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Overview

We present a new paradigm in speech acoustic models:

> Traditional H(S)MMs are not good models of speech

> Speakers are better represented by continuous, multidimensional state-spaces
> Nonparametric methods can discover the most salient speaker-state aspects
> We suggest using Gaussian process dynamical models (GPDMs)

> GPDMs generate more natural speech than HMMs in an experiment

> The multidimensional space can represent prosodic variation

Traditional HMMs Are Not Like Speech

HMM-based acoustic models do not sound like speech. Sample sequences:

1. Have unnatural durations (memoryless, geometric distribution)
> Current solution: non-memoryless, semi-Markov models

2. Are piecewise stationary (constant), with discrete jumps
> Current solution: add dynamic features

3. Are unnaturally warbly

> All deviations from the mean contour are treated as noise
> Current solution: only generate the most probable output (so-called MLPG)

Not sampling may hide the issues, but we are still not describing natural speech!
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Figure 1: Samples from speech-trained HMMs are unnatural

What to Do

HMMs over-simplify reality. Speech and speakers are more complex than a
single, no-skip left-right discrete-state HMM can describe.

1. The state-space should be continuous

> We can be in-between sounds and key-frame states (solves 2 above)
> Incremental progress between states can be remembered (solves 1 above)

2. The state-space should be multidimensional

> Sentence position (“time”) is just one aspect of speaker state
> Overshoots, undershoots, prosody etc. now representable in state space
> Meaningful variations are not treated as noise anymore (solves 3 above)

Follows industry trend from simple but exact towards advanced but approximated
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(a) Discrete states (left-right HMM) (b) Continuous state-space

Figure 2: Comparison of one-dimensional state-spaces

Continuous State-Space Models

A dynamical model for Y; with hidden (latent) state X; is defined by:
1. An initial distribution P (z)
2. Markovian state dynamics P (x:y1 | 2;)

3. State-dependent output P (y, | x¢)
— Usually assumed Gaussian, defined by means p, (z;) and covariances Xy (1;)

For discrete state-spaces z; € {1, ..., @}, 1, 2, 3 can use general mappings.
For continuous state-spaces x; € R%, completely general mappings cannot be
learned. We must make assumptions.

> Nonparametric assumptions are compelling
—Similar states should evolve similarly (2) and generate similar output (3)

— Let the model select the most salient aspects for the state-space to describe
— Assume all distributions are Gaussian, for simplicity

— This suggests basing our models on Gaussian processes (GPs), a Bayesian
framework for nonparametric stochastic regression

Gaussian Processes in Brief

> GPs are like infinite-dimensional Gaussian vector distributions
—Vector case: mean i € Z — j;, covariance (i, j) — > ..
—GP case: mean x € RY — ;i (x), covariance (z, ') — k (x, =)
> Predictions are made through correlations with previous observations
> The covariance kernel & (-, -) is a positive definite function
—k expresses prior beliefs, e.g., that similar x-values have similar output

> GPs can be seen as priors over possible regression functions fy (x)

(a) GP prior (using smoothness-preferring squared exponential kernel) (b) GP posterior — observations starred

Figure 3: Example Gaussian process — samples (color) and standard deviations (black)

Gaussian Process Dynamical Models

Dynamical models built from Gaussian processes are known as GPDMs.

> Assume different dimensions are independent given x;
— Like assuming diagonal covariance matrices
> Qutput mapping Y (x;, 3) and dynamic mapping AX,; (x;, o)
— Different kernels ky, kx, with shapes governed by hyperparameters 3, o
> Given a state-sequence z, the output distribution fy|x (y |z, 3) is Gaussian
— The covariance matrix Ky (x, 3) is a function of =

> The state-sequence distribution is non-Gaussian since K depends on x itself
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— Non-Gaussianity makes sampling and parameter estimation challenging
— Currently available approximations (e.g., MAP) introduce quality loss
— Results from motion capture show natural samples are possible

Experiments
> Feature extraction (pitch + cepstra), synthesis using STRAIGHT at 100 fps

> ky, kx squared-exponential covariance kernels with white noise terms
— Not suitable for discontinuous data, so fully voiced utterances were used

1. Synthesis experiment

> () =1 dim. GPDMs vs. many-state left-right no-skip HMMs

> Data: three examples of each utterance

> Subjects rated signal naturalness in a MUSHRA-like test

> High-probability GPDM output rated better than HMM MLPG (p = 0.0017)
> GPDM samples rated better than HMM samples (p = 0.014)

> High-probability output still much more natural than sampling

2. Representation experiment

> Data: six examples of an utterance, but with two different stress patterns
> A () =3 dim. GPDM separates the two prosodic variations in latent space
> Within each group (colored in Figure 4) there is a common representation

The Future

» GPDMs provide a powerful framework, to which HMM tricks can be adapted
> GPDM computational effort can be made tractable through approximations
> With improved parameter estimation, GPDMs can perform better still

> Extension to arbitrary speech synthesis is underway
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Figure 4. Learned latent-space trajectories, color coded by stress pattern



