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Take-home message

I Once upon a time, speech technology and speech
sciences were engaged in a dialogue that benefitted
both fields

I Differences in priorities have caused the fields to grow
apart

I Recent speech-synthesis developments have
eliminated old hurdles for speech scientists

I The interests of the two fields are now converging
I This an opportunity for both speech technologists and

speech scientists
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Speech synthesis contributions to phonetics

I Categorical speech perception: Use of synthetic
sound continua (Lisker and Abramson, 1970)

I Motor theory of speech perception (Liberman and
Mattingly, 1985), acoustic cue analysis

I Analysis by synthesis: Modelling frameworks used for
testing phonological models (Xu and Prom-On, 2014;
Cerňak et al., 2017)
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Speech science contributions to synthesis

I Speech science was instrumental for speech
processing and engineering in the data-sparse
formant-synthesis era (King, 2015)

I Phones and phone sets
I Perception-based modelling, e.g., the mel scale

(Stevens et al., 1937)
I Sophisticated speech-synthesis evaluation methods

derived from, e.g., psycholinguistics (Winters and
Pisoni, 2004; Govender and King, 2018)
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Why do technologists need speech sciences?

I Synthesis and analysis go hand in hand
I To understand data and results (beyond merely

describing them)
I For a rigorous approach to evaluation and analysis
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Why do phoneticians need speech synthesis?

I Stimulus creation: Assess listeners’ sensitivity to
particular acoustic cues in isolation
I Manipulation of, e.g., formant transitions while

excluding redundant and residual cues to place of
articulation

I Control over single-cue variability, limiting confounds
I PSOLA, MBROLA, STRAIGHT for creating and

manipulating speech (Moulines and Charpentier,
1990; Dutoit et al., 1996; Kawahara, 2006)

I Speech distortion and delexicalisation; noise-vocoding
(White et al., 2015; Kolly and Dellwo, 2014)
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Why is synthetic speech so rare in
contemporary speech sciences?
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Recent synthesis naturalness achievements

I Highly natural speech-signal generation with neural
vocoders such as WaveNet (van den Oord et al.,
2016)

I Vastly improved text-to-speech prosody (in English)
with end-to-end approaches such as Tacotron (Wang
et al., 2017)

I TTS naturalness rated close to recorded speech in
mean opinion score (Shen et al., 2018)
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Why so little synthesis in speech sciences?

I Newer speech synthesis does not provide the precise
control required for phonetic research

I Little overlap between communities means that few
phoneticians have the technical knowledge to adapt
synthesis developments for their needs
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The perception problem

I A body of research, as reviewed by Winters and
Pisoni (2004), shows that classic formant synthesis:
I Is less intelligible than recorded speech
I Overburdens attention and cognitive mechanisms

resulting in slower processing times (Duffy and Pisoni,
1992)

I . . . in addition to receiving low naturalness ratings
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Why so little synthesis in speech sciences?

I Newer speech synthesis does not provide the precise
control required for phonetic research

I Little overlap between communities means that few
phoneticians have the technical knowledge to adapt
synthesis developments for their needs

I Differences in perception between natural and
classical synthesised speech cast doubt on the
universality of research findings (Iverson, 2003)
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Our beliefs

1. Speech technologists should pursue accurate
output-control for modern speech synthesis paradigms

2. Speech scientists should pay attention and contribute
to these developments

3. Issues of perceptual inadequacy have largely been
overcome
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Examples of new technological research

I Controllable neural vocoder for phonetics: MFCC
control interface (Juvela et al., 2018) replaced with
more phonetically-meaningful speech parameters
I These speech parameters can alternatively be

predicted from text, e.g., using Tacotron
I Control of high-level speech features, e.g.,

prominence (Malisz et al., 2017)
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Examples of new phonetic research areas

I Improved and controllable synthesis not only offers
better stimuli for established research directions, but
also opens new areas such as. . .
I Generating conversational phenomena “on demand”

(Székely et al., 2019)
I Generating optional or non-intentional phenomena

that are difficult to elicit from human speakers in
empirical designs (e.g., conversational clicks)

I “Artificial speech” vs. realistic speaker babble, e.g.,
from unconditional WaveNet
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Examples of new joint research

I New robust and meaningful evaluation methods for
today’s highly-capable speech synthesisers

I Result: Rekindling the productive dialogue between
speech sciences and speech technology
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What about the perceptual issues?

I We know from before that classic speech synthesis:
I Is rated as less natural than recorded speech
I Is less intelligible than recorded speech
I Yields slower cognitive processing times than

recorded speech
I To what extent is this still true?

I Empirical study: Compare natural speech, classic
synthesis, and modern deep-learning synthesis on:
I Subjective listener ratings
I Intelligibility
I Speed of processing

I . . . using open code and databases and modest
computational resources
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Systems compared

System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Corpus taken from Cooke et al. (2013), including
approximately 2k utterances for voice building

I SISO = Speech in, speech out
I TISO = Text in, speech out
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Systems compared

System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Copy synthesis (acoustic analysis followed by
re-synthesis) with the MagPhase vocoder (Espic
et al., 2017)
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Systems compared

System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Synthetic speech generated by the Merlin TTS system
(Wu et al., 2016) using the MagPhase vocoder

I Standard research grade statistical-parametric TTS
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Systems compared

System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Copy synthesis from magnitude mel-spectrograms
using the Griffin-Lim algorithm (Griffin and Lim, 1984)
for phase reconstruction
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Systems compared

System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Tacotron-like TTS using deep convolutional networks
as in Tachibana et al. (2018) with Griffin-Lim signal
generation

I Pre-trained on 11.6k utterances from another speaker
to learn attention and accurate pronunciation
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Systems compared

System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Rule-based formant TTS system (Carlson et al., 1982;
Sjölander et al., 1998) configured to use a male RP
British English voice

I Research-grade formant-based TTS
I Permits optional prosodic emphasis control
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Subjective rating: MUSHRA test
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Subjective rating: MUSHRA test

I MUSHRA tests are an ITU standard (ITU, 2015)
I Listeners rated stimuli representing the different

systems speaking four sets of ten Harvard sentences
(Rothauser and et al., 1969), designed to be
approximately phonetically balanced

I 20 native English-speaking listeners provided a total
of N = 799 ratings per system
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Lexical decision: Correct response rate and reac-
tion time test
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Lexical decision: Correct response rate and reac-
tion time test
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Lexical decision: Correct response rate and reac-
tion time test

I Stimuli were CVC words from 50 minimal pairs
selected from the modified rhyme test (House et al.,
1963), embedded in a fixed carrier sentence rendered
by the six different systems

I We tested 20 listeners, with 600 choices and reaction
times per listener
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Results: Subjective naturalness ratings
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I Pairwise system differences are all statistically
significant (p < 0.001),

I VOC was rated above NAT 5.7% of the time
I OVE was rated as the worst system 99% of the time
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Results: Correct response rate and log-response
time on lexical decision task

System Est. effect p-value Incorrect
NAT (ref.) 2.6%
VOC 0.02 0.33 2.5%
MERLIN 0.02 0.14 3.0%
GL -0.001 0.94 4.0%
DCTTS 0.04 <0.01 5.8%
OVE 0.09 <0.001 6.0%
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Results: Correct response rate and log-response
time on lexical decision task

System Est. effect p-value Incorrect
NAT (ref.) 2.6%
VOC 0.02 0.33 2.5%
MERLIN 0.02 0.14 3.0%
GL -0.001 0.94 4.0%
DCTTS 0.04 <0.01 5.8%
OVE 0.09 <0.001 6.0%

I Modern SISO and TISO systems can be close to
natural speech in terms of response time

I Classic formant synthesis shows slower processing
times, consistent with prior literature
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Summary and future work

I Modern speech synthesis with precise control is of
interest to both scientists and technologists
I This can bring the fields back in touch again

I Modern synthetic speech has largely overcome the
perceptual inadequacies of systems commonly used
in speech sciences
I The situation for manipulated speech needs to be

studied
I Neural vocoders and more data or better adaptation

should further improve technological capabilities
I Let’s work together to make this happen!
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Thank you for listening!
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I Horizontal arrows are transformations between them
I Vertical arrows are controllable manipulations

43/31



MUSHRA results from pre-study
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I The test used 12 listeners and 30 Harvard sentences
I DCTTS used a simpler fine-tuning approach yielding

greater acoustic quality but more mispronunciations
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Lexical decision task results from pre-study

System Est. effect p-value Incorrect
NAT (ref.) 3%
GL 0.02 n.s. 3%
VOC 0.002 n.s. 4%
DCTTS 0.06 <0.05 9%
MERLIN -0.004 n.s. 4%
OVE 0.06 <0.005 7%

I 14 listeners with 300 responses and reaction times
each

I DCTTS performed significantly worse due to
mispronunciations
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Example stimuli

System HVD MRT 1 MRT 2
NAT Old, New Old, New Old, New
VOC Old, New Old, New Old, New
MERLIN Old, New Old, New Old, New
GL Old, New Old, New Old, New
DCTTS Old, New Old, New Old, New
OVE Old, New Old, New Old, New

I Old = Stimulus from pre-study
I New = Stimulus from main study reported in Malisz

et al. (2019)
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