

Robust text-to-speech duration modelling using DNNs

Gustav Eje Henter, Srikanth Ronanki, Oliver Watts, Mirjam Wester, Zhizheng Wu, Simon King

The Centre for Speech Technology Research (CSTR), the University of Edinburgh, UK

Outline

- Statistical speech synthesis is sensitive to bad data and bad assumptions
- We propose using techniques from robust statistics to reduce this sensitivity This will be important on big and found datasets
- Robust techniques synthesise improved durations from found audiobook data

Paper [1] presented at ICASSP 2016

Why duration modelling?

- Duration is a major component in natural speech prosody
- Current duration models are weak and unconvincing

Experiment

- ► Data: Vol. 3 of Jane Austen's "Emma" audiobook from LibriVox (≈3 hours)
 - Has transcription errors and other found-data problems
 - Public domain: https://librivox.org/emma-by-jane-austen-solo/
- Input features: 592 binary + 9 continuous features based on Festvox
- Pause phones inserted based on natural speech (oracle)
- Output features:
 - Duration prediction: 6-vector of (5) state and phone durations
 - ► Acoustic modelling: 86×3 normalised STRAIGHT features
- DNN: 6 tanh feedforward layers with MDN output, implemented in Theano
- Engineering approach: Throw data and computation (DNNs) at the task!
- Problem: Big/found speech corpora have poor quality control
- Problem: Our models are wrong durations are skewed and non-Gaussian

Sensitivity of conventional approach

- Standard maximum likelihood estimation (MLE) is sensitive to unexpected data behaviour
- ► Gaussian toy data × with outlier *
- Outlier can be error or genuine
- Gaussian fit changes a lot with and without outlier! (solid vs. dashed)
- Robust statistics allow "giving up": Ill-fitting datapoints can be disregarded
- This gives a better model of the typical case (high-density regions)
- "Robust speech synthesis"

DNN duration prediction

► Assume phone durations *d* are independent and GMM distributed

$$f_{\boldsymbol{D}}(\boldsymbol{d}; \boldsymbol{\theta}) = \sum_{k=1}^{\kappa} \omega_k \cdot f_{\mathcal{N}}(\boldsymbol{d}; \boldsymbol{\mu}_k, \operatorname{diag}(\boldsymbol{\sigma}_k^2))$$

Systems:

Label	Duration prediction	Role	Robust?
VOC	Vocoded speech (waveform)	Top line	-
FRC	Durations from forced alignment	Oracle	-
BOT	Monophone mean duration	Bottom line	×
MSE	Minimum mean-square error	Baseline	×
MLE1	Gaussian-output MDN fit w/ MLE	Baseline	×
MLE3	K = 3 Gaussian-component MDN fit w/ MLE	Previous	\checkmark
B75	Gaussian-output MDNs fit w/ β -divergence,	Proposed	\checkmark
B50	tuned to ignore $pprox$ 25 or 50% of datapoints	Proposed	\checkmark

All systems (except VOC) used the same DNN acoustic model

Objective results

- RMSE (frames per phone) between predicted and forced-aligned durations
- Measured on progressively larger and less well explained test-data subsets
- ► Normalised to place BOT at 1.0

- Setting K = 1 yields a conventional Gaussian DNN duration model
- Distribution parameters $\theta = \{\omega_k, \mu_k, \sigma_k^2\}_{k=1}^K$ depend on linguistic features lthrough a DNN $\theta(l; W)$ with weights $W \Rightarrow$ a mixture density network (MDN)
- Conventional, non-robust MLE parameter estimation for data $\mathcal{D} = \{d_p, l_p\}$ $\widehat{\boldsymbol{W}}_{\mathrm{ML}} = \operatorname*{argmax}_{\boldsymbol{W}} \sum_{p \in \mathcal{D}} \ln f_{\boldsymbol{D}}(\boldsymbol{d}_p; \, \boldsymbol{\theta}(\boldsymbol{l}_p; \, \boldsymbol{W}))$

Achieving robustness

 β -estimated Gaussian ($\beta = 1/3$)

- Robust output generation: Component selection in MDNs
 - $k_{\max}(\boldsymbol{l}) = rgmax \, \omega_k(\boldsymbol{l})$ $\widehat{\boldsymbol{d}}(\boldsymbol{l}) = \operatorname{argmax} f_{\mathcal{N}}(\boldsymbol{d}; \boldsymbol{\mu}_{k_{\max}}(\boldsymbol{l}), \operatorname{diag}(\boldsymbol{\sigma}_{k_{\max}}^{2}(\boldsymbol{l})))$
 - This is robust if K > 1 (some components/data ignored)

Conclusion: Robust systems reject outliers and better describe the typical case

Subjective results

- MUSHRA/preference test hybrid
 - ► 21 listeners ranked 18 (of 21) sentences per system
 - Box plot of aggregate ranks (higher is better; squares are means):

- Conventional approach from [2], but not motivated through robustness
- ▶ New, robust estimation principle: β -estimation [3] $\widehat{\boldsymbol{W}}_{M\beta} = \operatorname*{argmax}_{\boldsymbol{W}} \sum_{\boldsymbol{x} \in \mathcal{D}} \left((f_{\boldsymbol{D}}(\boldsymbol{d}_{p}; \boldsymbol{\theta}(\boldsymbol{l}_{p}; \boldsymbol{W})))^{\beta} - \frac{\beta}{1+\beta} \int (f_{\boldsymbol{D}}(\boldsymbol{x}; \boldsymbol{\theta}(\boldsymbol{l}_{p}; \boldsymbol{W})))^{1+\beta} d\boldsymbol{x} \right)$
- $\blacktriangleright \beta > 0$ is a tuning parameter, $\beta \rightarrow 0$ recovers MLE
- ► Statistically robust: only finite penalty if $f_D(d_p; \theta) = 0$

References

- [1] G. E. Henter, S. Ronanki, O. Watts, M. Wester, Z. Wu, and S. King, "Robust TTS duration modelling using DNNs," in Proc. ICASSP, 2016.
- [2] H. Zen and A. Senior, "Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis," in Proc. ICASSP, 2014.
- [3] A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones, "Robust and efficient estimation by minimising a density power divergence," Biometrika, vol. 85, no. 3, pp. 549–559, 1998.
- Nearly all differences (except MSE vs. MLE1) are statistically significant
- Conclusion: Robust duration prediction is subjectively preferred

Learn more

homepages.inf.ed.ac.uk/ghenter/

pubs/henter2016robust.pdf

Audio examples

homepages.inf.ed.ac.uk/ghenter/

demo/henter2016robust

Test materials

dx.doi.org/10.7488/ds/1317