

Principles for learning controllable TTS from annotated and latent variation Gustav Eje Henter¹, Jaime Lorenzo-Trueba¹, Xin Wang¹, Junichi Yamagishi^{1,2}

¹National Institute of Informatics, Japan ²The University of Edinburgh, UK

Research partially supported by the TOYOTA motor corporation

Outline

- Humans have great control over how they speak; machines do not
- Control inputs in speech data are seldom well annotated, due to cost
- Can we learn to control also unannotated variation?
- ▶ Yes, by joint optimisation of parameters and control inputs [1, 2, 3]
- Our main contributions:
- 1. [1, 2, 3] can be interpreted as maximum likelihood with latent variables 2. Use a sparse latent prior to learn unannotated nuances in expression
- Produces accurate emotional TTS with fine expression control

Controllable TTS

Examples of learned control vectors

Scatterplots of learned control vectors $\{\hat{z}\}$ in different emotional subspaces

- Annotated: supervised learning
- Baseline system
- Unannotated: heuristic joint optimisation of z and θ
- "Discriminant condition codes" [1]
- "Sentence-level control vectors" [2]
- Proposed method: Coarse annotation

Understanding previous heuristics

• Assume stochastic observations (speech) X depend on parameters θ and unobserved latent variables Z (unannotated control inputs) through $\mathbf{A} = \mathbf{C} + \mathbf{C} +$

$$f_{\boldsymbol{X},\boldsymbol{Z}}(\boldsymbol{x},\,\boldsymbol{z};\,\boldsymbol{\theta}) = f_{\boldsymbol{X}\,|\,\boldsymbol{Z}}\left(\boldsymbol{x}\,|\,\boldsymbol{z};\,\boldsymbol{\theta}\right) f_{\boldsymbol{Z}}(\boldsymbol{z};\,\boldsymbol{\theta}) \tag{1}$$

Ideal: Maximum likelihood and maximum a-posteriori (MAP) estimation

$$\widehat{\boldsymbol{\theta}}_{ML}(\boldsymbol{x}) = \operatorname{argmax}_{\boldsymbol{\rho}} \ln \int f_{\boldsymbol{X},\boldsymbol{Z}}(\boldsymbol{x},\,\boldsymbol{z};\,\boldsymbol{\theta}) \,\mathrm{d}\boldsymbol{z}$$
(2)

$$\widehat{\boldsymbol{z}}_{MAP}(\boldsymbol{x}; \boldsymbol{\theta}) = \underset{\boldsymbol{z}}{\operatorname{argmax}} \ln \left(f_{\boldsymbol{X} \mid \boldsymbol{Z}} \left(\boldsymbol{x} \mid \boldsymbol{z}; \boldsymbol{\theta} \right) f_{\boldsymbol{Z}}(\boldsymbol{z}; \boldsymbol{\theta}) \right)$$
(3)

Heuristic joint point-estimation objective used in [1, 2, 3]

$$\left(\boldsymbol{\theta}(\boldsymbol{x}), \, \widehat{\boldsymbol{z}}(\boldsymbol{x})\right) = \underset{(\boldsymbol{\theta}, \, \boldsymbol{z})}{\operatorname{argmax}} \ln f_{\boldsymbol{X} \mid \boldsymbol{Z}}\left(\boldsymbol{x} \mid \boldsymbol{z}; \, \boldsymbol{\theta}\right) \tag{4}$$

► $f_{\boldsymbol{X} \mid \boldsymbol{Z}}(\boldsymbol{x} \mid \boldsymbol{z}; \boldsymbol{\theta})$ is a DNN/RNN with input \boldsymbol{z} , weights $\boldsymbol{\theta}$, and output $\mathbb{E}(\boldsymbol{x})$ • $f_{X|Z}$ isotropic Gaussian \Rightarrow minimum mean-squared error (MMSE) estimation

Emotion recognisability

- Verify that proposal maintains the recognisability of synthesised emotions
- Generate speech stimuli from:
 - ▶ One-hot baseline emotional TTS (discrete $\hat{z}^{(n)}$, not learned)
 - ▶ Proposed system (learned, cont. $\hat{z}^{(n)}$) using per-emotion mean control input
 - Also test held-out natural speech recordings (N)
- Emotion classification test
 - Listeners classify stimuli into the seven emotional categories or "other"
 - ► 75 crowdsourced listeners, 1162 responses
 - Italicised Bonferroni-corrected *p*-values are not significant at level $\alpha = 0.05$

	% correct				<i>p</i> -values	
Emotion	Natural (N)	Baseline (Ba)	Proposed (P)	N vs. P	Ba vs. P	
Neutral	88	69	86	1.000	0.345	
Нарру	95	85	88	1.000	1.000	
Calm	71	63	46	0.057	0.576	
Excited	32	28	18	0.576	1.000	
Sad	93	72	70	0.045	1.000	
Insecure	71	61	59	0.863	1.000	
Angry	91	91	93	1.000	1.000	
All	77	67	66	0.004	1.000	

- We prove that
- $\left(\widehat{\boldsymbol{ heta}}(\boldsymbol{x}),\,\widehat{\boldsymbol{z}}(\boldsymbol{x})
 ight) pprox \left(\widehat{\boldsymbol{ heta}}_{\mathrm{ML}}(\boldsymbol{x}),\,\widehat{\boldsymbol{z}}_{\mathrm{MAP}}(\boldsymbol{x};\,\widehat{\boldsymbol{ heta}}_{\mathrm{ML}}(\boldsymbol{x}))
 ight)$
- (in a local, not global sense), assuming
- ► Sharp posterior: $f_{\boldsymbol{X} \mid \boldsymbol{Z}}(\boldsymbol{x} \mid \boldsymbol{z}; \boldsymbol{\theta}) \approx 0$ unless $\boldsymbol{z} \approx \widehat{\boldsymbol{z}}_{MAP}(\boldsymbol{x}; \boldsymbol{\theta})$
- Flat prior: $f_{Z}(z; \theta) \approx c$ on the support of the distribution
- ► The proof is based on the EM-algorithm; Jensen's inequality is a key step
- Interpretation:
- The established heuristic approximates maximum-likelihood estimation
- \blacktriangleright Estimated input values $\widehat{\boldsymbol{z}}(\boldsymbol{x})$ are "poor man's latent variables"
- **Benefits**:
- We now understand the goals and approximations of established methods
- ► We can use latent-variable theory to improve controllable TTS

Experiment setup

Can we learn nuances in emotional expression from coarsely annotated speech?

- Idea: Learn a single emotional space with a sparse prior to separate emotions
- Data: Japanese-language single-speaker emotional speech database
- ► 7 emotions (acted), 1200 utterances each (80% used for training)
- Tried to keep emotional expression as consistent as possible ▶ 8400 total utterances, more than 1000 minutes

Emotional nuance discrimination

- Verify that changing the control vector alters the emotional expression
- ► Use P to generate pairs of same-sentence stimuli with different *z*-vectors
- **Rand:** Pairs of distinct latent vectors randomly drawn from $\{\widehat{z}\}$
- **Far:** Latent vectors taken from the pairs furthest in Mahalanobis distance
- ABX listening test

(5)

- ► A, B, X stimuli based on the above stimulus pairs
- "Which of A and B has the most similar emotional expression to X?"
- ► 18 crowdsourced listeners, 950 responses

	% correct		<i>p</i> -values	
Emotion	Rand	Far	Rand	Far
Neutral	74	70	<10-3	0.003
Нарру	66	91	0.027	<10 ⁻¹²
Calm	61	90	0.149	<10 ⁻¹¹
Excited	57	83	0.364	<10-7
Sad	80	100	<10 ⁻⁵	pprox 0
Insecure	57	88	0.364	<10 ⁻¹⁰
Angry	80	99	<10 ⁻⁵	<10 ⁻¹⁹
All	68	89	<10 ⁻¹³	<10-71

Conclusions

- Proposal maintains emotion recognition rate of baseline synthesiser
 - TTS emotion recognition only moderately worse than for natural speech
- Latent space control creates audible differences in emotional expression
- Noticeable differences are mostly differences in emotional strength, even though the recordings tried to keep emotional strength constant
- Features: Open JTalk linguistic features; WORLD vocoder with MLPG
- Alignment and duration prediction using emotion-aware HSMM (HTS)
- Deep RNN: Code from CURRENNT toolkit; MMSE training using SGD
- 1. Baseline system (Ba): Fixed, one-hot emotion input
- 2. Proposed system (P): 14-dimensional learned latent space
- Emotional expression $\widehat{\boldsymbol{z}}^{(n)} \in \mathbb{R}^{14}$ assumed constant for each utterance n, to encourage learned control parameters to represent utterance-level variation
- **Each emotion occupies a separate, orthogonal 2D subspace**
- Example: sparsity pattern $\hat{z}^{(n)} = |00| \hat{z}_3^{(n)} \hat{z}_4^{(n)} |00 \dots 00|$ when n belongs to emotion two; use "two-hot initialisation"
- Trained using constrained heuristic objective ("poor man's latent variables")

- ► Sad speech shows lower TTS quality for *z*-values in the point-cloud tail
- Further exploiting connections to latent-variable theory is future work

References

- [1] S. Xue, O. Abdel-Hamid, H. Jiang, L.-R. Dai, and Q. Liu, "Fast adaptation of deep neural network based on discriminant codes for speech recognition," IEEE/ACM T. Audio Speech, vol. 22, no. 12, pp. 1713–1725, 2014.
- [2] O. Watts, Z. Wu, and S. King, "Sentence-level control vectors for deep neural network speech synthesis," in Proc. Interspeech, 2015, pp. 2217–2221.
- [3] H.-T. Luong, S. Takaki, G. E. Henter, and J. Yamagishi, "Adapting and controlling DNN-based speech synthesis using input codes," in Proc. ICASSP, 2017, pp. 4905–4909.