
Intermediate-State HMMs to Capture
Continuously-Changing Signal Features

Gustav Eje Henter1 and W. Bastiaan Kleijn1,2

1Sound and Image Processing Lab, School of Electrical Engineering,
KTH – Royal Institute of Technology, Stockholm, Sweden

2School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

Paper Abstract
Traditional discrete-state HMMs are not well suited for describing steadily
evolving, path-following natural processes like motion capture data or
speech. HMMs cannot represent incremental progress between behaviours,
and sequences sampled from the models have unnatural segment dura-
tions, unsmooth transitions, and excessive rapid variation. We propose to
address these problems by permitting the state variable to occupy posi-
tions between the discrete states, and present a concrete left-right model
incorporating this idea. We call this intermediate-state HMMs. The state
evolution remains Markovian. We describe training using the generalized
EM-algorithm and present associated update formulas. An experiment
shows that the intermediate-state model is capable of gradual transitions,
with more natural durations and less noise in sampled sequences compared
to a conventional HMM.

The Problem
Hidden Markov models (HMMs) represent the dominant paradigm in
model-based speech synthesis and recognition. They allow for non-linearity
and long memory while still scaling linearly with database size. However,
standard HMMs make a number of assumptions that are inappropriate for
steadily-evolving processes like speech:

1. Durations: HMMs change states memorylessly, and durations are thus
geometrically distributed. This gives rise to much greater variations in
duration than real speech sounds have.

2. Transitions: Speech features tend to evolve gradually, not instanta-
neously and in discrete steps as HMMs assume.

3. Frame independence: Deviations from the mean behaviour tend to
be correlated between frames (e.g., overshoots and undershoots), but
HMMs model deviations as independent Gaussian noise.

Because of these shortcomings, random samples from speech-trained
HMMs do not sound much like speech. The output is noisy, steppy, and
has unnatural durations.

Established Techniques
A number of techniques have been proposed to address the above issues.
Particularly prominent are:

1. Hidden semi-Markov models (HSMMs): These let the transition proba-
bility depend on the time spent in the current state. This allows arbitrary
state durations, but is difficult to make efficient.

2. Dynamics features: One can incorporate delta and delta-delta features
into the HMM. This is challenging to do in a mathematically meaningful
manner, and requires approximations to scale well.

3. Maximum-likelihood parameter generation (MLPG): Since random sam-
ples are noisy, don’t sample—only generate the most probable outcome.
This does not address the root problem, but merely hides its symptoms.

Intermediate States
We propose a single, efficient, and mathematically consistent solution that
simultaneously addresses problems 1 and 2, and somewhat mitigates prob-
lem 3.
The idea is to let the HMM state variable attain non-integer positions.

This tracks incremental progress from one state to the next, so that reason-
able durations naturally emerge. Positions in-between regular states also
allow for intermediate sounds and gradual transitions between behaviours.
Parameters remain tied to integer positions, so the degrees of freedom do

not increase notably. Integer-position parameters now act as templates,
where state evolution and output properties at non-integer locations inter-
polate between adjacent templates’.

Remarks
Like for HSMMs, we introduce additional memory to the underlying Marko-
vian process, but this extra memory is a fractional state-part rather than
a duration. This brings two advantages:
I Durations create a 2-D state space that increases with T ; we maintain

a 1-D state space.
I HSMM time-spent-in-state does not lend itself well to interpolation.

The underlying Markov chain St of a left-right HMM can be seen as
a kind of random walk on S ⊂ Z with location-dependent evolution. Our
intermediate-state variable It performs a similar non-decreasing walk on the
expanded (non-integer) space I ⊂ R, which can be discrete or continuous.
With a discrete state space we effectively have a kind of tied HMM.

Graphical Comparison
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Natural durations 7 3 7 7! ∼ 3

Continuous paths 7 7 3 7 3 3

Reduced noise 7 7 7 3 3 ∼
Linear complexity 3 ∼ ∼ 3 ∼ 3

Training and Usage
To be practically relevant, new models must be possible to train and use.

?Sampling from intermediate-state models is sequential and straightfor-
ward, making synthesis easy.

?Data sequence probabilities and Viterbi paths can be computed on dis-
cretised intermediate-state HMMs with standard algorithms.

?The same goes for the E-step of EM-training.

The M-step during training is more involved. Typically, the parameters
can not all be updated simultaneously, and each update involves solving
an N ×N linear system. Specifically:
I Means can be optimized analytically under fixed standard deviations.
I Standard deviations can be updated using Newton’s method when means

are fixed, falling back on gradient updates when Newton’s method does
not increase the objective function.

I State evolution parameter updates also require Newton’s method.

Generalized EM parameter update formulas are presented in the paper.

An Example Application
We trained a 27-state conventional HMM and a 26-template intermediate-
state HMM on eight examples of the utterance “titta bilen” (Swedish for
“look, the car”). The features were the log pitch track and MFCCs of
filter and aperiodicity spectra produced by the STRAIGHT system at 200
fps.
The intermediate-state model used 12 equidistantly spaced fractional

states per integer, along with random walk step lengths ∆It ∈
{1/12, 2/12, 4/12}. Each template was associated with a distribution over the
different step lengths. The state-conditional output distribution Xt | It was
Gaussian, with a mean vector and (diagonal) standard deviation matrix
linearly interpolated between those of adjacent templates.
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Figure 1: State/template durations. The
mean is solid, with 0.1 and 0.9 quantiles
dashed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5000

Time t (sec)

F
re
q
u
en

cy
ω

(H
z)

Figure 2: Sample spectrograms of ref-
erence (top), intermediate-state model
(middle), and discrete HMM (bottom).

A seen in figure 1, random samples from the trained models had a similar
mean duration profile, but the traditional HMM showed unnaturally large
duration variation, unlike the intermediate-states model.
The better duration modelling and interpolating properties of

intermediate-state models are clearly visible in figure 2, which com-
pares a random sample from each model against a training utterance.
Intermediate-states also yielded marginally smaller residual noise variance.

Future Work
Intermediate-state HMMs do not model temporal correlations between
deviations. We are working on autoregressive HMMs which account for
correlations and still scale linearly in T . This would provide an efficient
response to all three HMM shortcomings simultaneously.
We are additionally interested in different hidden-state evolution choices,

such as fully continuous state spaces. This would require approximate state
estimation, e.g., with the unscented or the extended Kalman filter. We
are also considering improved parameter update formulas for training.


