

From HMMs to DNNs: where do the improvements come from? Oliver Watts, Gustav Eje Henter, Thomas Merritt, Zhizheng Wu, Simon King + Centre for Speech Technology Research, University of Edinburgh

Systems built

- A range of systems was built with different combinations of the factors of interest
- Comparison of these systems allows us to attribute importance to the different factors.
- At each end of the range were standard systems
- from the HTS demo
- our own baseline DNN system used in previous work.
- The systems built step gradually between these endpoints
- Not all combinations were implemented (e.g. a Clustergentype system, where decision trees operate at the frame level)

HTS public demo, with STRAIGHT

System	Regression model	Regression target unit	n
D1	decision tree	state	S
D2	decision tree	state	S
N1	neural network	state	S
N2	neural network	state	S
N3	neural network	state	С
N4	neural network	frame	S
N5	neural network	frame	С
N6	neural network	frame	С

3 networks per system (mcep, log F0, band aperiodicities); 3 times as many model parameters as N3, N5, N6

We did not control for two factors: question set size (2926 vs. 863) and F0 modelling method (MSD vs. interpolation). Effects of these factors are currently combined with decision tree \rightarrow neural network factor

Evaluation

MUSHRA (MUltiple Stimuli with Hidden Reference and

• 20 native English listeners

• Each listener rated two sets of 10 synthesised Harvard sentences, every set phonetically balanced

Pairwise Wilcoxon signed-rank comparisons between all systems ($\alpha = 0.05$, Holm-Bonferroni corrected) show three significant differences between groups of systems

- Two factors of approximately equal importance:
- state \rightarrow frame level modelling
- decision tree \rightarrow neural network
- Complex duration features also significantly
- improve naturalness (when evaluating using oracle
- Enhancement method, context-dependent variance, combined vs. separate stream modelling not found to be important