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Speech-driven gesture generation
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Related work

Have you seen my bag?

Speech

Constraint

< Discourse Function | Question

Target Gesture So-What Q O

|
Animation ,t“ ‘;b‘g ++ 4\ |i| ;/n—miis

Hybrid between data-driven and rule-based approaches
Based on PGM with an additional hidden node for a constraint
Evaluate 3 hand gestures and 2 head motions.

Do smoothing afterwards

*

*

*

*

Sadoughi et al. "Speech-driven animation with meaningful behaviors."
Speech Communication 110. 2019
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Speech Audio

MFCC Features

Speech MFCC
Audio Computation
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Gesture Motion

ﬁ

Temporal
Filtering

+ From speech to 3D motion

+ Deep-learning based approach

+ Applied a lot of smoothing as post-processing

Hasegawa et al. "Evaluation of Speech-to-Gesture Generation Using Bi-Directional LSTM Network."

In IVA’18. ACM. 2018.
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Contributions

1. A novel speech-driven method for
non-verbal behavior generation that
can be applied to any embodiment.

2. Evaluation of the importance of
representation both for the motion
and for the speech
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General framework
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Our baseline model

61x256 61x256 61x256 1x384

Hasegawa, Dai, Naoshi Kaneko, Shinichi Shirakawa, Hiroshi Sakuta, and Kazuhiko Sumi.
"Evaluation of Speech-to-Gesture Generation Using Bi-Directional LSTM Network."
In Proceedings of the 18th International Conference on Intelligent Virtual Agents. ACM, pp. 79-86. 2018.
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Proposed method

Step 1
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Proposed method

Step 2
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Proposed method
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Step 3
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Proposed method
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(a) MotionED: representation learning for the motion

wh— -

(b) SpeechE: mapping speech to motion representations

~pug

(c) Combining the learned components: SpeechE and MotionD
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Experimental results
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S Dataset used

T ———

Japanese language
171 min of speech and 3D motion
Speech in mp3 format

Motion in bvh format

Takeuchi et al. "Creating a gesture-speech dataset for speech-based automatic gesture generation."
In HCIIL. 2017.
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s Dimensionality choice
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Input feature analysis

Model Features APE Acceleration Jerk
Static mean pose 8.95 0 0
Proposed Prosodic 8.56+0.2 0.90+0.03 1.52+0.07
Proposed Spectral 8.27+0.4 | |0.51+0.07  0.85+0.12
Proposed Spec. + Pros. | |8.11+0.3 0.57+0.08 0.95+0.12
Proposed MFCC 7.66+0.2 0.53+0.03 0.91+0.05
Proposed MFCC + Pros.| |7.65+0.2 0.58+0.06 0.97+0.11
Baseline MFCC 8.07+0.1 1.50+£0.03 2.62+0.05
Ground truth 0 0.38 0.54
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Histogram for wrists joints
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User study measures

Scale Statement (translated from Japanese)
Naturalness Gesture was natural

Gesture was smooth

Gesture was comfortable
Time Gesture timing was matched to speech
Consistency Gesture speed was matched to speech

Gesture pace was matched to speech
Semantic Gesture was matched to speech content
Consistency Gesture well described speech content

Gesture helped me understand the content

All were evaluated in the Likert scale from 1to 7
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User study results

EEE Baseline W Proposed

Mean rating
B oW

w

2

1 Naturalness Time consistency Semantic consistency

19 participants with
10 videos x 9 questions x 2 conditions = 180 ratings each
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Visual comparison

Baseline model

No smoothing was applied
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o Visual comparison

Ground truth Baseline Proposed

|

W RBIRCHIEYRBLTWAR LTI DE ..
... (this is because) the number of nursery teachers is not enough ...

No smoothing was applied
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Conclusion

Deep-learning based
speech-driven gesture generation
becomes more natural

using representation learning
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DNN + CRF = DCNF
Virtual character

Discrete set of motions
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Related work

Gesture 3 Gesture 1

Gesture output
(for virtual human-

animations)
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Chung-Cheng Chiu, Louis-Philippe Morency, and Stacy Marsella.
Predicting co-verbal gestures: a deep and temporal modeling approach.

International Conference on Intelligent Virtual Agents. Springer, Cham, 2015.
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Human-robot communication

Speech _ -
Body language ‘ '
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https://www.ald.softbankrobotics.com
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