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Introduction

Introduction

Generative Modeling

Focused on learning the joint
distribution of the data p (X ,Y )

Advantages: Simplified
mathematical structure, tractable
training, can accommodate a
growing number of classes

Disadvantages: Conventional
models like GMM-HMM not
powerful enough for sequences

Discriminative Modeling

Focused on learning the conditional
distribution of the data p (Y |X )

Advantages: Powerful modeling
capability, larger context for
modeling sequences, data-driven
and model-free, etc.

Disadvantages: Difficult to
interpret, sensitive to adversarial
perturbations, fixed number of
classes, etc.
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Introduction Research Question

Questions and Challenges

Is there a way to ensure powerful modeling capability as well as mathematical
tractability?

Normalizing flow models have been found to provide a powerful yet tractable
method of estimating complicated probability distributions. They are capable of
exact likelihood estimation and inference using cleverly designed architectures [4].

Previous work

An implementation of a mixture of Normalizing flows based HMM (using
RealNVP flow) has been done by authors in [5] [6].

Research question

Can such models give some useful insights regarding robustness towards noisy
data in the context of Speech Recognition?
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NMM-HMM Modeling output distributions using NMM

NMM-HMM

Normalizing-flow mixture models (NMMs) are a class of generative models
constituted as a weighted mixture of Normalizing flows [4]. The probabilistic
model of the NMM-HMM for each hidden state is a weighted mixture of K
density functions that is defined as:

p (x|s; Ψs) =
K∑

k=1

πs,kp (x|s;φs,k) (1)

In Eqn. (1), πs,k = p (k|s; H), and they satisfy
∑K

k=1 πs,k = 1, for each s.
Assuming the function gs,k is invertible, and the corresponding normalizing
function is fs,k (or equivalently g−1

s,k ), s.t. z = fs,k (x), we have:

p (x|s; Φs,k) = ps,k (fs,k (x))

∣∣∣∣det

(
∂fs,k (x)

∂x

)∣∣∣∣ (2)

This equation shows that the density computation is exact.
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NMM-HMM Normalizing flows: Overview

Normalizing flows: Overview

Requirements of a Normalizing flow:

Every Normalizing flow model is a function that defines a mapping from the
data space X ∈ RD to the latent space Z ∈ RD, and vice-versa.

Both the latent and data space have to be of the same dimensionality in
order for the mapping to considered bijective.

The determinant (or log of determinant) of the Jacobian matrix
(
det
(
∂z
∂x

))
needs to be efficiently calculated.

The signal flow for a RealNVP [2] based flow model having L layers:

z = h0

g
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s,k



f
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g
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f
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s,k

h3 . . .
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f

[L]
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hL = x (3)

where f
[l ]
s,k denotes the l th layer network of fs,k , and each such f

[l ]
s,k is invertible,

i.e. g
[l ]
s,k = f−1[l ]

s,k exists.
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NMM-HMM Normalizing flows: RealNVP flow

Normalizing flows: RealNVP flow

At every layer of the flow model the D-dimensional input feature is split into two
parts. Let us assume the features are [hl,1:d ,hl,d+1:D ]T (where d denotes the
number of components in the first sub part). The mapping defined by f : X → Z
is as follows:

hl−1,1:d = hl,1:d

hl−1,d+1:D = (hl,d+1:D − t (hl,1:d))� exp (−s (hl,1:d))
(4)

The inverse function (g : Z → X ) is defined as:

hl,1:d = hl−1,1:d

hl,d+1:D = hl−1,d+1:D � exp (s (hl−1,1:d)) + t (hl−1,1:d)
(5)

where � denotes element-wise multiplications, s : Rd → RD−d , t : Rd → RD−d ,
with s, t being shallow feed-forward Neural Nets (tanh) activation function for (s)
(modeling logarithm of standard deviation) and an identity activation for (t) [2].

Presented by: Anubhab Ghosh IEEE MLSP, September 21-24, 2020 7/19



NMM-HMM Normalizing flows: RealNVP flow

Normalizing flows: RealNVP flow (Contd.)

The alternate switching is needed between the two splits of the data x1, x2 to
make sure all elements of the data are transformed. An illustration of a RealNVP
flow-network with 2 coupling layers is shown in Fig. 1.

Figure 1: Illustrating the alternate switching in a RealNVP flow network with 2 coupling
layers in the generative direction [2]
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Formulating the learning problem Using maximum likelihood approach

Using maximum likelihood approach

A sequential signal is thus represented by a set of feature vector such as
x = [x1, x2, . . . xN ] (N denoting the length of the sequential signal) and each
component xi ∈ RK (where K denotes the dimensionality of the feature vector).

Hopt. = arg max
H∈H

1

M

M∑
m=1

log
(
p
(

x(m); H
))

(6)

The models were trained using the Expectation Maximization (EM) algorithm [1].

A batch of training data for a particular class of observed features consisted

of M such signals so the concatenated set consisted of X =
[
x(i)
]M
i=1

signals.

The hidden variables were the sequences of state vectors (denoted by s) and
the sequences of mixture component indexes (denoted by k).
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Formulating the learning problem EM formulation

EM formulation

Expectation step

L
(
H; Hold

)
= Ep(s,k|x;Hold) log

(
p
(
x, s, k; H

))
(7)

Maximization step

max
H

L
(

H; Hold
)

= max
q

L
(

q; Hold
)

+ max
A

L
(

A; Hold
)

+ max
Ψ

L
(

Ψ; Hold
)

(8)

where,

L
(
q; Hold

)
= Ep(s|x;Hold ) log (p (s1; H)) (9)

L
(
A; Hold

)
= Ep(s|x;Hold )

T∑
t=2

log (p (st |st−1; H)) (10)

L
(
Ψ; Hold

)
= Ep(s,k|x;Hold) log

(
p
(
x, k|s; H

))
(11)

L
(
Φ; Hold

)
= Ep(s,k|x;Hold)[log

(
ps,k (fs,k (x))

)
+ log (|det (∇fs,k)|)] (12)
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Formulating the learning problem Overview of the learning algorithm

Overview of the learning algorithm

Figure 2: A schematic depicting the training and testing of NMM-HMM models on data
having C classes
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Experiments Dataset used

Dataset used for Phone recognition

Phone Recognition

A phone is a distinct speech sound and is universal irrespective of the
language under consideration.

Understanding the spoken utterance at the phone-level is known as Phone
Recognition (Language model not required!)

TIMIT Dataset

Phoneme-level labelled utterances.

# training sequences: 4620
# testing sequences: 1680

Utterances sampled at 16 kHz

Originally 61 phones, but a smaller folded set of 39 phones used.

Noise types: white, babble, pink, hfchannel (16 kHz) from NOISEX-92
dataset [7].

Random Noise snippets added to Clean utterances
Additionally Signal to Noise ratio (SNR) was varied while adding noise
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Experiments Details of training

Details of training

Features used were Mel-frequency cepstral coefficients (MFCCs) including
dynamic features like differential (∆) and acceleration (∆∆) features to
capture temporal information.

The code for the flow based HMM models (RealNVP) was written using
Python, PyTorch and run on GPU. The code for the GMM-HMM model was
written purely using hmmlearn [6].

NMM-HMMs trained using Adam [3]. ηNVP = 4e − 3 for NMM-HMM along
with step-wise adaptive learning rate decay.

Maximization of the log-likelihood (or minimization of the negative
log-likelihood), and monitoring relative change of the same (used as a
convergence criterion).

The evaluation was done using a metric known as accuracy (or equivalently
100− PER%) computed on the test set.

Accuracy was computed as a simple percentage of the number of correctly
predicted phones (phone label) among the total number of phones (phone
labels) in a given dataset.
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Results Training and Testing on Clean data

Training and Testing on Clean data

Table 1: Test accuracy (in %) for GMM-HMM at varying number of mixture
components (Kg ) on clean data

Model-Type
No. of components (Kg )

Kg=3 Kg=10 Kg=15 Kg=20
GMM-HMM 66.7 70.8 71.9 72.8

Table 2: Test accuracy (in %) for NMM-HMM at varying number of mixture
components (Kg ) on clean data

Model-Type
No. of components (Kg )
Kg=1 Kg=3

NMM-HMM 76.7 77.6
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Results Training on Clean and Testing on Noisy data

Training on Clean and Testing on Noisy data

Table 3: Chosen Model configurations for GMM-HMM and NMM-HMM

Model Type Configuration details

GMM-HMM
Kg = 20,

Covariance Matrix type: Diagonal

NMM-HMM
Kg = 3, No. of flow-blocks: 4,

Dimension of hidden channel: 24,
Learning rate (η): 4e-3

Table 4: Test accuracy (in %) for clean and various noise conditions. We compare
GMM-HMM and NMM-HMM for folded 39-phone classification. We use the notations
GMM and NMM to represent GMM-HMM and NMM-HMM, respectively. The
performance drop is shown in parenthesis with respect to the clean train and clean test
scenario as in Tables 1 and 2.

Performance for clean data training and testing as a reference: GMM: 72.8 and NMM: 77.6

Type of Noise
SNR levels for different kinds of noises

25dB 20dB 15dB 10dB
GMM NMM GMM NMM GMM NMM GMM NMM

white 55.6 (17.2) 67.1 (10.5) 46.8 (26.0) 60.0 (17.6) 36.8 (36.0) 49.4 (28.2) 27.9 (44.9) 37.7 (39.9)
babble 65.7 (7.1) 70.7 (6.9) 59.3 (13.5) 65.8 (11.8) 49.3 (23.5) 56.2 (21.4) 37.4 (35.4) 42.3 (35.3)

hfchannel 62.3 (10.5) 67.9 (9.7) 54.4 (18.4) 63.4 (14.2) 44.1 (28.7) 55.8 (21.8) 33.3 (39.5) 44.9 (32.7)
pink 59.9 (12.9) 69.3 (8.3) 51.9 (20.9) 61.7 (15.9) 42.3 (30.5) 48.6 (29) 32.2 (40.6) 33.7 (43.9)
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Results Training on Clean and Testing on Noisy data
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Training on Clean and Testing on Noisy data

Table 3: Chosen Model configurations for GMM-HMM and NMM-HMM

Model Type Configuration details

GMM-HMM
Kg = 20,

Covariance Matrix type: Diagonal

NMM-HMM
Kg = 3, No. of flow-blocks: 4,

Dimension of hidden channel: 24,
Learning rate (η): 4e-3

Table 4: Test accuracy (in %) for clean and various noise conditions. We compare
GMM-HMM and NMM-HMM for folded 39-phone classification. We use the notations
GMM and NMM to represent GMM-HMM and NMM-HMM, respectively. The
performance drop is shown in parenthesis with respect to the clean train and clean test
scenario as in Tables 1 and 2.

Performance for clean data training and testing as a reference: GMM: 72.8 and NMM: 77.6

Type of Noise
SNR levels for different kinds of noises

25dB 20dB 15dB 10dB
GMM NMM GMM NMM GMM NMM GMM NMM

white 55.6 (17.2) 67.1 (10.5) 46.8 (26.0) 60.0 (17.6) 36.8 (36.0) 49.4 (28.2) 27.9 (44.9) 37.7 (39.9)
babble 65.7 (7.1) 70.7 (6.9) 59.3 (13.5) 65.8 (11.8) 49.3 (23.5) 56.2 (21.4) 37.4 (35.4) 42.3 (35.3)

hfchannel 62.3 (10.5) 67.9 (9.7) 54.4 (18.4) 63.4 (14.2) 44.1 (28.7) 55.8 (21.8) 33.3 (39.5) 44.9 (32.7)
pink 59.9 (12.9) 69.3 (8.3) 51.9 (20.9) 61.7 (15.9) 42.3 (30.5) 48.6 (29) 32.2 (40.6) 33.7 (43.9)

Presented by: Anubhab Ghosh IEEE MLSP, September 21-24, 2020 15/19



Results Training on Clean and Noisy data

Training on Clean and Noisy data

Table 5: Test accuracy (in %) using noisy training. The performance drop is shown in
parenthesis with respect to the clean train and clean test scenario. The models were
trained using a mixture of clean data and white-noise corruputed data at 10dB SNR

Model-Type Clean
white noise

15dB 10dB
GMM-HMM 72.0 55.9 (16.1) 53.7 (18.3)
NMM-HMM 76.8 69.2 (7.6) 65.7 (11.1)
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Conclusion and scope of future work

Conclusion and Future work

Conclusion:

It is possible to use neural networks for improving maximum-likelihood based
classification performance and robustness against noise

methods are able to use time-tested signal processing based features as
MFCCs

Tractable machine learning techniques as expectation-maximization for
training the models

Future Work:

Use of other input features such as logarithm of the power spectrum.

Use of other normalizing flow models for modeling output distributions
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Conclusion and scope of future work
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Conclusion and scope of future work

Thanks for Listening!

Questions ? Comments ?
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