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Overview
We present a new paradigm in speech acoustic models:
I Traditional H(S)MMs are not good models of speech
I Speakers are better represented by continuous, multidimensional state-spaces
I Nonparametric methods can discover the most salient speaker-state aspects
I We suggest using Gaussian process dynamical models (GPDMs)
I GPDMs generate more natural speech than HMMs in an experiment
I The multidimensional space can represent prosodic variation

Traditional HMMs Are Not Like Speech
HMM-based acoustic models do not sound like speech. Sample sequences:
1.Have unnatural durations (memoryless, geometric distribution)
I Current solution: non-memoryless, semi-Markov models

2.Are piecewise stationary (constant), with discrete jumps
I Current solution: add dynamic features

3.Are unnaturally warbly
I All deviations from the mean contour are treated as noise
I Current solution: only generate the most probable output (so-called MLPG)

Not sampling may hide the issues, but we are still not describing natural speech!
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Figure 1: Samples from speech-trained HMMs are unnatural

What to Do
HMMs over-simplify reality. Speech and speakers are more complex than a
single, no-skip left-right discrete-state HMM can describe.
1.The state-space should be continuous
I We can be in-between sounds and key-frame states (solves 2 above)
I Incremental progress between states can be remembered (solves 1 above)

2.The state-space should be multidimensional
I Sentence position (“time”) is just one aspect of speaker state
I Overshoots, undershoots, prosody etc. now representable in state space
I Meaningful variations are not treated as noise anymore (solves 3 above)

Follows industry trend from simple but exact towards advanced but approximated
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Figure 2: Comparison of one-dimensional state-spaces

Continuous State-Space Models
A dynamical model for Y t with hidden (latent) state Xt is defined by:
1.An initial distribution P (x0)

2.Markovian state dynamics P (xt+1 |xt)
3. State-dependent output P (yt |xt)
–Usually assumed Gaussian, defined by means µY (xt) and covariances ΣY (xt)

For discrete state-spaces xt ∈ {1, . . . , Q}, 1, 2, 3 can use general mappings.
For continuous state-spaces xt ∈ RQ, completely general mappings cannot be

learned. We must make assumptions.
I Nonparametric assumptions are compelling
–Similar states should evolve similarly (2) and generate similar output (3)
– Let the model select the most salient aspects for the state-space to describe
–Assume all distributions are Gaussian, for simplicity

→This suggests basing our models on Gaussian processes (GPs), a Bayesian
framework for nonparametric stochastic regression

Gaussian Processes in Brief
I GPs are like infinite-dimensional Gaussian vector distributions
–Vector case: mean i ∈ Z→ µi, covariance (i, j)→∑

ij

–GP case: mean x ∈ RQ→ µ (x), covariance (x, x′)→ k (x, x′)
I Predictions are made through correlations with previous observations
I The covariance kernel k (·, ·) is a positive definite function
– k expresses prior beliefs, e.g., that similar x-values have similar output

I GPs can be seen as priors over possible regression functions fY (x)

x

G
P

f Y
(x
)

−5 0 5

−2

0

2

(a) GP prior (using smoothness-preferring squared exponential kernel)
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(b) GP posterior – observations starred

Figure 3: Example Gaussian process – samples (color) and standard deviations (black)

Gaussian Process Dynamical Models
Dynamical models built from Gaussian processes are known as GPDMs.
I Assume different dimensions are independent given xt
–Like assuming diagonal covariance matrices

I Output mapping Y t (xt, β) and dynamic mapping ∆X t (xt, α)

–Different kernels kY , kX, with shapes governed by hyperparameters β, α
I Given a state-sequence x, the output distribution fY |X

(
y
∣∣x, β) is Gaussian

–The covariance matrix KY (x, β) is a function of x
I The state-sequence distribution is non-Gaussian since K depends on x itself

fX (x |α) ∝
∣∣K−1

X (x, α)
∣∣ exp

−1

2

Q∑
q=1

∆xq
TK−1

X (x, α) ∆xq


–Non-Gaussianity makes sampling and parameter estimation challenging
–Currently available approximations (e.g., MAP) introduce quality loss
–Results from motion capture show natural samples are possible

Experiments
I Feature extraction (pitch + cepstra), synthesis using STRAIGHT at 100 fps
I kY , kX squared-exponential covariance kernels with white noise terms
–Not suitable for discontinuous data, so fully voiced utterances were used

1. Synthesis experiment
I Q = 1 dim. GPDMs vs. many-state left-right no-skip HMMs
I Data: three examples of each utterance
I Subjects rated signal naturalness in a MUSHRA-like test
I High-probability GPDM output rated better than HMM MLPG (p = 0.0017)
I GPDM samples rated better than HMM samples (p = 0.014)
I High-probability output still much more natural than sampling

2.Representation experiment
I Data: six examples of an utterance, but with two different stress patterns
I A Q = 3 dim. GPDM separates the two prosodic variations in latent space
I Within each group (colored in Figure 4) there is a common representation

The Future
I GPDMs provide a powerful framework, to which HMM tricks can be adapted
I GPDM computational effort can be made tractable through approximations
I With improved parameter estimation, GPDMs can perform better still
I Extension to arbitrary speech synthesis is underway
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Figure 4: Learned latent-space trajectories, color coded by stress pattern


