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Abstract
For building flexible and appealing high-quality speech synthes-
isers, it is desirable to be able to accommodate and reproduce
fine variations in vocal expression present in natural speech.
Synthesisers can enable control over such output properties by
adding adjustable control parameters in parallel to their text in-
put. If not annotated in training data, the values of these control
inputs can be optimised jointly with the model parameters. We
describe how this established method can be seen as approxim-
ate maximum likelihood and MAP inference in a latent variable
model. This puts previous ideas of (learned) synthesiser inputs
such as sentence-level control vectors on a more solid theoret-
ical footing. We furthermore extend the method by restricting
the latent variables to orthogonal subspaces via a sparse prior.
This enables us to learn dimensions of variation present also
within classes in coarsely annotated speech. As an example, we
train an LSTM-based TTS system to learn nuances in emotional
expression from a speech database annotated with seven differ-
ent acted emotions. Listening tests show that our proposal suc-
cessfully can synthesise speech with discernible differences in
expression within each emotion, without compromising the re-
cognisability of synthesised emotions compared to an identical
system without learned nuances.
Index Terms: text-to-speech, latent variables, paralinguistics

1. Introduction
Natural human speech contains vast amounts of acoustic vari-
ation that cannot be predicted from the spoken text alone, cf.
[1]. Sources of meaningful variability include speaker identity
and speaker state (emotion etc.), adjustments to enhance com-
munication with the listener (speaking style, prosody, emphasis,
entrainment etc.), as well as the circumstances under which the
communication takes place (channel properties such as ambient
noise). It has been hypothesised that an ability to replicate nat-
ural speech variability is a requirement for speech synthesisers
that are more pleasant to listen to and interact with, cf. [2].

Unfortunately, the majority of text-to-speech systems do
not treat acoustic variation in a structured manner, and instead
model any deviations from the average behaviour as uncorrel-
ated noise. As a result, output speech is inappropriately aver-
aged and oversmooth, while sampled speech sounds bubbly or
noisy (cf. [1, 3]). To minimise the negative effects of untreated
acoustic diversity, most work focusses on training synthesisers
only on consistently-read speech from a single speaker in a quiet
studio environment. While it might seem that the best approach
would be to annotate and learn from meaningful variation in
speech databases, such annotation is usually too costly to con-
sider, especially for subtle speech properties such as the strength
of emotional expression. Nonetheless, several recent studies in-
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volving multi-speaker synthesis [4, 5, 6] have shown that acous-
tic diversity (at least with proper labelling) can be turned from a
burden into a benefit, producing synthesisers that are both con-
trollable and yield greater output quality than systems trained
only on single-speaker subsets of the data.

This paper proposes a method for learning nuances in
speech expression also from controlled, studio-recorded data
where variation within expressions is neither annotated nor de-
liberately included, extending several prior approaches [7, 8, 6]
for learning unannotated variation. Our main contributions are:

1. A reinterpretation of previously published methods as
approximate maximum likelihood combined with MAP
estimation of latent variables. (Sec. 3)

2. A straightforward method for learning unannotated nu-
ances in different output expressions, based on constrain-
ing the latent variables using a sparse prior. (Sec. 4.3)

Our experiments in Sec. 5 train state-of-the-art RNN-based stat-
istical parametric speech synthesisers with and without our pro-
posed enhancement on a database with seven classes of acted
emotion. Listening tests show that our proposed system learns
to control nuances in each annotated emotional class, without
compromising the recognisability of the synthesised emotions.

2. Relation to prior work
Some of the first examples of general-purpose output control in
statistical speech synthesis were based on so-called multiple-
regression HMMs (MR-HMMs) [9] in classical HMM-based
speech synthesis with regression trees [10, 11], with example
applications to controlling synthesiser speaking style [12] and
manipulating its articulation [13]. It is more or less trivial
to extend the idea of MR-HMMs also to speech synthesis
based on deep neural networks (DNNs). This has enabled easy
multi-speaker synthesis with one-hot or i-vector inputs (speaker
codes) [14, 6, 5, 15, 16], as well as manipulation of speech as-
pects such as speaker age and gender [6].

If the training corpus has unannotated variation, a simple
idea is to try to learn the values of control parameters along with
the synthesiser itself, looking for the input values that most im-
prove the predictive accuracy of speech acoustics and/or dura-
tions. Joint optimisation of network weights and unknown con-
trol inputs is easy to do in deep learning using backpropagation,
and the basic principle has been rediscovered several times: Un-
der the name discriminant condition codes (DCC), it has been
applied to adapt both speech recognition [7] and speech syn-
thesis [6] to new speakers. In Watts et al. [8], the same math-
ematical setup is referred to as learned control vectors.

Among previous publications, Watts et al. is perhaps the
most similar to our current work. They used an intentionally
diverse and expressive speech corpus (children’s audiobooks)
to learn a controllable speech synthesiser. We herein show that
this feat is possible using only natural variation present in care-
fully acted speech, and that it can be combined with a coarse,
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annotated variation (per-sentence acted emotion class).
Equally important, we show that the methods in [7, 8, 6]

have substantial connections to a statistical concept known as
latent variables. Latent variables are common ingredient in
statistical models for speech and beyond, with the states (sub-
phones) of hidden Markov models (HMMs) [17] being one
prominent example of a successful previous application of lat-
ent variables in speech technology. Latent variables are a good
match for our situation, since they explicitly address the issue
of handling unobserved, structured variation in data. Our in-
sight thus not only grounds and interprets established heuristics
through probability theory, but also unlocks generalisations and
improvements of the basic method, as illustrated in Sec. 4.

3. Theory
This section presents a latent-variable interpretation of several
learned-input methods in speech technology. To begin with, let
X be a random variable whose distribution fX |Z depends on
another random variable Z. In our case, the observed output(s)
x would be the speech produced by a synthesiser in response
to a control signal z. When the input value z is unobserved or
unannotated we call Z a latent variable.

Let us model the joint behaviour of the two random vari-
ablesX and Z with a parametric family of distributions

fX,Z(x, z; θ) = fX |Z (x | z; θ) fZ(z; θ), (1)

with parameter(s) θ. A common approach in speech techno-
logy, e.g., [7, 8, 6], is to jointly estimate the parameters (neural
network weights) θ and the unknown control-vector inputs z by
maximising the log-probability of the observed data x, as(

θ̂(x), ẑ(x)
)

= argmax
(θ, z)

ln fX |Z (x | z; θ) . (2)

We will now show that Eq. (2) can be seen as approximate
maximum-likelihood (ML) estimation of θ under a flat prior
on z, with the z-values interpretable as maximum a-posteriori
(MAP) point estimates. As always, the log-likelihood L and the
maximum-likelihood parameter estimate θ̂ML are given by

L (θ |x) = ln fX(x; θ) (3)

θ̂ML(x) = argmax
θ

L (θ |x) = argmax
θ

ln fX(x; θ) (4)

= argmax
θ

ln

ˆ
fX,Z(x, z; θ) dz. (5)

We also define the MAP point estimate ẑMAP of the latent vari-
able Z given θ through

ẑMAP(x; θ) = argmax
z

ln fZ |X (z |x; θ) (6)

= argmax
z

ln
(
fX |Z (x | z; θ) fZ(z; θ)

)
. (7)

Now define the auxiliary function

Q (θ; θ0) = EZ
(
ln fX,Z(x, Z; θ)

∣∣X = x; θ0
)

(8)

=

ˆ
fZ |X (z |x; θ0) ln fX,Z(x, z; θ) dz (9)

≈ ln fX,Z(x, ẑMAP(x; θ0); θ), (10)

where the approximation follows from assuming that the pos-
terior distribution fZ |X is sharply peaked, forming a spike
around its most likely value ẑMAP. Using Jensen’s inequality,
it is easy to prove (cf. [18]) that any parameter value θ that in-
creases the value of Q above Q (θ0; θ0) also must have greater
log-likelihood L than θ0. This is the basis of the EM algorithm.

By iteratively optimisingQ under the previous best θ-value

– a process that includes updating ẑMAP – a local stationary
point (typically maximum) of the log-likelihood L is identi-
fied. Since Eqs. (7) (E-step) and (10) (M-step) update two dif-
ferent arguments of the same maximisation objective, namely
ln fX,Z = ln(fX |Z fZ), the fixed points of the iterative up-
dates are the stationary points of fX,Z . If we assume a flat
(uniform) prior fZ over the region of relevant ẑMAP-values, we
have that fX,Z = fX |Z . Thus choosing θ̂ and ẑ to jointly
maximise the original objective Eq. (2) is the same as approx-
imate maximum-likelihood parameter estimation with ẑ play-
ing the role of ẑMAP, which proves the desired result.

Intuitively, we can think of learned control vectors in syn-
thesis literature as “poor man’s latent variables”, that permit lat-
ent variation but do not account for uncertainty in the posterior
value of z. To our knowledge, this interpretation is not widely
known among speech technologists.

4. Application to controllable synthesis
4.1. Preliminary definitions

Text-to-speech technology maps a sequential text representa-
tion l to a sequential audio representation x of that text being
spoken out loud. In the special case of statistical parametric
speech synthesis (SPSS) the speech representation is a sequence
x = [xt, . . . , xT ] of speech parameters (and possibly their
∆ and ∆2-values) xt for controlling a speech-waveform gen-
erator (vocoder), while in signal-level speech synthesis t may
index waveform sample values xt. In both cases, acoustic mod-
elling is the task of specifying and fitting a probabilistic model
fX (x | l), where the representation l typically is a sequence of
phone identities and other so-called linguistic features derived
from the text input, as opposed to a raw text string. Commonly,
forced alignment is used to upsample l so that each output vec-
tor xt is associated with an input vector lt.

4.2. Controllable speech synthesis

For a controllable speech synthesiser, the text message l is aug-
mented with control parameters (c, z), which we have separ-
ated into annotated values, c, and unannotated variation, z. In
DNN-based TTS, each lt vector is usually concatenated with
one or both of the corresponding c and z-values, allowing these
extra inputs to directly influence the generated speech. The
maximum time-resolution of the control parameters is thus con-
strained by the granularity of x, though in our experiments we
let the control parameters be constant for each utterance and
train a standard RNN-based acoustic regression model

X(l, c, z; θ) = µ(l, c, z; θ) + ε, (11)

where ε is a zero-mean white Gaussian noise process and µ is
an LSTM-based deep, recurrent neural network. The training
data comprises a set of speech utterances x(n) with matching
text l(n) and annotated labels c(n). Based on the general prin-
ciple from Sec. 3, model parameters (network weights) and lat-
ent control vectors can be simultaneously estimated through(
θ̂ML, {ẑMAP}

)
≈ argmax

(θ, {z(n)})

∑
n

(
ln fZ(z(n) | l(n), c(n); θ)

+ ln fX |Z(x(n) | l(n), c(n), z(n); θ)
)
. (12)

Note that both the prior fZ and the acoustic model fX |Z may
depend on l and c. Since we have assumed a Gaussian model,
log-likelihood maximisation is the same as minimising the con-
ventional mean-squared error (MSE).
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Figure 1: Proposed setup with D = 2 for an arbitrary training
example n. Only D, contiguous elements of z are non-zero;
the current emotion c(n) determines which ones. Hats denote
estimated quantities (θ̂, ẑ(n)) or predicted quantities (x̂(n)).
Learning is based on backpropagating the residual x(n)−x̂(n).

4.3. Learning emotional nuances

Essentially, learned control vectors ẑ estimate the “extra bits”
that, given the text and the annotated features, increase acoustic
prediction accuracy the most. Control vectors different from
ẑMAP – even ones based on explicit labellings – should not
be able to produce as high prediction accuracy on the train-
ing set. However, we have no direct influence on the nature
of the variation learned; instead, the controllable synthesiser is
indirectly defined by the data distribution, parametrisation, and
model structure. Nonetheless, it is possible to tweak the imple-
mentation specifics of c and z in order to obtain a controllable
synthesiser that is more likely to meet certain design goals.

In this paper, we wish to learn a synthesiser that can manip-
ulate nuances in its emotional expression while ensuring that
the specified (discrete) emotion expressed remains as constant
and unambiguous as possible. To do this, we propose partition-
ing the elements of z ∈ RE×D into E sets of D values each;
one set for each emotion c ∈ {1, . . . , E}. During training,
only the D elements that correspond to the current emotion c
are updated and learned, with the remainder held constant at
zero, i.e., zi(c) = 0 whenever di/De 6= c. This constrains
the learned control vectors for emotional nuances to lie on axis-
aligned orthogonal subspaces, one for each emotion. This way,
we can identify and learn differences between each utterance,
while ensuring that different input emotions remain separable
throughout training. Fig. 1 illustrates our proposed setup.

An elegant and principled interpretation of our subspace-
based proposal is to view it as the effect of a sparse prior
in Eq. (12), e.g., the flat (improper) prior fZ (z | c; θ) =∏

i:di/De6=c I(zi = 0), with I(·) being a binary indicator func-
tion. The prior thus provides a straightforward way to influence
the learned control vectors. This illustrates how the connec-
tion between control vectors and latent variables is helpful for
designing new ways of influencing speech synthesiser output.

Optimising (12) is a non-convex problem, and the resulting
estimates are likely to depend on initialisation. Several previous
studies in, e.g., multi-speaker synthesis [5, 6], have considered
one-hot vectors c to encode available labels for input to a DNN,
and as a starting point for optimisation [6]. Extending this to
the case D > 1, we propose to initialise z using binary vectors
that are constant and nonzero only on the elements matching the
current emotion c. (We further normalised these to unit length in
our experiments.) Thus all sentences are assumed to be similar
in nuance unless there is evidence to the contrary.

In this setup, c is essentially redundant when given z, since
the zeroes of z uniquely determine the intended emotion for all
training-data utterances. For this reason, we did not explicitly
provide c as an input to our synthesiser with emotional nuance.

4.4. Synthesising emotional nuances

It should be noted that the latent-variable approach does not
predict which z-vectors that are appropriate for synthesising ut-
terances outside the training set. A simple method to get a clear
and consistent emotional expression is to synthesise from the
centroid (mean) latent vector zc over each emotion c. For a
more variable synthesis, while we have no explicit model of
the posterior for z, we can draw approximate samples from
this posterior (assuming it does not depend on l) by taking ran-
dom elements from the set of learned control vectors {ẑ}. This
might offer a better approach than, e.g., sampling from a Gaus-
sian approximation. This insight is another advantage of the
connection to latent variables. Our sampling scheme also con-
fines the control vectors to latent-space regions where training
data is available, and modelling accuracy thus should be high.

5. Experiments
5.1. Setup

We evaluated our proposal on the Japanese-language database
from [19], containing 8400 acted emotional-speech utterances
from a professional voice actress. A list of the emotions and
amounts of data can be found in Tab. 1. See [19] for details
on the database and its construction. For the experiments the
database was partitioned into training, validation, and test sets
containing 80%, 10%, and 10% of the data, respectively.

For each phone in the database, 390 linguistic features
(mean and variance normalised) were extracted using Open
JTalk [20]. Acoustic features used a 5 ms time-resolution and
consisted of a voiced/unvoiced flag, interpolated logF0, 25
band aperiodicities, 60 mel-cepstrum coefficients, and their ∆
and ∆2, for a total dimensionality of 259. The WORLD vo-
coder [21] was used, with MLPG [22] and postfiltering used for
synthesis. Phone boundaries were estimated by forced align-
ment with an emotion-aware HSMM trained using HTS [23] on
the training set, with its duration predictions used for synthesis.

Two very similar neural-network acoustic models were
trained on the data, differing only in their use (or not) of learned
emotional nuance. Both models consisted of two feedforward
layers with 512 nodes per layer followed by two bidirectional
recurrent layers with 256 LSTM units [24] per layer and were
implemented using the CURRENNT toolkit [25]. The differ-
ence is that the baseline network (“Ba”) also took a one-hot vec-
tor encoding of the prompted emotion c as input, while the pro-
posed network (“P”) instead used learned 14-dimensional vec-
tors of emotional nuances following Sec. 4.3, i.e., each emotion
used a D = 2-dimensional latent space, similar to [8].

Networks weights were trained to minimise mean-squared
prediction error on the training data using stochastic gradient
descent for 40 epochs with a learning rate of 10−5. A different
learning rate of 2·10−4 was used for the latent vectors ẑ(n) in P,
since a given z-vector is updated less often than a given weight.
The ratio between the learning rates was tuned by looking at
the training evolution of the fraction of intra-emotion variance
to total variance of latent vectors, choosing a learning rate that
gave smooth, monotonic convergence in 40 epochs. The limit-
ing ratio of variances seemed to be about 0.25.

5.2. Evaluation of emotion recognition

Our first experiment compared the expressive accuracy of the
two synthesisers against natural speech. Specifically, we per-
formed an emotional classification test, in which listeners listen
to speech stimuli one at a time and classify them into one of
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Table 1: Database and results. Durations include silences. Italicised p-values are not statistically significant at level α = 0.05.

Database Rec. test: % corr. Rec. test: p-vals. ABX test: % corr. ABX test: p-vals.

Emotion Utts. Dur. (min) N Ba P N vs. P Ba vs. P Rand Far Rand Far

Neutral 1200 147 88 69 86 1.000 0.345 74 70 <10-3 0.003
Happy 1200 133 95 85 88 1.000 1.000 66 91 0.027 <10-12

Calm 1200 158 71 63 46 0.057 0.576 61 90 0.149 <10-11

Excited 1200 154 32 28 18 0.576 1.000 57 83 0.364 <10-7

Sad 1200 141 93 72 70 0.045 1.000 80 100 <10-5 ≈0
Insecure 1200 136 71 61 59 0.863 1.000 57 88 0.364 <10-10

Angry 1200 148 91 91 93 1.000 1.000 80 99 <10-5 <10-19

All 8400 1017 77 67 66 0.004 1.000 68 89 <10-13 <10-71

eight different categories (the seven emotions in Tab. 1 plus an
“other” option). The test was carried out over a web interface
using native listeners crowdsourced through CrowdWorksLTD.

The evaluation was separated into batches of 14 utterances
each, two for each emotion in random order. Only batches
where the listener scored all 14 utterances were included in the
analysis. To limit the overall influence of any individual listener,
no listener was allowed to classify more than five batches. In
total, 75 listeners provided 1162 ratings.

The listening test contained three types of speech: synthetic
speech from Ba and P, plus natural recordings (N) as a top line.
Speech from P always used the mean control input zc described
in Sec. 4.4, to achieve the most standard emotional expression.
All systems spoke the same sentences from the test set.

Listeners’ recognition rates for the various speech types can
be seen in Tab. 1, together with p-values for differences against
P.1 While synthetic emotions were about 10% more difficult to
recognise than natural ones, there is no evidence that our pro-
posal reduced recognition rates compared to the baseline.

5.3. Evaluation of emotional nuance control

Next, we performed an ABX test to confirm that the learned
control space is useful for generating perceptible differences in
emotional nuance. In this test, listeners heard three versions (A,
B, X) of the same sentence and emotion generated by system P.
Stimuli A and B used distinct emotional control vectors, while
X used the same vector as either A or B. Listeners were asked to
identify which of A and B that had the most similar emotional
expression to X. 18 listeners provided 950 total responses, using
a crowdsourced, batched, balanced setup like that in Sec. 5.2.

The pairs of emotional vectors used for the stimuli A and B
in the test were selected from the set of learned emotional latent
vectors {ẑ} for a given emotion c in two ways: either just as
random (distinct) pairs (“Rand”), or by a random selection only
from the 100 pairs of learned vectors that were the most distant
in Mahalanobis distance (“Far”).2 This enables us to quantify
the distinguishability both of random pairs of nuances and over
entire latent subspaces, by seeing how often listeners correctly
picked out the stimulus among A or B that was identical to X.

The results of the ABX test are shown in the two final sec-
tions of Tab. 1. The p-values are two-sided and have been cor-
rected for multiple comparisons like before. It is clear that ran-
dom emotional nuances (Rand) generally can be distinguished

1Each system and emotion had between 54 and 56 responses. Signi-
ficances were computed using Barnard’s test [26], except for All, where
the chi-squared approximation is accurate. A Holm-Bonferroni correc-
tion [27] for multiple comparisons clipped most p-values at 1.

2Full-covariance Mahalanobis distance was used since the latent
space has scale, rotation, and translation ambiguities.
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Figure 2: Learned control vectors in Sad emotional subspace.
All other point clouds are close to Gaussian in appearance.

better than chance, and that distinguishability increases with
greater separation between nuance vectors (Far).3 This means
our approach has successfully learned to express nuances within
emotions. Different emotions also show different patterns.
Since humans had difficulties classifying excited speech record-
ings, it is perhaps not surprising that they only were moderately
successful in separating nuances in excited synthetic speech.

Unique to Sad speech, the set of learned control vectors ex-
hibited a long, scattered tail (likely the consequence of a local
optimum), as shown in Fig. 2. z-vector pairs for the Far condi-
tion consistently included a vector from the tip of this tail, where
synthesis quality was noticeably poorer due to the paucity of
data. This explains the ceiling rate of correct response for Sad
speech in the Far condition in Tab. 1.

Informal listening suggests that the most perceptually sali-
ent effect of the control vector might be to alter the emotional
strength of the output speech, though the use of latent variables
did not increase output quality. This echoes the findings in [8].

6. Conclusions
We have described how the properties of latent, unannotated
variation can be learned and recreated in speech synthesis. We
presented a new argument interpreting established heuristics
through latent-variable theory, and extended the approach to
consider synthesis with mixed observed and unobserved control
inputs. Furthermore, we detailed a novel method for learning
unannotated nuances within speech expressions as subspaces
in latent-variable space, interpretable as the actions of a sparse
prior. Experiments confirm that the resulting synthesiser allows
accurate generation of speech emotions while also permitting
nuances within the emotional expression to be adjusted. For fu-
ture work it is interesting to consider more advanced methods
for handling latent variables in neural networks, e.g., [28].

3Neutral speech is an exception, but its difference between Rand and
Far is only a few percent and is in itself not statistically significant.
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