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Paper Abstract
We consider using sparse simplifications to denoise probabilistic sequence

models for generative tasks such as speech synthesis. Our proposal is to
find the least random model that remains close to the original one according
to a KL-divergence constraint, a technique we call minimum entropy rate
simplification (MERS). This produces a representation-independent frame-
work for trading off simplicity and divergence, similar to rate-distortion
theory. Importantly, MERS uses the cleaned model rather than the orig-
inal one for the underlying probabilities in the KL-divergence, effectively
reversing the conventional argument order. This promotes rather than pe-
nalizes sparsity, suppressing uncommon outcomes likely to be errors. We
write down the MERS equations for Markov chains, and present an it-
erative solution procedure based on the Blahut-Arimoto algorithm and a
bigram matrix Markov chain representation. We apply the procedure to
a music-based Markov grammar, and compare the results to a simplistic
thresholding scheme.

The Problem
Consider generative models trained on data with interference:
I Speech sounds in realistic environments
I Field recordings of birdsong

The interference is learned with the model even as N → ∞. Sampling
from the model also reproduces interference, which is undesirable.
How can disturbances be eliminated from the model without parametric

assumptions? (Nonparametric model denoising.)

The Principle
Let X̃t be a given stationary, ergodic stochastic process model learned from
disturbed data.
Assume disturbances are generally less common than desirable behaviour.
Removing uncommon, uncharacteristic behaviour (outcomes) from X̃t

likely removes more interference than relevant behaviour. This gives an
improved and simplified model Xt of the underlying process.
Oversimplification will remove too much relevant behaviour as well, giving

poor models. We use the rate-distortion theory framework for optimal
trade-off between simplicity (rate) and dissimilarity (distortion).

Simplicity and Dissimilarity
A non-parametric, information theoretic measure of stochastic distribution
complexity and variability is information entropy

H(P ) = −
∑
i

P (P = i) lnP (P = i).

For stochastic processes, this is generalized to an entropy rate

H∞(Xt) = lim
T→∞

T−1H({Xt+1, . . . , Xt+T}).

To obtain simple processes, entropy rate should be minimized.
A simplified model should still be similar to the observations. The classic

information theoretic quantifier of the dissimilarity of two distributions is
the Kullback-Leibler divergence

DKL(P ||Q) =
∑
i

P (P = i) ln
P (P = i)

P (Q = i)
.

A KL-divergence rate can be defined similar to the entropy rate as

D∞(Xt || X̃t) = lim
T→∞

T−1DKL({Xt+1, . . . , Xt+T} || {X̃t+1, . . . , X̃t+T}).

We assume the sought Xt is the “true” model of the desired behaviour,
approximated by the known and fixed X̃t. Because of asymmetry in the ar-
guments, constraining this divergence rate promotes sparse simplifications.
Differential quantities can be used for continuous-valued processes.

The MERS Proposal
Let Ξ be a class of stationary, ergodic stochastic processes.
The MERS solution Xt for X̃t with max divergence D satisfies:

min
Xt∈Ξ

H∞(Xt)

subject to

D∞(Xt || X̃t) ≤ D.

Example: Markov Chains
A (first-order) Markov chain satisfies

P (Xt+1 |Xt, Xt−1, . . .) = P (Xt+1 |Xt).

Let X̃t be a given stationary, ergodic Markov chain on {1, . . . , K} described
by transition probability matrix Ã with elements ãij = P (X̃t+1 = j | X̃t = i).
Let Xt be another Markov chain satisfying the same requirements, de-

scribed by the bigram probability matrix B with bij = P (Xt = i ∧ Xt+1 = j).

To be a minimum entropy rate simplification of X̃t, Xt must solve

min
B
−
∑
ij

bij ln
bij∑
j′ bij′

subject to ∑
ij

bij ln
bij

ãij
∑

j′ bij′
≤ D

(B −BT )1 = 0

1TB1 = 1

B ≥ 0.

An Iterative Solution
A fast algorithm for finding B can be derived, similar to the Blahut-Arimoto
procedure for computing points on the rate-distortion curve.

1. Start with a Lagrange multiplier α > 1, an initial guess B(0), and m = 0.

2. Given B, optimize for q: q(m) = B(m)1.

3. Given q, optimize for B:

(a) Define B′(m+1) through b
′(m+1)
ij = (ãij)

α(q)
(m)
i .

(b) Let n = 0 and µ(n) = 1.

(c) Let µ
(n+1)
i =

√ ∑K
j=1, j 6=i µ

(n)
j b
′(m+1)
ji∑K

j=1, j 6=i(µ
(n)
j )−1b

′(m+1)
ji

.

(d) Let n = n + 1 and repeat from the previous step until convergence.

(e) Form B′′(m+1) = (diagµ(n))−1B′(m+1)(diagµ(n)).

(f) Normalize to get B(m+1) = (1TB′′(m+1)1)−1B′′(m+1).

4. If not converged, let m = m + 1 and repeat from 2.

This converges quickly in practice. The Lagrange multiplier α controls
the entropy-divergence trade-off.

A Numerical Example
We take a K = 12 Markov chain X̃t trained on Bach chorales using ML.
MERS is compared with a reverse water-filling-like scheme where a simpli-
fied A is obtained by thresholding each row of Ã.
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Figure 1: Entropy-Divergence Curve
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Figure 2: Bigram Probabilities

The first graph shows that MERS achieves better trade-offs between
simplicity and dissimilarity than thresholding.
The second graph shows the probability concentration properties of

MERS. Small matrix elements (unusual transitions) are eroded away. Since
many outcomes become very uncommon, a kind of sparsity in the outcome
space is produced; only the most characteristic behavior is retained.

Future Work
We are working on MERS solutions for additional classes of stochastic
processes. Approximative solutions may be considered for complex cases
such as HMMs. We are also developing faster solution formulas.
Other future work includes theory, e.g., properties of the optimal solu-

tions and the simplicity-dissimilarity curve, and practical applications, e.g.,
improving speech synthesis models.


