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Abstract 
We discuss the circumstances that have 
led to a disjoint advancement of speech 
synthesis and phonetics in recent dec-
ades. The difficulties mainly rest on the 
pursuit of orthogonal goals by the two 
fields: realistic vs. controllable synthetic 
speech. We make a case for realising the 
promise of speech technologies in areas 
of speech sciences by developing control 
of neural speech synthesis and bringing 
the two areas into dialogue again. 

Introduction 
Text-to-speech (TTS) synthesis has 
made enormous progress recently. Mod-
ern synthetic voices sound nowhere 
close to the classic systems of yore – 
they have improved greatly in intelligi-
bility and realism and are well on their 
way to achieve both expressivity and 
flexible speech style adaptation (Skerry-
Ryan et al., 2018; Wang et al., 2018). 
This latest leap was ushered by powerful 
methods in machine learning, particu-
larly deep learning, on large amounts of 
data (Watts et al., 2016). 

Notably, however, the foundations 
of the progress lie in a close research and 
development loop between speech sci-
entists and speech engineers that existed 
for decades (King, 2015). This has been 
particularly true for explicit acoustic and 
linguistic feature modelling and for eval-
uation standards. Unfortunately, at least 
since the advent of concatenative TTS 
(“cut-and-paste” methods) and certainly 
the machine learning revolution, the two 
fields have been growing apart. In this 

work, we concentrate on a particular 
trade-off that has arisen from the dis-
tance between the disciplines: realism 
vs. control.  

It soon became evident in engineer-
ing that ever greater realism can be 
achieved at the expense of explicit mod-
elling. The less explicit the modelling 
and the more data put into the ever more 
powerful machine learning algorithms, 
the better the performance of the synthe-
siser. Developers greatly diminishing fo-
cus on modelling has had important con-
sequences for speech sciences, as it is the 
explicit modelling of particular acoustic 
and linguistic parameters that enables 
the creation or manipulation of synthetic 
output, i.e. control over the output 
speech.  

Control over numerous meaningful, 
relatively low-level signal properties 
such as pitch, VOT, etc. has been inval-
uable for phonetic research in the past. 
Pertinent uses in speech sciences include 
experiments with synthetic stimuli in 
speech perception research. Important 
insights into phonetics, such as evidence 
for categorical speech perception, were 
reached with the use of synthetic sound 
continua (Lisker and Abramson, 1970). 
Theoretical advances such as the motor 
theory of speech perception (Lieberman 
and Mattingly, 1985) and acoustic cue 
analysis were also made possible by ex-
periments with synthetic stimuli. Where 
empirical paradigms demand it, speech 
distortion and de-lexicalisation, or re-
moval of cues to whole particular struc-
tures, such as prosody, are achieved us-



 
Figure 1. Schematic history of speech synthesis: black dots are TTS systems, dashed arrows 
show technological paradigm shifts. The direction for the future suggested in our proposal in 
blue. 

ing controllable speech synthesis inter-
faces. Apart from stimulus creation, con-
trollable speech synthesis is also able to 
offer whole frameworks used for testing 
phonological models (analysis by syn-
thesis, e.g. Cerňak et al., 2017; Xu and 
Prom-on, 2014).  

TTS systems that offer low-level 
feature control include rule-based for-
mant synthesis. These legacy systems, 
however, generate a signal with impov-
erished perceptual cues that has low in-
telligibility and was proven to overbur-
den attention and cognitive mechanisms 
resulting in slower processing times 
(Winters and Pisoni, 2004). Therefore, 
the validity of use of formant synthesis 
in e.g. stimuli creation is greatly re-
stricted due to the many differences in 
perception of natural and classical syn-
thetic speech. In essence, what these sys-
tems compensate with controllability, 
they lack in realism and intelligibility. 

Concatenative signal generation 
methods, although dominant in TTS ap-
plications until recently due to their su-
perior quality, were largely excluded 
from use in phonetics, as they are not 
able to provide a continuum of acoustic 
cues in response to input control. One 
notable exception is MBROLA (Dutoit 
et al. 1996), which uses a waveform-

modification technique similar to 
PSOLA (Moulines and Charpentier, 
1990) to allow control of pitch and dura-
tion given a sequence of allophones to 
speak.  

Modern systems, that is, statistical-
parametric and neural sequence-to-se-
quence systems are able to control arbi-
trary concepts by learning mappings via 
supervised machine learning. These con-
cepts are usually hard to define acousti-
cally (speaker identity, age, and gender 
(Luong et al., 2017), emotional state 
(Henter et al., 2018) and prosodic prom-
inence (Malisz et al., 2017). So far, con-
trollability of low-level acoustic param-
eters, essential for phonetic research, 
have not attracted the attention of speech 
engineers, whose systems typically are 
developed for commercial applications.  

It thus appears that it will be up to 
publicly funded academic institutions 
and a renewed dialogue between speech 
researchers and speech engineers to take 
up this task. Therefore, we put forward 
our proposal concerning the steps 
needed towards re-connecting the goals 
and methods of speech sciences and 
technologies invested in speech synthe-
sis, in a manner suggested in the top 
right corner of Fig. 1. 



Our proposal 
As summarised in Fig. 1, speech science 
and speech technology so far have been 
pursuing orthogonal goals. Control and 
realism have to be brought back into di-
alogue again in order for both fields to 
benefit.  

First of all, phonetics needs speech 
synthesis systems that sound as close to 
natural speech to remove the problems 
listed in (Winters and Pisoni, 2004). We 
propose to start with validating the cur-
rent achievements and demonstrating 
how close we actually are to generating 
synthetic speech that is indistinguishable 
from natural speech on relevant percep-
tual measures. What has so far been 
lacking is a comprehensive evaluation 
programme of state-of-the-art systems 
using precise and robust measures. It is 
important that the evaluation methods 
employed stand up to scrutiny of both 
the technology and research communi-
ties.  

Taking this as guidance, in our re-
cent study (Malisz et al., 2019), we 
showed that modern systems are sub-
stantially closer to natural speech than 
formant synthesis, according to a rigor-
ous naturalness rating measure. Reaction 
times for several modern systems in the 
same study also did not differ substan-
tially from natural speech, meaning that 
the processing gap observed in older 
systems is no longer evident. Im-
portantly, some speech-to-speech meth-
ods were nearly indistinguishable from 
natural speech on both naturalness and 
processing measures. 

Secondly, phonetic research needs 
controllable speech synthesis in order to 
fulfil its mission to a) disentangle and 
comprehend the perceptual role of dif-
ferent types of information in speech 
signals and b) to generate entirely new 
lines of research into speech phenomena 
that cannot be easily elicited or con-
trolled in the lab.  

Regarding a), we need to develop 
techniques for controlling speech- gen-
erating systems beyond what is currently 
possible. Our strategy envisages the use 
of modern technologies that prove to of-
fer realism on the level benchmarked by 
studies such as Malisz et al. (2019).  

For example, a controllable neural 
vocoder is an option in which currently 
used low-level acoustic parameters 
(such as MFCCs as shown in Juvela et 
al., 2018) are replaced with more pho-
netically meaningful speech parameters 
such as formant frequencies or phono-
logical features. These same parameters 
can also be predicted from text and/or al-
lophone sequences with the use of con-
trollable end-to-end systems such as 
Tacotron (Wang et al., 2017). Control of 
prominence or other high-level features 
can be added to this system, as demon-
strated with statistical-parametric meth-
ods in e.g. Malisz et al. (2017). With 
enough resources, the proposed para-
digm might surpass the realism attained 
by PSOLA when manipulating pitch and 
duration.  

In connection to b), we envisage that 
the improved systems are going to gen-
erate new areas of research. For exam-
ple, speech synthesisers are now capable 
of generating conversational phenomena 
such as hesitations, backchannels, 
breaths, and/or non-phonemic clicks, 
e.g. by extending the successful, token-
based approach in Szekely et al. (submit-
ted). As natural examples of such phe-
nomena are difficult to elicit from hu-
man speakers in empirical designs, the 
ability to synthesise these phenomena on 
demand would greatly benefit their sys-
tematic study.  

Conclusion 
History shows that the pursuit of realism 
and controllability benefits both speech 
sciences and speech technology. Pho-
netic sciences, in particular, stand to 
gain deeper insights from more ecologi-
cally-valid synthetic speech stimuli as 
well as entirely new lines of research. In 



order to achieve this, we can use and 
adapt modern speech synthesis systems 
that have already reached levels of natu-
ralness comparable to natural speech. 
Additionally, with this contribution, we 
would like to signal that input from the 
phonetic research communities to iden-
tify suitable research targets is needed. 
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