

CASTING TO CORPUS: SEGMENTING AND SELECTING SPONTANEOUS DIALOGUE FOR TTS WITH A CNN-LSTM **SPEAKER-DEPENDENT BREATH DETECTOR**

Éva Székely, Gustav Eje Henter, Joakim Gustafson

Division of Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden

Aim: utilising breath events to create corpora for spontaneous TTS

Data: public domain conversational podcast, 2 speakers

Method: semi-supervised approach with CNN-LSTM detecting breaths and overlapping speech on ZCR enhanced spectrograms

Why CNN-LSTM on spectrograms? Long context sensitivity. Good performance on other paralinguistic tasks.

Why spontaneous speech data? More appropriate for conversational Mel-spectrogram settings. Log power Why found data? Transcribed conversational speech databases are rare, but dialogue is Breath event common in found audio. Zero-crossing rate In large datasets we can pick and Breath event Breath event ZCR-enhanced mel-spectrogram choose the best bits. ZCR Why breaths? Spontaneous speech does not neatly divide in sentences. Breath plays an

ZCR information makes breaths and fricatives more visually distinguishable

Two possible segment selection criteria

Input feature

All classes **Target speaker breaths**

important role in speech planning.

$$p_{\text{worst}}(\text{seg}) = \min_{t \in \text{seg}} p_t$$
$$p_{\text{all}}(\text{seg}) = \exp\left(\sum_{t \in \text{seg}} \ln p_t\right)$$

 p_t is the estimated probability that frame t is acceptable (silence or breath or speech from target speaker)

ROC curves for the two segment-selection criteria and the baseline. p_{worst} was chosen as the proposed method for discarding bad segments

set	Accuracy	Precision	Recall
Monochrome	67.5%	90.5%	81.7%
Viridis	69.9%	82.8%	93.9%
Mono. + ZCR	77.6%	96.3%	95.1%

Classifier performance with different input features

Issue	Baseline	Proposed	<i>p</i> -value
None (problem-free)	70	217	<10-44
No breath at the beginning	111	4	<10-30
Overlap with backchannel	37	17	4.1·10 ⁻³
Contains other speaker	26	7	6.4·10 ⁻⁴
Noise	6	5	0.84

Baseline vs. proposed on a sample of 250 test-set segments

Conclusions & future work

 Proposed method outperforms baseline selection method that treats breaths as silences

Adding ZCR to the spectrogram improves breath detection Next step: conversational TTS

This research was supported by the Swedish Research Council Project Incremental Text-To-Speech Conversion VR (2013-4935) and by the Swedish Foundation for Strategic Research project EACare (RIT15-0107).

The authors would like to thank the creators of the ThinkComputers podcast for making the recordings available in the public domain.