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ABSTRACT
To enable more natural face-to-face interactions, conversational
agents need to adapt their behavior to their interlocutors. One key
aspect of this is generation of appropriate non-verbal behavior for
the agent, for example facial gestures, here defined as facial ex-
pressions and head movements. Most existing gesture-generating
systems do not utilize multi-modal cues from the interlocutor when
synthesizing non-verbal behavior. Those that do, typically use de-
terministic methods that risk producing repetitive and non-vivid
motions. In this paper, we introduce a probabilistic method to syn-
thesize interlocutor-aware facial gestures – represented by highly
expressive FLAME parameters – in dyadic conversations. Our con-
tributions are: a) a method for feature extraction from multi-party
video and speech recordings, resulting in a representation that al-
lows for independent control and manipulation of expression and
speech articulation in a 3D avatar; b) an extension to MoGlow, a
recent motion-synthesis method based on normalizing flows, to
also take multi-modal signals from the interlocutor as input and
subsequently output interlocutor-aware facial gestures; and c) a
subjective evaluation assessing the use and relative importance of
the different modalities in the synthesized output. The results show
that the model successfully leverages the input from the interlocu-
tor to generate more appropriate behavior. Videos, data, and code
are available at: https://jonepatr.github.io/lets_face_it.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).
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Figure 1: Two avatars in a snapshot from our experiments.

1 INTRODUCTION
Generating appropriate facial gestures (here defined as facial ex-
pressions and head movements) for a conversational agent in a
dyadic setting is a task as intriguing as it is challenging. Its useful-
ness in human-agent interaction has been researched extensively
[4, 35, 38] and there have been many attempts at realizing its po-
tential in both virtual agents [32, 42] and social robots [45]. It is
well known that facial motion is highly correlated with speech,
and often contains cues that contribute to or reinforce the spoken
message [15]. But facial expressions in a dyadic setting are also
strongly affected by the other party. Interpersonal dynamics in
face-to-face conversation includes many phenomena that affect the
interaction in different ways, such as mimicry – the tendency to
adopt poses, facial expressions, mannerisms, and speaking styles
of the interlocutor. For example, it has been shown that when a
conversational agent just copies the facial expressions of the human
interlocutor with some delay it is perceived as more trustworthy
[4]. Furthermore, Cassell and Thorisson [9] found that so-called
envelope feedback (e.g. gaze, manual beat gestures, and head move-
ments) to be more important for the user than emotional feedback
when interacting with conversational agents. As modeling conver-
sational dynamics is difficult to achieve, most non-verbal behavior
generation methods only use speech and/or semantic content pro-
duced by the agent as inputs to the system [27, 32, 45]. Recently a
few systems have been introduced that use non-verbal behaviors
from the interlocutor to control non-verbal output from the system
[1, 17, 20, 25]. We continue this line of work and present a proba-
bilistic system, based on normalizing flows, for generating facial
gestures in dyadic settings. Our system takes in audio from both
conversational partners and facial gestures of the interlocutor and
generates corresponding appropriate facial gestures for the virtual
agent in a given context.

We evaluate this system using segments annotated as contain-
ing mimicry from a database of dyadic interactions, these being
salient examples of interlocutor-dependent non-verbal behavior.
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Our stimulus-generation method allowed manipulating speech ar-
ticulation independently from the facial gestures, allowing for vary-
ing the facial gestures while controlling for the effect of speech
context. We find that: (1) Evaluators can distinguish mimicry seg-
ments from mismatched segments (from the same interaction but
another point in time) and find mimicry segments more appropriate.
This also validates that our feature extraction and stimulus genera-
tion methods are appropriate for non-verbal behavior. (2) Feeding
our model mismatched input segments yields a less appropriate
response to the interlocutor, showing that our model leverages the
multi-modal signals from the interlocutor to generate more appro-
priate facial gestures. (3) Removing the interlocutor’s facial gestures
as input led to less appropriate behavior, while interlocutor speech
was not beneficial for facial-gesture generation in our scenario.

In order for researchers to build on top of our work, our extracted
database of features and analysis-synthesis code can be found on
the project website: https://jonepatr.github.io/lets_face_it.

2 RELATEDWORK
2.1 Representing facial communicative signals
While there are many methods for representing facial communica-
tive signals, our scenario and experiments impose the following
requirements: Firstly, we require a parameterization that allows
encoding facial gestures from video (to be used as inputs and output
to the models) in a person-independent way. Secondly, we need to
generate an animated 3D avatar, so we require a reliable inversion
of the parameterization to render faces that express the perceptu-
ally relevant elements. Finally, we need independent control over
speech articulation and facial expression, in order to be able to run
experiments with out-of-context gestures as in Section 5.

Ekman & Friesen’s Facial Action Coding System (FACS) [16] was
developed for subject-independent coding of facial expressions for
psychology research. It has also been widely used in graphics and
machine-learning applications [11, 14, 24], but while FACS is well
suited for coding, e.g., emotional expressions, it is less ideal for
speech animation. There is also no canonical way of automatically
encoding and decoding between video and FACS.

Another commonly used parametrization is facial landmarks,
for example the 68 point Multi-PIE scheme, e.g., used in [17]. Facial
landmarks often lack resolution and are not fully able to represent
facial expressions and emotions [34]. They also lead to subject-
specific data and cannot easily be used in generation. MPEG-4 Face
Animation Parameters (FAP) are closely related to FACS but were
designed to cope with both analysis and synthesis and are, for
example, used as output parameters in [14]. There is however a lack
of reliable tools for reconstruction/synthesis. Statistically-based
3D analysis/synthesis parameterizations such as 3D morphable
models [7] and Active Appearance Models [12] can yield high-
quality results, but they typically rely on manual initialization steps
that make them expensive to deploy in large-scale multi-talker
machine learning settings with many hours worth of data.

FLAME [33] is a new parameterization that represents facial
expressions, shapes, and head rotation in a low-dimensional Prin-
cipal Component Analysis (PCA) parameter space realizable as a
3D mesh. Expression parameters can be automatically extracted
from video. Our system uses FLAME parameters as this improves

the fidelity of facial gestures. FLAME allows independent control
over expression and shape by design. Using techniques described in
Section 4.2 it is furthermore possible to independently drive speech
articulation and facial expression.

2.2 Gesture generation
Several previous works have demonstrated successful generation
of gestures of various kinds. Recent work in speech-driven hand-
gesture generation, for example, has primarily been based on deep
learning. Hasegawa et al. [22] designed a neural network to map
from speech audio to 3D motion sequences. Kucherenko et al. [32]
extended this work to learn a better representation of the motion,
achieving smoother gestures as a result. Yoon et al. [45] learned a
mapping from text to gestures using a recurrent neural network.
Speech-driven head-motion and facial gesture generation has been
performed using methods such as Variational Autoencoders (VAEs)
[31] to predict head pose conditioned on acoustic features [19],
Bidirectional Long Short-Term Memory (BLSTM) networks [20,
21, 41], and conditional Generative Adversarial Networks (GANs)
[18] as seen in [11, 42]. In another line of work, Karras et al. [28]
trained a CNN-based neural network using speech together with a
learned emotion representation as input to generate corresponding
3D meshes of faces with impressively little training data.

2.3 Interlocutor-aware gesture generation
Our problem formulation is largely inspired by a recent method to
model conversational dynamics for gesture generation [1]. Like in
that work, we also model avatar behavior based on both the avatar’s
own speech and the speech and motion of the interlocutor. One
main difference between our work and that paper is that we model
a different aspect of non-verbal behavior, namely facial gestures
instead of hand gestures. Another important difference is that our
method is not deterministic, but probabilistic. Their method is also
based on data from motion capture, while our system uses regular
videos as input and extracts features from these videos.

One similar work that uses a probabilistic method is DyadGAN
[25], which trained a conditional GAN to generate face images based
on the interlocutor’s facial expressions. However, the work only
produced a single image, ignoring temporal aspects. DyadGAN was
later extended to generate sequences of interlocutor-aware facial
gestures [39]. However, they did not use speech information, nor
did they produce output parameters that can control a virtual agent.

Feng et al. [17] presented a system using VAEs to generate facial
gestures. However, their system is limited to sequences of facial
gestures already existing in the training dataset, while our system is
able to generate completely new motions. Furthermore, our system
also relies on FLAME parameters for parametrization of the facial
features as opposed to facial landmarks, granting several benefits;
most importantly, the output parameters can directly generate a
high-quality 3D face with corresponding gestures while simulta-
neously providing independent control over lip-sync and facial
shape. Dermouche et al. [14] presented a system similar to Feng
et al. but added the conversational state as additional conditional
information, and also created a system usable in real time. They
encoded the input using LSTMs while outputting FAPs.
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2.4 Normalizing flows
In this work we use normalizing flows [40] for probabilistic model-
ing. This has several advantages over other methods such as VAE
or GANs, as detailed in [23]. The specific model we use is adopted
from MoGlow [23], which adapted a normalizing-flow method
called Glow [30] to the problem of motion generation. We describe
the MoGlow method more in detail in Section 3. The method has
been successfully applied to gesture generation [3], which inspired
us to apply it to our problem as well. However, our system differs
from MoGlow as we use several modalities to condition the model,
each encoded by a separate neural network, and we apply the model
to another task (interlocutor-aware facial-gesture generation). An-
other difference from both MoGlow and Ajuha et al.’s work [1] is
that we start from regular monocular videos, thus not requiring
data recorded using specialized motion-capture equipment.

3 SYSTEM ARCHITECTURE
3.1 Problem formulation
We frame the problem of generating interlocutor-aware facial ges-
tures in the following way: given a sequence of speech features
of the avatar 𝑺𝒂 = [𝒔𝒂𝑡 ]𝑡=1:𝑇 as well as the interlocutor’s facial
gestures 𝑭 𝒊 = [𝒇 𝒊

𝑡 ]𝑡=1:𝑇 and speech features 𝑺 𝒊 = [𝒔 𝒊𝑡 ]𝑡=1:𝑇 ,
the task is to generate a corresponding facial gesture sequence
𝑭𝒂 = [ ˆ𝒇𝒂𝑡 ]𝑡=1:𝑇 that the avatar might perform in the conversation.

3.2 Model foundations
The model we utilize to generate motion in this work belongs to
the class of probabilistic generative models called normalizing flows.
Normalizing flows are similar to GANs in that they generate output
by drawing samples from a simple base or latent distribution 𝒁 (here
a standard normal distribution) and then transform these samples
nonlinearly using a neural network 𝒈 such that the transformed
output distribution 𝑿 = 𝒈(𝒁 ) matches that of the data. Different
from the one-way neural networks in GANs, however, normalizing
flows use invertible nonlinear transformations, so called invertible
neural networks, for 𝒈. The approach gains power and expressivity
by chaining together several simple nonlinear transformations,
called steps of flow, analogous to the layers in a regular neural
network. For more details on normalizing flows please see [40].

The model in this paper is based on a specific normalizing flow
transformation 𝒈 called Glow [30]. This choice allows both fast
likelihood computation and efficient sampling from the learned
distribution. Our model structure is similar to the MoGlow archi-
tecture used for autoregressive generation of pose sequences in
locomotion [23] and gesture generation [3]. These papers also show
how the nonlinear transformation 𝒈, and thus the learned distribu-
tion𝑿 = 𝒈(𝒁 ), can be made to depend on conditioning information
that affects the motion, including an external control signal. Specif-
ically, MoGlow feeds the conditioning information as an additional
input to the regular (one-way) neural networks contained inside
each step of flow (see [23]). We will use this control signal to create
models of non-verbal behavior that are able to use the interlocu-
tor’s speech and facial gestures. Like in MoGlow, we do not use
any hierarchical structure in the generator, meaning that 𝐿 = 1 in
the language of Kingma et al. [30].

Figure 2: System architecture. While we visualize conversa-
tion parties as talking heads in the figure, the facial gesture
inputs and outputs of the machine-learning system were
FLAME parameters. Similarly, audio inputs were MFCCs
and prosodic features, rather than raw waveforms.

3.3 Proposed model overview
Our model generates facial gestures conditioned on the speech
of the avatar as well as the speech and the facial features of the
interlocutor. A graphical overview of the model is shown in Figure 2.
The core of the model is the normalizing flow, which transforms
Gaussian driving noise (shown below the model) into a distribution
of facial expressions (shown on top of the model). In order to be able
to generate smooth facial motion, the model is made autoregressive
– it uses the avatar’s facial expressions from preceding frames as
an extra conditioning to generate the next frame. The generated
facial motion should be consistent with the avatar’s speech (but not
necessarily its semantics) and hence our model is also conditioned
on the avatar’s speech signal from previous 𝑡𝑎𝑠 time-steps. To enable
generating appropriate behavior toward the interlocutor, the speech
and facial motion of the interlocutor for the 𝑡𝑖𝑠 and 𝑡𝑖𝑓 time-steps,
respectively, are used as additional conditioning for the normalizing
flow. The proposed model hence learns to generate a distribution
of appropriate facial gestures using multi-modal conditioning.

Since no previous facial expressions are available at test time, the
model starts generation with a sequence of zero vectors standing
in for the missing facial-gesture inputs.

Like in MoGlow [23] the conditioning information is concate-
nated with the other inputs to the networks inside the steps of
flow, but in our system each modality is encoded by a separate
network (and later subjected to an additional transformation which
is different for each step), as described in the next subsection.

3.4 Modality encoder
Four different inputs are used in our model to condition the output
distribution: the interlocutor’s acoustic and facial features, as well
as the agent’s own acoustic features and previous facial features
(as autoregressive input to ensure continuity). How the acoustic
and facial features were extracted is described in Section 4.1. Below
we describe our modality encoders shown in Figure 2.

We experimented with different neural networks for encoding
each modality: Multi-layer Perceptrons (MLPs), Recurrent Neu-
ral Networks (RNNs) and 1D-convolution networks (CNNs). We
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decided on the final configuration (RNNs) based on an initial hy-
perparameter search on the validation dataset. However, for the
autoregression, the avatar’s previous facial features were passed
into the normalizing flow model without any processing: simply as
a concatenation of 𝑡𝑎𝑝𝑓

previous frames. All other modalities were
first encoded from input histories of a given time duration (different
for different modalities) into fixed-length vectors using separate
RNNs, specifically using Gated Recurrent Units (GRUs) [10]. We
took both the hidden state and the final output from the GRUs to
retain more information. For each step of flow, all modality encod-
ings were concatenated and then passed through a one-layer neural
network with a LeakyReLU activation function. This transforma-
tion network was different in every step of the flow, resulting in
different conditioning vectors in each step. The per-step condition-
ing information was used to influence the transformation in each
step in the same way as in MoGlow.

3.5 Training scheme
We used teacher forcing without annealing or scheduled sampling.
This means that the model always received the ground-truth autore-
gressive input during training instead of samples from the model,
since the latter can make models converge on incorrect output [26].

We used the Adam optimizer [29] since it has been used before
to train similar systems [3, 23]. We also used learning-rate warm up,
as is common for normalizing flows [30]. Different learning-rate
schedulers were tested, but did not seem to impact the results.

In order for the model to listen more to the conditioning from the
interlocutor we used a special training scheme based on negative
learning [37]. The main idea is to not only minimize the loss of the
training examples, but also maximize the loss of “wrong”, negative
examples. There was a 0.1 probability to use a negative sample for
each batch. Negative samples are created by shuffling both facial
𝑭 𝒊 and speech conditioning 𝑺 𝒊 in the conditioning information for
the whole batch, so that each output sequence in the batch now
has the conditioning information of a different sample. Temporal
consistency was preserved – the mismatched conditioning was still
a continuous sequence but from another example. Mathematically,
a permutation of elements where no element appears in its origi-
nal position is known as a derangement, but we will refer to such
samples with deliberate incorrect conditioning as mismatched.

In order to make the model better at distinguishing between
appropriate from inappropriate output motion, we want the log-
likelihood for mismatched samples to be as small as possible. We
therefore switch the sign of the log-likelihood of negative exam-
ples. This was done as long as the negative log-likelihood (which
we use as the loss in these cases) was positive for those negative
examples, an occurrence that became increasingly rare as the loss
kept decreasing as the model improved during training.

3.6 Implementation and hyperparameters
Our implementation used the PyTorch-based GitHub repository
glow-pytorch1 as a base, adapted to PyTorch Lightning2 The hyper-
parameter search used Optuna [2], which identified the following
hyperparameters that we used in our experiments for the proposed

1https://github.com/chaiyujin/glow-pytorch
2https://github.com/PyTorchLightning/pytorch-lightning

model: total conditioning dimensionality = 512, initial learning rate
= 10−5, training sequence length = 80. The Glow parameters were
K = 16 steps of flow with 128 hidden channels. All other hyperpa-
rameters of the final model can be found on the project website.
The final model was trained for 15 epochs on a single GPU for
approximately 40 hours.

4 DATA
We used the MAHNOB Mimicry Database [6] to train and evaluate
the systems in this paper. It contains 11.5 hours of spontaneous
dyadic conversations on different topics. The purpose of the corpus
was to be able to study dyadicmimicry behavior. The data-gathering
used a setup of 15 shutter-level synchronized cameras, two close-
talking microphones and one room-capturing microphone. The
video streams capturing the faces were gray-scale. 40 participants
discussed various subjects over 53 sessions (originally 54 sessions,
but one session did not contain data for both participants). The
average session length was 13 ± 3.5 minutes. 40 sessions of this
dataset have additionally been annotated with mimicry episodes
and occasionally their strength. For selecting mimicry segments
for the evaluation we used segments annotated for smile, head nod
and laughter. For more information, please refer to the original
publication [6]. The data was partitioned into an even split of one
minute long, randomly-selected segments. We split the dataset in
the following way: train 83%, val 10% and test 6.5%. Additionally,
one full session was held out completely (the remaining 0.5%).

4.1 Feature extraction
From the videos (one camera angle per person and session) we ex-
tracted 2,068,410 image frames at 25 fps. OpenFace [5]was then used
in order to extract facial landmarks, which were used to determine
bounding boxes for cropping and for the FLAME fitting. Cropped
images were fed into RingNet [43] to estimate initial FLAME pa-
rameters. The RingNet output together with the facial landmarks
were passed into the FLAME fitter in order to determine the final
FLAME parameters, which were obtained through two optimiza-
tions outlined in [33]. The result was a 100D PCA expression vector,
a 12D pose vector with rotations, and a 300D PCA shape vector.
From the expression vector we used the 50 first components to-
gether with the neck (3D) and jaw (3D) rotations to form our facial
features (56D). Lastly some temporal smoothing was applied using
Savitzky-Golay filtering (window length = 9, polynomial order = 3).

From the audio we extracted 25MFCCs + 1 log total frame energy
(window length = 0.02 s, step size = 0.01 s, nfft = 1024) using python-
speech-features [36]. Additionally we extracted prosodic features
(pitch, pitch delta, energy, and energy delta) using Praat [8]. The
MFCCs and prosodic features were concatenated in order to create
the acoustic features (30D).

As some of these processing steps were computationally demand-
ing (measurable in CPU+GPU months), the extracted features are
publicly available from the project website.

4.2 Stimulus-generation pipeline
A number of processing steps, illustrated in Figure 3, were nec-
essary to generate the video stimuli: First, Voca [13] was used to
generate lipsync for all audio within the test segments. Voca takes
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Figure 3: Stimulus generation pipeline, showing how audio
is transformed into lip motion and then combined with the
model output and rendered.

audio as an input and outputs vertices in the FLAME topology. A
template mesh was then fitted to these vertices using the method
described in [33] in order to obtain FLAME-parameters for the
expression and jaw parameters. A simple energy-based crosstalk
Voice Activity Detection (VAD) was implemented to output a mask
for canceling crosstalk between the two speakers. This mask was
the same length as the number of frames of the FLAME-parameters
for the lipsync and was multiplied with each lipsync track. The
result was subsequently added together with the model output,
resulting in an avatar whose lip-movements are driven by recorded
agent speech but whose facial gestures can be generated and manip-
ulated independently. A random gender and a random face shape
were sampled in the face-shape parameter space and were, together
with the previous output, passed to the FLAME model to obtain
3D vertices. The gender decides which template model the FLAME
model will use, and can be generic, female or male. Finally the
resulting vertices together with a random texture were passed to
the rendering engine, here Pyrender3.

5 EVALUATION
In this section we describe the subjective experiments we con-
ducted, specifically an ablation study, and the complimentary ob-
jective measure used to evaluate our model. We ablated several key
components of the model, namely the modalities it used as input
and the presence of the special training scheme with negative sam-
ples. The specific ablations we considered were: no-face: model not
conditioned on the interlocutor’s facial features; no-speech: model
not conditioned on the interlocutor’s speech features; no-neg-train:
model trained without the negative samples described in Section 3.5.
For each ablation we conducted a separate hyperparameter search
on the validation dataset to find the optimal setup and re-trained
the models from scratch using the best hyperparameters, to enable
the most fair comparison. The exact hyperparameters for these
models are provided on the project website.

The ablation study also evaluated how the models perform when
they receive mismatched conditioning, to try to understand to what
extent the models take the various multi-modal signals into account.

3https://github.com/mmatl/pyrender

We call the instances when the avatar’s speech was taken from an-
other context “mismatched 𝑆𝑎”, when the interlocutor’s speech was
from another context “mismatched 𝑆𝑖 ”, and when the interlocutor’s
facial gestures were from another context “mismatched 𝐹 𝑖 ”.

5.1 Subjective evaluation setup
Five experiments were carried out on Amazon Mechanical Turk
(AMT) to evaluate human perception of the produced facial gestures.
The five experiments were designed to answer the following five
questions: (1) Can participants discern appropriate facial gestures
using our visualization? (2) Does our model take interlocutor input
into consideration? (3) What is the importance of the interlocutor’s
facial features as input? (4) What is the importance of the interlocu-
tor’s speech features as input? (5) Does the training scheme with
negative samples significantly improve the perceptual quality of
output gestures?

5.1.1 Procedure. The procedure of our experiment was similar to
that described in [17]. Every participant was first provided instruc-
tions and then completed a training phase to familiarize themselves
with the task and interface. The training consisted of three items
showing the participants what kind of videos they may encounter
during the study. Each participant was then asked to evaluate video
pairs. In all studies participants compared two videos, each contain-
ing two virtual characters interacting with each other (see Figure 1).
The participants were always asked to only evaluate the avatar
on the right, since it was the only one that was manipulated; the
left avatar – the interlocutor – was always the same between both
videos, and its movements reflected the same segment of ground-
truth motion in the data. The videos were presented side by side
and could be replayed separately as many times as desired. For
each pair, participants indicated which video they thought best
corresponded to the given question and there was also an option to
state that they perceived both videos to be equally appropriate. The
question we asked was always the same across experiments and
similar to that used by Ahuja et al. [1]: “Which of the two characters
on the right side of each video has the most appropriate behavior in
response to the character on its left?”

All subjective tests used a binomial sign test with Bonferroni
correction for the five studies. Ties were excluded.

5.1.2 Stimuli. Since the goal was to evaluate facial gestures, audio
was removed, but lip-sync, based on the original audio for each
character, was retained and was the same between both videos in
each evaluated pair. This choice was based on other facial gesture
studies such as [17] and on the fact that an informal pre-study (12
participants), found that participants tended to base their judgments
on how well the motions matched the semantic content, rather than
the interlocutor interaction. We found this to be inappropriate for
our study since no explicit linguistic understanding was built into
our model. The avatars were placed side by side and facing forward,
adjusted such that the 3D avatar would face the viewer when the
original talker was facing the other interlocutor in the original
interaction. Neck rotation was subtracted from the eyes, giving
the impression of the avatar looking straight at the viewer even
when turning its head. Head shape, gender and skin color (see
Figure 1 for an example) were randomized but kept constant for
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each video segment across all experiments. Which conversation
party from the original ground-truth interaction that was selected
as the interlocutor and placed on the left was based on who spoke
the most in that segment, determined by summing the VAD output.

22 video pairs were evaluated in each experiment, except for Ex-
periment 1, where 64 video pairs were evaluated (34 mimicry and 30
non-mimicry segments) and each participant evaluated 10 random
pairs of each type. Segments were randomly counterbalanced and
(like the original mimicry annotations) varied in duration (3 ± 2 s)
from one to eight seconds. All experiments used the same segments,
except Experiment 1 which had additional segments as above.

A few randomly-selected examples generated by our method and
used for the experiments are available on the project website. Since
some of these sequences were jittery, we also provide examples
where we “lowered the temperature” of the underlying Gaussian
(we set 𝜎2 < 1 for Z) [30], which produced smoother motion. We
did not apply any smoothing filters to the output in this work.

5.1.3 Participants. All participants were recruited through AMT
and were only allowed to participate once in any of the studies.
The participants had to have an acceptance rate of at least 98% and
completed over 10,000 previous HITs to be eligible for our study.
We used attention checks to filter out inattentive participants. For
two of the attention checks (one early in the experiment, one close
to the end) we added a text telling the participant to report the
video as broken. Participants were excluded if they failed any of
these attention checks. The other three attention checks comprised
pairs presenting the exact same video twice and were placed at the
7th, 10th, and the 15th trial-position for all experimental sessions.
Here, an attentive rater should answer “no difference”. Participants
were excluded if they failed all three of these attention checks.

5.2 Results of subjective evaluation
The results for Experiment 2 (mismatched), 3 (no-face), 4 (no-speech),
and 5 (no-neg-train) are shown in Figure 4.

5.2.1 Experiment 1: Matched and mismatched ground truth. First
we evaluated if our stimulus-generation methods allowed online
workers to perceive a difference between the actual facial gestures
(ground truth condition) and avatar gestures taken from another
point in time in the same interaction but with the same person
(mismatched condition). We recruited 30 participants (14 female, 16
male), all from the USA. Their mean age was 37.4 with a std of 11.1.

We conducted a binomial sign test with Bonferroni correction
excluding ties to analyze the responses separately for the two types
of stimuli: the mimicry segments and the non-mimicry segments.
The ground truth videos were preferred over the Mismatched ones
for mimicry segments (𝑝 < 0.001). There was no statistical signifi-
cance for the non-mimicry segments (𝑝=1). These results indicate
that online workers can indeed distinguish the Mismatched facial
gestures from the ground truth, but only in segments where that
difference is salient, e.g., if the conversation parties display strong
non-verbal interactions such as mimicry. Given this result we con-
centrated our remaining evaluations on mimicry segments, since
they provided for the clearest distinction between appropriate and
inappropriate agent behavior. As the non-mimicry segments did not
produce a statistical difference they were excluded from remaining

Figure 4: Results from the subjective ablation studies.

studies. Furthermore, since our model required 24 frames (0.96 s) of
initialization data, only 22 samples could be used for the remaining
experiments.

5.2.2 Experiment 2: Matched and mismatched proposed model. In
the second experiment we evaluated whether the proposed model
actually uses the interlocutor’s input when generating facial ges-
tures. To this end, we shuffled the conditioning information like
before, creating mismatched stimuli where the conditioning infor-
mation from the interlocutor was always taken from a different
sample than the motion used by the interlocutor avatar in the video
(but still from the same session and the same person). We compared
the proposed model’s facial gestures using normal test sequences
versus those using mismatched sequences. This use of matched
and mismatched samples has the advantage that the quality of the
motion is the same across the conditions seen in the videos (since
all avatar motion was generated from the same trained model); only
the appropriateness of the motion may differ between the two.

We recruited 30 participants (22male, 8 female). Themajority (29)
were from the USA. Their mean age was 33.7 with a std of 6.9. The
test showed a statistically significant difference between the model
output on matched and mismatched test sequences. Specifically,
there was a preference towards the matched sequences (𝑝 = 0.032).

5.2.3 Experiment 3: Ablating facial gestures. Here we compared the
proposed model (proposed condition) against the ablation where the
interlocutor’s facial gestures was not available to the model (no-face
condition). We recruited 30 participants (19 male, 10 female, 1 non-
binary), of which 29were from the USA. Themean agewas 37.3 with
a std of 9.4. The test showed a statistically significant preference
for the proposed model over the no-face ablation (𝑝 < 0.001).

5.2.4 Experiment 4: Ablating speech. In this experiment we com-
pared the proposed model (proposed condition) against the ablation
where the interlocutor’s speech was not available to the model (no-
speech condition). We recruited 30 participants (16 male, 13 female,
1 non-binary), of which 29 were from the USA. Their mean age
was 36.6 with a std of 8.7. The test showed a statistically significant
preference for the no-speech ablation (𝑝 < 0.001).

5.2.5 Experiment 5: Negative sample training. In this experiment
we compared the proposed model (proposed condition) against the
same model without any negative samples during training (no-
negative-training condition).
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Table 1: Log-Likelihoods for the proposed model and its ab-
lations on test sequences and mismatched versions thereof.

System All correct mismatched 𝑺𝒂 mismatched 𝑺 𝒊 mismatched 𝑭 𝒊

Proposed 40051±144 40050±144 40050± 144 23522±99436
no-face 38141±240 38141±238 31614±144323 -
no-speech 35545± 67 35544± 68 - 35538± 68
no-neg-train 38698± 92 38698± 93 38699± 92 38654± 97

We recruited 30 participants (17 male, 13 female), of which 28
were from the USA. Their mean age was 38.7 with a std of 12.6.
The test showed a statistically significant preference for the model
trained without the special training scheme (𝑝 = 0.003).

5.3 Objective evaluation
It is difficult to evaluate the quality of facial gestures objectively,
and it is even harder to objectively evaluate whether or not facial
gestures are adapted to the interlocutor. Calculating distance from
recorded “ground truth” motion is not meaningful, as a multitude of
different gestures can be appropriate even if the conditioning input
is fixed. We instead considered the likelihood since normalizing
flows enable direct probabilistic inference, letting us calculate the
log-likelihood of test data under our model. The test data should
have high likelihood only if we model the data distribution well. We
evaluated log-likelihood for the proposed model and its ablations
for unmodified test sequences as well as mismatched sequences
as defined above. The average values along with their standard
deviations are given in Table 1. The interpretation of the results is
discussed in Section 6.

6 DISCUSSION
The purpose of Experiment 2 (Section 5.2.2) was to see if our method
can leverage the multi-modal input to generate more appropriate
motion in response to the interlocutor. We found a significant pref-
erence for when the model outputs facial gestures relevant to the
context, as opposed to a random context, indicating that we suc-
cessfully generated interlocutor-aware facial gestures. This result
is in line with the findings from Experiment 1, where it was shown
that evaluators can indeed distinguish – and furthermore prefer –
non-verbal behavior which is dependent on the interlocutor over
any random (coherent) facial gestures.

Experiments 3 and 4 were designed to assess the relative impor-
tance of different interlocutor input modalities. Experiment 3 (Sec-
tion 5.2.3) considered removing the interlocutor facial information.
This made the model perceptually significantly worse. In addition,
this no-face condition gave likelihoods that were significantly af-
fected by mismatched speech information (Table 1), suggesting that,
lacking facial information, the model instead became more attuned
to the interlocutor’s speech, possibly to the point of overfitting.

If we instead removed the interlocutor speech input (Experiment
4, in Section 5.2.4), the resulting ablation performed significantly
better than the proposed model. This suggests that the facial infor-
mation is the most important for the model, at least in this no-audio
evaluation paradigm. It is surprising that the model with facial
information alone was better than the one using face and speech
together. Speculatively, this might be due to the type of speech fea-
tures used, and experimenting with less speaker-dependent speech
representations would be interesting for future work.

There is an intriguing disparity between the likelihood numbers
in Table 1 – where negative training helped models learn to more
effectively assign probability mass to motions matching the inter-
locutor (as opposed to non-matching motion) – and the subjective
results from Experiment 5, which found that not using negative
samples in the training was perceived significantly better. While
negatively-trained models clearly were able to learn to distinguish
well between scenarios with matched and mismatched modalities,
they do not appear to have leveraged this to generate more appro-
priate motion in matched setups. However, it is also well known
that likelihoods and human ratings are sensitive to different mod-
eling aspects (see, for instance, [44]). Thus higher likelihood does
not necessarily mean better perceptual quality, and our findings
here are likely another reflection of that fact.

A potential limitation of this work is the fact that we are eval-
uating multi-modal interactions that contain speech, but without
revealing that speech to the evaluators. This was a deliberate choice,
as we in a pre-study on mismatched ground-truth motion found
that participants otherwise tend to assign an inordinate significance
to the linguistic content and how the avatar moves and behaves
in relation to that content. Since the presented method does not
attempt to model semantics, removing the speech would make it
less likely that evaluators assign spurious semantic meaning to
the gestures, and instead force them to evaluate the motion in a
non-semantic way. It is also consistent with previous evaluation
of non-verbal facial gestures, e.g., [17]. Furthermore, we replicated
Experiment 2 from Section 5.2.2 with n=30 subjects, but with speech
audio present in the video stimuli. We found a statistical difference
(p<0.05) in agreement with Experiment 2, but the effect was less
significant (0.04998), supporting the pre-study finding that the pres-
ence of speech with semantic content confounds the evaluation
of the non-verbal facial gestures. In general, we believe that the
absence of speech audio would be most likely to affect evaluators’
assessments of the impact of the speech modalities on the motion,
such as the results of Experiment 4. Another limitation is that the
evaluated segments, being annotated mimicry episodes, were rather
short. In some cases, they may then be considered hard to evaluate.

7 CONCLUSION
We have presented a method for probabilistic and interlocutor-
aware facial-gesture generation based on multi-modal inputs. Ex-
periments found that human raters significantly preferred facial
gestures generated in response to the interlocutor over mismatched
facial gestures that did not take the interlocutor into account. This
shows that the proposed approach managed to leverage the multi-
modal input to generate better gestures. We evaluated our system
on mimicry segments due to their perceptual saliency, but it should
be stressed that no information relating specifically to mimicry was
used during training. The subjective appropriateness of generated
motion decreased significantly when information about the inter-
locutor’s facial gestures was omitted, suggesting that this modality
is of major importance to the task.

Future work should investigate the use of other parametriza-
tions of multi-modal signals, especially speech representations, and
various ways of incorporating them into the model. It would also
be highly interesting to investigate how this method would work
in a real-time interaction with a user.
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