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Minimum Entropy Rate Simplification of
Stochastic Processes
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Abstract—We propose minimum entropy rate simplification (MERS), an information-theoretic, parameterization-independent
framework for simplifying generative models of stochastic processes. Applications include improving model quality for sampling tasks
by concentrating the probability mass on the most characteristic and accurately described behaviors while de-emphasizing the tails,
and obtaining clean models from corrupted data (nonparametric denoising). This is the opposite of the smoothing step commonly
applied to classification models. Drawing on rate-distortion theory, MERS seeks the minimum entropy-rate process under a constraint
on the dissimilarity between the original and simplified processes. We particularly investigate the Kullback-Leibler divergence rate as a
dissimilarity measure, where, compatible with our assumption that the starting model is disturbed or inaccurate, the simplification rather
than the starting model is used for the reference distribution of the divergence. This leads to analytic solutions for stationary and
ergodic Gaussian processes and Markov chains. The same formulas are also valid for maximum-entropy smoothing under the same
divergence constraint. In experiments, MERS successfully simplifies and denoises models from audio, text, speech, and meteorology.

Index Terms—G.3.e Markov processes, G.3.p Stochastic processes, H.1.1.b Information theory, H.5.5.c Signal analysis, synthesis,
and processing, I.2.7.b Language generation, I.5.1.e Statistical models.
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1 INTRODUCTION

R EAL-WORLD observations are frequently corrupted by
noise and errors, obscuring simpler processes lying

underneath. Examples include field recordings of songbirds
or speech recordings in natural environments, where the
sources of interference cannot be controlled during data col-
lection. Generative models trained on disturbed data result
in complex descriptions that attempt to replicate the errors.
Sampling from these models thus produces noisy data.
We consider the problem of simplifying these models, so
that cleaner and more consistent synthetic output—whether
birdsong, speech, or something else—can be produced.

Because the observations are from a disturbed process,
different from the actual process to be modeled, the models
do not converge on the desired process even in the limit of
infinite samples. One response would be to define and train
a model with an explicit noise term, but subsequently set
this noise to zero when generating new data. This works
well if the type of noise is known and easy to describe
mathematically, and we are free to choose a model that sep-
arates signal and noise. That is not always the case. Given
a simple Markov chain, for instance, it is not obvious how
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to incorporate disturbances without changing the nature of
the model significantly.

In this work, we consider the case of model denoising
and simplification when no explicit noise model is available,
or when the model does not separate signal and noise well.
We present a nonparametric framework for simplifying
generative models of stochastic processes, based on infor-
mation theory. The framework can be used for removing
disturbances from models of stochastic processes without
assumptions about the nature of the errors present, other
than that they act to increase the entropy of the data.
The need for explicit noise models, as in, e.g., [1], is thus
avoided. Neither is there a need to specify a prior, as in
Bayesian probability.

Our proposal is also useful for simplifying all-signal
models trained on noise-free data, by concentrating on
the most characteristic outcomes. Such simplification is
relevant in model-based speech synthesis, where random
sampling generates unnatural speech due to shortcomings
of the acoustic models used [2], and only the most probable
outcome is typically generated as output data [3]. For our
proposal, the degree of simplification can be adjusted con-
tinuously, and unlike `1-sparsity based model simplification
schemes like [4], the results are independent of unitary
transformations of the data.

Our simplification procedure acts as a post-processing
step applied to already-trained models. As a result, the
simplified model is not automatically validated against ob-
served data. On the other hand, this means that the proce-
dure can be applied even when only a model is provided,
without any data, e.g., in online learning scenarios where
datapoints are not retained. Moreover, the computational
effort scales favorably, as it only depends on model size,
regardless of the amount of training material used to create
that model.
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The framework leads to straightforward, analytical sim-
plification schemes in a number of important special cases.
We show that for an example with a Markov chain grammar
learned from synthetic speech transcriptions corrupted by
realistic speaker errors, the proposed method is able to
remove a significant part of the disturbances in the learned
model, as measured objectively by the KL-divergence rate.
The simplified model generates sample data of superior
subjective quality compared to the original learned model.

The remainder of the article is laid out as follows: Sec-
tion 2 provides a motivation for probability concentration in
data synthesis. Section 3 then introduces the general MERS
framework. The sections thereafter provide analytic solu-
tions for two important practical cases. Section 6 presents
some experimental results on Markov chains, while Sec-
tion 7 concludes and suggests further work.

2 BACKGROUND

In machine learning, a distinction exists between genera-
tive statistical models, which describe the joint distribution
P (X, Y ) of labels Y and observationsX , and discriminative
models that model the conditional distribution P (Y |X)
only. The former models are more versatile, since they can
be used both for classification tasks (estimating Y givenX),
and for sampling from the joint distribution. As a case in
point, hidden Markov models lie at the heart of contempo-
rary systems for both speech recognition and model-based
speech synthesis, e.g., [5], [6].

One size does not fit all, however. While the same
model family may be successful in both generative and
discriminative tasks, this does not imply that the same model
is optimal in all cases; see [7] and [8]. In practice, it is
generally necessary to adapt the approach to the context
and problem at hand. Specifically, classification and syn-
thesis tasks are often treated differently [7]. For example,
training (parameter estimation) for classification problems
may employ a discriminative procedure, to emphasize class
differences over regular maximum likelihood [9].

2.1 Task-Appropriate Post-Processing
Differences between generative and discriminative tasks go
beyond model formulation and training, as it is commonly
necessary to post-process the trained models to account for
aspects of the problem that may not be represented well by
the training data. However, while such post-processing is
recognized as a common part of classifier design and has
been well studied in that context, the possibility of post-
processing for generative tasks is largely unexplored. This
article is an initial attempt to fill that gap, and consider
generative post-processing in more detail.

For discriminative tasks such as speech recognition, it is
common to apply smoothing following maximum likelihood
parameter estimation [10]. Smoothing increases the amount
of randomness and variation in the model, and reduces
the impact of the greater variability of real-world data as
compared to training data. The practice generally improves
the performance of recognizers, which may be trained on
clean and grammatically correct speech, but are commonly
used in environments with background noise, conversa-
tional grammar, and a wide variety of speaker accents.

Mathematically, the issue is that maximum likelihood
parameter estimation tends to produce models that assign
minimal, often zero, probability to events not observed in
the training data. However, as the actual set of possible
outcomes may be very large, it is not uncommon for new
samples to represent events not previously observed, see
[11]. In speech recognition, a small acoustic aberration
may then prevent the recognition of a word. Smoothers
and Bayesian approaches replace many of the probabili-
ties estimated to be zero with small but nonzero values,
thus increasing model variability and improving practical
performance. Example techniques include simple additive
smoothers such as pseudocount methods, which are related
to Bayesian priors, and well-known schemes like those of
Jelinek and Mercer [12], Katz [13], and Kneser and Ney [14].

Generative tasks call for the opposite approach. When
sampling from a model, it is often preferable to decrease
rather than increase its variability. This filters out unlikely
and uncharacteristic behavior. For example, it is desirable
for a speech synthesizer to use correct grammar, even if the
training data is not grammatically perfect. (Compare with
human children, who are able to learn excellent grammar
from conversational speech alone.) It is thus preferable to
focus on the most common and characteristic behaviors,
at the expense of less common events. We refer to this
as probability concentration, as the aim is to concentrate the
probability mass or density of a model to select repre-
sentative outcomes. A simpler, more predictable process
is then obtained. The degree of probability concentration
that is desired will depend on the particular application.
Model-based speech synthesis is an extreme example, where
only the most probable outcome is generated [3]. This is
the opposite of smoothing for discriminative tasks, where
peaked probability distributions are made more uniform,
increasing variability.

An alternative view of probability concentration is that
we want to reduce or de-emphasize the tails of the process.
These may not be well behaved since they can be difficult
to estimate from empirical data, and need not have the as-
sumed functional form (recall that the central limit theorem
does not apply to extreme values). For the special case of
MERS investigated in Sections 4.1 and 5, we obtain a scheme
where tails of the distribution function that originally roll off
as a power function, O (x−p), after simplification decrease
by a greater power O (x−αp), where α > 1. Exponentially
decreasing tails similarly have their roll-off rate increased
by a factor α. Thus, fat tails are made slimmer. We can also
perform maximum entropy rate smoothing using the same
mathematical solutions, by choosing α ∈ (0, 1).

2.2 Relations to Sparsity and Denoising

The examples in the introduction assume that errors are
inherent in the data acquisition process. This means one
cannot rely on just amassing more data in order to converge
on a good, low-noise model. Basic Bayesian smoothers like
[15] are similarly ineffective, as the impact of the prior there
decreases with additional data. Instead, we are compelled to
assume the existence of a simpler (less random) underlying
structure, and then recover this structure by applying some
kind of nonparametric model denoising, removing errors from
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the model rather than from the data. Since errors typically
are varied and spread their probability mass over many out-
comes, removing uncommon events will concentrate on the
least corrupted behaviors of a process. However, the general
idea of simplification by decreasing variability is valid even
without positing an underlying structure to recover, and
applies also outside the domain of denoising.

Probability concentration is related to sparsity, but it is
not identical to it. Sparsity is traditionally considered in
relation to some basis: a representation is considered sparse
if many coefficients are very small or zero, see [16]. One ex-
ample is speech signals, which become sparse with a unitary
transformation to the frequency domain. A major aspect of
sparse methods is typically to find the right such sparsifying
transformation, for example the Karhunen-Loève transform
used in signal compression. Probability concentration, on
the other hand, is a property of the model itself rather than
a particular representation. Our proposal, in particular, is
independent of translations and unitary transformations (or,
for discrete-valued variables, any transformation), and thus
avoids any need to search for a sparsifying transformation.

The concepts of sparsity and probability concentration
partially overlap in models such as Markov chains, which
are typically parameterized in terms of probabilities; a
Markov chain exhibiting a high degree of probability con-
centration will have mostly negligible entries in its tran-
sition matrix (though the entries need not be identically
zero). This connection to sparsity is appealing, since sparse
representations tend to compress well [16], may allow fast
processing [17], and typically are easier to interpret [15],
[18]. Although simple models cannot be motivated from a
statistical argument [19], these advantages of sparsity are
consistent with Occam’s razor.

3 MINIMUM ENTROPY RATE SIMPLIFICATION

In this part, we demonstrate how the abstract principle
of probability concentration for stochastic processes can be
translated into a concrete mathematical framework. We call
this minimum entropy rate simplification, MERS. We define
simplification as a decrease in some quantitative measure
of complexity, in our case the entropy rate.

To measure and obtain practical probability concentra-
tion, we adopt an approach similar to the well-established
rate-distortion framework in lossy source coding. Rate-
distortion theory is a compelling starting point for several
reasons:

1) The goal is to produce simplified approximations, in
the sense that they compress easily and are simple
to describe.

2) The results are independent of parameterization,
owing to their grounding in information theory.

3) There are well-known solutions exhibiting reverse
water-filling, a manifestation of sparsity [20], [21].
We would like to achieve something similar.

4) It has already spawned machine learning spin-offs
such as information bottleneck [22] and the semi-
supervised method for learning conditional random
fields described in [23].

5) By basing our efforts on established theory, we can
adapt and reuse its associated tools and techniques.

The central pillar of rate-distortion theory is the trade-off
between the chosen degree of simplification (rate decrease)
and the distortion it necessarily introduces. We adopt a
similar setup, and seek models that are optimally simple in
a specific mathematical sense, while not diverging too much
from the original model.

3.1 Preliminary Definitions
Let X̃ = {X̃t : t ∈ Z} be a given stationary and ergodic
stochastic process representing some observed process. Im-
portantly, X̃ is not a set of observations, but a stochastic
model that generates them. We shall assume X̃ to be known,
though in practice it generally has to be estimated from ob-
servation data first. X̃ may be either discrete or continuous-
valued. We use an underline and indices together to denote
contiguous sequences of random variables from a stochastic

process, as in X̃
t+T

t = {X̃t, X̃t+1, . . . , X̃t+T }.
LetX be a given class of stochastic processes on the same

sample space Ω as X̃ ; typically X̃ ∈ X . Probability concen-
tration leads to another stationary and ergodicX ∈ X that is
similar to the given X̃ , but emphasizes characteristic behav-
ior and suppresses uncommon events. MERS, in particular,
maximizes a particular simplicity measure for X , subject to
a constraint on the dissimilarity from X̃ , akin to the rate-
distortion trade-off in lossy source coding.

In some contexts, we may assume the existence of X?,
a clean, stationary, and ergodic underlying stochastic pro-
cess, for instance a grammar, which is disturbed by an
unknown error mechanism to form X̃ , the model process
that generates our observations. X? takes values on the
same space as X̃ . The X obtained with MERS may be seen
a “cleaned” version of X̃ and an approximation of X?.
Note that we have not made assumptions on the nature of
the disturbances, e.g., independence or Markovianity, so the
setting is highly general; disturbances can, for example, be
omissions, repetitions, as well as noise additions.

3.2 Quantifying Simplicity
The first design choice is how to quantify simplicity. Our
choice should capture the degree of probability concentra-
tion, and thus the amount of randomness.

The classic measure for quantifying the randomness of a
discrete random variable P with pmf pP (i) is the informa-
tion entropy or Shannon entropy [21]

H (P ) = −
∑
i

pP (i) log pP (i) ≥ 0. (1)

The entropy concept can be generalized to stationary and
ergodic discrete-time processes by taking the limit

H∞ (X) = lim
T→∞

1

T
H
({
Xt+T
t+1

})
, (2)

known as the entropy rate. This quantifies the unpredictabil-
ity of the process, measured as the added information
(bits, nats, or similar) per time step, and is independent of
representation. If the observation space is continuous, one
can instead define the differential entropy through an integral

h (P ) = −
∫
fP (i) log fP (i) di, (3)
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with an associated limiting differential entropy rate h∞ (X)
for continuous-valued processes. These two quantities are
independent of how the model X is parameterized, but
not of transformations y = g (x) of the observation space
when g is not an isometry (a translation and a unitary linear
transformation).

In rate-distortion theory, the entropy rate captures how
difficult a signal is to compress: simple signals have concise,
efficient descriptions. The entropy rate will fill an analogous
role in MERS.

To obtain probability concentration we minimize the
entropy rate of X . This should give a more predictable (thus
more concentrated) and simpler process. By working with
the entropy rate rather than the per-sample entropy H(Xt),
we operate our simplification on the space of entire behaviors
of X , typically involving multiple time steps, as opposed to
singular outcomes Xt.

The process X is not observable. In denoising applica-
tions we sometimes think of it as a hypothetical underlying,
low-noise process. As a matter of fact, the information-
theoretic properties of an underlying generating process
have been used to quantify process complexity before, for
instance in the causal states framework [24].1

We note that the entropy of a discrete random variable
is a concave function over the unit simplex with minima
at the corners. Entropy minimization is therefore not a
convex optimization problem, and the concave nature of
the objective function could possibly complicate numerical
optimization by presenting many local minima. This point
is however moot whenever the optimum can be identified
analytically, as in the examples later on.

3.3 Preventing Oversimplification
To prevent oversimplification, we maximize the above sim-
plicity under a constraint that we do not stray too far from
the original observed process. The latter corresponds to
the distortion constraint in rate-distortion theory. Numerous
measures of similarity or dissimilarity between distributions
exist in the literature (e.g., f -divergences and Bregman di-
vergences [25]), many of which can be extended to stochastic
processes in multiple ways. Constraining different measures
will lead to different results, and yield different flavors
of probability concentration and minimum entropy rate
simplification.

In this work, we again look to information theory, in
order to define a natural, representation-independent mea-
sure of dissimilarity that we may constrain. There, the
dissimilarity between two discrete random variables P and
Q is commonly quantified by the relative entropy (or Kullback-
Leibler divergence) [21]

DKL (P || Q) =
∑
i

pP (i) log
pP (i)

pQ (i)
≥ 0. (4)

As before, we can take the limit

D∞(X || Y ) = lim
T→∞

1

T
DKL

({
Xt+T
t+1

} ∣∣∣∣∣∣ {Y t+Tt+1

})
(5)

1. Causal states are however unsuitable for our purposes, as they
capture all predictive information in the original process, including any
correlations in the noise, and do not actually discard information as
would be necessary for strong simplification.

to define the relative entropy rate between two station-
ary stochastic processes X and Y . Like the entropy rate
H∞ (X), this is independent of representation and has com-
patible units of information per time step. For continuous-
valued processes, an analogous concept of differential rel-
ative entropy rate, d∞, is obtained by integrating rather
than summing over the observation space. Like the discrete
quantity D∞, this is invariant of parameterization as well as
transformation.

In standard situations where the KL-divergence is used,
P is the true distribution while Q is an approximation
thereof. In MERS, we want to identify a simple candidate
underlying model X from a given corrupted, approximate
version X̃ . Since X̃ is the approximate quantity, this sug-
gests a constraint D∞(X || X̃) ≤ D, where D is a user-
set maximum tolerable divergence rate which controls the
degree of simplification.

Due to the asymmetry between the two arguments of the
KL-divergence, this formulation is highly averse to adding
behaviors (nonzero-probability outcome sequences) to X
that are not in X̃ , but is less sensitive to outcomes being
taken away, as is appropriate for simplification. This is in
contrast to, e.g., the alternative constraint D∞(X̃ ||X) ≤ D,
which may penalize probability concentration too harshly.

A similar situation to the above, where the second di-
vergence argument and not the first is considered fixed,
arises for log-evidence maximization in variational Bayesian
methods, cf. [26], also leading to concentrated distributions.

3.4 The General MERS Formulation
Drawing on the above sections, we are now ready to define
general minimum entropy rate simplification. Given a sta-
tionary and ergodic stochastic process X̃ and a process dis-
similarity measure Dis(X, X̃), a general minimum entropy
rate simplification of X̃ in X for a maximum tolerable dis-
similarity D is any process X which solves the optimization
problem

min
X∈X

H∞ (X) (6)

subject to Dis(X, X̃) ≤ D. (7)

In this paper, the primary dissimilarity Dis(X, X̃) will be
the KL-divergence rate D∞(X || X̃), leading to a formula-
tion

min
X∈X

H∞ (X) (8)

subject to D∞(X || X̃) ≤ D, (9)

with D being the maximum tolerable divergence. In case
X̃ is continuous-valued, we replace H∞ and D∞ by their
differential analogues.

We assume the relevant H∞ and D∞ exist; for Marko-
vian processes this is assured [27]. However, the quantities
may be difficult to write out explicitly. For instance, the
entropy rate of an HMM is a Lyapunov exponent with
no known closed-form expression [28]. This echoes rate-
distortion theory, where only a few analytic solutions are
known [21].

The MERS framework enables a continuum of sim-
plifications, ranging all the way from no modification to
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complete predictability, in order to suit a wide array of
application scenarios. In practice, different applications call
for different trade-offs between simplicity and fidelity, and
it is therefore difficult to make general statements on what
tuning-parameter values to use. Ultimately, the degree of
simplification has to be chosen by the experimenter on a
case-by-case basis, for instance via cross-validation if held-
out data is available.

4 MERS FOR GAUSSIAN PROCESSES

Having defined the general MERS framework, we now
focus on its concrete implications in a few important special
cases. We first discuss the situation where X̃ is a continuous-
valued Gaussian process, where we can draw some parallels
to Wiener filtering; discrete Markov chains will be consid-
ered in Section 5.

4.1 Purely Nondeterministic Processes
We here present solutions to the MERS problem (8) for
two classes of Gaussian processes; derivations are provided
in Appendix A. To begin with, let Xnd be the space of
purely nondeterministic stationary and ergodic univariate
Gaussian processes, with X, X̃ ∈ Xnd. Defining the (power)
spectral density function of nondeterministic X through

RX
(
eiω
)

=

∣∣∣∣∣
∞∑

l=−∞
E (XtXt+l) e

iωl

∣∣∣∣∣ (10)

for ω ∈ (−π, π], with RX̃
(
eiω
)

defined similarly, the differ-
ential entropy rate to minimize becomes

h∞ (X) =
1

4π

∫ π

−π
log
(
4π2e2RX

(
eiω
))

dω, (11)

while the relative entropy rate constraint turns into the
Itakura-Saito divergence [29]

d∞(X || X̃) =
1

4π

∫ π

−π

(
RX(eiω)
R

X̃
(eiω)

−1−log
(

RX(eiω)
R

X̃
(eiω)

))
dω,

(12)
see [30]. We may assume RX̃

(
eiω
)
> 0 almost everywhere,

otherwise the process is completely predictable. (Following
the same reasoning, (11) means that band-limited processes
do not have a meaningful differential entropy rate.)

For generality, we will also consider MERS solutions
X ∈ X with lower-bounded power spectra, i.e., we let

X =
{
X ∈ Xnd : RX

(
eiω
)
≥ rmin ∀ω

}
(13)

for some given rmin ≥ 0. This reduces to the unconstrained
processes Xnd when rmin = 0.

The problem of minimizing differential entropy rate
under our constraints is easily solved through a variational
calculus approach similar to the derivation of AR-processes
as the maximum-entropy processes under covariance con-
straints in [31]. We introduce a Lagrange multiplier λ ≥ 0
for the divergence constraint (12), which we can think of
as an “exchange rate” between bits of entropy and bits
of divergence. Upon seeking stationary points, one obtains
from the Euler-Lagrange equation

RX
(
eiω
)

= max

(
rmin,

λ− 1

λ
RX̃

(
eiω
))

. (14)

This solution is obviously only valid for λ > 1; for these λ
we define the (inverse) scaling factor α = λ

λ−1 ∈ (1, ∞).
The MERS solution simply shrinks the spectral magnitude
by α−1, until it hits the floor at rmin.2 In an MA(∞)-
representation, this uniform spectral scaling corresponds to
reducing the variance of the driving Gaussian noise by a
factor α−1, or an equivalent scaling of all MA-coefficients.
The factor α can be computed as an implicit function of the
maximum tolerable dissimilarity d.

It is worth noting that simple spectral scaling indeed
produces probability concentration. Specifically, when the
minimum-rate bound is inactive the next-step conditional
pdf for X given T past samples can be written

fXt | Xt−1
t−T

(xt | xt−1t−T ) =
1

ν

(
f
X̃t | X̃

t−1

t−T

(xt | xt−1t−T )

)α
, (15)

where ν > 0 is a normalization constant. The ratio
of fXt | Xt−1

t−T
to f

X̃t | X̃
t−1

t−T

is then strictly increasing in

f
X̃t | X̃

t−1

t−T

for any xt and xt−1t−T , meaning that the probability
density has become further concentrated to previous high-
probability regions.

It is instructive to compare Equation (15) with the Gibbs
measure from statistical mechanics [32], which takes the
form

pX (x) =
1

Z (α)
exp (−αE (x)) , (16)

where E (x) is known as the energy of state or configura-
tion x and Z (α) (the partition function) is a normalization
constant. The Gibbs measure is a well-known framework
that exhibits probability concentration for high values of the
inverse-temperature parameter α, in the sense that the sys-
tem concentrates on the least energetic states as the temper-
ature drops. Adding an artificial temperature parameter is
in fact an established method for simplifying a Gibbs model
and reducing its thermodynamic entropy; MERS provides
an information-theoretic interpretation of this practice.

4.2 Weighted Itakura-Saito Divergence
The Itakura-Saito criterion in (12) is a function of the ra-
tio RX

(
eiω
)
/RX̃

(
eiω
)
, and thus only considers relative

spectral differences. In many applications, however, spectral
peaks are the most important. One example is speech signal
processing, where spectral valleys often are subject to per-
ceptual masking. This suggests weighting the Itakura-Saito
divergence by the observed signal power RX̃

(
eiω
)
,

dqIS(X || X̃)

=
1

4π

∫ π

−π

(
RX(eiω)−RX̃(eiω)+RX̃(eiω) log

(
R

X̃(eiω)
RX(eiω)

))
dω.

(17)

As shown in Appendix A.2, minimizing entropy rate while
constraining this weighted Itakura-Saito divergence leads to
a solution

RX
(
eiω
)

= max
(
rmin, RX̃

(
eiω
)
− λ−1

)
, (18)

2. Interestingly, when rmin = 0 the problem of maximizing the
entropy rate under the divergence constraint (9) is mathematically
very similar to MERS, and leads to a solution formula identical to
Equation (15), but with exponents α ∈ (0, 1) rather than α > 1.
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where λ is a Lagrange multiplier associated with the dis-
similarity constraint. For rmin = 0, the solution is valid for
λ−1 ∈

(
0, minω RX̃

(
eiω
)]

, with the rate in (11) typically
approaching zero at the upper end of this interval, while for
rmin > 0 the entire range λ−1 ∈ (0, ∞) can be used, though
the rate then has a nonzero minimum value. Interestingly,
while (14) corresponds to the same relative spectral reduc-
tion everywhere, this solution instead reduces the spectrum
everywhere by the same absolute amount, until the floor is
reached.

4.3 Conserving the Variance
Another variation on MERS is obtained by changing the
constraints on the process space X . If we revert back to
standard KL-divergence rate based MERS (by constraining
d∞ as given in (12)), but choose X as the space of stationary
and ergodic univariate Gaussian processes having the same
variance Var(X̃t) as the original X̃ , the simplistic variance
scaling in (14) is no longer possible. Instead we get a formal
solution

RX
(
eiω
)

=
1

ν

RX̃
(
eiω
)

β −RX̃ (eiω)
(19)

(see Appendix A.3). For Lagrange multiplier values ν > 0
and β > maxω RX̃

(
eiω
)

this can be shown to erode
away already small values of RX̃

(
eiω
)
, yielding a spectrum

where the relative differences between peaks and valleys
are increased; other ranges of Lagrange multipliers give
maximum entropy rate solutions. Essentially, peaks are con-
served since they dominate the energy, while valleys are
removed. To achieve a target variance and distortion, one
may apply root-finding schemes to solve for appropriate
Lagrange multiplier values.

We note that constraining Var(Xt) prevents X from
becoming deterministic in the limit of extreme simplifica-
tion. Instead, (19) achieves low entropy rates by creating
simplifications that are predictable over longer time spans
on average.

4.4 General Solution for Gaussian Processes
Solutions (14) and (19) above can easily be extended to
general stationary and ergodic univariate Gaussian pro-
cesses. Let X̃ ′ = µ̃ + X̃ and X ′ = µ + X be the Wold
decompositions [33] of two such processes, with µ̃ and µ
being the deterministic process components, while X and
X̃ are purely nondeterministic as before. It is assumed that
X ∈ X ⇒ µ + X ∈ X ∀µ; X is closed under deterministic
translation. The relation

d∞(µ+X || µ̃+ X̃) ≥ d∞(µ̃+X || µ̃+ X̃) (20)

(see Appendix A.4) then ensures that there always is a MERS
optimum of the form X ′ = µ̃+X .

Since (20) only is satisfied with equality when µ = µ̃, the
solution is unique. Additionally, the identities h∞ (X ′) =
h∞ (X) and

d∞(µ̃+X || µ̃+ X̃) = d∞(X || X̃) (21)

enable us to reduce the problem to the purely nondetermin-
istic situation above. The general Gaussian MERS solution
is therefore X ′ = µ̃+X , which amounts to simplifying the

nondeterministic process component as before and keeping
the deterministic part of X̃ unaltered. This is discussed
further in Appendix A.4.

4.5 Relation to the Wiener Filter
MERS makes no explicit assumptions about possible distur-
bances in the input process X̃ . It is however instructive to
compare MERS output to that of traditional noise reduction
methods containing an explicit noise model, and see when
the results agree. A particularly important scenario is that
of additive, uncorrelated noise Nt. This satisfies

X̃t = X?
t +Nt (22)

RX̃
(
eiω
)

= RX?

(
eiω
)

+RN
(
eiω
)

. (23)

MSE-optimal noise reduction is then performed through
Wiener filtering [34].

For the additive noise model, it is easy to see that the un-
constrained KL-divergence based MERS solution in (14) can
recover the correct signal spectrum, i.e., achieve RX

(
eiω
)

=
RX?

(
eiω
)

for an appropriate choice of α, if the spectrum
of the noise is proportional to that of the underlying signal,
RN

(
eiω
)
∝ RX?

(
eiω
)
. This reinforces our view that MERS

is particularly appropriate when signal and noise are not
easily separated.

On the other hand, the solution in (18), obtained by
constraining the weighted Itakura-Saito divergence, can be
made to coincide with the result of Wiener filteringRX̃

(
eiω
)

for the important practical case of additive white Gaussian
noise. In this scenario, the noise spectral density is constant,
RN

(
eiω
)

= σ2

2π assuming a noise variance σ2, and MSE-
optimal filtering is performed by choosing rmin = 0 and
λ = 2πσ−2 in MERS.

For variance-constrained MERS, the MERS solution (19)
cannot be matched by any traditional Wiener filter. This
is because MERS increases the energy of spectral peaks to
satisfy the constraint (19), while Wiener filtering can only
remove energy. This exemplifies a situation where MERS
should primarily be interpreted as a general simplification
scheme, rather than a mere denoising procedure.

4.6 Example Application
We illustrate the effects of the various MERS solutions by
applying them to an audio signal with compression artifacts
(quantization noise). In audio compression, it is standard
to assume that the signal waveform follows a Gaussian
AR-process, so the previously developed MERS theory is
appropriate.

The solid blue graph in Figure 1 shows the power spec-
trum of a model X?, estimated from a half-second, Hann-
windowed excerpt of the grand piano recording in track 39
(index 1) of the EBU sound quality assessment material [35],
downsampled to 8 kHz. The raw spectrum estimate was
smoothed with a fifteen-point moving average to reduce
the inherent variance of the estimation and to make the
peaks wider and easier to resolve. Also shown in the figure
(dotted black curve) is the power spectrum of a model X̃
similarly fitted to a six-bit uniformly quantized version of
the signal. As seen in the plot, the effect of this quantization
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Figure 1. Power spectra of original, disturbed, and minimum entropy rate simplified Gaussian processes.

is to add white noise to the signal. This is most obvious in
the spectral valleys, which have become much shallower for
the quantized model, while the peaks have hardly changed
at all. The figure additionally shows a number of power
spectra corresponding to models simplified with the three
Gaussian MERS techniques presented in this paper. For each
technique, the relevant parameters (rmin, α, λ, and/or β)
were selected to minimize the root-mean-square (RMS) log-
spectral distortion of the simplification X with respect to
the unquantized process X?.

From the figure, we see that the general effect of MERS
is to remove energy from the spectral valleys, similar to
postfiltering in audio coding. Unweighted and variance-
constrained MERS largely overlap (solid pink versus dashed
green graphs), but in contrast to the simple spectral scaling
of unweighted MERS, which just amounts to a vertical offset
in the logarithmic plot, variance-constrained MERS is able
to retain, and even emphasize, the most prominent peak
in the spectrum. Weighted Itakura-Saito MERS (dashed red
graph) goes further, and manages to conserve all spectral
peaks above the quantization noise floor, while reducing the
spectral valleys to a power level much closer to that of the
original signal. This results in models X where the amount
of noise has been reduced significantly, and which would
exhibit increased subjective audio quality over X̃ if used
in, e.g., audio coding. Quantitatively, the log-spectrum RMS
distortion of the best RX

(
eiω
)

is less than 40% of that of the
disturbed power spectrum RX̃

(
eiω
)

we started with.

5 MERS FOR MARKOV CHAINS

For discrete-valued processes there is no natural notion of
additive noise, so there is no straightforward analogue of the
Wiener filter for removing disturbances. The MERS princi-
ple, on the other hand, is equally applicable in continuous
and discrete settings, and leads to similar results.

In this part, we apply MERS to discrete processes,
namely first-order Markov chains on finite state spaces.
Simply stated, these are characterized by the Markovian

property P
(
Xt+1

∣∣ Xt
t−T

)
= P (Xt+1 | Xt) for all T ≥ 0.

Note that any Markov chain of finite order p can be can be
converted to a first-order process through Yt+1 =

{
Xt+p
t+1

}
,

so it is not restrictive to assume a minimum-order process.
Markov chains are very common as language models in
natural language processing, in addition to being a key
building block of hidden Markov models.

5.1 General Solution for Markov Chains

Let X and X̃ be stationary and ergodic first-order Markov
chains with outcomes on a finite-cardinality alphabet A.
Without loss of generality we take A = {1, . . . , k}.

Markov chains such as X and X̃ are usually represented
by their transition matrices, here written A and Ã, respec-
tively, the elements of which are the conditional transition
probabilities aij = P (Xt+1 = j | Xt = i), and similarly for
ãij . Specifying the transition matrix completely determines
any stationary and ergodic Markov chain, including its
stationary distribution, which we write as a vector π with
elements πi = P (Xt = i). We assume π > 0, otherwise the
zero-probability states can be removed from consideration
and the results again apply.

For the Markov chain the entropy rate (8) minimized by
MERS can be expressed as

H∞ (X) = −
∑
ij

πiaij log aij , (24)

while the relative entropy rate constraint (9) involves

D∞(X || X̃) =
∑
ij

πiaij log
aij
ãij

; (25)

see [36]. Moreover, the conditions A ≥ 0 and A1 = 1
must be satisfied for A to be a valid Markov chain tran-
sition matrix. This problem formulation is cumbersome to
optimize since it involves π, a normalized version of the
leading eigenvector of Aᵀ, which is a complicated function
of the matrix elements aij .
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Despite the complexities of the formulas above, it is
possible to derive an analytic solution to the MERS problem
for Markov chains. This involves four main steps:

1) Represent X by the bigram probabilities bij =
P (Xt = i ∩ Xt+1 = j), rather than the next-
symbol probabilities aij . This simplifies the entropy
and divergence rate expressions to

H∞ (X) = −
∑
ij

bij log
bij∑
j′ bij′

(26)

and

D∞(X || X̃) =
∑
ij

bij log
bij

ãij
∑
j′ bij′

, (27)

which do not involve any problematic eigenvectors.
However, P (Xt = i) = P (Xt+1 = i) (as required
for stationarity) contributes an additional constraint
B1 = Bᵀ1 on the row and column sums of the
matrix B of bigram probabilities.

2) Use the Blahut-Arimoto algorithm trick [37], [38] to
transform the problem to a minimization over two
sets of variables: the bigram probabilities bij and
the variables qi, the latter representing the single-
symbol frequencies πi =

∑
j′ bij′ in the above

expressions.
3) In the resulting formulation, it is possible to solve

analytically for the optimal bij under fixed qi, and
vice versa. This leads to a convergent iterative solu-
tion scheme.

4) Interestingly, the fixed point of the Blahut-Arimoto
iterations can be identified directly. This leads to an
explicit solution formula expressed inA, rather than
B.

A detailed derivation is provided in Appendix B. The result
gives the transition matrix of the MERS-optimal X as

A =
1

ν
(diagµ)

−1
Ã

(α)
(diagµ) , (28)

where Ã
(α)

denotes Hadamard power α (elementwise
exponentiation) of the original transition matrix Ã, i.e.,

(Ã
(α)

)ij = (ãij)
α, while µ is the unique and positive

leading right eigenvector of Ã
(α)

, corresponding to the

eigenvalue ν > 0, so that Ã
(α)
µ = νµ. The exponent

α = λ
λ−1 ∈ (1, ∞) is defined in terms of the Lagrange

multiplier λ > 1 for the divergence constraint, similar to
the Gaussian case. Fixing α corresponds to a particular
simplicity-divergence trade-off.

5.2 Solution Properties

It is easy to see that aij = 0 if and only if ãij = 0, so
MERS neither adds nor removes transitions entirely. This
ensures that X remains stationary and ergodic. However,
the exponent α > 1 has the effect of eroding the values of
Ã, which is coupled with a renormalization using µ and ν.
Because the exponentiation decreases small values propor-
tionally more than larger ones, the entropy rate decreases,
and many elements may become exceedingly small.

The optimal Markov chain simplification in (28) has sev-
eral similarities with the Gaussian example in Section 4.1. As
before, it is clear that the interval α ∈ (1, ∞), correspond-
ing to λ > 1, will yield all MERS solutions between the
original X̃ and a completely predictable process. Exponents
α ∈ (0, 1), meanwhile, yield smoothed, maximum entropy
rate solutions, again similar to before. Furthermore, the
minimum rate processes can be expressed very similarly
between the discrete and continuous cases, using exponen-
tiated conditional pdfs or pmfs normalized by Lagrange
multipliers; compare relation (15) with the Markov chain
analogue

pXt | Xt−1
t−T

(xt | xt−1t−T )

=
1

ν

µxt−1

µxt

(
p
X̃t | X̃

t−1

t−T

(xt | xt−1t−T )

)α
. (29)

The only notable difference between the continuous and
discrete solution formulas, (15) and (29), is the unusual
renormalization for the Markov chain contributed by the
eigenvector µ, which ensures that the solution satisfies
A1 = 1. We observe that this normalization is similar to
the detailed balance condition

A = (diagπ)
−1
Aᵀ (diagπ) (30)

satisfied by time-reversible Markov chains. In fact, by
rewriting (28) as

A =

(
diag

(
Ã

(α)
(diagµ)1

))−1
Ã

(α)
(diagµ) , (31)

we recognize it as an instance of the familiar row-sum
normalization scheme

Cnorm (C) = (diag (C1))
−1
C (32)

used, e.g., to convert matrices with raw counts to ML
estimates of conditional transition probabilities. Here C =

Ã
(α)

(diagµ), so the eigenvector µ merely acts as a set of

column weights for Ã
(α)

. The weights are equal and all
rows of A are the same if X̃ is an i.i.d. process.

The most computationally demanding aspect of the so-
lution formula (28) is to find the leading eigenvector of

Ã
(α)

, but this is a much studied problem for which efficient
numerical methods exist [39]. If Ã is sparse, as is often
the case in practice, extremely large problem sizes can
be handled. In computing the seminal PageRank measure
of web-page importance [40], which is based on Markov
chains, it is common to solve leading-eigenvector problems
with billions of columns [41].

6 MARKOV CHAIN EXPERIMENTS

To provide concrete examples of the behavior and perfor-
mance of Markov chain MERS, we here present its applica-
tion to three different models. It is interesting to compare
this theoretically optimal objective performance against that
of relatively straightforward simplification methods. We
therefore also apply a simple, thresholding-based scheme
for probability concentration to the same examples, and
investigate the results both objectively and subjectively.
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Figure 2. Heat map of cloud-coverage transition probabilities ãij .

In the first application, the methods are applied to
weather data. Thresholding leads to nonergodic, reducible
models, whereas MERS does not. Second, an ML-estimated
character-level Markov model of English text is simplified
using the two methods. Text synthesized from the resulting
models becomes simpler and more consistent, and is at least
as reasonable as text from the original Markov chain. In the
final example, the methods are applied to denoise a word-
level Markov chain of infant-directed speech. Results show
that MERS filters out corruptions typical of spontaneous
speech, leading to improvements in objective and subjective
quality of the grammar in speech generated by the model.
Thresholding yields similar subjective quality but inferior
objective quality, as it may forbid grammatically legal con-
structions. First, however, we introduce the thresholding-
based baseline simplification.

6.1 Thresholding-Based Simplification
For reference, we will compare the experimental results of
MERS to a straightforward, thresholding-based probability
concentration scheme, in which a simplified transition ma-
trix is created by removing elements of Ã smaller than a
threshold τ ≥ 0,

a′ij (τ) =

{
ãij if ãij ≥ τ
0 otherwise,

(33)

and applying standard row-sum normalization (32) to the
result A′ (τ). τ is a free parameter of the method, similar to
α from before. For A′ (τ) to be normalizable, we must have
τ ≤ τmax = mini maxj (ãij).

We note that thresholding-based probability concentra-
tion has several qualitative differences from MERS:

1) A′ (τ) is not a smooth function of τ , and the sim-
plification evolves in discrete steps. This means that
only a finite number of different entropy-divergence
trade-offs are possible. MERS, in contrast, provides
a continuum of possible simplifications.

2) Unlike MERS, where small transition probabilities
are typically made smaller (apart from the ef-
fect of the weighting diagµ), transitions that are
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Figure 3. Entropy-divergence trade-offs for the cloud-coverage model.

not removed by the thresholding can never have
their probability decreased. Uncommon behavior is
therefore initially made more likely, not less.

3) Because thresholding removes transitions com-
pletely, the resulting Markov chain may be split into
several noncommunicating, recurrent parts. (The
chain is cut into pieces, in effect.) This is a noner-
godic system for which the concepts of entropy and
divergence rate lose their meaning. Together with
the bound τ ≤ τmax, this suggests that low-entropy
simplifications may not always be attainable.

6.2 Simplifying a Meteorological Model
To illustrate how MERS always yields an ergodic and con-
nected model, whereas other simplifications may not, we
consider a small Markov chain based on cloud-coverage
data. Specifically, we extracted the percent opaque cloud
measurements of the Total Sky Imager fractional sky cov-
erage datastream at the ARM Climate Research Facility
Southern Great Plains (SGP) site, Central Facility, in Lamont,
OK, (sgptsiskycoverC1.b13) recorded between 2000-07-
02 and 2012-04-14. The measurement series were converted
to daily cloud-cover averages and quantized to a scale of
eighths {0, 1/8, 2/8, . . . , 1}, whereafter a 9 × 9 first-order
Markov chain transition matrix Ã was ML-estimated to
describe the quantized data series. Due to some missing
data, the final matrix was based on 4 021 day pairs.

Figure 2 displays a heat map of the estimated transition
matrix Ã. This shows evidence of bimodal behavior, where
either clear or overcast weather is likely to remain largely
unchanged, while intermediate states are less common and
less predictable. As we shall see, this presents problems for
thresholding-based probability concentration.

The Markov process X̃ defined by the cloud-coverage
transition matrix was simplified using the MERS for-
mula (28). As seen in Figure 3, the simplifications for
different α trace out a convex curve in (H∞, D∞)-space,
similar to the rate-distortion function in lossy source coding.

3. The data can be requested online for free at www.arm.gov.

http://www.arm.gov/data/datastreams/tsiskycover
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H∞ Text sampled from Markov chain
1.05 e lord is that he judgment. and huldah his city of berothere thren of branch well i command that al
1.00 were a comfiture. and it were was made his places an he sleep. take aaron a scaffording with ye str
0.94 t all they shall the shall the princenser. selled him. and took king upon the goverthelemish. and s
0.88 t word. and ye lord. which the have buried. behold. and he wrother wind of the philistines unto the
0.82 he families shall laughteousness abhorring bullock. the people. as the moons. for that israel. and
0.77 escaped. and the children. and god. when image. and the land saith the lord of thy strength with hi
0.71 them whitherefore this from the lord. whereof. and words of ther children of they servants. and my
0.65 eople the counsel answere i will not prophet the son of the oppresert. neighbour own the places of
0.59 bring. and them diligent unto the lord of babylon. and moses. and they shall for the lord god. and
0.54 egation of thee. for the children of syria. and king. . and unto the tabernacle. and the lord of th
0.48 upon the children of the children of the children of the children of the people the children of is
0.42 the king the children of israel. because of jerusalem. and said unto the tabernacle of israel. whic
0.36 hildren of the children of the people. say unto thee. and they shall the lord. and the children of
0.30 dren of the children of the lord. and the tabernacle of thee. and the lord of israel. and the peopl
0.25 id unto the lord. and the children of the lord. and the children of the children of the children of
0.19 en of the children of the children of the children. and he children of the children of the children

(a) Minimum entropy rate simplification.

H∞ Text sampled from Markov chain
1.05 and the commanded talked from the buried in and thy people. said zecharia. neighbour heave this da
0.99 ased to this separable to pastoredom. and he made and it. and spear of the woman of their asa king
0.93 the lord said. there bow david. he hath. where. feast. and of heart to the covenant out unto that
0.87 e son of aaron the moses. that ther gard the time out and to seed than to death. and israel. the hi
0.81 to death of them into him an hand the stranger of thee seen them. and the six hundreds. and he tit
0.75 ink the cities together side of ahaz saith moses was it with the city the sons of all be acts of me
0.69 d. be and the lord. and said unto the seven them to they with to desolate they were is the shalt th
0.63 his hand the profane them. that the lord hath saith the house of the higher is the chief of hosts a
0.58 rd god. whole carcases was that the lord hate of her. and said. i will not agains of israel. the lo
0.52 of war. and he with the lord saul shalt before the lord god. and the people. and the son of the lor
0.45 rd hath side. and the land the saith her the children of the set my people of the son of the city w
0.39 conders of the land the lord of the saith the lord shall that was and he son of the land the second
0.33 the lord god. and the land. and the lord god. and the shall be as a stonished the soul. the said un

(b) Thresholding-based simplification. (Note the larger minimum H∞ compared to 1a, due to τ reaching τmax.)
Table 1

Random text sampled from simplified models over a range of entropy rates.

Since MERS provides the optimal rate-divergence trade-off,
performance below this curve is not possible. Both entropy
and KL-divergence rate remain finite everywhere, as ex-
pected. At low H∞, the curve straightens out to a slope near
negative unity, and any decrease in entropy immediately
translates to an equivalent increase in relative entropy.

Figure 3 additionally shows the entropy-divergence
combinations attainable by thresholding Ã. This simplifica-
tion evolves in discrete steps in both H∞ and D∞ due to the
discontinuous nature of the modification, and the achievable
trade-offs are therefore drawn as nonconnected dots.

In agreement with theory, the entropy-divergence trade-
offs from thresholding are inferior to the optimal curve
traced out by MERS. Moreover, even though we have
τmax ≈ 0.1763, thresholding produces nonergodic, re-
ducible models for τ exceeding 0.1370. At this point—
marked by × in the figure—the thresholded Markov chain
fractures into two distinct, recurrent connected components,
comprised of states {0, 1/8, 2/8} and {7/8}, respectively. The
idea of a single, well-defined entropy (or divergence) rate
then loses its meaning, as does the rate-divergence graph.
It follows that low-rate simplifications are not possible
through thresholding for the cloud-cover process.

6.3 Simplifying a Text Model

Next, we investigated a much larger Markov model for
character-level text synthesis. Inspired by the application

in [42], an initial Markov chain was trained on a four-
gram representation of the King James version of the old
testament. This is equivalent to a fourth-order character-
level Markov chain. The source text was pre-processed by
removing verse numbers and converting to lower case,
whereafter all contiguous sequences of whitespace, includ-
ing new lines, were converted to single spaces while all
sequences of punctuation, digits, and other non-alphabet
characters were converted to single dots. The resulting
text contained 3 190 276 samples from 24 309 distinct four-
grams, and the trained Ã-matrix had 77 253 nonzero entries.

The fourth-order Bible text model was simplified using
MERS and thresholding. Again, thresholding is incapable of
low-entropy simplification, as τ is constrained by τmax. In
this case, τmax ≈ 0.1092, reaching H∞(X ′(τmax)) ≈ 0.33,
while MERS can run until H∞ (X) ≈ 0.19 (α ≈ 1.95) be-
fore the general-purpose Matlab eigs-command begins to
experience numerical difficulties with correctly identifying
the leading eigenvector.

To investigate the nature and behavior of the two studied
probability concentration schemes, it is instructive to gener-
ate text from the models they produce. Table 1 shows text
strings sampled independently from simplified models over
the entire range of entropy rates given above. Samples are
quite similar between the two simplification methods, ex-
hibiting classic Markov chain nonsense-text behavior at high
rates, but turning increasingly repetitive and predictable as
the rate decreases. For both schemes, the simplified samples
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Figure 4. Entropy-divergence trade-offs for the speech grammar.
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arguably appear more characteristic of the training text. At
low rates, they resemble a cartoon version of the Bible.
Simple samples also tend to contain fewer illegal word
constructions, suggesting that these models make fewer
errors.

6.4 Denoising a Speech Grammar

For our final example, we consider using MERS or thresh-
olding to remove disturbances from a corrupted Markov
grammar. The grammar was based on a subset of the matrix-
type sentences from the Swedish infant-directed speech
corpus in [43], composed of 21 word tokens and a pause
marker. Two data sequences of 107 symbols were generated
by i.i.d. random sampling from this bag of sentences. One
sequence was additionally corrupted by a moderate amount
of random speech errors such as partial sentences, corrected,
repeated, or omitted words, along with disfluencies such as
filled pauses (particularly at sentence positions with high
branching factors), marked by an additional token. Second-
order Markov chains X? and X̃ were then fitted to the
clean and the disturbed data, respectively, using maximum
likelihood. For X̃ this gave a 458×458 Ã-matrix containing
5 550 nonzero elements, about half the maximum possible.
(The size of Ã was determined by the fact that only 458
out of the 222 = 484 conceivable token bigrams appeared
in the sampled data.) X?, in contrast, was behaviorally very
sparse, and had only 135 nonzero transition matrix elements
on rows corresponding to positive-probability bigrams.

The Markov chain X̃ , representing the noisy observed
process, was subsequently simplified using the MERS
formula (28), or by thresholding. The resulting entropy-
divergence trade-offs are graphed in Figure 4. We will
write X (R) for the optimal solution at a given entropy
rate, H∞ (X (R)) = R. As before, limits on τ prevent
thresholding from producing low-rate simplifications, while
MERS can go further, reaching α = 46 before our eigs-
based implementation becomes unreliable.

As described earlier, we anticipate that simplification
will preferably eliminate uncommon and likely erroneous
behavior, thus reducing the number of errors (noise) in
the model. In our case, we wish to come closer to the
clean matrix grammar of the original sentences. Since this
is a synthetic example, we can compute this similarity by
comparing our denoised model to X?, the best Markov
chain fit to the clean data.

First, we assess denoising performance using an objec-
tive measure, by computing the standard KL-divergence
rate between the reference process X? and the denoised ap-
proximations X (MERS) and X ′ (thresholding). As seen in
Figure 5, MERS is capable of recovering an improved model
closer to the underlying grammar for a range of divergences.
The minimum KL-divergence rate D∞(X? || X (R)) ≈
0.097 nats occurs around R ≈ 0.94, and is less than half
the distortion present in the original X̃ . Since MERS does
not eliminate transitions entirely, it has finite divergence rate
everywhere.

The thresholding scheme initially performs almost as
well as MERS for denoising. However, when τ exceeds 0.064
(marked by an × in Figure 5), thresholding eliminates a
transition in Ã that also occurs in the uncorrupted grammar
A?. This oversimplifies X̃ to such an extent that construc-
tions which are perfectly legal within the reference grammar
are rejected as impossible, and leads to an infinite KL-
divergence rate for all thresholded simplifications beyond
this point. Thresholding therefore cannot reach the same
objective denoising performance as MERS.

Next, we consider the simplified output itself. As il-
lustrated in Table 2,4 there are clear improvements also in
subjective output quality. The table demonstrates that both
the underlying grammar and the disturbed conversational
speech processes can be well represented by second-order

4. The table provides a word-by-word English translation of the orig-
inal Swedish text. Underscores identify particle-based constructions
where Swedish instead uses a single word token with a suffix, e.g.,
“the book” being “boken” in Swedish. The same table in the original
Swedish can be found in Appendix C.
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a bath [pause] look mommy [pause] take a shoe
[pause] it is daddy [pause] look olov [pause] take
a bath [pause] where is olov now [pause] take a
bath [pause] where is olov now [pause] it is a car
[pause] take a shoe [pause] take a car [pause] it
is a car [pause] look the_car [pause] look the_shoe
[pause] it is a book [pause] take a bath [pause]
where is the_bath now [pause] look the_car [pause]
look olov [pause] where is the_car now [pause] look
the_shoe [pause] take a car [pause] hi olov [pause]
hi olov [pause] where is olov

(a) Sample from error-free corpus.

daddy now
:
hi

::::::
[pause] olov [pause]

:::::::
[pause] hello olov

[pause]
::::::
[pause] it is daddy [pause] look

:
um the_shoe

[pause]
::::::
[pause] it is

::
um olov [pause]

::::::
[pause] hello

olov [pause] look
::
um the_book [pause]

::::::
[pause] where

is olov now
::
um take a book [pause]

::
um

::
um hello olov

[pause] it is olov
:
it is

::
um a car [pause] hello olov

[pause]
::
um where is olov now [pause]

::
um where is

olov now [pause] hello olov [pause]
::::::
[pause] take a

bath [pause] look the_book
::::::::
the_book

:
hi olov [pause]

::
um look mommy [pause] it is a car [pause]

::
um take a

car
:
hello

(b) Sentences disturbed by random speech errors.

a book [pause] hello olov [pause] where is olov
[pause] where is the_car now [pause] hello olov
[pause] it is a book [pause] it is olov [pause]
look daddy [pause] look the_bath [pause] it is a
book [pause] where is the_shoe now [pause] take
a car [pause] hi olov [pause] take a shoe [pause]
it is a book [pause] where is the_bath now [pause]
look the_car [pause] look the_car [pause] it is olov
[pause] it is a book [pause] take a car [pause] look
mommy [pause] hi olov [pause] take a car [pause]
look mommy [pause] look the_shoe [pause] look

(c) Sample from X? fit to error-free data.

the_bath [pause] hi
::
um olov [pause] take a book

[pause] take a shoe
:
a
:::::
shoe

:
look the_book a

::::
car

[pause] it is daddy
:::
now [pause]

:::::::
[pause] where is

the_shoe now [pause] it is olov [pause] it is a shoe
[pause] hi olov [pause]

::
um take a shoe [pause] where

is the_book now [pause] it is a car [pause]
::
um take

a bath
:
a

:::::
bath [pause] look the_car [pause]

::
um look

the_car [pause]
:
olov [pause] look the_shoe [pause]

look daddy
:
where is

::
um

:
a
:
a car [pause] look olov

:
it

is a bath [pause] where is
::
is

:
a car [pause]

:::::::
[pause]

(d) Sample from X̃ fit to corrupted data.

hi olov [pause] hello olov [pause]
::
um take a car

[pause] it is olov
:::
now [pause] take a book [pause]

it is daddy
::
now [pause] take a a book [pause] take

a car [pause] it is a shoe [pause] where is
::
um

:
a

car [pause] hi olov [pause] it is a car [pause]
take

:
a a shoe [pause] it is a car [pause] take a

car [pause] take a bath [pause] it is a book [pause]

::
um hi olov [pause] where is olov now [pause] it is
a bath [pause]

::
um take a book

:
where is the_shoe now

[pause] it

(e) Sample from MERS X (R) at optimum denoising.

is a bath [pause] look mommy [pause] it is a car
[pause] it is

:::::::
[pause] daddy

:::
now [pause] it is olov

:::
now [pause] hi olov [pause] hello olov [pause] where
is the_bath now [pause] it is mommy

:::
now [pause] take

a shoe [pause]
:::::::
[pause] take a book [pause] hi olov

[pause] it is mommy [pause]
::
um it is a bath [pause]

take a bath [pause] hi olov [pause]
::
um take a car

[pause] hello olov [pause] look daddy [pause] take a
book [pause] look the_book [pause] look the_bath
[pause] it is mommy

:::
now [pause]

:::::::
[pause] hi olov

[pause] look the_book

(f) Sample from thresholded X′ (R) at optimum denoising.

where is the_bath now [pause] where is the_shoe now [pause] where is the_book now [pause] it is a car
[pause] it is a car [pause] where is the_bath now [pause] where is the_shoe now [pause] it is a shoe
[pause] it is a shoe [pause] it is a book [pause] where is the_car now [pause] where is the_bath now
[pause] it is a book [pause] it is a bath [pause] where is the_book now [pause] where is the_bath now
[pause] it is a bath [pause] it is a bath [pause] it is a bath [pause] it is a book [pause]

(g) Sample from MERS X (R) at low rate (α = 46, R ≈ 0.41).
Table 2

Translated excerpts from the clean and disturbed data, along with translations of random samples from the fitted models X? and X̃, the optimally
denoised models from MERS and thresholding, and from low entropy-rate MERS (100 symbols each). See Appendix C for the original Swedish.

Markov chains. The errors (shown in red with wavy under-
line) in the conversational data and the model X̃ derived
from it are obvious and pervasive. Samples from denoised
models minimizing D∞(X? || X(R)) show noticeable im-
provements, displaying good variety while making signifi-
cantly fewer mistakes. The simplified process X at low rate
contains virtually no errors and is highly consistent, as it
only generates sentences from a small subset of the original
corpus with any appreciable probability.

It can be noted that the subjective difference between the
two optimally denoised samples is small. In general, the fact
that thresholding may disallow some legal constructions is
seldom apparent in random output (it is easier to notice
a presence than an absence), but can be of importance in
other uses of the denoised grammar, such as compressing
clean text. As always, which approach is preferable is likely
to depend on the intended application and its associated
constraints.

Finally, we visualize the effects of simplification on the

transition matrix Ã. Figure 6 illustrates how the elements
of the transition matrix evolve with increasing degree of
simplification, for MERS and thresholding. Under thresh-
olding, matrix entries can only increase, prior to the point
where they are removed entirely. Due to how elements are
ordered in the plot, this cut-off point, drawn as a vertical
drop in element magnitude, moves from right to left in the
figure. MERS, in contrast, takes matrix elements to a positive
power α, which generally decreases element magnitude and
corresponds to a uniform vertical scaling in the logarithmic
plot 6a, effectively increasing the slope of the graph. Nor-
malization, in turn, roughly translates the graph upwards
a small amount. The largest matrix elements therefore ex-
hibit increased magnitude, while others elements decrease,
consistent with probability concentration.

7 CONCLUSIONS AND FUTURE WORK

We have presented MERS, minimum entropy rate simpli-
fication for stochastic processes. This is an information-
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Figure 6. Simplified transition matrix elements at different rates, sorted by magnitude.

theoretic framework for tunable model simplification by
concentrating the probability mass on the most represen-
tative behaviors. MERS is useful as post-processing for
generative models, increasing quality and consistency in
synthesis and sampling applications, as demonstrated in the
experiments. The independence of unitary transformations
of divergence-based MERS sets it apart from sparsity-based
model simplification schemes such as [4] (which addition-
ally is limited to i.i.d. processes).

MERS is closely related to a view that data is generated
by a low-entropy underlying process X?, but subsequently
influenced by a limited amount of unspecified disturbances
to form the observed process X̃ . The framework can thus be
considered both as a broad simplification principle, and as
nonparametric denoising of stochastic process models.

We see room for future work in both theory and appli-
cations. Markov chains and Gaussian processes are highly
common practical models, and there may be many situ-
ations where an information-theoretic diversity reduction
technique is useful. On the theory side, it would be interest-
ing to explore MERS solutions for additional model classes,
dissimilarity measures (cf. [25]), and even generalized en-
tropy rate concepts [44]. For the case of HMMs, one may
consider performing approximate MERS by minimizing a
suitable approximation or bound on the entropy rate, or
by applying MERS to the underlying Markov chain of the
HMM. Further connections with rate-distortion theory may
also be worthy of investigation.
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