

Gaussian Process Dynamical Models for Nonparametric Speech Representation and Synthesis

Gustav Eje Henter¹, Marcus R. Frean², and W. Bastiaan Kleijn^{1,2}

¹Sound and Image Processing Lab, School of Electrical Engineering,

KTH – Royal Institute of Technology, Stockholm, Sweden

²School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

Overview

We present a new paradigm in speech acoustic models:

- Traditional H(S)MMs are not good models of speech
- Speakers are better represented by continuous, multidimensional state-spaces
- Nonparametric methods can discover the most salient speaker-state aspects
- We suggest using Gaussian process dynamical models (GPDMs)
- GPDMs generate more natural speech than HMMs in an experiment
- The multidimensional space can represent prosodic variation

Gaussian Processes in Brief

- GPs are like infinite-dimensional Gaussian vector distributions
 - -Vector case: mean $i \in \mathbb{Z} \to \mu_i$, covariance $(i, j) \to \sum_{ij}$
 - -GP case: mean $\boldsymbol{x} \in \mathbb{R}^Q \to \mu(\boldsymbol{x})$, covariance $(\boldsymbol{x}, \, \boldsymbol{x'}) \to k(\boldsymbol{x}, \, \boldsymbol{x'})$
- Predictions are made through correlations with previous observations
- The covariance kernel $k(\cdot, \cdot)$ is a positive definite function
 - -k expresses prior beliefs, e.g., that similar x-values have similar output
- GPs can be seen as priors over possible regression functions $f_Y(\boldsymbol{x})$

Traditional HMMs Are Not Like Speech

HMM-based acoustic models do not sound like speech. Sample sequences: 1. Have unnatural durations (memoryless, geometric distribution)

- Current solution: non-memoryless, semi-Markov models
- 2. Are piecewise stationary (constant), with discrete jumps
- Current solution: add dynamic features
- 3. Are unnaturally warbly
 - All deviations from the mean contour are treated as noise
- Current solution: only generate the most probable output (so-called MLPG) Not sampling may hide the issues, but we are still not describing natural speech!

Figure 1: Samples from speech-trained HMMs are unnatural

What to Do

Figure 3: Example Gaussian process – samples (color) and standard deviations (black)

Gaussian Process Dynamical Models

Dynamical models built from Gaussian processes are known as GPDMs.

- **Assume different dimensions are independent given** x_t
- -Like assuming diagonal covariance matrices
- Output mapping $\boldsymbol{Y}_t(\boldsymbol{x}_t, \boldsymbol{\beta})$ and dynamic mapping $\Delta \boldsymbol{X}_t(\boldsymbol{x}_t, \boldsymbol{\alpha})$
- -Different kernels k_Y , k_X , with shapes governed by hyperparameters β , α
- Given a state-sequence \underline{x} , the output distribution $f_{Y|X}(y \mid \underline{x}, \beta)$ is Gaussian
 - -The covariance matrix $K_Y(\underline{x}, \beta)$ is a function of \underline{x}
- The state-sequence distribution is non-Gaussian since K depends on \underline{x} itself $f_{\underline{X}}(\underline{x} \mid \boldsymbol{\alpha}) \propto \left| \boldsymbol{K}_{X}^{-1}(\underline{x}, \boldsymbol{\alpha}) \right| \exp \left(-\frac{1}{2} \sum_{q=1}^{\infty} \Delta x_{q}^{T} \boldsymbol{K}_{X}^{-1}(\underline{x}, \boldsymbol{\alpha}) \Delta x_{q} \right)$

-Non-Gaussianity makes sampling and parameter estimation challenging

HMMs over-simplify reality. Speech and speakers are more complex than a single, no-skip left-right discrete-state HMM can describe.

1. The state-space should be continuous

- We can be in-between sounds and key-frame states (solves 2 above)
- Incremental progress between states can be remembered (solves 1 above)
- 2. The state-space should be multidimensional
- Sentence position ("time") is just one aspect of speaker state
- Overshoots, undershoots, prosody etc. now representable in state space
- Meaningful variations are not treated as noise anymore (solves 3 above)

Follows industry trend from simple but exact towards advanced but approximated

Figure 2: Comparison of one-dimensional state-spaces

Continuous State-Space Models

A dynamical model for Y_t with hidden (latent) state X_t is defined by: **1.** An initial distribution $P(x_0)$

2. Markovian state dynamics $P(x_{t+1} | x_t)$

- -Currently available approximations (e.g., MAP) introduce quality loss
- Results from motion capture show natural samples are possible

Experiments

- Feature extraction (pitch + cepstra), synthesis using STRAIGHT at 100 fps
- \blacktriangleright k_Y , k_X squared-exponential covariance kernels with white noise terms

-Not suitable for discontinuous data, so fully voiced utterances were used

1. Synthesis experiment

- \triangleright Q = 1 dim. GPDMs vs. many-state left-right no-skip HMMs
- Data: three examples of each utterance
- Subjects rated signal naturalness in a MUSHRA-like test
- High-probability GPDM output rated better than HMM MLPG (p = 0.0017)
- GPDM samples rated better than HMM samples (p = 0.014)
- High-probability output still much more natural than sampling

2. Representation experiment

- Data: six examples of an utterance, but with two different stress patterns
- \blacktriangleright A Q = 3 dim. GPDM separates the two prosodic variations in latent space
- Within each group (colored in Figure 4) there is a common representation

3. State-dependent output $P(\boldsymbol{y}_t | \boldsymbol{x}_t)$

-Usually assumed Gaussian, defined by means $\mu_{Y}(x_{t})$ and covariances $\Sigma_{Y}(x_{t})$ For discrete state-spaces $x_t \in \{1, \ldots, Q\}$, 1, 2, 3 can use general mappings. For continuous state-spaces $x_t \in \mathbb{R}^Q$, completely general mappings cannot be learned. We must make assumptions.

- Nonparametric assumptions are compelling
 - -Similar states should evolve similarly (2) and generate similar output (3)
 - -Let the model select the most salient aspects for the state-space to describe -Assume all distributions are Gaussian, for simplicity
- \rightarrow This suggests basing our models on Gaussian processes (GPs), a Bayesian framework for nonparametric stochastic regression

The Future

- GPDMs provide a powerful framework, to which HMM tricks can be adapted
- GPDM computational effort can be made tractable through approximations
- With improved parameter estimation, GPDMs can perform better still
- Extension to arbitrary speech synthesis is underway

Figure 4: Learned latent-space trajectories, color coded by stress pattern