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Outline
I Humans have great control over how they speak; machines do not

I Control inputs in speech data are seldom well annotated, due to cost
I Can we learn to control also unannotated variation?

I Yes, by joint optimisation of parameters and control inputs [1, 2, 3]
I Our main contributions:
1. [1, 2, 3] can be interpreted as maximum likelihood with latent variables
2.Use a sparse latent prior to learn unannotated nuances in expression

I Produces accurate emotional TTS with fine expression control

Controllable TTS
I Annotated: supervised learning

I Baseline system
I Unannotated: heuristic joint
optimisation of z and θ
I “Discriminant condition codes” [1]
I “Sentence-level control vectors” [2]

I Proposed method: Coarse annotation

Linguistic
inputs

Acoustic
outputs
X

Control
signal Z

Network
weights θ

Understanding previous heuristics
I Assume stochastic observations (speech) X depend on parameters θ and
unobserved latent variables Z (unannotated control inputs) through

fX,Z(x, z; θ) = fX |Z (x | z; θ) fZ(z; θ) (1)
I Ideal: Maximum likelihood and maximum a-posteriori (MAP) estimation

θ̂ML(x) = argmax
θ

ln

∫
fX,Z(x, z; θ) dz (2)

ẑMAP(x; θ) = argmax
z

ln
(
fX |Z (x | z; θ) fZ(z; θ)

)
(3)

I Heuristic joint point-estimation objective used in [1, 2, 3](
θ̂(x), ẑ(x)

)
= argmax

(θ, z)

ln fX |Z (x | z; θ) (4)

I fX |Z (x | z; θ) is a DNN/RNN with input z, weights θ, and output E (x)
I fX |Z isotropic Gaussian⇒minimum mean-squared error (MMSE) estimation

I We prove that (
θ̂(x), ẑ(x)

)
≈
(
θ̂ML(x), ẑMAP(x; θ̂ML(x))

)
(5)

(in a local, not global sense), assuming
I Sharp posterior: fX |Z (x | z; θ) ≈ 0 unless z ≈ ẑMAP(x; θ)
I Flat prior: fZ(z; θ) ≈ c on the support of the distribution

I The proof is based on the EM-algorithm; Jensen’s inequality is a key step
I Interpretation:

I The established heuristic approximates maximum-likelihood estimation
I Estimated input values ẑ(x) are “poor man’s latent variables”

I Benefits:
I We now understand the goals and approximations of established methods
I We can use latent-variable theory to improve controllable TTS

Experiment setup
Can we learn nuances in emotional expression from coarsely annotated speech?
I Idea: Learn a single emotional space with a sparse prior to separate emotions
I Data: Japanese-language single-speaker emotional speech database

I 7 emotions (acted), 1200 utterances each (80% used for training)
I Tried to keep emotional expression as consistent as possible
I 8400 total utterances, more than 1000 minutes

I Features: Open JTalk linguistic features; WORLD vocoder with MLPG
I Alignment and duration prediction using emotion-aware HSMM (HTS)

I Deep RNN: Code from CURRENNT toolkit; MMSE training using SGD
1.Baseline system (Ba): Fixed, one-hot emotion input
2. Proposed system (P): 14-dimensional learned latent space
I Emotional expression ẑ(n) ∈ R14 assumed constant for each utterance n, to
encourage learned control parameters to represent utterance-level variation

I Each emotion occupies a separate, orthogonal 2D subspace
I Example: sparsity pattern ẑ(n) = 0 0 ẑ

(n)
3 ẑ

(n)
4 0 0 . . . 0 0 when n belongs to

emotion two; use “two-hot initialisation”
I Trained using constrained heuristic objective (“poor man’s latent variables”)

Examples of learned control vectors
I Scatterplots of learned control vectors {ẑ} in different emotional subspaces
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Emotion recognisability
I Verify that proposal maintains the recognisability of synthesised emotions
I Generate speech stimuli from:

I One-hot baseline emotional TTS (discrete ẑ(n), not learned)
I Proposed system (learned, cont. ẑ(n)) using per-emotion mean control input
I Also test held-out natural speech recordings (N)

I Emotion classification test
I Listeners classify stimuli into the seven emotional categories or “other”
I 75 crowdsourced listeners, 1162 responses
I Italicised Bonferroni-corrected p-values are not significant at level α = 0.05

% correct p-values
Emotion Natural (N) Baseline (Ba) Proposed (P) N vs. P Ba vs. P
Neutral 88 69 86 1.000 0.345
Happy 95 85 88 1.000 1.000
Calm 71 63 46 0.057 0.576
Excited 32 28 18 0.576 1.000
Sad 93 72 70 0.045 1.000
Insecure 71 61 59 0.863 1.000
Angry 91 91 93 1.000 1.000
All 77 67 66 0.004 1.000

Emotional nuance discrimination
I Verify that changing the control vector alters the emotional expression
I Use P to generate pairs of same-sentence stimuli with different z-vectors
I Rand: Pairs of distinct latent vectors randomly drawn from {ẑ}
I Far: Latent vectors taken from the
pairs furthest in Mahalanobis distance

I ABX listening test
I A, B, X stimuli based on the above
stimulus pairs

I “Which of A and B has the most
similar emotional expression to X?”

I 18 crowdsourced listeners,
950 responses

% correct p-values
Emotion Rand Far Rand Far
Neutral 74 70 <10-3 0.003
Happy 66 91 0.027 <10-12

Calm 61 90 0.149 <10-11

Excited 57 83 0.364 <10-7

Sad 80 100 <10-5 ≈0
Insecure 57 88 0.364 <10-10

Angry 80 99 <10-5 <10-19

All 68 89 <10-13 <10-71

Conclusions
I Proposal maintains emotion recognition rate of baseline synthesiser

I TTS emotion recognition only moderately worse than for natural speech
I Latent space control creates audible differences in emotional expression

I Noticeable differences are mostly differences in emotional strength,
even though the recordings tried to keep emotional strength constant

I Sad speech shows lower TTS quality for z-values in the point-cloud tail
I Further exploiting connections to latent-variable theory is future work
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