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Outline
I Statistical speech synthesis is sensitive to bad data and bad assumptions
I We propose using techniques from robust statistics to reduce this sensitivity

I This will be important on big and found datasets
I Robust techniques synthesise improved durations from found audiobook data

I Paper [1] presented at ICASSP 2016

Why duration modelling?
I Duration is a major component in natural speech prosody
I Current duration models are weak and unconvincing
I Engineering approach: Throw data and computation (DNNs) at the task!

I Problem: Big/found speech corpora have poor quality control
I Problem: Our models are wrong – durations are skewed and non-Gaussian

Sensitivity of conventional approach
I Standard maximum likelihood estima-
tion (MLE) is sensitive to unexpected
data behaviour

I Gaussian toy data × with outlier ∗
I Outlier can be error or genuine
I Gaussian fit changes a lot with and
without outlier! (solid vs. dashed)

I Robust statistics allow “giving up”: Ill-fitting datapoints can be disregarded
I This gives a better model of the typical case (high-density regions)
I “Robust speech synthesis”

DNN duration prediction
I Assume phone durations d are independent and GMM distributed

fD (d; θ) =
K∑
k=1

ωk · fN (d; µk, diag(σ2
k))

I Setting K = 1 yields a conventional Gaussian DNN duration model
I Distribution parameters θ = {ωk, µk, σ2

k}Kk=1 depend on linguistic features l
through a DNN θ (l; W ) with weightsW ⇒ a mixture density network (MDN)

I Conventional, non-robust MLE parameter estimation for data D = {dp, lp}
ŴML = argmax

W

∑
p∈D

ln fD(dp; θ(lp; W ))

Achieving robustness

2-component GMM β-estimated Gaussian (β = 1/3)
I Robust output generation: Component selection in MDNs

kmax (l) = argmax
k

ωk (l)

d̂ (l) = argmax
d

fN (d; µkmax
(l) , diag(σ2

kmax
(l)))

I This is robust if K > 1 (some components/data ignored)
I Conventional approach from [2], but not motivated through robustness

I New, robust estimation principle: β-estimation [3]

ŴMβ = argmax
W

∑
p∈D

(
(fD(dp; θ(lp; W )))β − β

1 + β

∫
(fD(x; θ(lp; W )))1+βdx

)
I β > 0 is a tuning parameter, β → 0 recovers MLE
I Statistically robust: only finite penalty if fD(dp; θ) = 0
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Experiment
I Data: Vol. 3 of Jane Austen’s “Emma” audiobook from LibriVox (≈3 hours)

I Has transcription errors and other found-data problems
I Public domain: https://librivox.org/emma-by-jane-austen-solo/

I Input features: 592 binary + 9 continuous features based on Festvox
I Pause phones inserted based on natural speech (oracle)

I Output features:
I Duration prediction: 6-vector of (5) state and phone durations
I Acoustic modelling: 86×3 normalised STRAIGHT features

I DNN: 6 tanh feedforward layers with MDN output, implemented in Theano
I Systems:

Label Duration prediction Role Robust?
VOC Vocoded speech (waveform) Top line -
FRC Durations from forced alignment Oracle -
BOT Monophone mean duration Bottom line ×
MSE Minimum mean-square error Baseline ×
MLE1 Gaussian-output MDN fit w/ MLE Baseline ×
MLE3 K = 3 Gaussian-component MDN fit w/ MLE Previous X
B75 Gaussian-output MDNs fit w/ β-divergence, Proposed X
B50 tuned to ignore ≈25 or 50% of datapoints Proposed X

I All systems (except VOC) used the same DNN acoustic model

Objective results
I RMSE (frames per phone) between predicted and forced-aligned durations

I Measured on progressively larger and less well explained test-data subsets
I Normalised to place BOT at 1.0
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Percentage of least-residual datapoints retained
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I Conclusion: Robust systems reject outliers and better describe the typical case

Subjective results
I MUSHRA/preference test hybrid

I 21 listeners ranked 18 (of 21) sentences per system
I Box plot of aggregate ranks (higher is better; squares are means):
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I Nearly all differences (except MSE vs. MLE1) are statistically significant
I Conclusion: Robust duration prediction is subjectively preferred

Learn more
Paper

homepages.inf.ed.ac.uk/ghenter/

pubs/henter2016robust.pdf

Audio examples

homepages.inf.ed.ac.uk/ghenter/

demo/henter2016robust

Test materials
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