
R
T
S
C

R
T
S
C From HMMs to DNNs: where do the improvements come from?

Centre for Speech Technology Research, University of EdinburghOliver Watts, Gustav Eje Henter, Thomas Merritt, Zhizheng Wu, Simon King

 Recent revival of interest in neural networks for TTS

•  Two factors of approximately equal importance:
•  state ➞ frame level modelling 
•  decision tree ➞ neural network

• Complex duration features also significantly 
improve naturalness (when evaluating using oracle 
durations)

• Enhancement method, context-dependent 
variance, combined vs. separate stream modelling 
not found to be important
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D1  decision tree  state  separate  context-dependent  no  GV 

D2  decision tree  state  separate  context-dependent  no  postfilter 

N1  neural network  state  separate  context-dependent  no  postfilter 

N2  neural network  state  separate  fixed  no  postfilter 

N3  neural network  state  combined  fixed  no  postfilter 

N4  neural network  frame  separate  fixed  no  postfilter 

N5  neural network  frame  combined  fixed  no  postfilter

N6  neural network  frame  combined  fixed  yes  postfilter 
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ABSTRACT
Conventional approaches to statistical parametric speech synthe-
sis typically use decision tree-clustered context-dependent hidden
Markov models (HMMs) to represent probability densities of speech
parameters given texts. Speech parameters are generated from the
probability densities to maximize their output probabilities, then a
speech waveform is reconstructed from the generated parameters.
This approach is reasonably effective but has a couple of limita-
tions, e.g. decision trees are inefficient to model complex context
dependencies. This paper examines an alternative scheme that is
based on a deep neural network (DNN). The relationship between
input texts and their acoustic realizations is modeled by a DNN. The
use of the DNN can address some limitations of the conventional
approach. Experimental results show that the DNN-based systems
outperformed the HMM-based systems with similar numbers of
parameters.

Index Terms— Statistical parametric speech synthesis; Hidden
Markov model; Deep neural network;

1. INTRODUCTION

Statistical parametric speech synthesis based on hidden Markov
models (HMMs) [1] has grown in popularity in the last decade. This
approach has various advantages over the concatenative speech syn-
thesis approach [2], such as the flexibility to change its voice charac-
teristics, [3–6], small footprint [7–9], and robustness [10]. However
its major limitation is the quality of the synthesized speech. Zen
et al. [11] highlighted three major factors that degrade the quality
of the synthesized speech: vocoding, accuracy of acoustic models,
and over-smoothing. This paper addresses the accuracy of acoustic
models.

A number of contextual factors that affect speech including pho-
netic, linguistic, and grammatical ones have been taken into account
in acoustic modeling for statistical parametric speech synthesis. In
a typical system, there are normally around 50 different types of
contexts [12]. Therefore, effective modelling of these complex con-
text dependencies is one of the most critical problems for statis-
tical parametric speech synthesis. The standard approach to han-
dling contexts in HMM-based statistical parametric speech synthe-
sis is to use a distinct HMM for each individual combination of con-
texts, referred to as a context-dependent HMM. The amount of avail-
able training data is normally not sufficient for robustly estimating
all context-dependent HMMs since there is rarely sufficient data to
cover all of the context combinations required. To address these
problems, top-down decision tree based context clustering is widely
used [13]. In this approach, the states of the context-dependent
HMMs are grouped into “clusters” and the distribution parameters
within each cluster are shared. The assignment of HMMs to clus-
ters is performed by examining the context combination of each

HMM through a binary decision tree, where one context-related bi-
nary question is associated with each non-terminal node. The num-
ber of clusters, namely the number of terminal nodes, determines
the model complexity. The decision tree is constructed by sequen-
tially selecting the questions which yield the largest log likelihood
gain of the training data. The size of the tree is controlled using a
pre-determined threshold of log likelihood gain, a model complexity
penalty [14,15], or cross validation [16,17]. With the use of context-
related questions and state parameter sharing, the unseen contexts
and data sparsity problems are effectively addressed. As the method
has been successfully used in speech recognition, HMM-based sta-
tistical parametric speech synthesis naturally employs a similar ap-
proach to model very rich contexts.

Although the decision tree-clustered context-dependent HMMs
work reasonably effectively in statistical parametric speech synthe-
sis, there are some limitations. First, it is inefficient to express com-
plex context dependencies such as XOR, parity or multiplex prob-
lems by decision trees [18]. To represent such cases, decision trees
will be prohibitively large. Second, this approach divides the input
space and use separate parameters for each region, with each region
associated with a terminal node of the decision tree. This results in
fragmenting the training data and reducing the amount of the data
that can be used in clustering the other contexts and estimating the
distributions [19]. Having a prohibitively large tree and fragmenting
training data will both lead to overfitting and degrade the quality of
the synthesized speech.

To address these limitations, this paper examines an alternative
scheme that is based on a deep architecture [20]. The decision trees
in HMM-based statistical parametric speech synthesis perform map-
ping from linguistic contexts extracted from text to probability densi-
ties of speech parameters. Here decision trees are replaced by a deep
neural network (DNN). Until recently, neural networks with one hid-
den layer were popular as they can represent arbitrary functions if
they have enough units in the hidden layer. Although it is known
that neural networks with multiple hidden layers can represent some
functions more efficiently than those with one hidden layer, learning
such networks was impractical due to its computational costs. How-
ever, the recent progress both in hardware (e.g. GPU) and software
(e.g. [21]) enables us to train a DNN from a large amount of train-
ing data. Deep neural networks have achieved large improvements
over conventional approaches in various machine learning areas in-
cluding speech recognition [22] and acoustic-articulatory inversion
mapping [23]. Note that NNs have been used in speech synthesis
since the 90s (e.g. [24]).

This paper is organized as follows. Section 2 contrasts the dif-
ference between the decision tree and DNNs. Section 3 describes the
DNN-based statistical parametric speech synthesis framework. Ex-
perimental results are presented in Section 4. Concluding remarks
are shown in the final section.
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DEEP NEURAL NETWORKS EMPLOYING MULTI-TASK LEARNING AND STACKED
BOTTLENECK FEATURES FOR SPEECH SYNTHESIS

Zhizheng Wu Cassia Valentini-Botinhao Oliver Watts Simon King

Centre for Speech Technology Research, University of Edinburgh, United Kingdom

ABSTRACT
Deep neural networks (DNNs) use a cascade of hidden representa-
tions to enable the learning of complex mappings from input to out-
put features. They are able to learn the complex mapping from text-
based linguistic features to speech acoustic features, and so perform
text-to-speech synthesis. Recent results suggest that DNNs can pro-
duce more natural synthetic speech than conventional HMM-based
statistical parametric systems. In this paper, we show that the hidden
representation used within a DNN can be improved through the use
of Multi-Task Learning, and that stacking multiple frames of hid-
den layer activations (stacked bottleneck features) also leads to im-
provements. Experimental results confirmed the effectiveness of the
proposed methods, and in listening tests we find that stacked bottle-
neck features in particular offer a significant improvement over both
a baseline DNN and a benchmark HMM system.

Index Terms— Speech synthesis, acoustic model, multi-task
learning, deep neural network, bottleneck feature

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) has made significant
advances in naturalness [1] and is generally highly-intelligible [2].
However even though it offers greater flexibility and controllability
than unit selection [3], the naturalness of speech generated by SPSS
is still below that of human speech, and cannot compete with good
unit selection systems. Zen et al. [1] suggest various factors which
limit naturalness or quality. One of the key issues they highlight is
the core of the system: the acoustic model, which learns the complex
relationship between the linguistic representation (derived from text)
and acoustic features. In this paper we propose some techniques to
improve acoustic modelling, which result in improvements to syn-
thesised speech quality.

1.1. Relation to prior work

Significant efforts have been made to improve the acoustic models
for SPSS, targeting the underlying model, the way the parameters
are estimated during training, or the method for generating speech
parameter trajectories when performing synthesis: minimum gener-
ation error training for HMM [4], global variance enhancement [5],
and trajectory hidden Markov model [6], just to name a few exam-
ples.

More recently, neural networks have re-emerged as a potential
acoustic model for SPSS [7, 8, 9, 10, 11] following their success in
speech recognition [12]. Two weaknesses in HMM-based SPSS are
the density function over the acoustic features (usually a Gaussian)
and the decision-tree driven parameterisation of the model, in which
parameters must be shared across groups of linguistic contexts.

Deep neural networks (DNNs) have the potential to address
both areas. They can been viewed as a replacement for the decision

tree in [7, 10, 11] while in [8] a deep belief network (DBN) was
employed to jointly model the relationship between linguistic and
acoustic features. These approaches map linguistic features directly
to the corresponding acoustic features through multiple layers of
hidden representations, frame by frame. In [9], restricted Boltz-
mann machines (RBMs) were used to replace Gaussian mixture
models over the acoustic features, allowing more spectral detail to
be learned, which resulted in better speech quality. We can identify
at least two problems in the way DNNs are currently applied to
speech synthesis: perceptual suboptimality and frame-by-frame in-
dependence. These two problems are also common in conventional
HMM-based acoustic models.

1.2. The novelty of this work

The first problem – perceptual suboptimality – arises because the
training criterion typically aims to maximise the likelihood of (or
minimise the error to) acoustic features which are a rather poor rep-
resentation of human speech perception. Unless the error is reduced
all the way to zero, the error in the speech feature space is not an ac-
curate reflection of expected perceptual error. The choice of speech
features is constrained by the requirements of the vocoder: it must
be invertible, i.e. allow for reconstruction. This rules out the use of
many interesting and powerful perceptual representations of speech
which – from the point of view of maximising the perceived quality
of system output – would otherwise be very attractive.

To get around this, we use multi-task learning (MTL) [13] in a
DNN. The DNN learns to predict a perceptual representation of the
target speech as a secondary task, in parallel to learning to predict
the usual invertible vocoder parameters as the main task. The pre-
dictions of the perceptual representation are discarded at synthesis
time; rather, their purpose is to provide additional supervision dur-
ing training and to ‘steer’ the hidden layers of the network towards a
perceptually salient representation.

The second problem – frame-by-frame independence – arises in
many SPSS systems where predicted values for consecutive acoustic
states or frames are conditionally independent of one another given
their linguistic contexts. Although the maximum likelihood param-
eter generation (MLPG) algorithm uses dynamic features to smooth
acoustic feature trajectories, a framewise independence assumption
remains in the underlying model. There are DNN architectures that
model sequences of data, such as Recurrent Neural Networks which
have been applied to speech synthesis [14], but they can be diffi-
cult or computationally expensive to optimise. As a much simpler,
but still highly-effective alternative, we propose bottleneck feature
stacking. We train a first DNN with a bottleneck (i.e., relatively
small number of units) hidden layer. The activations of the bot-
tleneck units yield a compact representation of both acoustic and
linguistic information for each frame independently. Then, we stack
multiple consecutive frames of bottleneck features to produce a wide
context around the current frame, combine these with the linguistic
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Decision tree

Neural network

Regression model

Single frame

Regression target unit

Stream modelling

Single model predicts all 
streams simultaneously

Variance used in 
parameter generation

HTS vs. DNN-TTS

Motivation
 In this recent work:

• several configurations of DNN systems often 
compared 

• HMM/decision-tree system generally taken 
as baseline

• source of improvement over baseline is hard 
to determine because multiple factors are 
simultaneously varied between systems 

Systems built

HMM state

Model’s context-
dependent prediction of 

variance is used 

Single fixed value is 
used for all frames

Each stream predicted by 
a separately trained 

model 

Each stream predicted by 
a separately-trained 

model 
Single model predicts all 
streams simultaneously

Evaluation 

• We did not control for two factors: question set size (2926 vs. 863) 
and F0 modelling method (MSD vs. interpolation). Effects of these 
factors are currently combined with decision tree ➞ neural network 
factor

Pairwise Wilcoxon signed-rank comparisons 
between all systems (α = 0.05, Holm-Bonferroni 

corrected) show three significant differences 
between groups of systems

• MUSHRA (MUltiple Stimuli with Hidden Reference and 
Anchor) test 

• 20 native English listeners
• Each listener rated two sets of 10 synthesised Harvard 

sentences, every set phonetically balanced

3 networks per system (mcep, 
log F0, band aperiodicities);

3 times as many model 
parameters as N3, N5, N6

HTS public demo, with 
STRAIGHT

Mixture density network with 
single component

N6 uses 9 duration-derived input 
features; other systems use only 2

1. Fraction through state counting forwards
2. Fraction through state counting backwards
3. Fraction through phone counting forwards
4. Fraction through phone counting backwards
5. Position of state in phone counting forwards
6. Position of state in phone counting backwards
7. Length of state in frames
8. Length of phone in frames
9. Fraction of the current phone made up by
    current state

• A range of systems was built with 
different combinations of the 
factors of interest

• Comparison of these systems 
allows us to attribute importance 
to the different factors.

• At each end of the range were 
standard systems
• from the HTS demo
• our own baseline DNN system 

used in previous work.
• The systems built step gradually 

between these endpoints
• Not all combinations were 

implemented (e.g. a Clustergen-
type system, where decision trees 
operate at the frame level) 


