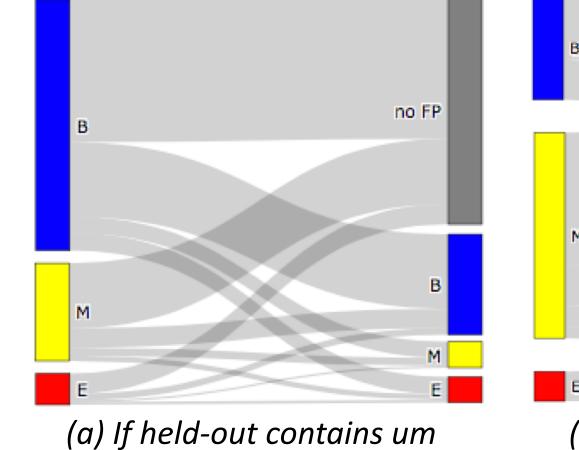
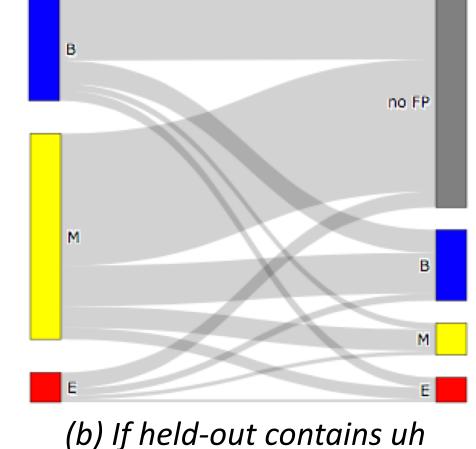


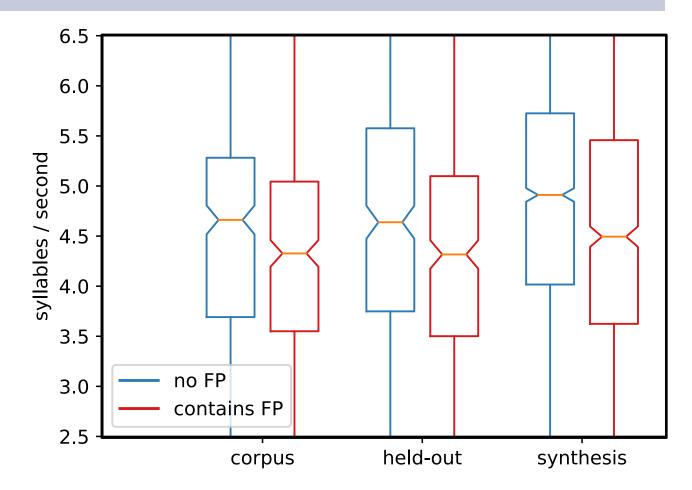
HOW TO TRAIN YOUR FILLERS: UH AND **UM IN SPONTANEOUS SPEECH SYNTHESIS**

Éva Székely, Gustav Eje Henter, Jonas Beskow, Joakim Gustafson

Division of Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden


Using spontaneous conversational speech for TTS raises questions on how disfluencies such as filled pauses (FPs) should be approached. Detailed annotation of FPs in training data enables precise control at synthesis time; coarse or non-existent FP annotation, when combined with stochastic attention-based neural TTS, leads to synthesisers that insert these phenomena into fluent prompts on their own accord. In this study we investigate, objectively and subjectively, the effects of FP annotation and the impact of relinquishing control over FPs in a Tacotron TTS system built from a conversational podcast corpus.

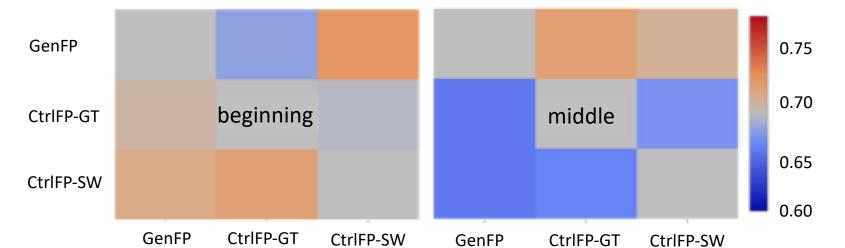

Summary of the voice configurations and the conditions used in the evaluations


 ThinkComputers Corpus (TCC) Weekly tech podcast, spontaneous conversational speech 	System	Corpus & training	Annotation of FPs	Condition	Prompt	Resulting speech
	AutoFP	whole TCC	no	AutoFP	fluent	has automatically placed FPs
				CtrlFP-GT	FPs copied from GT	FPs exactly as in the prompt
 Male AE speaker 9h, segmented to single- 	CtrlFP	whole TCC	yes, differentiating 'uh' and 'um'	CtrlFP-SW	FPs opposite type as GT	FPs exactly as in the prompt
 speaker breath groups [1] Automatic transcription with ASR and Gentle forced 				CtrlFP-FL	fluent	no FPs
	GenFP	whole TCC	yes, with a generic FP label for both 'uh' and 'um'	GenFP	Ground-truth FP locations, unspecified type	has FPs in specified locations, type is decided automatically
aligner	HalfFluent	fluent 44.4% of TCC	N/A (no FPs in the training data)	HalfFluent	fluent	no FPs
TTS : Tacotron + Griffin-Lim	TransFluent	whole TCC, then transfer learning to fluent 44.4%	no	TransFluent	fluent	very occasional automatically placed FPs

Objective evaluation of automatic FP insertion

FP at B	М	E	Held-out	AutoFP	<i>p</i> -val.
			49%	66%	<0.001
\checkmark			23%	20%	0.109
	\checkmark		17%	6%	<0.001
		\checkmark	3%	5%	0.055
\checkmark	\checkmark		6%	1%	<0.001
\checkmark		\checkmark	1%	1%	0.844
	\checkmark	\checkmark	1%	1%	0.592
\checkmark	\checkmark	\checkmark	0%	0%	0.200

Breath groups from held-out data with FPs at


Sankey diagrams of FP position in the held-out data

(left in each diagram) and the synthesis (right)

Speech rates within the TCC corpus, the held-out and the synthesised samples,

Beginning, Middle, and/or End

Perceptual evaluation of disfluent speech

Ratio where FP from voice y was rated as plausible when compared with voice x, incl. both being rated plausible

20 utterances from AMI corpus, each containing one 'uh' or 'um', in the beginning or the middle. Pairwise comparison: listeners indicated which version hesitated more realistically.

$100 \cdot$ 80 60 40 20 AutoFP CtrlFP HalfFluent TransFluent NaturalGL

Perceptual evaluation of fluent speech

MUSHRA ratings of fluent speech

split on whether or not they contain FPs

Bonus question

Would you want a robot to sound hesitant? Why?

Yes – 45% "Yes, sounds more authentic and genuine." "Yes so it sounds more like a person and more relatable." "Yes, much more easy to listen to for prolonged periods." "I think it's comforting to have a hesitant voice from them."

Undecided – 18% "I have no idea." "Indifferent."

No – 36% No, because it would sound too human like. Over the phone, I wouldn't be able to tell I am talking to a robot." "No, I feel uncomfortable blurring the lines between what sounds naturally human and what is machine." "No as I would want it to speak correctly at all times."

Conclusions:

- Systems trained with no, or location-only FP annotation reproduce FPs in a similar pattern as in the corpus.
- ✓ Synthesiser-predicted FP types ('uh' or 'um') were preferred over specifying the ground-truth type.

score

Using precise annotations and focusing on more fluent parts of the corpus \checkmark improves naturalness of fluent TTS.

www.speech.kth.se/tts-demos

