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ABSTRACT

Neural sequence-to-sequence TTS has achieved significantly bet-
ter output quality than statistical speech synthesis using HMMs.
However, neural TTS is generally not probabilistic and the use of
non-monotonic attention both increases training time and introduces
“babbling” failure modes that are unacceptable in production. This
paper demonstrates that the old and new paradigms can be combined
to obtain the advantages of both worlds, by replacing the attention in
Tacotron 2 with an autoregressive left-right no-skip hidden Markov
model defined by a neural network. This leads to an HMM-based
neural TTS model with monotonic alignment, trained to maximise
the full sequence likelihood without approximations. We discuss
how to combine innovations from both classical and contemporary
TTS for best results. The final system is smaller and simpler than
Tacotron 2, and learns to speak with fewer iterations and less data,
whilst achieving the same naturalness prior to the post-net. Unlike
Tacotron 2, our system also allows easy control over speaking rate.

Index Terms— seq2seq, attention, HMMs, duration modelling,
acoustic modelling

1. INTRODUCTION

Text-to-speech (TTS) technology has advanced tremendously in the
last decade, and output speech quality has seen a number of step
changes as the field evolved. Statistical parametric speech syn-
thesis (SPSS) based on hidden Markov models (HMMs) [1, 2], has
now largely been supplanted by neural TTS [3]. Waveform-level
deep learning [4] greatly improved segmental quality over signal-
processing based vocoders, while sequence-to-sequence models
with attention [5, 6] demonstrated greatly improved prosody. Com-
bined, as in Tacotron 2 [7], these innovations produce synthetic
speech whose naturalness sometimes rivals that of recorded speech.

However, not all aspects of TTS systems have improved along
the way. The integration of deep learning with positional features
into HMM-based TTS increased naturalness [8], but sacrificed the
ability to learn to speak and align simultaneously, instead requiring
an external forced aligner. Attention-based neural TTS systems [6]
reintroduced the ability to learn to align, but are not grounded in
probability and require more data and time to start speaking. Fur-
thermore, their non-monotonic attention mechanisms do not enforce
a consistent ordering of speech sounds. As a result, the synthesis is
susceptible to skipping and stuttering artefacts, and may break down
catastrophically, resulting in unintelligible gibberish.

In this article, we make the case that HMM-based and neural
TTS approaches can be combined to gain the benefits of both worlds.
Our main contribution is to describe a neural TTS architecture based
on Tacotron 2, but with the attention mechanism replaced by a
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Markovian hidden state, to obtain a fully probabilistic, joint model
of durations and acoustics. The model development leverages design
principles from both HMM-based and sequence-to-sequence TTS.
Experiments show that the model gives high-quality speech output
on par with that of a comparable Tacotron 2 model, and produces
intelligible speech already after 1k updates, a fifteen-fold improve-
ment on Tacotron 2. Unlike Tacotron 2, it also allows control over
speaking rate. For audio and code, please see our demo webpage.

2. BACKGROUND

The starting point of this work is [9], which identified four key
differences between HMM-based SPSS and sequence-to-sequence
attention-based TTS that had a notable impact on output quality:

1. Neural vocoder with mel-spectrogram inputs
2. Learned front-end (the encoder)
3. Acoustic feedback (autroregression)
4. Attention instead of HMM-based alignment

Among these, items 1–3 led to improved speech quality, whereas
attention sometimes made the output significantly worse. This pa-
per incorporates aspects 1–3 into a TTS system that leverages neural
HMMs [10, 11] rather than attention for sequence-to-sequence mod-
elling. Sec. 2.1, below, describes how to add aspects 1–3 to HMMs
based on prior work, with attention (aspect 4) discussed in Sec. 2.2.

2.1. Neural TTS aspects in HMM-based TTS

For item 1, pre-trained neural vocoders like [12] driven by spec-
tral output features afford high signal quality and also avoid the ex-
plicit averaging over pitch contours that leads to overly flat intona-
tion in systems that parameterise speech using a separate f0 feature
[9]. However, nothing prevents HMM-based TTS from using mel-
spectrogram features and neural vocoders: this is just a straightfor-
ward change to the acoustic features, and the HMM-based approach
proposed in this paper uses this setup.

Another factor in the improved prosody is item 2, the learned
front-end (i.e., the encoder). Again, there is nothing that prevents
using this idea in a system that leverages HMMs. The HMM-based
systems we introduce all use the same encoder architecture as Taco-
tron 2 [7] with no additional linguistic features added.

The situation for item 3, autoregression (AR), is again similar,
in that AR and HMMs are not mutually exclusive. Acoustic models
in HMM-based TTS systems benefit from using positional and dura-
tional information [13, 8], that increases granularity by enabling the
statistics of each generated frame to be different, together with dy-
namic features [14] to promote continuity across time. However, po-
sitional and durational features violate the Markov assumption (e.g.,
they depend on the time spent in the current state), preventing re-
alignment during TTS training. In a model like Tacotron, positional
information is instead mediated and continuity enforced by autore-
gression. Since this only involves dependencies on observed vari-
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ables, it is possible to devise autoregressive models that do not viol-
ate the Markov assumption, and linear autoregressive HMMs (AR-
HMMs) [15] have previously been explored in HMM-based SPSS
[16, 17, 18]. In this paper, we describe HMMs that, like Tacotron,
use stronger, nonlinear AR models defined by a neural network.

2.2. Attention in TTS

In a typical sequence-to-sequence based TTS system, the attention
mechanism is responsible for duration modelling and for learning to
align input symbols with output frames during training. Watts et al.
[9] found that the use of neural attention did not necessarily bene-
fit TTS, and more suitable TTS attention mechanisms have recently
been a focus of intense research. Only some of the relevant work
can be surveyed here; please see [3] for additional references. He
et al. [19] emphasised that TTS alignments should be local (each
output frame is associated with a single input symbol), monotonic
(never move backwards), and complete (not skip any speech sounds).
HMMs are local by design, while the two other concepts map dir-
ectly onto the classes of left-right and no-skip HMMs. Most neural
TTS attention mechanisms do not satisfy these requirements [19, 3].

Many systems that do satisfy all three criteria rely on external
tools for input-output alignment to obtain duration data (see [3] for
a list), and do not jointly learn to speak and align, unlike vanilla
HMMs or Tacotron 1/2. However, some proposals do learn to speak
and align without external tools, mostly (e.g., [20, 21, 22, 23, 24,
25]) by introducing duration models into neural TTS, which will be
our focus here. Many of these models only optimise a lower bound
on the sequence likelihood, either due to the use of variational meth-
ods (e.g., Non-Attentive Tacotron [23] and the VQ-VAEs in [24]) or
by not marginalising over all possible alignments (Glow-TTS [22]).
By using a mean squared error (MSE) duration loss, Glow-TTS also
implicitly treats the positive, integer-valued durations (frame counts)
as outcomes from a Gaussian distribution on the real line, which vi-
olates probabilistic assumptions. Our proposal avoids these issues.

AlignTTS [21] is more similar to an HMM and uses a vari-
ant of the HMM forward recursions [15], but requires a complex,
four-stage training procedure that culminates in training a separate,
non-probabilistic duration predictor that is used at synthesis time.
AlignTTS is also parallel, while our proposal is autoregressive.

The constant-per-state transition probability of vanilla HMMs
implicitly describes a geometric duration distribution, which is a
poor fit for natural speech [26, 27]. A solution to this in SPSS was to
introduce explicit duration modelling through hidden semi-Markov
models (HSMMs) [26]. These sacrifice the Markovian property to
describe more general duration distributions, by letting transition
probabilities depend on the time spent in the current state. Inde-
pendent, concurrent work [25] proposes to integrate HSMMs into
neural TTS, obtaining better results than Tacotron 2 in a small-data
experiment, but uses a variational approximation and again assumes
a Gaussian distribution for the positive-integer frame durations. In
contrast, [27] described how arbitrary discrete duration distributions
can be parameterised implicitly via frame-dependent transition prob-
abilities, and then predicted jointly with output frames in a single,
joint model of durations and acoustics. This paper combines this
idea with autoregression acting as an “acoustic memory” of the time
spent in a state, to obtain a fully probabilistic model with general
durations that can be trained efficiently on the exact log-likelihood.

The most similar work to ours is SSNT-TTS [20], which essen-
tially describes a neural HMM for TTS, albeit under another name.
We differ in applying an HMM perspective to the approach, integ-
rating more SPSS ideas to improve our system, using a different

duration-generation method, in demonstrating control over speaking
rate, and in reporting better TTS quality, on par with Tacotron 2.

3. METHOD

We now (in Sec. 3.1 and Fig. 1) describe the key modifications used
to put HMMs into neural TTS, specifically Tacotron 2. Sec. 3.2 then
describes how ideas and implementation aspects from classic HMM-
based TTS can be adapted to further improve neural HMM TTS.

3.1. Replacing attention with neural HMMs

The location-sensitive attention [28] used by Tacotron 2 is a function
that uses information from previously-generated acoustic frames
x1:t−1 to select which encoder output vector(s) hl to pass on to the
decoder in order to generate the next frame xt. (We use bold font
for vector-valued quantities and index input sequence symbols by n
and output frames by t.) The attention also has an internal state, in
the form of previous attention weights α1:t−1,n. The procedure to
generate one frame t of output using Tacotron 2 can be written as

at = LSTM(PreNet(xt−1), gt−1,at−1) (1)

et,n = ωᵀ tanh
(
Wat + V hn +U(F ∗

∑
t′<tαt′,n) + b

)
(2)

αt,n = exp(et,n) /
∑

n′ exp(et,n′) (3)
gt =

∑
nαt,nhn (xt, τt) = Decoder2(gt,at). (4)

Here, at−1 represents the hidden and cell state variables of the first
decoder LSTM, Decoder2 is the upper part of the decoder in Fig.
1a (which contains another LSTM state a′t), while τt ∈ [0, 1] is the
stop token. The latter is an estimate of the probability that the current
frame is the last in the utterance, terminating synthesis if τt > 0.5.

Our proposal is to remove the dependence on gt−1 from Eq. (1),
and replace the remaining equations by a probabilistic upper decoder
that estimates the distribution of the next frame xt (by outputting
the parameters θt of an HMM emission distribution o(θ)) and turns
the stop token into a transition probability τt ∈ [0, 1] for the state
st ∈ {1, . . . , N} (with s1 = 1). Eqs. (2)–(4) are replaced by

gt = hst (θt, τt) = Decoder2(gt,at) (5)
xt ∼ o(θt) st+1 = st +Bernoulli(τt), (6)

where Bernoulli(p) is a binary random variable on {0, 1} that
equals 1 with probability p. The attention state variables αt,n of
Tacotron 2 have thus been replaced by a single, integer state variable
st that evolves stochastically based on τt. This transition probability
depends on the h-vector of the current state st (through gt) and
on the entire previous acoustics x1:t−1 (through at), so it can be
different for every frame t even for the same state. This can model
arbitrary duration distributions [27]. st > N terminates synthesis.

The end result is a left-right no-skip neural HMM, an AR-HMM
parameterised by the decoder network in Fig. 1b. The encoder turns
each input sequence into a unique HMM, where each vector hn rep-
resents a state. Feeding this state vector and the AR input x1:t−1 into
the decoder yields the HMM emission distribution o(θt) and next-
state transition probability τt of state n at time t. Neural HMMs
were first described concurrently by [10] and [11], the latter under
the name segment-to-segment neural transduction (SSNT).

For the model to be a proper HMM satisfying the Markov
property, (θt, τt) must not depend on anything other than the cur-
rent state st (through the state vector gt) and the past observations
x1:t−1. This necessitates an additional change to the Tacotron 2
architecture, namely removing the recurrence inside Decoder2 by
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Fig. 1: Synthesis-time architecture diagrams. Recurrences, delays, and the cumulative attention in Eq. (2) are drawn as grey arrows.

changing its LSTM layer to a feedforward layer, since an LSTM
would propagate a dependence on past hidden states. This change
also substantially reduces the number of parameters in the model.

Finally, the full Tacotron 2 architecture incorporates a non-
causal convolutional post-net that enhances the initial AR-generated
mel-spectrogram in a residual setup. This resembles post-filtering
and global variance compensation [29] in classic SPSS. However,
the non-invertibility of the Tacotron post-net makes it incompatible
with likelihood-based modelling. A post-net can be added, but must
either be trained separately like in [30], or be invertible like in [22].
We leave this as future work, and instead evaluate our proposal
against Tacotron 2 output from both before and after the post-net.

3.2. Practical considerations

Numerical stability: When working with HMMs, it is crucial for
numerical precision to perform all computations in the logarithmic
domain using the “log-sum-exp trick”. Since zeroes in these compu-
tations map to ln 0 = −∞ in the log domain, care must be taken to
avoid NaN gradients in deep-learning frameworks like PyTorch.

Like classic HMM-based TTS [31], we chose to use diagonal-
covariance Gaussian emission distributions o(µ, σ) in this work.
We also used softplus (not exponential) nonlinearities for σ, with
a non-zero minimum value (“variance flooring”), here clamped at
0.001, since this has been important in other generative models.

Architecture enhancements: Tacotron 2 can represent interme-
diate states using soft attention, since the αt,n-values have many de-
grees of freedom. Major HMM-based synthesisers [31, 13] instead
use 5 sub-states per input phone and run at 200 fps. Tacotron 2 runs
at 80 fps, i.e., 40% the framerate, hence we use 2 states per phone to
get the same time resolution as these HMMs. This is implemented
by doubling the size of the decoder output layer and interpreting its
output as two concatenated state vectors h for each phone.

Classic HMM-based TTS includes a model of dependencies
between adjacent frames to promote temporally smooth output
[31, 16, 13]. Although Tacotron 2 and the neural HMMs in this
article only take the latest frame xt−1 as AR input, the LSTM in Eq.
(1) means they can remember information arbitrarily far back which
is beneficial for modelling utterance-level prosody. We also treat
x0, the initial AR context (the “go token”) as a learnable parameter.

Initialisation: HMMs are often initialised using a flat start, in
which all states have the same statistics [32]. By zeroing out all
weights in the decoder output layer but initialising other layers as
normal, all states will have the same output (zero), but different and

nonzero gradients, thus enabling learning [33]. By choosing the last-
layer biases, we can enforce µ = 0 and σ = 1 at the start of train-
ing, which matches the global statistics of our normalised data.

Training: Neural HMM training [10] is a hybrid of old and
new: We use the classic (scaled) forward algorithm [15] to compute
the exact sequence log-likelihood, but then leverage backpropaga-
tion and automatic differentiation to optimise it (here using Adam
[34]). These parts correspond to the E step and the M step of the
(generalised) EM algorithm [35], respectively. Computations during
training parallelise over the states but, like Tacotron 2, are sequential
across time due to the temporal recurrences.

Maximum-likelihood estimation of linear AR models can lead
to unstable models [17, 16]. A similar problem exists for nonlin-
ear, autoregressive neural TTS [3]. Tacotron 2 works around this by
adding dropout to the pre-net, and we retain that solution here.

Synthesis: We can iteratively use the equations in Sec. 3.1 and
randomly sample new frames xt ∼ o(θt). However, HMM-based
TTS generally benefits from deterministically generating typical out-
put rather than random sampling [36, 37]. For acoustics, this is done
by generating the most probable output sequence [14], which is the
same as the mean µt when o(θt) is Gaussian. By iteratively taking
xt = µt (red arrow in Fig. 1b), we obtain a greedy approximation
of [14]. This is closely related to Tacotron 2 output generation, since
it is trained using the MSE, which is minimised by the mean E[Xt].

SSNT-TTS found that randomly sampling transitions led to poor
pause durations [20], and classic HMM-based systems typically base
the time in each state at synthesis on the mean duration of the state
[26]. That is not compatible with duration distributions implicitly
defined through transition probabilities τt, as here. We instead use
the simple algorithm from [27, 38] for deterministic duration gen-
eration based on duration quantiles (e.g., the median rather than the
mean). Changing the quantile controls speaking rate. For the models
evaluated in this paper, informal listening showed that deterministic
generation of acoustics and durations both led to clear quality im-
provements; examples are provided on the webpage.

4. EXPERIMENTS

To validate our proposal to use neural HMMs for TTS, we performed
a number of experiments (including a subjective listening test), com-
paring our proposal to a maximally similar Tacotron 2 [7] system.
Synthetic speech examples from the different experiments can be
found at https://shivammehta007.github.io/Neural-HMM/.

We based our systems on the PyTorch [39] open-source Nvidia
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implementation1 of Tacotron 2, and trained them on the LJ Speech
dataset [40], comprising utterances (normalised text and matching
audio) adapted from free audiobooks read by a female speaker of
US English. We used the default train/val/test split in the reposit-
ory, which designates about 23 h of audio for training. We likewise
used the default text-processing, including the pronouncing diction-
ary (CMUDICT), since this generally benefits neural TTS [41, 42].
Output features were normalised to zero mean and unit variance over
the training data, and waveforms were generated using the default,
pre-trained v5 “universal” WaveGlow [12] vocoder.2

We trained three systems: one Tacotron 2 baseline (T2) and two
neural HMM systems, with either two (NH2) or one (NH1) state
per phone. We expect NH2 to perform the best, with NH1 func-
tioning as an ablation. All systems used the same architecture and
hyperparameters (layer widths, learning rates, etc.) as the reposit-
ory defaults, except that the size of the decoder output vectors was
doubled to 1024 in the two-state system, since the decoder output
now represents two concatenated state vectors. From the single Ta-
cotron 2 baseline system, we synthesised two outputs: T2+P, using
the full mel-spectrogram output after the post-net, and T2−P, using
the initial mel-spectrogram prior to post-net enhancement, which is
directly comparable to our neural HMMs. Model sizes for the differ-
ent setups are listed in Table 1. We see that both neural HMMs are
significantly smaller that Tacotron 2, even if the post-net is removed.

Each system was trained for 30k mixed-precision updates on 7
GPUs using a batch size of 6. It took approximately 14.5k updates
for T2 to learn to speak coherently, whereas neural HMMs were
intelligible after 1k updates. Fig. 2 graphs how the Google ASR
word error rate (WER) of synthesising the 100 validation utterances
evolves during training, including results from training on a small
subset (500 utterances) of the data. Audio of synthesised speech dur-
ing training is also provided on our demo webpage. We see that NH2
rapidly learns to speak intelligibly in both cases, much faster than Ta-
cotron 2, which does not learn to speak at all on the smaller dataset.
Even after the WER stabilised, we could consistently reproduce the
effect where Tacotron 2 (including the best pre-trained system made
available by Nvidia) degenerates into unintelligible babbling on long
and short sentences, with examples provided on our webpage.

Both training and synthesis used pre-net dropout, as is the Ta-
cotron 2 default [7], else attention breaks down. Our neural HMMs
retained this dropout, since it improved subjective quality in informal
listening. Audio examples without it are provided on our webpage.

Because natural-speech phone duration distributions are skewed
to the right, and the median lies between the mode and the mean
for skewed distributions, median-based output generation often
generates speech that on average is faster than that in the training
database; cf. [37]. Following the proposal in [38], the transition
threshold of the deterministic duration-generation procedure was

1https://github.com/NVIDIA/tacotron2/
2https://github.com/NVIDIA/waveglow/

Type Tacotron 2 Neural HMM
Condition T2+P T2−P NH2 NH1

Size 28.2M 23.8M 15.3M 12.7M
MOS 3.41±0.01 3.25±0.01 3.24±0.01 2.68±0.01

Table 1: Models from the experiments, with number of parameters
and mean opinion scores (with 95% confidence intervals) for each.

tuned to make the speaking rate of the NH systems match T2.
The resulting threshold-quantile values were 0.57 for the two-state
model and 0.45 for the single-state model. Our webpage provides
examples of speech generated with different threshold quantiles,
demonstrating control over speaking rate at synthesis time.

We conducted a subjective listening test to evaluate the natural-
ness of speech generated by the four conditions in Table 1. In the
test, participants were presented with four parallel stimuli at a time,
one from each condition (unlabelled and in random order), all speak-
ing the same sentence. Participants were asked to rate the natural-
ness of each stimulus on an integer scale from 1 (worst) to 5 (best),
anchored using the classic MOS labels “Bad” through “Excellent”
[43]. Stimuli were drawn from a pool of 9 sets of Harvard sentences
[44], which are sets of 10 sentences each, designed so that each set is
approximately phonetically balanced. All stimuli were loudness nor-
malised to −20 dB LUFS following EBU R128 [45]. We manually
verified that no T2 stimuli exhibited babbling due to failed attention.

We used Prolific to recruit 30 test participants ages 21 through
70, all self-reported native English speakers from UK, Ireland, USA,
Canada, Australia, and New Zealand. Each participant rated 3 ran-
domly selected sets of 10 Harvard sentences. All participants repor-
ted wearing headphones for the test. A completed test was rewarded
with 3.50 GBP, with the average completion time being 17 minutes.
This gave 3600 total ratings, 900 for each condition we evaluated.

The mean opinion scores (MOS) from the test are reported in
Table 1, together with 95% confidence intervals based on a Gaus-
sian approximation. Pairwise t-tests find all conditions to be signi-
ficantly different (with p<10−3) except NH2 and T2−P (p>0.98),
whose respective mean opinion scores differ by less than 0.002 be-
fore rounding. We can conclude that the proposed neural HMM TTS
(NH2), despite being simpler and lighter, achieved a naturalness on
par with the most comparable Tacotron 2 condition (T2−P). This
was not achieved by SSNT-TTS [20]. Neural HMMs were found
to benefit from using two states per phone (NH2 vs. NH1), while
Tacotron 2 improved from the use of a post-net (T2+P vs. T2−P).

5. CONCLUSION AND FUTURE WORK

We have described how classical and contemporary TTS can be
combined to obtain a fully probabilistic, attention-free sequence-to-
sequence model based on neural HMMs. The resulting system is
smaller than Tacotron 2, yet achieves comparable naturalness, learns
to speak and align faster, needs less data, and does not babble. To our
knowledge, this is the first time an HMM-based system demonstrates
a speech quality matching prior neural TTS. The neural HMMs also
permit easy control over the speaking rate of the synthetic speech.

Future work includes stronger network architectures, e.g., based
on transformers [46], and/or a separate post-net like in [30]. It also
seems compelling to combine neural HMMs with powerful distribu-
tion families such as normalising flows, either replacing the Gaus-
sian assumption (as done for non-neural HMMs in [47]) or as a
probabilistic post-net like in [22]. This may allow the naturalness
of sampled speech to surpass that of deterministic output generation.
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