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Abstract We describe a new approach to duration modelling for statistical parametric speech synthesis, in which a
statistical model is trained to output a phone transition probability at each time unit. Unlike conventional duration
modelling — which assumes that duration distributions have a particular shape and use the mean of that distribution
for synthesis — our approach can in principle model any distribution supported on the positive integers. Generation
from this model can be performed in many ways; here we consider output generation based on the median or other
quantiles of the predicted duration. Compared to conventional mean durations, the median is more typical (more
probable), is robust to training-data irregularities, and enables incremental generation. Furthermore, our approach
is consistent with a longer-term goal of modelling durations and acoustic features together. Results indicate that
the proposed method is competitive with baseline approaches in approximating the median duration of held-out

natural speech. We also discuss extensions that allow iterative realignment and adjusting the global speech rate.
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1. Introduction

This report, an extension of our recent paper [1], describes
a new approach to the modelling and generation of seg-
mental durations in synthetic speech. Generating appropri-
ate durations is a challenging but vital step in producing
natural-sounding synthetic speech. Statistical parametric
speech synthesis (SPSS) has recently made swift improve-
ments through the adoption of deep machine-learning tech-
niques [2], [3]. Recurrent models such as LSTMs [4] may be
particularly well suited for prosodic sequence modelling prob-
lems, since we expect that high-level, long-range dependen-
cies are of importance for the prosodic structure of speech.

Despite the progress, the prosody of synthetic speech (in-
cluding durations) remains a major shortcoming. A possible
contributing factor is that current systems effectively model
durations with a Gaussian distribution and generate predic-
tions from its mean. In reality, the number of frames in a
speech segment is positive, integer-valued, and has a skewed
distribution, meaning that the mean of a fitted Gaussian will
not produce predictions that are most typical of the process
(i-e., have a high probability). Another possible weakness of
conventional approaches is that they generate durations as
an initial stage, separate from acoustic feature generation [4].
We consider it desirable to have a single model whose param-

eters are learned to simultaneously generate both segment

durations and the frames of acoustic features within those
segments, since such a joint model, e.g., would allow simulta-
neous adaptation [5] and control [6] of prosodic and phonetic
characteristics in a stable and consistent manner. Simulta-
neously predicting multiple speech properties may also bring
about benefits related to multi-task learning[7]. However,
one obvious difficulty in implementing a joint model is that
segment durations and acoustic observations conventionally
are generated on two separate time-scales. Most recently,
WaveNet [8] has enabled competitive waveform-level speech
synthesis, but still requires an external duration model.

We here present a non-parametric duration modelling ap-
proach that, for each time unit (e.g., acoustic frame), predicts
a probability of advancing to the next phone in the phonetic
sequence. This can describe any duration distribution on
the positive integers, removing the necessity to commit to a
predetermined distribution such as Gaussian, log-normal, or
gamma. Furthermore, as our model operates on the acoustic
frame level, it is capable of unifying models of duration and
acoustics, jointly predicting acoustic parameters and phone
transition probabilities for each frame. Our approach can in
principle be integrated with WaveNet for sample-level dura-

tion modelling.
2. Background

This section presents a history of duration generation for
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1 Histogram of natural durations from our held-out
dataset with a fitted Gaussian. The median duration
is 16. The minimum duration is five since the HMM-

based forced aligner used five no-skip states per phone.

synthesis and describes how our proposal relates to prior
work. Theory for our proposed method is provided in Sec. 3.

2.1 Modelling and Generating Durations

Farly, formant-based synthesisers generated phone dura-
tions using rules [9], which typically were hand-crafted rather
than learned from data. Next followed concatenative synthe-
sisers, which do not require modelling or generating dura-
tions, since the units themselves possess intrinsic durations.

Statistical parametric speech synthesis (SPSS) [10], [11] in-
troduced a new duration generation methodology, in which a
statistical model (probability distribution) fp(d; 0) is speci-
fied for speech-sound durations D. fp(d; 0) is supplemented
by i) a machine-learning method predicting properties of fp
(i.e., its parameters @) from the input text (i.e., the linguis-
tic features l), and ii) a principle for generating durations
d from the model distribution, such as random sampling or
taking the mean of the distribution, d= E(D).

The first SPSS systems were based on simple hidden
Markov models (HMMs), in which state durations fp(d; )
(usually five per phone) are assumed to follow a memoryless,
geometric distribution. Regression trees (RTs) were used to
learn the mapping 6(1) based on training data, with the mean
of the predicted distribution used for generation.

In reality, natural speech durations, as can seen in Fig. 1,
are not geometrically distributed. Zen et al.[12] introduced
the idea of using hidden semi-Markov models (HSMMs) to
HSMMs track the

amount of time (frames) spent in the current HMM state,

describe durations in speech synthesis.

and allow the frame counter to influence the probability of s
phone transition. This can model a much wider class of dura-
tion distributions. Typically, HSMM durations are assumed
to follow a parametric family; the widely-used HMM-based
speech synthesis system (HTS)[13] uses Gaussian distribu-

tions, although the skewness and non-negativity of speech

TTS Distr. fp(d; 8) | Level | Pred. 6(l) | Generat.
Formant - Phone - Rule
Concat. - Phone - Exemplar
HMM Geometric State RT Mean
HSMM Parametric State RT Mean
NN Gaussian State | DNN/RNN | Mean
Proposed | Non-parametric | SFrame | DNN/RNN | Quantile

# 1 Duration generation methods in different TTS types.

durations mean that other distributions might be more suit-
able, e.g.,[14], [15]. As with HMMs, regression trees would
be used to predict distribution parameters per state, and the
mean of the predicted distribution used for generation.

Recently, SPSS has seen deep and/or recurrent neural net-
works (DNNs/RNNs) replace regression trees for learning the
mapping 0(l) from text features to duration distributions,
e.g., [4],[16]. Typically, a DNN or RNN is trained to min-
imise mean squared prediction error, which is equivalent to
performing mean-based duration generation from a Gaussian
model with a globally tied variance.

The evolution of approaches to TTS duration generation
is summarised in Table 1. In contrast to all the canoni-
cal, prior models in the table, we describe a fundamentally
non-parametric approach (“Proposed” in Table 1) where the
model is trained to predict the phone transition probabil-
ity at each time unit. Assuming an asymptotically unbiased
learning algorithm, this can in theory describe any distribu-
tion on the positive integers, enabling us to represent any
and all properties of the duration distribution, for instance
the skewness that most previous methods ignore.

2.2 Quantile-Based Generation

All methods in Table 1 that predict a duration distribu-
tion fp automatically support several duration generation
methods based on fp. In principle, natural durations are
random samples from the true duration distribution, but
sampling methods have been found to be perceptually un-
satisfactory for synthesis unless highly accurate models are
used [17]. Consequently, most SPSS systems use determin-
istic generation methods, which in practice is synonymous
with generating the mean duration. We, instead, consider a
scheme where synthetic durations are generated from quan-
tiles of the predicted duration distribution, such as the me-
dian in our experiments. To the best of our knowledge, this is
new. Since our distributions need not be symmetric, median
durations will typically differ from the distribution mean.

Unlike the mean, quantiles can be identified from the left
tail of the distribution. Quantile-based sequential output
generation therefore incurs no overhead, which is attractive
for incremental synthesis. In addition, our quantiles are al-
ways integer-valued. Furthermore, for skewed distributions

such as the durations in Fig. 1, the median is frequently closer



to the peak of the distribution — the “most typical” outcome
— than the mean is; cf. [18]. This follows the spirit of most-
likely output parameter generation [19]. Importantly, stan-
dard estimates of the median and other quantiles are statis-
tically robust, i.e., not unduly affected by the tails of the real
duration distribution. Robustness is compelling for T'TS [20]
as it reduces the sensitivity to unexpected behaviour in the
training corpus. This could be of value, e.g., for the highly
expressive training data used for the experiments in Sec. 4.
2.3 High-Resolution Duration Prediction
Frame-level duration predictions are uncommon in the lit-
erature, but have a general advantage that they can be uni-
fied with the (traditionally distinct) per-frame prediction of
acoustic features, such as pitch and vocal-tract filter MGCs.
It is suspected that generating durations and fundamental
frequency contours that are jointly appropriate may be of
importance for synthetic speech prosody; cf. [21], [22].
Jointly modelling durations with acoustic properties of
speech was a major motivation for the set-up in [23], where a
DNN was trained to output both acoustic parameters and a
state-duration vector for each frame. Unfortunately, this ne-
cessitates multiple passes during generation and is not easy
to interpret probabilistically. Our approach here is proba-
bilistic and can be generalised to sample-level resolution. We
are not aware of any other approaches that have considered

applicability to sample-level duration generation.

3. Theory

3.1 Preliminaries

Let p € {1,..., P} be a phone index, and let ¢ €
{1, ..., T} be an index into timesteps (henceforth frames).

(The extension to sub-phone states is straightforward.) Let
further D, — a random variable — be the duration of phone
p, and let d, € Z : d, > 0 be an outcome of D,,.

Natural speech phones have duration distributions that de-
pend on the input text. Duration modelling in TTS is the
- Lp),
extracted by the synthesiser front-end, to a sequence of

predicted distributions (Dx, ..

task of mapping a sequence of linguistic features (14, ..

., Dp). Duration generation,
meanwhile, is the task of mapping (I1,..., Ip) to a sequence
of generated durations (C’Z\l, R Ep). In SPSS, one or the
other of these mappings is learned from parallel text and
speech data using machine learning; this report uses RNNs.
We write D to denote a dataset of parallel input features 1
and duration outcomes d used to train this predictor.

For g € (0, 1) we say that x is a g-quantile of a distribution
X if P(X £ z) = q. This differs slightly from quantiles in
descriptive statistics, which take values on g = 1.

3.2 Conventional Duration Modelling

In statistical synthesisers that generate durations on the

state or phone level, the conventional approach is to assume
that the durations D, follow some parametric family of mass

functions fp with a parameter 8 € RV i.e.,
P(Dp =d) = fp(d; 0y). (1)

Predicting the distribution D,, then reduces to the stochastic
regression problem of predicting the distribution parameter

6, from the phone-level parallel input-output dataset

Dp=((ts, ..., lp), (di, ..., dp)). (2)

We write L, to denote the linguistic information influencing
the predictor at p, which is I,, for feedforward approaches and
(L1, ..., lp) for unidirectional RNNs (on a single utterance).
In practice, most contemporary DNN-based synthesisers
do not perform full distribution modelling, but map directly
from L, to a predicted mean E(D,| L) of Dp. The dom-
inant principle — also used for the baselines in this study —
is to tune the weights W of a DNN or RNN d(L; W) to
minimise the training-data mean squared error (MSE),

W (D,) =argmin Y (dy — d(Ly; W))*; (3)

(Lp,dp)€D
synthesis-time durations c/l; are then generated by
d(Lp) = d(Lp; W(Dy)). (4)

The theoretically optimal predictor d* that minimises the

MSE is the conditional mean,

dy(Ly) = argminE((D, — )| Ly) = E(Dy | L), (5)

d

so the end result is very similar to fitting a Gaussian model
fp and using its mean to generate durations.

3.3 Non-Parametric Duration Modelling

We now describe a scheme that, unlike conventional para-
metric families fp(d; ), is able to model arbitrary frame-
level duration distributions for D, by making predictions for
each timestep about when phone transitions occur.

Assume phone durations are known up until the current
frame ¢, and let p(t') for 1 £ ¢’ < t be a function mapping
a given frame t' < t to its assigned phone identity. We can

then define a frame-level sequence L, of linguistic features

Li=,....,L)= (lp(1)7 SRER) lp(t)) (6)

up until ¢, with I,y constant for all frames in a given phone.
For brevity, we write p for the current phone p(¢). Finally,
we let to be the final frame of the previous phone and define
ny; =t —to = 1, the duration of the current phone so far.
We now define the transition probability m; for the phone p
at time t given L, — that is, the probability that the current

phone p ends on the current frame,



m =P(Dp = ne | Dp 2 nu, Ly). (M)

As long as the transition probabilities satisfy m; € [0, 1] and

the infinite product H 1—my) equals zero they induce

t/:t0+1(
a unique, well-defined, positive-integer valued distribution

to+ne—1
P(Dy=n|L)=m [[ (1-m). (8)
t'=to+1
‘We propose to build a predictor, based on training data,
that estimates m; from the linguistic input features. Specifi-

cally, we will train this predictor on the frame-level dataset

Dt = (LT, (:Cl, ey l’T)), (9)

where X; is an indicator variable that equals one if and only
if t is the final frame of the current phone, i.e., iff t = tg+dp.

In this report, we consider a deep, unidirectional RNN
z(L; W) with weights W trained to minimise the MSE in

recursively predicting the indicator variable z: — that is,

W (D) = argvgnnZ(xt — 2(Ly; W))2 (10)

It is easy to prove that the hypothetical predictor z* that

minimises this MSE is

i (L) = argmin ((Xt —-7)? | Lt) (11)

x

= B(X, = 1| L), (12)

which is mathematically equivalent to 7:. As long as the
predictor of X; is theoretically capable of generating arbi-
trary, distinct outputs for every frame in a phone, we can
describe virtually any transition distribution — and thus any
duration distribution. RNNs satisfy this requirement due to
their internal state/memory, which evolves with each frame;
another solution is described in Sec. 3. 5.

3.4 From Transitions to Duration Quantiles

Given the predicted duration distribution in (8), we must
decide how to generate output durations d from it. As dis-
cussed in Sec. 2.2, sampling typically yields poor natural-
ness, while mean-based generation is non-robust and unsuit-
able for sequential synthesis. However, it is easy to compute
the right tail probability of the duration distribution through

to+mne
P(Dy >ni| L) = [[ (1—m) (13)
t'=tg+1
This relation enables synthesis based on quantiles q € (0, 1)
of the predicted duration. By stepping from n; = 1 and up-
wards, the (estimated) g¢-fraction duration c?p(q) of phone p
is reached when P(D > d) first dips down to 1 — ¢ or below,

~

(q) = min e
ntEL

IS

such that P(D, >n¢) £ 1—gq. (14)

The median duration is found by setting ¢ = /2. Eq. (13)
thus enables incremental frame generation, advancing p(t+1)
to the next phone p + 1 when the desired duration quantile
is reached with no additional overhead.

Just as the mean squared error is minimised by the mean,
the median is the theoretical minimiser of another error mea-
sure, namely the mean absolute error (MAE),

MAE(d) = > |dy — dy(q)]- (15)

pEDY
A method that improves the MAE might be expected to yield
predictions closer to the (conditional) median of the data.

3.5 Adding a Frame Counter

In the proposal so far, progress through the current phone
is tracked solely via the internal state of a recurrent pre-
dictor. This contrasts with hidden semi-Markov models,
which achieve arbitrary (parametric) duration distributions
by maintaining an external counter of the number of frames
spent in each state, from which transition probabilities are
computed. However, nothing prevents adding that variable,
ng, as an input to a neural network z(-; W) that predicts
7, in addition to the regular, linguistic features L;. We call

these augmented features I; and
Li= ([T, nd", ..., I, ne"), (16)

so that the augmented RNN predictor is z(L'; W).

Since n; is highly relevant for duration prediction, provid-
ing it as an explicit input feature is likely to increase perfor-
mance over relying on capturing the same information only
implicitly. To test this hypothesis, our experiments in Sec.
4. compare two systems that differ only in whether or not
they include n; as an input to the frame-level RNN.

As a side note, the frame-level inputs I, differ with each
frame. This makes it possible for predicted transition distri-
butions to vary from frame to frame as well, even without
using stateful predictors such as RNNs. In principle, this
could allow feedforward DNNs using I; to also express ar-
bitrary duration distributions, though we have not explored

this possibility in the experiments reported here.
4. Experimental Validation

We here recount an experiment previously reported in [1].

4.1 Data

For an initial evaluation of frame-level duration prediction
we used the speech database from the 2016 Blizzard Chal-
lenge [24], comprising speech and text of 50 children’s au-
diobooks read by a British female speaker. The total audio
duration was about 4.33 hours after segmentation. 4% of the
data (three whole stories) were set aside as a test set.

4.2 Feature Extraction

A state-level forced alignment of the segmented data was
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obtained using context-independent HMMs. To improve the
accuracy of forced-aligned durations, ehmm [25] was used to
insert pauses into the annotation based on the acoustics.
The remaining feature extraction was very similar to that
in Merlin [26], with 481 text-derived, normalised binary and
numerical features used for linguistic features I. The num-
ber of frames in each phone was used as the prediction target
for the conventional baselines. Unlike [20], sub-phone states
were not used in either training or prediction.

4.3 Training and Synthesis

Four systems were trained: two conventional phone-level
predictors (Phone-DNN and Phone-LSTM) and two pro-
posed systems (Frame-LSTM-I and Frame-LSTM-E). Each
network was initialised with small, random weights, and then
trained for 25 epochs with a manually tuned learning rate.
Validation-set early stopping was used to avoid overfitting.

Both baselines used phone-level linguistic features as in-
puts and were optimised to minimise the MSE duration-
prediction error. Phone-DNN was a feedforward DNN with
six layers of 1024 nodes each. Phone-LSTM was configured
with five feedforward layers of 1024 nodes each and a final
uni-directional SLSTM [27] hidden layer of 512 nodes.

The two proposed systems used the same architecture as
that of Phone-LSTM but were trained with 1 datapoint per
frame instead of per phone. Their prediction targets were
0.0 for non-phone-final frames and 1.0 for phone-final frames.
Frame-LSTM-I used l; as input, forcing it to rely on internal
memory (RNN state) for frame counting. Frame-LSTM-E
used inputs I; with an external frame counter as in Sec. 3. 5.

Synthesis was performed from phone sequences with an or-
acle pausing strategy (pauses inserted by ehmm based on test
data). For Phone-DNN and Phone-LSTM, predicted (mean)
Frame-LSTM-1

and Frame-LSTM-FE, meanwhile, used the frame-wise dura-

durations were rounded to whole frames.

tion generation technique from Sec. 3.4 to generate approx-
imate median (¢ = 1/2) durations.

4.4 Results

Table 2 presents RMSE, MAE (both in frames per phone),
and Pearson correlation between predicted durations and the
held-out reference, ignoring silences. It is obvious that the
RNN (Phone-LSTM) is superior to the feedforward DNN
(Phone-DNN) for duration prediction.

systems, the mean-based baselines outperform the proposed

For the proposed

methods in terms of RMSE and Pearson correlation (math-
ematically very similar to the RMSE), but that gap is much
smaller when it comes to MAE. This pattern is expected,
since, as explained in Sec. 3.4, the median is the theoretical
minimiser of MAE while the mean minimises the (R)MSE.
Table 3 shows experimental results broken down by pho-

netic class. Interestingly, while Frame-LSTM-E has worse

Model RMSE | MAE | Corr.
Phone-DNN 8.037 | 4.759 | 0.750
Phone-LSTM 7.789 | 4.556 | 0.765
Frame-LSTM-I | 8.254 | 4.610 | 0.761
Frame-LSTM-E | 8.294 | 4.574 | 0.754

# 2 Objective metrics for predicted durations measured

w.r.t. forced-aligned durations.

Phonetic Phone-LSTM Frame-LSTM-E

class RMSE | MAE | Corr. | RMSE | MAE | Corr.
Vowel 8.516 |4.848 | 0.809 | 9.027 | 4.891 | 0.799
Consonant 7.313 |4.378 | 0.709 | 7.815 | 4.382 | 0.694
Plosive 5.206 |3.608 | 0.732 | 5.610 | 3.612 | 0.720
Fricative 6.489 | 4.380 | 0.769 | 6.859 |4.246 | 0.764
Nasal 6.833 | 4.459 | 0.568 | 7.376 |4.398 | 0.550
Affricate 5.658 | 4.220 | 0.797 | 5.432 | 3.746 | 0.821
Glide/liquid | 8.013 | 5.260 | 0.569 | 8.235 | 5.075 | 0.599

# 3 Objective measures broken down by phonetic class.

MAE than the LSTM benchmark for vowels and slightly
worse for consonants overall, for all consonant classes ex-
cept plosives the proposed method performs better. While
Frame-LSTM-E does not surpass the baseline even on MAE,
the performance gap is effectively closed (4.556 vs. 4.574).
We have thus devised a system with similar MAE as existing
predictors, but with greater compatibility with our acoustic

models as it, too, operates on a frame level.
5. Extensions

Modelling transition probabilities enables several exten-
sions of conventional synthesis, as outlined in this section.

5.1 Tuning the Speaking Rate

Deterministic output-generation methods, e.g., using
means or medians, need not produce output that matches the
training data in all aspects — cf. the global variance of mean-
based generation [28, Sec. 6.2.3 & Sec. 6.5.2]. Real duration
distributions are skewed, so median-based generation leads to
sped-up speech (shorter average phone duration) compared
to the training data. If this is inappropriate, quantile-based
generation allows tuning the overall speaking rate by adjust-
ing ¢. We can choose ¢ to make the average actual and
generated phone durations match over D, by solving

- 1 1 ~
= 2 ] 2 D "

for q. The resulting value typically exceeds 1/2.

Eq. (17) cannot be solved analytically, but one can use it-
erative root-finding schemes to identify a proper ¢ as a final
stage of model training. Iterations may be initialised from a
starting g-value ¢ based on the relation between distribution

quantiles and the mean duration in the training data, as in

7= |1;,,\ Z 1. (18)




¢ can be computed prior to training using only the global
duration distribution graphed in Fig. 1, and may provide a
first approximation ¢ =~ g even without iterative root-finding.

5.2 Realigning the Training Data

Another advantage of transition probability modelling is
that it maps neatly onto the classical theory of HSMMs
(though our approach is substantially more powerful than,
e.g., [13] or [29]). We can thus use techniques from HMMs or
HSMMs to analyse and extend our approach. It is for ex-
ample compelling to use the Viterbi algorithm to locally re-
fine™* alignments using a DNN-based synthesiser with dura-
tions predicted as in Sec. 3. 5. Better alignments may benefit
both durations and acoustics: a study on Gaussian HSMMs
using DNN predictors for realignment [29] found substantial
quality increases over a baseline that did not realign. DNN-

refined alignments may further be used to train RNN TTS.
6. Conclusion

We described a new duration-modelling paradigm with
DNNs/RNNs that predict phone or state transition prob-
abilities in sync with the acoustic model in a speech syn-
thesiser. The next step is to subjectively evaluate joint mod-
elling of duration and acoustics, with or without constraining

the speaking rate to match the training-data speech rate.
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