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ABSTRACT
Co-speech gestures, gestures that accompany speech, play an impor-
tant role in human communication. Automatic co-speech gesture
generation is thus a key enabling technology for embodied conver-
sational agents (ECAs), since humans expect ECAs to be capable
of multi-modal communication. Research into gesture generation
is rapidly gravitating towards data-driven methods. Unfortunately,
individual research efforts in the field are difficult to compare: there
are no established benchmarks, and each study tends to use its
own dataset, motion visualisation, and evaluation methodology. To
address this situation, we launched the GENEAChallenge, a gesture-
generation challenge wherein participating teams built automatic
gesture-generation systems on a common dataset, and the resulting
systems were evaluated in parallel in a large, crowdsourced user
study using the same motion-rendering pipeline. Since differences
in evaluation outcomes between systems now are solely attribut-
able to differences between the motion-generation methods, this
enables benchmarking recent approaches against one another in
order to get a better impression of the state of the art in the field.
This paper reports on the purpose, design, results, and implications
of our challenge.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).
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1 INTRODUCTION
This paper is concerned with systems for automatic generation of
nonverbal behaviour, and how these can be compared in a fair and
systematic way in order to advance the state-of-the-art. This is of
importance as nonverbal behaviour plays a key role in conveying a
message in human communication [36]. A large part of nonverbal
behaviour consists of so called co-speech gestures, spontaneous
hand gestures that relate closely to the content of the speech, and
that have been shown to improve understanding [17]. Embodied
conversational agents (ECAs) benefit from gesticulation, as ges-
ticulation, e.g., improves interaction with social robots [48] and
willingness to cooperate with an ECA [46]. Knowledge of how and
when to gesture is also needed. This can for example be learned
from interaction data; see, e.g., [23] and references therein.

Synthetic gestures used to be based on rule-based systems, e.g.,
[8, 49]; see [56] for a review. These are gradually being supplanted
by data-driven approaches, e.g., [3, 10, 28, 34], with recent work [2,
31, 61] showing improvements in gesticulation production for ECAs.
However, the results in prior studies on gesture-generation are not
directly comparable. First, prior studies make use of a variety of
different evaluation metrics. Second, prior studies rely on different
data sources, and train their models on these different sources.
Lastly, visualisations of their generated gestures have different
avatars and production values, which can obscure the quality of
the underlying gesture-generation approach. All these differences
are, however, external to the actual methods that drive the gesture
generation.
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In this paper, we present the GENEA Challenge 2020,1 the first
joint gesture-generation challenge that controls for all previous
sources of between-paper variation, by providing a common dataset
for building gesture-generation systems, along with common eval-
uation standards and a shared visualisation procedure. The aim of
the challenge is not to select the best team – it is not a contest, nor
a competition – but to be able to compare different approaches and
outcomes. This makes it possible to assess and advance the state
of the art in gesture generation, and measure the gap between it
and natural co-speech gestures. Comparing the different methods
and their performance also helps identify what matters most in
gesture generation, and where the bottlenecks are. Challenge par-
ticipants benefit by working on the same problem together with
researchers interested in the same topic, strengthening the research
community, and get an opportunity to compare their systems to
other competitive systems in a large and carefully-executed joint
evaluation.

Our concrete contributions are:
(1) Jointly evaluating several state-of-the-art gesture-generation

models on a common dataset using a common 3D model and
rendering method.

(2) Two large-scale user studies assessing human-likeness and
appropriateness of submitted motion.

(3) Providing open code and and high-quality data – comprising
the pre-processed, multimodal training and test datasets,
the standardised visualisation, a large number of subjective
responses, and evaluation and analysis using open standards
and code – in the spirit of reproducible research.

(4) Bringing researchers together in order to advance the state-
of-the-art in gesture generation, and enabling future research
to compare and benchmark against systems from the chal-
lenge.

The remainder of this paper first presents prior work in terms
of gesture-evaluation practices (and their shortcomings) and dis-
cusses how challenges have helped in other fields. We then describe
the challenge setup and its results, and finally turn to consider
the implications for future challenges and gesture generation as a
whole.

2 RELATEDWORK
Most previous work proposing new gesture-generation methods
incorporates an evaluation to support the merits of their method.
Human gesture perception is highly subjective, and there are cur-
rently no widely accepted objective measures of gesture perception,
so most publications have conducted human assessments instead.
However, previous subjective evaluations, as reviewed in [59], have
several drawbacks, with major ones being the coverage of systems
being compared and the scale of the studies. Like in [2, 30, 31, 45],
proposed models are at most compared to one or two prior ap-
proaches (often a highly similar baseline) or possibly only to ab-
lated versions of the same model. A large number of studies do not
compare their outcomes with other methods at all. This creates an
insular landscape where particular model families only are applied

1GENEA stands for “Generation and Evaluation of Non-verbal Behaviour for Embodied
Agents”. The paper extends a preliminary report, [32] (not peer reviewed), presented
at the GENEA Workshop associated with the challenge.

to particular datasets, and never contrasted against one another.
As for scale, large evaluations are expensive, and studies may not
be be able to recruit enough participants, thus leaving the differ-
ences between many pairs of studied systems unresolved and not
statistically significant (cf. [60, 61]). Questionnaires, which are one
popular evaluation methodology (cf. [4, 21, 47]) demand a lot of
time and cognitive effort even before scaling up. In addition, the
items used in questionnaires differs across studies and the set of
questions used is often not standardised.

Sometimes, evaluations fail to anchor system performance against
natural (“ground truth”) motion from their database, e.g., [22, 33, 47].
Another significant difference between studies is how generated
motion is visualised, where some prior work (e.g., [29, 58]) displays
motion through stick figures, or applies it to a physical agent (e.g.,
[21, 47]). Neither of these may allow the same expressiveness or
range of motion as 3D-rendered avatars in, e.g., [2, 31].

Although there is no directly related work on challenges that
benchmark co-speech gestures in ECAs, other fields have done well
using challenges to standardise evaluation techniques, establish
benchmarks, and track and evolve the state of the art. For exam-
ple, the Blizzard Challenges have since their inception in 2005 (see
[5]) helped advance text-to-speech (TTS) technology and identified
subtle but robust trends in the specific strengths and weaknesses
in different speech-synthesis paradigms [26]. These challenges are
open to both academia and industry. Participants are provided a
common dataset of speech audio and associated text transcriptions,
and use these to build a synthetic voice. The resulting voices are
then evaluated in a large, joint evaluation. Challenge data, eval-
uation stimuli, and subjective ratings remain available after the
challenge, and have been widely used both for benchmarking sub-
sequent TTS systems, e.g., [9, 52], and for doing research on the
perception of natural and artificial speech, e.g., [13, 37, 38, 50, 62].

Challenges are also actively used in the computer-vision commu-
nity, for instance for benchmarking purposes. Recent CLIC [54] and
NTIRE [41] challenges, for example, compared systems for image
compression and super-resolution respectively, also incorporating
subjective human assessments similar to the challenge described in
this paper (although they used a MOS-like setup, which has been
found to be less efficient than the side-by-side evaluation methodol-
ogy we employ [44]). This addresses the over-reliance on objective
metrics in computer-vision evaluation, which, just like in speech
quality and gesture generation, do not always align with human
perception. Inspired by the successes of challenges in other field
of study, we conducted the first challenge in the field of gesture
generation.

3 TASK
Our challenge focussed on data-driven gesture generation. We pose
the problem of speech-driven gesture generation as follows: given
input speech features 𝒔 – which could involve either an audio wave-
form (a sequence of pressure samples) or text (a word sequence) or
the combination of the two – the task is to generate a corresponding
pose sequence 𝒈 describing gesture motion that an agent might
perform while uttering this speech. To enable direct comparison
of different data-driven gesture-generation methods, all methods
evaluated in the challenge were trained of the same gesture-speech
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dataset and their motion visualised using the same virtual avatar
and rendering pipeline.

3.1 Dataset
We based the challenge on the Trinity Gesture Dataset [11], com-
prising 244 min of audio and motion-capture recordings of a male
actor speaking freely on a variety of topics. This is one of the largest
datasets of parallel speech and 3D motion (in joint-angle space)
publicly available in the English language. We removed lower-body
data, retaining 15 upper-body joints out of the original 69. Finger
motion was also removed due to poor capture quality.

To obtain verbal information from the speech, we first tran-
scribed the audio recordings using Google Cloud automatic speech
recognition (ASR), followed by a thorough manual review to cor-
rect recognition errors and add punctuation for both the training
and test parts of the dataset. All names of non-fictive persons were
removed and replaced by unique tokens in the transcriptions.

Before releasing the data to challenge participants, it was split
into training data (3 h and 40 min) and test data (20 min), with only
the training data initially being shared with the participants. Both
these data subsets have since been made publicly available in the
original dataset repository at trinityspeechgesture.scss.tcd.ie.

3.2 Challenge rules
Each participating team could only submit one system for evalua-
tion. As for timeline, the speech-motion training data was released
to participants on July 1, 2020. Test input speech (but not motion
output) was released to participants on August 7, with participants
requested to submit their generated gesture motion for the test
input speech on or before August 15. The joint evaluation took
place after the generated gestures were submitted.

Synthetic gesture motion was required to be submitted at 20
frames per second (fps) in a format otherwise identical to that
used by the challenge training data. To prevent optimising for
the specific evaluation used in the challenge and to encourage
motion generation approaches with long-term stability, participants
were asked to synthesise motions for 20 min of test speech in long
contiguous segments, from which a subset of clips were extracted
for the user studies, similar to many Blizzard Challenges. Manual
tweaking of the output motion was not allowed, since the idea was
to evaluate how systems would perform in an unattended setting.

4 SYSTEMS AND TEAMS
We recruited challenge participants from a public call for participa-
tion. Sixteen teams signed up for the challenge, and we distributed
the dataset and baseline implementations to all of them. Five teams
completed the challenge and the other teams were not able to sub-
mit results for evaluation. Two of the withdrawing teams explained
it was (in one case) due to reduced manpower for completing the
challenge and (in the other) due to unsatisfactory results. There
were no reported withdrawals due to the challenge data or task.

The challenge evaluation contained 9 different conditions or
systems: 2 toplines that represent human-quality gesture motions, 2
previously published baselines, and 5 challenge entries/submissions.
Table 1 lists all conditions, together with participating team names
and (abbreviated) affiliations. Following the practice established by

the Blizzard Challenge, we anonymised the teams in the present
paper, by not revealing which team was assigned which ID, but
individual teams are free to disclose their ID if they wish. Papers
from each team describing their submitted systems in detail are
collected in the proceedings of the GENEA Workshop 2020.2

The two toplines were:
N Natural motion capture from the actor for the input speech

segment in question. Surpassing this system would essen-
tially entail superhuman performance.

M Mismatched natural motion capture from the actor, corre-
sponding to another speech segment than that played to-
gether with the video. This was accomplished by permuting
the motion segments from condition N in such a way that
no segments remained in its original position. This repre-
sents the performance attainable by a system that produces
very human-like motion (same as N, so a topline), but whose
behaviour is completely unrelated to the speech (and thus
can be considered as a bottom line in terms of motion appro-
priateness for the speech).

Since there has been no previous general study that compares
systems to each other and what the state of the art is, it is hard to
identify the “best” baseline systems to use. Therefore the choice was
more subjective and based on code availability, with the two base-
line systems chosen from recent data-driven gesture-generation
papers that had their code available and were easy to reproduce.
These were:
BA The system from [29], which only takes speech audio into

account when generating system output. This model uses a
chain of two neural networks: one maps from speech to pose
representation and another decodes representation to pose,
generating motion frame by frame by sliding a window over
the speech input.

BT The system from [61], which only takes text transcript in-
formation (which includes word timing information) into
account when generating system output. This model con-
sists of an encoder for text understanding and a decoder for
frame-by-frame pose generation.

The original authors of the baseline systems updated their meth-
ods and code to perform well on the challenge material. In BA,
the representation of upper-body poses in the challenge dataset
was different from the data used in the original publication and
hence a new hyperparameter search was conducted to find optimal
hyperparameters. Another change was that the resulting motion
was represented using the exponential map [14] and was smoothed
using a Savitzky–Golay filter [51] with window length 9 and poly-
nomial order 3.

In BT, the representation of upper-body poses in the challenge
dataset was different to that of the TED dataset used in the original
publication. Accordingly, the pose representationwas changed from
2D Cartesian coordinates of 8 upper-body joints to 3×3 rotational
matrices for each of 15 joints. The data dimension for a pose was
135 (3×3×15). The number of layers and loss function were the
same as in the original paper. The hyperparameters of learning rate
and loss term weights were adjusted manually. Also, pretrained
FastText word vectors [6] were used instead of GloVe [43].

2Available at zenodo.org/communities/genea2020.
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Table 1: Conditions participating in the evaluation. Teams are sorted alphabetically by name. The anonymised IDs of submitted
entries begin with the letter ‘S’ followed by a second, randomly-assigned letter in the range A through E, but which letter is
associated which each team is not revealed in order to preserve anonymity. † indicates a use of word vectors pretrained on
external data.

Inputs used Representation or features Stochastic

Name or description Origin ID Aud. Text Input speech Motion output?

Natural motion - N ✓ ✓ – – ✓

Mismatched motion - M ✗ ✗ – – ✓

Audio-only baseline Kucherenko et al. [29] BA ✓ ✗ MFCC Exp. map ✗

Text-only baseline Yoon et al. [61] BT ✗ ✓ FastText† Rot. matrix ✗

AlltheSmooth [35] CSTR lab, UEDIN, Scotland S... ✓ ✗ MFCCs Joint pos. ✗

Edinburgh CVGU [42] CVGU lab, UEDIN, Scotland S... ✓ ✓ BERT† & mel-spectr. Rot. matrix ✓

FineMotion [27] ABBYY lab, MIPT, Russia S... ✓ ✓ GloVe† & mel-spectr. Exp. map ✗

Nectec [53] HCCR unit, NECTEC, S... ✓ ✓ Phoneme, Spacy word Exp. map ✗

Thailand vecs.†, MFCCs, & prosody
StyleGestures [1] TMH division, KTH, Sweden S... ✓ ✗ mel-spectr. Exp. map ✓

Source code and hyperparameters for both baseline systems are
available on GitHub.3 These implementations and hyperparame-
ters were also made available to participating teams during the
challenge.

We also considered including a re-implementation of the system
from Ginosar et al. [12] as a third baseline, but this was dropped due
to unsatisfactory results. This might be due to the challenge dataset
being smaller than needed for this method, or due to difficulties
with tuning the particular implementation we used.

5 EVALUATION
We conducted a large-scale, crowdsourced, joint evaluation of ges-
ture motion from the nine conditions in Table 1 in parallel using a
within-subject design (i.e., every rater was exposed to and evaluated
all conditions). The systems were evaluated in terms of the human-
likeness of the gesture motion itself, as well as the appropriateness
of the gestures for a given input speech. Jonell & Kucherenko et
al. [24] recently found that the results from crowdsourcing evalu-
ations were not significantly different from in-lab evaluations in
terms of results and consistency. We therefore adopted an entirely
crowdsourced approach, as opposed to for example the Blizzard
Challenge, which has used a mixed approach. Attention checks
were used to exclude participants that were not paying attention,
as detailed in Section 5.3.

5.1 Stimuli
Prior to motion being submitted, the organisers selected 40 non-
overlapping speech segments from the test inputs (average segment
duration 10 s) to use in the user-study evaluation. These speech
segments, which were not revealed to participants, were selected
across the test inputs to be full and/or coherent phrases. The motion
from the corresponding intervals in the BVH files submitted by
participating teams was extracted and converted to a motion video

3BA: github.com/GestureGeneration/Speech_driven_gesture_generation_with_ au-
toencoder/tree/GENEA_2020
BT: github.com/youngwoo-yoon/Co-Speech_Gesture_Generation

Figure 1: Screenshot of the rating interface from the evalu-
ation. The question asked in the image (“How well do the
character’s movements reflect what the character says?”)
originates from [25], and was changed for each of the two
evaluations in this paper.

clip using the visualisation server provided to participants (see
Section 5.1), albeit at a higher resolution of 960×540 this time.

We used the same virtual avatar for all renderings during the
challenge and the evaluation. The avatar can be seen in Figure 1.
The avatar originally had 69 joints (full body including fingers) but
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only 15 joints, corresponding to the upper body and no fingers,
were used for the challenge. Since hand and finger data had been
omitted, these body parts were assigned a static pose, in which the
hands were lightly cupped (again, see Figure 1).

We also developed a visualisation server that enabled all partic-
ipating teams to produce gesture-motion visualisations identical
(except in resolution) to the video stimuli evaluated in the challenge.
This was implemented using a Python-based web server which in-
terfaced Blender 2.83. Participants would send a send a 20 fps BVH
file to the visualisation server, and these files were then processed as
quickly as possible into videos visualising the motion on the avatar,
in the order they came in. The same server was also used to render
the final stimuli, but with the resolution increased to 960×540 in-
stead of 480×270. (The lower resolution was used during the main
part of the challenge to increase performance and throughput of the
server, since 16 teams initially took part.) The visualisation server
code is provided at github.com/jonepatr/genea_visualizer.

5.2 Evaluation interface
In order to efficiently evaluate a large number of relatively similarly-
performing systems in parallel, we used a methodology inspired
by the MUSHRA (MUltiple Stimuli with Hidden Reference and
Anchor) test standard for audio-quality evaluation [19] from the
International Telecommunication Union (ITU). However, there are
a number of differences between the MUSHRA standard and our
evaluation, e.g., our use of video rather than audio and the omission
of a designated reference and a low-end anchor, which correspond
to the letters R and A in the original acronym.

Figure 1 shows an example of the user interface used for the
evaluation. The participants were first met with a screen with in-
structions and how to use the evaluation interface. They were then
presented with 10 pages, where on each page they would compare
and evaluate motion stimuli from all toplines, baselines, and most
submitted systems, all for/with the same speech. It was possible
for participants to return to previous conditions and change their
rating after seeing other examples. Lastly they were presented with
a page asking for demographics and their experience of the test. As
can be seen in the figure, the 100-point rating scale was anchored
by dividing it into successive 20-point intervals labelled (from best
to worst) “Excellent”, “Good”, “Fair”, “Poor”, and “Bad”. These la-
bels were based on those associated with the 5-point scale used for
Mean Opinion Score (MOS) [20] tests, another evaluation standard
developed by the ITU.

For a detailed explanation of the evaluation interface we refer
the reader to [25], which introduced and validated the evaluation
paradigm for gesture-motion stimuli.

5.3 Study design
Each study was balanced such that each segment appeared on pages
1 through 10 with approximately equal frequency across all raters
(segment order), and each condition was associated with each slider
with approximately equal frequency across all pages (condition
order). For any given participant and study, each page would use
different speech segments. Every page would contain condition
N and (where relevant) condition M, but one other condition was

randomly omitted from each page to limit the maximum number
of sliders on a page to 8 or 7, depending on the study.

Three attention checks were incorporated into the pages for
each study participant. These either displayed a brief text message
over the gesticulating avatar reading “Attention! Please rate this
video XX.”, or they temporarily replaced the audio with a synthetic
voice speaking the same message. XX would be a number from 5
to 95, and the participant had to set the corresponding slider to the
requested value, plus or minus 3, to pass the attention check. The
numbers 13 through 19, as well as multiples of 10 from 30 to 90,
were not used for attention checks due to their acoustic ambiguity.
Which sliders on which pages that were used for attention check
was uniformly random, except that no page had more than one
attention check, and condition N and M were never replaced by
attention checks.

We evaluated two aspects of the gesture motion, each in a sepa-
rate study:
Human-likeness This study asked participants to rate “Howhuman-

like does the gesture motion appear?”, with the intention of
measuring the quality of the generated motion while ignor-
ing its link to the input speech. This study did not include
speech in stimulus videos and only used text-based attention
checks (all videos were silent).

Appropriateness This study asked participants to rate “How ap-
propriate are the gestures for the speech?” This was intended
to investigate the perceived link between motion and speech
(both in terms of rhythm/timing and semantics), ignoring
motion quality as much as possible. This study contained
speech audio in the stimuli, and each participant had to pass
one text-based and two audio-based attention checks.

5.4 Test-participant recruitment
Study participants were recruited through the crowdsourcing plat-
form Prolific (formerly Prolific Academic), restricted to a set of
English-speaking countries (UK, IE, USA, CAN, AUS, NZ). There
was no requirement to be a native speaker of English, since Prolific
does not support screening participants based on that criterion. A
participant could take either study or both studies, but not more
than once each. Participants were remunerated 5.75 GBP for com-
pleting the human-likeness study (median time 33 min) and 6.50
GBP for the appropriateness study (median time 34 min).

5.5 Objective evaluation metrics
Since subjective evaluation is costly and time-consuming it would
be beneficial for the field to agree on meaningful objective evalua-
tions to use. As a step in this direction we consider two numerical
measures previously used to evaluate co-speech gestures, namely
average jerk and distance between gesture speed (i.e., absolute
velocity) histograms.

5.5.1 Average jerk. The third time derivative of the joint positions
is called jerk. Average jerk is commonly used to quantify motion
smoothness [29, 39, 55]. We report average values of absolute jerk
(defined using finite differences) across different motion segments.
A perfectly natural system should have average jerk very similar
to natural motion.
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5.5.2 Comparing speed histograms. The distance between speed
histograms has also been used to evaluate gesture quality [29, 31],
since well-trained models should produce motion with similar prop-
erties to that of the actor it was trained on. In particular, it should
have a similar motion-speed profile for any given joint. To evaluate
this similarity we calculate speed-distribution histograms for all
systems and compare them to the speed distribution of natural
motion (condition N) by computing the Hellinger distance [40],

𝐻 (𝒉(1) , 𝒉(2) ) =

√
1 −∑

𝑖

√
ℎ
(1)
𝑖

· ℎ (2)
𝑖

, between the histograms

𝒉(1) and 𝒉(2) . Lower distance is better.
For both of the objective evaluations above the motion was first

converted from joint angles to 3D coordinates. The code for the
numerical evaluations has been made publicly available to enhance
reproducibility.4

6 RESULTS AND FINDINGS OF THE
CHALLENGE EVALUATION

This section describes and discusses the results of the subjective and
objective evaluations. First, Section 6.1 introduces demographic and
other information gathered from the recruited participants. Section
6.2 then reports the results of the subjective evaluation of challenge
conditions, which also are visualised in a number of different figures.
Section 6.3 complements the subjective findings with results on the
objective measures introduced in Section 5.5. Section 6.4 provides
a discussion of the results obtained in the challenge evaluation.

6.1 Data on test participants
Each user study recruited 125 participants that passed all attention
checks they encountered. In the human-likeness study, average
reported participant age was 31.5 years (standard deviation 10.7),
with 66 men, 57 women, and 2 others. We asked participants on
which continent they lived, and 69 participants were from Europe,
1 from Africa, 48 from North America, 2 from South America, and 5
from Asia. In the appropriateness study, average age was 31.1 years
(standard deviation 11.7), with 60 men, 64 women, and 1 other. 78
participants reported residing in Europe, 1 in Africa, 39 in North
America, 3 in Asia, and 4 in Oceania. Each study had 116 native
and 9 non-native speakers of English.

23 test-takers in the human-likeness study and 40 test-takers in
the appropriateness study did not pass all attention checks. These
test-takers were not part of the 125 participants analysed. Scores
from sliders used for attention checks were also omitted, leaving
in total 8,375 and 9,625 ratings that were analysed in each of the
two respective studies. The median successful completion time
for the main part of the study was 24 min for the human-likeness
study and 27 min for the appropriateness study, with the shortest
successful completion time being 12 min in both studies. These
figures exclude reading instructions and answering the post-test
questionnaire, unlike the timings in Section 5.4.

6.2 Analysis and results of subjective
evaluation

Summary statistics (sample median and sample mean) for all condi-
tions in each of the two studies are shown in Table 2 (see page 8),
together with a 99% confidence interval for the true median/mean.
The confidence intervals were computed either using a Gaussian
assumption for the means (i.e., with Student’s 𝑡-distribution cdf,
and rounded outward to ensure sufficient coverage), or using order
statistics for the median (leverages the binomial distribution cdf, cf.
[16]).

The ratings distributions in the two studies are further visu-
alised through box plots in Figure 2. The distributions are seen to
be quite broad. This is common in MUSHRA-like evaluations, since
the range of numbers not only reflects differences between systems,
but also extraneous variation, e.g., between stimuli, in individual
preferences, and in how critical different raters are in their judge-
ments. In contrast, the plotted confidence intervals are seen to be
quite narrow, due to the large number of ratings collected for each
condition.

Despite the wide range of the distributions, the fact that the
conditions were rated in parallel on each page enables using pair-
wise statistical tests to factor out many of the above sources of
variation. To analyse the significance of differences in sample me-
dian between different conditions, we applied two-sided pairwise
Wilcoxon signed-rank tests to all pairs of distinct conditions in
each study. This closely follows the analysis methodology used
throughout recent Blizzard Challenges. (Unlike Student’s 𝑡-test,
this test does not assume that rating differences follow a Gaussian
distribution, which would likely be inappropriate, as we can see
from the box plots in Figure 2 that ratings distributions are skewed
and thus non-Gaussian.) For each condition pair, only pages for
which both conditions were assigned valid scores were included in
the analysis. (Recall that not all systems were scored on all pages
due to the limited number of sliders and the presence of attention
checks.) This meant that every statistical significance test was based
on at least 796 pairs of valid ratings in each of the studies. The 𝑝-
values computed in the significance tests were adjusted for multiple
comparisons using the Holm-Bonferroni method [18] (which is uni-
formly more powerful than regular Bonferroni correction) in each
of the two studies. This statistical analysis found all but 4 out of 28
condition pairs to be significantly different in the human-likeness
study, which the corresponding numbers being 7 out of 36 condition
pairs in the appropriateness study, all at the level 𝛼 = 0.01. Which
conditions that were found to be rated significantly above or below
which other conditions in the two studies is visualised in Figure 3.

Finally, we present two diagrams that bring the results of the two
studies together. Figure 4, in particular, visualises the relative (par-
tial) ordering between different conditions implied by the results of
the two studies in Figure 3. Although there are similarities, the two
orderings are meaningfully different. This, together with the results
in [25], reinforces a conclusion that the two studies managed to
disentangle aspects of perceived motion quality (human-likeness)
from the perceived link between gesture and speech (appropriate-
ness). Figure 5, meanwhile, visualises confidence regions for the
median rating as boxes whose horizontal and vertical extents are
4See github.com/Svito-zar/genea_numerical_evaluations.
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Figure 2: Box plots visualising the ratings distribution in the two studies. Red bars are the median ratings (each with a 0.01
confidence interval); yellow diamonds are mean ratings (also with a 0.01 confidence interval). Box edges are at 25 and 75
percentiles, while whiskers cover 95% of all ratings for each system. Conditions are ordered descending by sample median,
which leads to a different order in each of the two plots.
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Figure 3: Significance of pairwise differences between conditions. White means that the condition listed on the 𝑦-axis rated
significantly above the condition on the 𝑥-axis, black means the opposite (𝑦 rated below 𝑥), and grey means no statistically
significant difference at the 0.01 level after Holm-Bonferroni correction. Conditions are listed in the same order as in Figure
2, which is different for each of the two studies.

given by the corresponding confidence intervals in Table 2. Once
again, different systems are found to be good at different things.
The numerical gap between natural and synthetic gesture motion
is seen to be more pronounced in the case of appropriateness than
for human-likeness.

6.3 Results of objective evaluation
Results of the objective evaluations from Section 5.5 are given in
Table 3. The first column contains the average jerk across all the
joints. We report mean and standard deviation for the full 20 min
of test motion. The second and third columns contain the Hellinger
distance between speed histograms for the left and right wrists.

Different systems performed best (coming closest to the natural
motion N) in different objective measures. For example, systems SA
and SB where the closest to the ground truth in terms of the jerk
value, but SE and SD were among the closest to the ground truth
as measured by Hellinger distance between speed histograms.

We also found that objective metrics deviate from the subjective
results. While SA showed the most similar jerk to natural motion, it
was less preferred in the subjective evaluation. Similarly, SE showed
the Hellinger distances most similar to N, but was not close to being
the most preferred synthetic system in the subjective evaluation.
Considering this disparity, we stress that objective evaluation of
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Higher median rating

Figure 4: Partial ordering between conditions in the two studies. Each condition is an ellipse; overlapping or (in one case)
coinciding ellipses signify that the corresponding conditions were not statistically significantly different in the evaluation.
The diagram was inspired by [57] with colours adapted from [7]. There is no scale on the axis since the figure visualises
ordinal information only.

Table 2: Summary statistics of user-study ratings for all con-
ditions in the two studies, with 0.01-level confidence inter-
vals. The human-likeness of M was not evaluated explicitly,
since it uses the same motion clips as N.

Human-likeness Appropriateness
ID Median Mean Median Mean
N 72 ∈ [70, 75] 67.6 ± 1.8 81 ∈ [79, 83] 73.8 ± 1.8
M " " 56 ∈ [53, 59] 53.3 ± 2.0
BA 46 ∈ [44, 49] 46.2 ± 1.7 40 ∈ [38, 41] 40.4 ± 1.8
BT 55 ∈ [53, 58] 54.6 ± 1.8 38 ∈ [35, 40] 38.5 ± 1.9
SA 38 ∈ [35, 41] 40.1 ± 1.9 35 ∈ [31, 37] 36.4 ± 1.9
SB 52 ∈ [50, 55] 52.8 ± 1.9 43 ∈ [40, 45] 43.3 ± 2.0
SC 57 ∈ [55, 60] 55.8 ± 1.9 50 ∈ [48, 52] 50.6 ± 1.9
SD 60 ∈ [57, 61] 58.8 ± 1.7 49 ∈ [46, 50] 48.1 ± 1.9
SE 49 ∈ [47, 51] 49.6 ± 1.8 47 ∈ [44, 49] 45.9 ± 1.8

gesture motion is a complementary measure, and that subjective
evaluation is much more important.

6.4 Discussion of the challenge results
It is obvious that gesture generation is a difficult problem which is
far from being solved, seeing that no system came remotely close
to the natural motion N. However, the fact that many submissions
scored significantly better than the previously published baselines
suggests that progress is being made. The numerical gap between
natural motion and that synthesised by machine-learning models
is greater in terms of appropriateness than human-likeness. This
(along with the fact that no artificial system surpassed the speech-
independent condition M) could indicate that appropriateness is a
harder problem to solve. As one part of this, the available data may
not be sufficiently rich to allow learning to generate appropriate
gestures, especially semantically-meaningful gesticulation.

Previous studies suggest that motion quality (human-likeness)
may influence gesture appropriateness ratings in subjective evalu-
ations [31, 61]. Our experiments only partly managed to separate
these two aspects of gesture perception. On the one hand, we can
observe in Figure 4 that different systems were good at different
things: some scored better than other on human-likeness, but worse

Table 3: Results from the objective evaluations. The
Hellinger distance between natural and synthetic speed pro-
files was computed for the two wrist joints, since hand mo-
tion is of central importance for co-speech gestures.

Hellinger distance
ID Jerk Left Right
N 151.52 ± 35.57 0 0

BA 65.59 ± 4.42 0.084 0.090
BT 45.84 ± 2.14 0.130 0.096
SA 132.37 ± 27.64 0.064 0.059
SB 189.39 ± 4.66 0.126 0.114
SC 84.44 ± 8.48 0.083 0.088
SD 72.06 ± 7.91 0.073 0.062
SE 97.85 ± 9.34 0.049 0.049

on appropriateness. The human-likeness ratings, which did not in-
clude any speech information in the video stimuli, also have little
potential to include any aspects of appropriateness. On the other
hand, no machine-learning system was rated above mismatched
motion M in terms of appropriateness, which contrasts against
previous evaluations on other data such as [61]. This could be an
effect of that data containing more pauses in speech and gestic-
ulation, thus making a mismatch more apparent. Moreover, the
high appropriateness rating reached by one of the audio-only sys-
tems may indicate that our evaluation did not capture semantic
appropriateness well.

7 DISCUSSION AND IMPLICATIONS OF THE
CHALLENGE

In this sectionwe discuss challenge implications: what the challenge
brings to the scientific community, the limitations of the challenge,
and lessons learned from conducting it.

7.1 Implications of the challenge
We have taken the first step in jointly benchmarking different
gesture generation systems on a common dataset and virtual avatar.
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Figure 5: Confidence regions for the true median rating across both studies. The dotted black line is the identity, 𝑥 = 𝑦. While
the human-likeness (𝑥-coordinate) of M was not evaluated directly, it is expected to be very close to N since it uses the same
motion clips, and the horizontal extent of the confidence region for M was therefore copied from N.

The below points summarise some of the added value we see for
the gesture-generation field:

(1) We have defined the first benchmark for evaluating gesture-
generation models, consisting of a dataset of speech audio,
aligned text transcriptions, and 3D motion, as well as train-
test splits and an evaluation procedure. Future research can
make use of these components to compare new models with
previous ones in a consistent way.

(2) All the motion clips generated by the systems evaluated
in the challenge are publicly available, together with the
rendering pipeline used.5 This enables easy comparisons
with these systems in the future, since their motions can be
used directly, without the need to reproduce the systems.

(3) All the subjective and objective scores for the challenge sub-
missions and analysis scripts we used are also available on-
line.6 This material could be used, e.g., to investigate human
perception and to analyse the correlation between subjective
perception and different objective measures (not only those
in Section 5.5), to aid progress toward reliable and useful
objective metrics for the field.

7.2 Limitations
Our crowdsourced evaluation had a few limitations: First, in mea-
suring appropriateness of gestures (i.e., the link between gestures
and speech), semantic and rhythmic appropriateness were consid-
ered together, and there is no way to determine which aspect of
appropriateness the participants rated. In addition, our appropri-
ateness ratings were likely been affected by motion quality to some
5See zenodo.org/record/4080919 and github.com/jonepatr/genea_visualizer for the
motion stimuli and the visualiser, respectively.
6See zenodo.org/record/4088250.

extent, as discussed in Section 6.4, despite the fact that participants
were instructed participants to disregard motion quality.

Second, the dataset used in the challenge was limited to a single
English speaker in a monologue scenario. The role of gesticulation
may be expected to differ between different persons and languages
as well as the speaking environment (e.g., dyadic conversation
versus monologue), which this challenge did not explore.We believe
the models and the challenge can be extended to other languages
if proper datasets are available, as audio processing is essentially
language agnostic and pretrained word vectors are available for a
multitude of languages [15].

A third limitation is that we considered only upper-body ges-
tures, even though whole-body gestures (including posture, step-
pingmotion and stance, facial expression, and handmotion) also are
important in social interactions. Three teams stated that the most
desirable extension of the challenge would be to include whole-
body and/or facial gestures. Some evaluation participants also found
the absence of facial and finger motion to be a limitation of the
challenge.

7.3 Lessons learned from the challenge
Conducting the gesture generation challenge has highlighted sev-
eral take-away messages and lessons learned:

• Being human-like does not mean being appropriate for ges-
tures of a virtual avatar. The challenge evaluation found some
systems performed better than others in terms of human-
likeness but worse in terms of appropriateness, highlighting
that one does not imply the other. Any evaluation or com-
parison of synthetic gestures should keep this distinction in
mind.
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• Providing carefully pre-processed data and good infrastruc-
ture (code for feature extraction, motion visualisation, base-
line systems, etc.) enables challenge participants to focus on
developing their system, instead of solving unrelated issues.

• A MUSHRA-like evaluation scheme can successfully bench-
mark numerous gesture-generation models in parallel.

• There is a need for future challenges, since there remains a
big gap between natural and synthesised motion and varia-
tion across speakers, languages, and scenarios has yet to be
explored in a challenge format.

We additionally think the following points are worth considering
for anyone running a similar challenge in the future:

• Include some of the best systems used in the current chal-
lenge to provide continuity and assess whether the field
keeps moving forward. This is facilitated by the fact that the
baselines and several challenge entries have made their code
publicly available.

• Evaluate gesture appropriateness in a more granular and pre-
cise way, for example having separate questions and studies
for semantic and rhythmic appropriateness, and by also eval-
uating contrasts between matched and mismatched motion
from all challenge entries. Since the link between speech
and motion is important yet difficult to evaluate, challenges
and their data may be used to explore how to better measure
gesture appropriateness.

• Use a different speech-gesture dataset. As previously dis-
cussed, the dataset used in this challenge has limitations,
e.g., it has already been used extensively and contains just a
single actor speaking in isolation, while gesture generation
systems usually are intended to be used in an interaction.
More data may be necessary to better learn semantically
meaningful gestures.

8 CONCLUSIONS
We have hosted the GENEA Challenge 2020 to assess the state of
the art in data-driven co-speech gesture generation. The central de-
sign goal of the challenge was to enable direct comparison between
many different gesture-generation methods while controlling for
factors of variation external to the model, namely data, embodi-
ment, and evaluation methodology. Our results suggest that the
field is advancing measurably, since most submissions performed
significantly better than the baselines published the year before.
Different systems were also found to be good at different things
on the two scales (human-likeness and appropriateness) that we
assessed. However, a substantial gap remains between synthetic
and natural gesture motion, indicating that gesture generation is
far from a solved problem.

We believe that the standardised challenge training and test
sets (of time-aligned audio, text, and gestures), the visualisation
code, and the associated library of rated motion clips from the
challenge will be useful for future benchmarking and research in
gesture generation. Furthermore, we think challenges like the one
described here are poised to play an important role in identifying
key factors for convincing gesture generation in practice, and in
driving and validating future progress toward the goal of endowing
embodied agents with natural gesture motion.
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