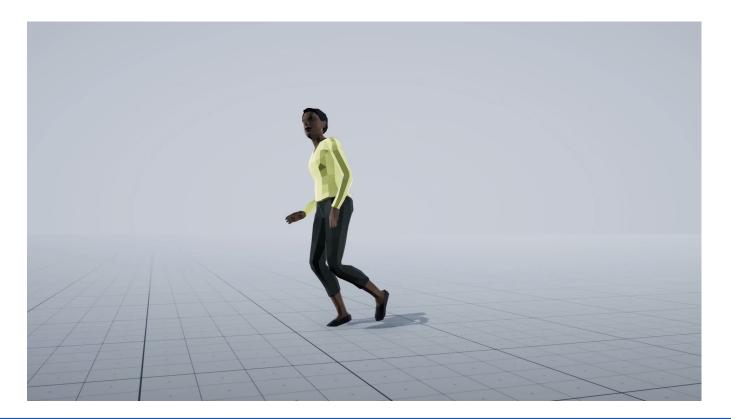
- T. Kucherenko, P. Jonell, Y. Yoon, P. Wolfert, & G. E. Henter, "A Large, crowdsourced evaluation of gesture generation systems on common data: The GENEA Challenge 2020", *Proc. IUI*, 2021.
- T. Kucherenko, D. Hasegawa, N. Kaneko, G. E. Henter, & H. Kjellström, "Moving fast and slow: Analysis of representations and post-processing in speech-driven automatic gesture generation", *Int. J. Human Comput. Interact.*, 2021.

P. Jonell, T. Kucherenko, G. E. Henter, & J. Beskow, "Let's face it: Probabilistic multi-modal interlocutoraware generation of facial gestures in dyadic settings", *Proc. IVA*, 2020.



- S. Alexanderson & G. E. Henter, "Robust model training and generalisation with Studentising flows", *Proc. INNF*+, 2020.
- T. Kucherenko, D. Hasegawa, G. E. Henter, N. Kaneko, & H. Kjellström, "Analyzing input and output representations for speech-driven gesture generation", *Proc. IVA*, 2020.
- T. Kucherenko, D. Hasegawa, N. Kaneko, G. E. Henter, & H. Kjellström, "On the importance of representations for speech-driven gesture generation", *Proc. AAMAS*, 2019.

Thank you for listening!



Thank you for listening

Any questions?

Backup slides

Probabilistic approaches compared

	Gauss. (MSE)	MDN	HMM / SLDS	Kalman filter	GP-LVM / GPDM	VAE	GAN	Norm. flow
Rand. X	Gauss.	\mathbb{R}	\mathbb{R}	Gauss.	Gauss.	\mathbb{R}	-	-
Map <i>f</i>	Deep	Deep	Deep	Linear	Non- linear	Deep	Deep	Invertible deep
Rand. Z	-	Discrete	Discrete	Gauss.	\mathbb{R}	\mathbb{R}	\mathbb{R}	R
Map <i>g</i>	-	Deep	Deep	Linear	Non- linear	Deep	-	-
Inference	\checkmark	\checkmark	\checkmark	\checkmark	X		Х	\checkmark
Sampling	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark
Flexibility	X	X	X	X	\checkmark	X	\checkmark	\checkmark

Mathematical model

- Probability of a sequence of vector-valued, continuous observations
 - Assume limited memory a Markov model

p

$$(\boldsymbol{x}_{1:T}) = p(\boldsymbol{x}_{1:p}) \prod_{t=p+1}^{T} p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1:t-1})$$
$$\approx p(\boldsymbol{x}_{1:p}) \prod_{t=p+1}^{T} p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1-p:t-1})$$

- The initial pose distribution is not modelled
- The next-step distribution $p(x_t | x_{1-p:t-1})$ also depends on a parameter θ
 - Here, the parameters are the matrices and network weights inside Glow

$$p(\boldsymbol{x}_{1:T}; \boldsymbol{\theta}) = p(\boldsymbol{x}_{1:p}) \prod_{t=p+1}^{T} p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1-p:t-1}; \boldsymbol{\theta})$$

Long-term memory

- Introduce a hidden state h_t to the model that also influences the next-step distribution
 - HMMs, Kalman filters, and LSTMs all do this

$$p(\boldsymbol{x}_{1:T}; \boldsymbol{\theta}) = p(\boldsymbol{x}_{1:p}) \prod_{t=p+1}^{T} p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1-p:t-1}, \boldsymbol{h}_{t-1}; \boldsymbol{\theta})$$

$$egin{aligned} m{h}_{p-1} &= m{0} \ m{h}_t &= m{g}\left(m{x}_{1-p:t-1},\,m{h}_{t-1};\,m{ heta}
ight) \end{aligned}$$

- Concretely, this is done by using LSTMs in the coupling layer neural network
- "Long memory" since $p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1:t-1}) = p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1-p:t-1}; \boldsymbol{\theta}) \neq p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1-p:t-1})$
- The main advantage appears to be avoid unstable autoregressive models
 - Crucial to get the approach to work in practice

Achieving control

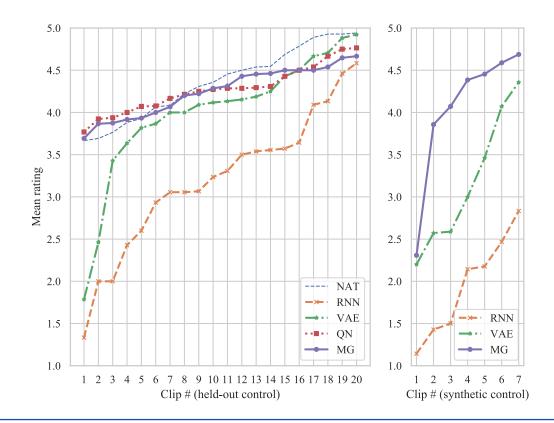
- The next-step distribution now also depends on a per-frame control input
 - No future control information is used

$$p(\boldsymbol{x}_{1:T}; \boldsymbol{\theta}) = p(\boldsymbol{x}_{1:p}) \prod_{t=p+1}^{T} p(\boldsymbol{x}_t \mid \boldsymbol{x}_{1-p:t-1}, \boldsymbol{c}_{1-p:t}, \boldsymbol{h}_{t-1}; \boldsymbol{\theta})$$
$$\boldsymbol{h}_{p-1} = \boldsymbol{0}$$
$$\boldsymbol{h}_t = \boldsymbol{g}(\boldsymbol{x}_{1-p:t-1}, \boldsymbol{c}_{1-p:t}, \boldsymbol{h}_{t-1}; \boldsymbol{\theta})$$

Likelihood function

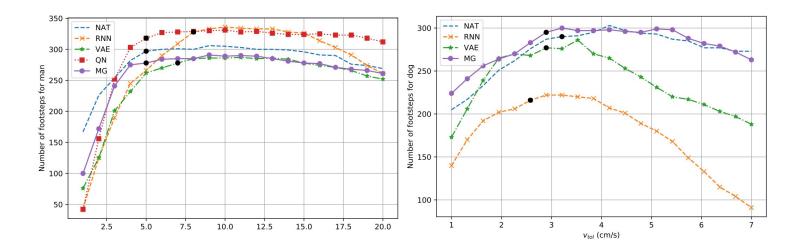
- For completeness, the likelihood of a single sequence in MoGlow is $\ln p_X(x;\theta) = \text{const.} + \frac{1}{2} z_N^{\mathrm{T}}(x) z_N(x) + \sum_{i=1}^{N} \sum_{j=1}^{D} (\ln s'_{n\,d} + \ln u_{n\,dd} + \ln s_{n\,d}(x))$
 - The constant is just the normalisation constant of a D-dimensional standard normal
 - There's one term each for the actnorm layer, the linear layer, and the coupling layer
 - The contribution from the linear layer is fast to compute by parametrising the transformation (matrix multiplication) using an LU-decomposition
 - Only the coupling term depends on x; the other terms are global and fixed

Results per motion clip (human locomotion)



Footstep analysis

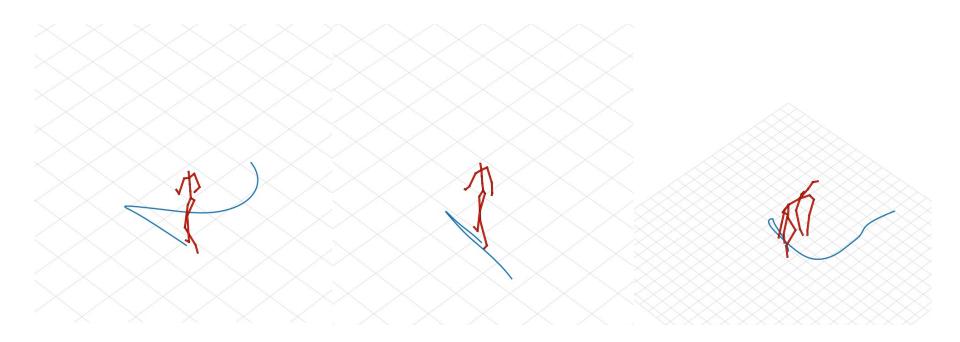
Human



	Human				Quadruped					
ID	$f_{ m est}$	$v_{ m tol}^{(95)}$	μ	σ	RMSE	fest	$v_{\rm tol}^{(95)}$	μ	σ	RMSE
NAT	297	5.0	0.31	0.26	-	290	3.2	0.61	0.71	-
RNN	328	8.0	0.39	0.39	1.7	216	2.6	0.72	1.05	2.3
VAE	278	7.0	0.35	0.30	1.7	277	2.9	0.61	0.90	2.0
QN	318	5.0	0.23	0.19	0.07	-	-	-	-	-
MG	278	5.0	0.32	0.23	0.50	295	2.9	0.57	0.75	0.51

Additional examples

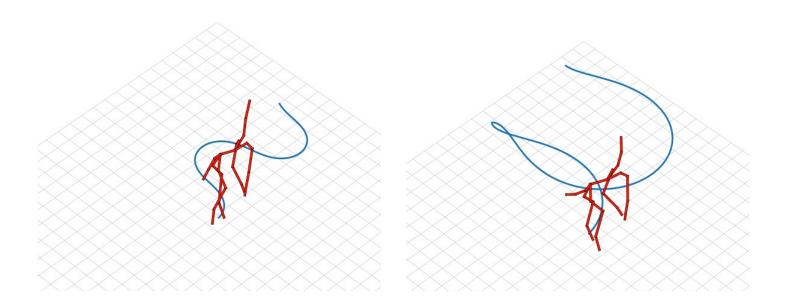
Held-out control signal



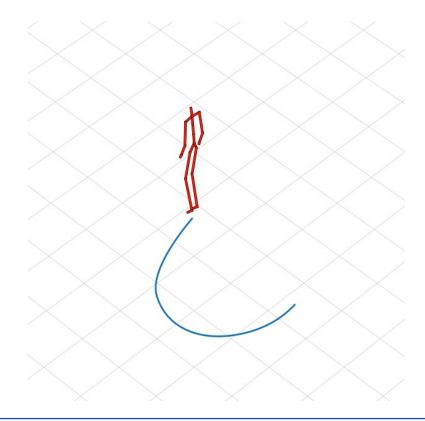
Additional examples

Sinusoidal heading, constant speed

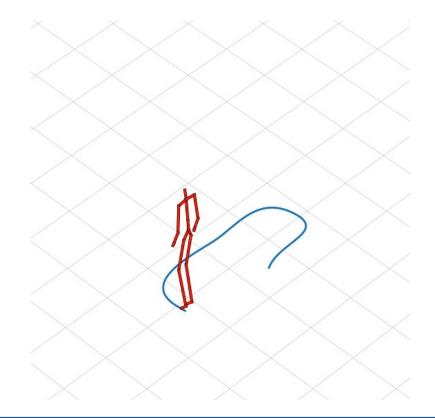
Sinusoidal heading and speed



Stability and recovery



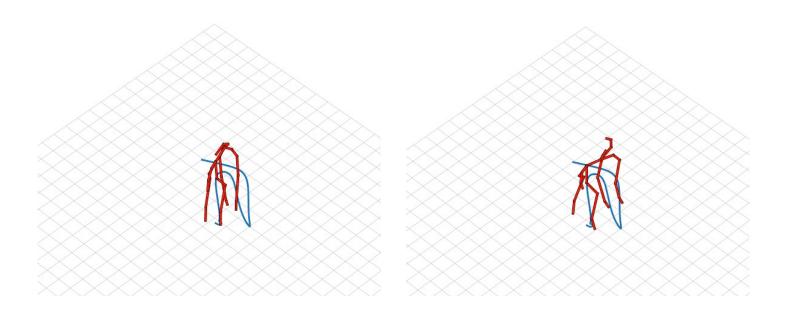
Stability and recovery

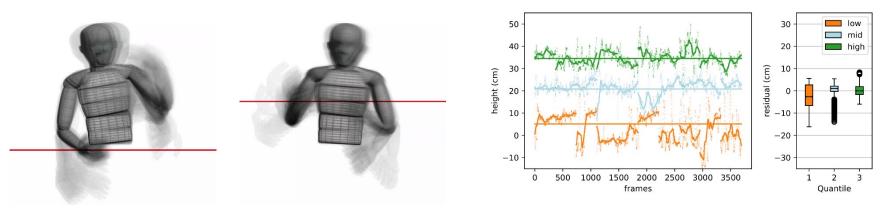


Random samples with the same control input

Random sample 1

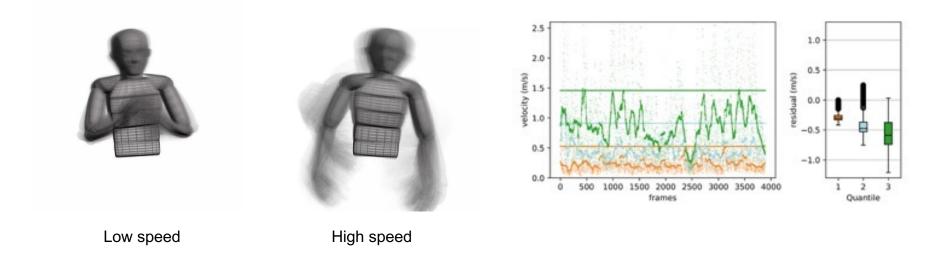
Random sample 2





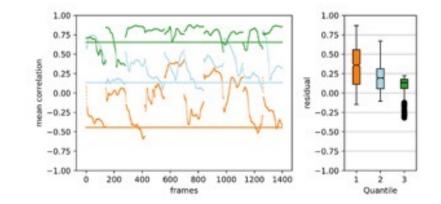
Low right hand

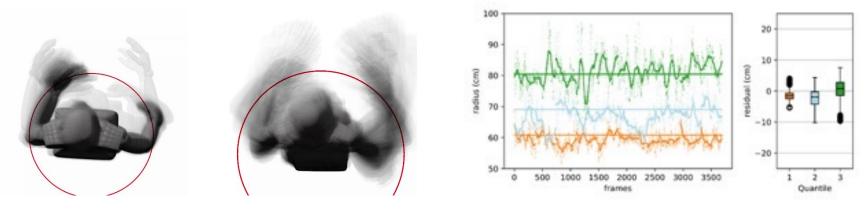
High right hand



Low symmetry

High symmetry





Low radius

High radius