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Abstract—We consider Markov models of stochastic processes where the next-step conditional distribution is defined by a kernel
density estimator (KDE), similar to Markov forecast densities and certain time-series bootstrap schemes. The KDE Markov models
(KDE-MMs) we discuss are nonlinear, nonparametric, fully probabilistic representations of stationary processes, based on techniques
with strong asymptotic consistency properties. The models generate new data by concatenating points from the training data
sequences in a context-sensitive manner, together with some additive driving noise. We present novel EM-type maximum-likelihood
algorithms for data-driven bandwidth selection in KDE-MMs. Additionally, we augment the KDE-MMs with a hidden state, yielding a new
model class, KDE-HMMs. The added state variable captures non-Markovian long memory and signal structure (e.g., slow oscillations),
complementing the short-range dependences described by the Markov process. The resulting joint Markov and hidden-Markov
structure is appealing for modelling complex real-world processes such as speech signals. We present guaranteed-ascent EM-update
equations for model parameters in the case of Gaussian kernels, as well as relaxed update formulas that greatly accelerate training in
practice. Experiments demonstrate increased held-out set probability for KDE-HMMs on several challenging natural and synthetic data
series, compared to traditional techniques such as autoregressive models, HMMs, and their combinations.

Index Terms—hidden Markov models, nonparametric methods, kernel density estimation, autoregressive models, time-series
bootstrap
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1 INTRODUCTION

T IME series and other sequence data are ubiquitous in
nature. To recognize patterns or make decisions based

on observations in the face of uncertainty and natural vari-
ation, or to generate new data, e.g., for synthesizing speech,
we need capable stochastic models.

Exactly what model to use depends on the situation. The
standard approach is to propose a mathematical framework,
and then let data fill in the unknowns by estimating pa-
rameters [1], [2]. If the data-generating process is well un-
derstood, it may be possible to write down an appropriate
model form directly. If not, we must fall back on the exten-
sive library of general-purpose statistical models available.
With little data, simple, tried-and-true approaches are typi-
cally used. These tend to involve many assumptions on the
nature of the data-generating process. Model accuracy may
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suffer if these assumptions are incorrect. Once more data
becomes available, such as in today’s “big data” paradigm,
it is often possible to get a better description by fitting
more advanced models with additional parameters. Using
a complex model is certainly no guarantee for better results,
however, and finding out which particular description to
use tends to be a laborious trial-and-error process.

In this article, we consider a class of nonparametric
models for discrete-time, continuous-valued stationary data
series, where conditional next-step distributions are defined
by kernel density estimators. Unlike standard parametric
techniques, these models can converge on a significantly
broader class of ergodic finite-order Markov processes as the
training data material grows large. This makes the models
widely applicable, and is especially compelling for data
where the generating process is complex and nonlinear, or
otherwise poorly understood.

Our main contributions are 1) extending the nonpara-
metric Markov models with a discrete-valued hidden state,
and 2) presenting several guaranteed-ascent iterative update
formulas for maximum-likelihood parameter estimation,1

applicable both with and without hidden state. The added
state variable allows models to capture long-range depen-
dences, patterns with variable duration, and similar struc-
ture, on top of the short-range correlations described by the
Markov model. This is shown to improve finite-sample per-
formance on challenging real-world data. The state variable
can also be used as an input signal to control process output,

1. Nonparametric models can be defined as sets of probability distribu-
tions indexed by a parameter θ ∈ Θ, where the dimensionality of the
space Θ grows with the amount of data; hence a nonparametric model
still has parameters that may need to be estimated.
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and is attractive for recognition and synthesis applications,
particularly with speech signals, where the hidden states
can be identified with language units such as phones.

The remainder of the paper is organized as follows:
Section 2 discusses established techniques for modelling
Markovian processes with and without hidden state, along
with sample applications. Section 3 then introduces ker-
nel density-based time series models and their properties.
Parameter estimation is subsequently treated in Section 4.
Sections 5 and 6 present experimental results, while Section
7 concludes.

2 BACKGROUND

In this section we discuss Markov models and hidden-state
models for strictly stationary and ergodic sequence data,
and also address how the two approaches can be combined
to describe more complex natural processes.

2.1 Markov Models

Let the underline notation XT
1 = (X1, . . . , XT ) represent a

sequence of variables from a stochastic process. A process
satisfying

fXt | Xt−1
−∞

(
xt

∣∣∣ xt−1
−∞

)
≡ fXt | Xt−1

t−p

(
xt

∣∣∣ xt−1
t−p

)
; (1)

is said to be a Markov process of order p.2 The relation implies
that future evolution is conditionally independent of the
past, given the latest observations—the context or state xt−1

t−p.
In other words, the process has a short, finite memory,
and knowing the most recent samples suffices for optimal
prediction. p = 0 means that variables are independent. The
Bayesian network in Fig. 1a illustrates the between-variable
dependences when p = 2.

Continuous-valued Markovian data can be modelled
using linear as well as nonlinear models. Standard lin-
ear autoregressive (AR) and autoregressive moving-average
(ARMA) models are perhaps the most well-known. Among
nonlinear models one finds piecewise-linear, regime-
switching approaches such as self-exciting threshold au-
toregressive (SETAR) models [3], non-recurrent time-delay
neural networks (TDNN) [4], or kernel-based AR models
[5], [6]. Similar to regular AR models, the latter can be
made probabilistic by exciting them with a random process,
typically white noise.

All the above models are parametric, and can therefore
only converge on processes in their finite-dimensional para-
metric family. This may limit the achievable accuracy. As it
turns out, convergent, general-purpose models are possible
using nonparametric techniques. In Section 3 we highlight
and extend a simple but flexible approach based on kernel
density estimation, drawing on [7] and [8]. The technique is
asymptotically consistent for stationary and ergodic Markov
processes3 [10] despite having only a single free parameter,
and outperforms traditional methods on multiple datasets.

2. We will use capital letters to denote random variables (RVs),
letting lower-case letters signify observations, i.e., specific, nonrandom
outcomes of RVs.

3. Not all nonparametric Markov models have this general conver-
gence property, the residual bootstrap of [9] being one counterexample.

Xt−2 Xt−1 Xt Xt+1

(a) Second-order Markov model.

Xt−2 Xt−1 Xt Xt+1

Qt−2 Qt−1 Qt Qt+1

(b) Model with hidden state.

Xt−2 Xt−1 Xt Xt+1

Qt−2 Qt−1 Qt Qt+1

(c) Combined model.

Figure 1. Variable dependences in various sequence models. Xs de-
note observed process values while Qs are unobserved (hidden) state
variables.

2.2 Hidden-State Models

To capture long-range dependences, a Markov model may
require a high order, many parameters, and a large dataset
to provide a reasonable description. A more efficient ap-
proach is to use models with a hidden, unobservable state
variable Qt that governs time-series evolution. The state is
assumed to follow a Markov process, while the observed
process values, in turn, are stochastic functions fXt | Qt

of the current state alone. This dependence structure is
illustrated in Fig. 1b. In this framework, discrete state spaces
lead to hidden Markov models (HMMs) [11] and variants
thereof, while continuous state spaces yield Kalman filters
[12] and nonlinear extensions such as those presented in [13]
and [14].

Even though the hidden state Q satisfies the Markov
property, the distribution of the observed data X typically
cannot be represented by any finite-order Markov process.
This is clear, e.g., from the forward algorithm

fQt | Xt
t0

(
q
∣∣ xtt0) ∝ fXt | Qt

(xt | q)

·
∑
q′

P
(
Qt = q

∣∣ Qt−1 = q′
)
fQt−1 | Xt−1

t0

(
q′
∣∣∣ xt−1

t0

)
(2)

for state inference in HMMs [11], which recursively de-
pends on all previous samples. Hidden-state models can
thus integrate predictive information over arbitrary lengths
of time, providing efficient representations of long-range
signal structure such as, for instance, the order of sounds
in speech signals or different chart patterns in financial
technical analysis. At the same time, efficient inference is
possible for HMMs using the forward-backward algorithm
[11].

Like the components in a mixture model, the discrete
state of hidden-Markov models essentially partitions the
data into different subsets, each explained by a different
distribution. This can capture more detail in the data dis-
tribution than can a single component. HMMs furthermore
model how components correlate across time, making them
capable of representing series data.

2.3 Combined Models

Real-world data series often exhibit both short-range corre-
lations and long-range structure. In theory, this can be rep-
resented by a discrete-state HMM given a sufficient number
of states, but in practice that number may be prohibitively
large. We see that HMMs trade the limited memory range
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of Markov models for a limited memory resolution (a finite
state space).

To get the best of both worlds, Markovian observation
dependences and hidden-state dynamics can be combined
within a single model. This results in a model structure as
illustrated in Fig. 1c, where between-sample dependences
follow a Markov process with properties determined by the
hidden state. Such a structure is seen in, e.g., GARCH mod-
els [15] from econometrics, or in SETAR models driven by
an unobservable Markov chain (so-called Markov switching
models [3], [16]). The addition of dynamic features (velocity
and acceleration) to ordinary HMMs—a common practice
in acoustic modelling of speech [17]—can be viewed as a
method for adding implicit between-frame correlations. Au-
toregressive HMMs (AR-HMMs) [18] and trajectory HMMs
[19] are similar models that make these dependences ex-
plicit. We will use AR-HMMs as a baseline since they are
based on standard AR models and have a directed structure
that allows efficient sampling and parameter estimation.

The Markovian part in a combined model typically
captures simple and predictable local aspects of the data,
such as continuity, allowing the hidden state to concen-
trate on more complex, long-range interactions. In acoustic
modelling of speech, e.g., [19], [20], dynamic features cap-
ture correlations between analysis frames due to physical
constraints on the motion of speech articulators, while the
hidden states are based on a language model (e.g., n-grams)
and account for grammar and other large-scale language
structures.

As a major contribution of this article, we extend kernel
density-based Markov models as used in [8], [21] with a
hidden state. This is found to improve the distribution-
prediction performance for held-out data over comparable
parametric approaches such as AR-HMMs.

3 KDE MODELS FOR TIME SERIES

In this section, we first review kernel density estimation
of probability distributions, and how it can be adapted to
describe and generate Markovian processes. Novel models
with hidden state are introduced in Section 3.5.

From now on, we will use the letters y and x to denote
training data and test data, respectively.D represents a set of
training data, e.g., a training data sequence D = yN

1
, while

boldface signifies vector-valued variables.

3.1 Kernel Density Estimation
Kernel density estimation (KDE) or Parzen estimation, intro-
duced in [22], [23] and discussed in more detail in [24],
is a nonparametric method for estimating a D-dimensional
probability density fX from a finite sample D = {yn}

N
n=1,

yn ∈ RD , by convolving the empirical density function with
a kernel function k (r). The resulting estimated pdf can be
written as

f̂X (x | D; h) =
1

N

N∑
n=1

1

hD
k

(
1

h
(x− yn)

)
, (3)

where the bandwidth h > 0 is a scale parameter adjusting the
width of the kernel.

We see that the KDE in (3) always defines a proper
density if we require that k (r) ≥ 0 and that k (r) integrates

to one. For technical reasons we also require the first mo-
ment

∫
rk (r) dr to be zero and that the second moment∫

rrᵀk (r) dr is bounded. A wide variety of kernels exists,
with the squared-exponential or Gaussian kernel

k (r) =
1√
2π

exp

(
−1

2
rᵀr

)
(4)

being a common example. For simplicity, we generally as-
sume that the kernel factors across dimensions as

k (r) =
D∏
d=1

kd (rd) ; (5)

this is known as a product kernel. Furthermore, we often take
all component functions kd (·) to be identical.

The bandwidth h controls the degree of smoothing the
KDE applies to the empirical distribution function. Band-
width selection, the task of choosing this h, is key to KDE
performance. With an appropriate adaptive bandwidth se-
lection scheme, such that h → 0 while NhD → ∞ as
N → ∞, KDE can be shown to converge asymptotically
on the true probability density function in a mean-squared
error sense, regardless of k. (Kernel shape k (·) is less impor-
tant, with many standard choices yielding near-optimal per-
formance [25].) Essentially, given an ever-growing collection
of progressively more localized basis functions with centres
drawn from fX , we can eventually represent arbitrarily
small details in the pdf. Moreover, KDE attains the best
possible convergence rate for nonparametric estimators [26],
assuming optimal bandwidth selection.

In practice, KDE finite-sample performance depends
heavily on the data and the particular bandwidth cho-
sen. Smooth distributions are typically easy to learn and
can use large h, whereas complicated distributions require
more data and narrow bandwidths to bring out the details.
Consequently, there are many techniques for choosing the
bandwidth in a data-driven manner: see, e.g., [27] or [28]
for reviews.

3.2 Kernel Conditional Density Estimation

We now consider how to approximate Markov processes.
Using the Markov property (1), the density function for a
univariate sequence xT1 from a general stationary nonlinear
Markov process of order p can be written

fXT
1

(xT1 ) = fXp
1

(xp1)
T∏

t=p+1

fXp+1 | Xp
1

(
xt

∣∣∣ xt−1
t−p

)
. (6)

It is sufficient to specify the stationary conditional next-step
distribution fXp+1 | Xp

1
to uniquely determine the x-process

and its associated stationary distribution fXp
1
. A key idea

in this paper is to use KDEs, specifically kernel conditional
density estimation (KCDE), to estimate this conditional distri-
bution from data.

Given two variablesX ∈ RD andX ′ ∈ RD
′

and a kernel
density estimate f̂X,X′

(
x, x′

)
of their joint distribution

fX,X′ from training data pairs
{(
yn, y

′
n

)}N
n=1

, the estimate
f̂X,X′ also induces a conditional distribution

f̂X | X′
(
x
∣∣ x′; h, h′) =

f̂X,X′
(
x, x′; h, h′

)∫
f̂X,X′ (ξ, x′; h, h′) dξ

(7)
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=
N∑
n=1

kX′
(

x′−y′n
h′

)
∑N
n′=1 kX′

(
x′−y′

n′
h′

) 1

hD
kX
(x− yn

h

)
; (8)

this is the KCDE for fX | X′ [10], [21], [29]. (We have
assumed that the kernel factors between X and X ′.)

The estimator in (8) is (MSE) consistent if bandwidths
satisfy h, h′ → 0 and NhDh′D

′
→ ∞ when N → ∞. As

always, this flexibility and consistency comes at a price of
increased computational complexity and memory demands
over parametric approaches, since all N data points typi-
cally must be stored and used in calculations, making, e.g.,
bandwidth selection scale as N2. Fortunately, approximate
k-nearest neighbour techniques can be used to accelerate
KDE computations. Reference [30] describes a method based
on dual trees yielding speedup factors up to six orders of
magnitude for KDE likelihood computation on 10,000 points
from a nine-dimensional census dataset.

3.3 KDE Markov Models
Let yN

1
be a sampled data sequence (time series) from a

stationary, ergodic Markov process of interest. Since yN
1

can be seen as a set of samples D =
{
yn
n−p

}N
n=p+1

from

the stationary distribution of Xp+1
1 , we can apply KCDE

to estimate the conditional next-step distribution in (6).
Restricting ourselves to product kernels where all kd (·) are
identical and use the same bandwidth (this is appealing
since f̂Xp+1

1
is stationary), this KCDE next-step distribution

takes the form

f̂Xp+1 | Xp
1

(
xt

∣∣∣ xt−1
t−p; h

)
=

1

h

∑N
n=p+1

∏p
l=0 k

(
xt−l−yn−l

h

)
∑N
n=p+1

∏p
l=1 k

(
xt−l−yn−l

h

) .

(9)

(Sequences of vectors are a straightforward extension.)
Eq. (9) defines a Markov model which approximates

the data-generating process. We will call this construction
a KDE Markov model (KDE-MM), and will write X̂ to
distinguish variables generated from the KDE-MM next-
step distribution f̂Xp+1 | Xp

1
in (9) from X , data distributed

according to the reference process defined by fXp+1 | Xp
1

in
(6).4

The use of conditional distributions based on KDE to
describe first-order (p = 1) Markovian data dates back to

4. Although by definition f
X̂p+1 | X̂

p

1

≡ f̂Xp+1 | X
p
1
, the stationary

distribution f
X̂

p+1

1

of X̂ induced by (9) need not necessarily match

the original KDE pdf f̂Xp+1
1

. This is because f̂Xp+1
1

typically cannot
be a stationary distribution, as its marginal distributions f̂Xl

for l ∈
{1, . . . , p+ 1} are based on different sets of kernel centres (datapoints)
{yn+l}N−p

n=1 and thus are unlikely to be identical.
If we wish to ensure that f

X̂
p+1

1

≡ f̂Xp+1
1

, it is sufficient to perform
periodic extension of the data series for non-positive indices, so that
y−n ≡ yN−n (reminiscent of periodic extension in Fourier analysis),
and change the summations over n in (9) to start at n = 1 rather than
at p + 1. This makes all marginal distributions f̂Xl

identical, though it
may introduce out-of-character behaviour into X̂ in case the beginning
and end of the training sequence do not match up well. Stationarity is
easily verified by computing f̂Xp+1

2
=

∫
f̂Xp+1 | X

p
1
f̂Xp

1
dx1.

We have implemented the periodic extension for all KDE-MMs (but
not KDE-HMMs) in our experiments. However, (9) will always define
a proper stationary stochastic process even if this is not done.

Xt−2 Xt−1 Xt Xt+1

Zt−2 Zt−1 Zt Zt+1

Figure 2. Variable dependences in a second-order KDE-MM. The gen-
erating component Z is a latent variable.

[8], predating the KCDE paper [10]. At p = 1, our kernel
density-based Markov model coincides with the next-step
distribution in [8], assuming the latter uses a product kernel.
KDE-MMs can also be seen as a slight restriction of the
Markov forecast density (MFD), introduced for economics
by [31], when applied to one-step prediction (the meth-
ods differ in their predictions for multiple time-steps). The
maximum-likelihood-type parameter estimation algorithms
we later present in Section 4 are new, however.

Using KCDE to describe the next-step conditional distri-
bution has several advantages over parametric approaches.
To begin with, we inherit the asymptotic consistency proper-
ties of KDEs, and the probabilities f̂XT

1
of finite substrings in

X̂ converge on the true probabilities fXT
1

as N →∞ (under
certain regularity conditions and with appropriately chosen
bandwidths). Moreover, the approach only has a single free
parameter, h.

As with other nonparametric models, a potential down-
side of KDE-MMs is that per-point computational costs scale
linearly with database size N . At the same time, N may
need to be large for KDE-based methods to overtake fast-to-
converge but asymptotically biased parametric models.

3.4 KDE-MM Data Generation

Eq. (9) can be rewritten as

f̂Xp+1 | Xp
1

(
xt

∣∣∣ xt−1
t−p; h

)
=

N∑
n=p+1

κn
(
xt−1
t−p; h

) 1

h
k
(xt − yn

h

)
(10)

κn
(
xt−1
t−p; h

)
=

∏p
l=1 k

(
xt−l−yn−l

h

)
∑N
n′=p+1

∏p
l=1 k

(
xt−l−yn′−l

h

) , (11)

which can be interpreted as a mixture model with context-
dependent weights. To generate a new datapoint given
the context xt−1

t−p, one selects a mixture component Zt ∈
{p+ 1, . . . , N} according to the weights κn

(
xt−1
t−p; h

)
. For

KDE-MMs this component zt corresponds to an index into
the database D, identifying an exemplar yzt upon which we
base the sample at t. xt is then generated from yzt with k-
shaped noise added:

P
(
Zt = n

∣∣∣ Xt−1
t−p = xt−1

t−p; h
)

= κn
(
xt−1
t−p; h

)
(12)

f̂Xp+1 | Zp+1, X
p
1

(
xt

∣∣∣ n, xt−1
t−p; h

)
= (13)

f̂Xp+1 | Zp+1
(xt | n; h) =

1

h
k
(xt − yn

h

)
. (14)

This staggered structure is illustrated in Fig. 2 for a second-
order model (p = 2). The procedure is also simple to
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implement in software. It is easy to see that

f̂Xp+1 | Xp
1

(xp+1 | xp1) ≤ max
yn∈D

1

h
k
(xp+1 − yn

h

)
, (15)

regardless of context xp1. This bounds the tails of f̂Xt
, so

the X̂-process has as many finite moments as the kernel
function does, ensuring stability.

The bandwidth h affects the character of the generated
data in two ways. With a sufficiently narrow bandwidth,
and assuming k has exponentially decreasing tails, the
weight distribution κn

(
xt−1
t−p
)

for zt will strongly favour the
one n that minimizes ‖xt−1

t−p−y
n−1

n−p‖; call this component n?.
Since the added k-shaped noise in (14) has small variance,
we have xt ≈ yn? in the typical case. This makes sam-
pled sequences closely follow long segments of consecutive
values from the training data series. If h is increased, the
weight distribution becomes more uniform, and sampled
trajectories will increasingly often switch between different
training-data segments, but the amount of added noise also
grows. In Markov forecast densities and in KDE-HMMs
as presented in the next section, the two roles of context
sensitivity and additive noise level are assigned to separate
parameters.

The idea of creating new samples by concatenating old
data is reminiscent of the common block bootstrap for
time series [32], albeit more refined, since the KDE-MM
preferentially selects pieces that fit well together; this has
advantages for the asymptotic convergence rate of bootstrap
statistics [33]. Indeed, both [8] and [31] apply a bootstrap
perspective when introducing KDE-based methods. The
KDE-MM approach is also similar to waveform-similarity-
based overlap-add techniques (WSOLA) [34] from signal
processing, although these do not model probability distri-
butions.

3.5 KDE Hidden Markov Models

Being Markov models, KDE-MMs capture short-range cor-
relations in data series, but are not well-equipped to de-
scribe long-range memory or structure such as the sequen-
tial order of sounds in a speech utterance, as discussed in
Section 2. To remedy this, we introduce a hidden (unobserv-
able), discrete state variable Qt ∈ {1, . . . , M} to the model
in (9). Qt is governed by a first-order Markov chain. This re-
sults in hidden Markov models where the state-conditional
output distributions are given by KDEs, specifically KDE-
MMs. In other words, the current state Qt determines which
of a set of M KDE-MMs is used to generate the next
sample value of the process. This construction is completely
analogous to the setup of AR-HMMs [18], but with KDE-
MMs instead of linear AR models. We call the new models
kernel density hidden Markov models, or KDE-HMMs.

In this paper, we will work with models that, given the
current state Qt = q and context xt−1

t−p, have the form

f̂Xt | Qt, X
t−1
t−p

(
xt

∣∣∣ q, xt−1
t−p; K

)
=

N∑
n=p+1

κqn
(
xt−1
t−p; K

) 1

hq0
kq0

(
xt − yn
hq0

)
(16)

Xt−2 Xt−1 Xt Xt+1

Zt−2 Zt−1 Zt Zt+1

Qt−2 Qt−1 Qt Qt+1

Figure 3. Variable dependences in a first-order KDE-HMM. The state Q
and component Z are unobserved latent variables.

κqn
(
xt−1
t−p; K

)
=

wqn
∏p
l=1 kql

(
xt−l−yn−l

hql

)
∑N
n′=p+1 wqn′

∏p
l=1 kql

(
xt−l−yn′−l

hql

) .

(17)

K here denotes the set of KDE parameters, K =
{hql, wqn} for q ∈ {1, . . . , M}, l ∈ {0, . . . , p}, and n ∈
{p+ 1, . . . , N}. The function of the weights wqn is to allow
the training data points to be assigned to different states.
This assignment can be either hard (binary) or soft, but
we require wqn ≥ 0 and

∑N
n=p+1 wqn = 1. We also allow

kernel functions kql and bandwidths hql to depend on the
state q and lag l considered. In addition to K, we also
have standard HMM parameters describing the hidden-
state evolution, specifically a matrix A ∈ RM×M of state
transition probabilities defined by

aqq′ = P
(
Qt+1 = q′

∣∣ Qt = q
)

. (18)

(Since the model is stationary and ergodic, the leading left
eigenvector π ∈ RM of A satisfying

∑
q πq = 1 defines the

stationary state distribution P (Qt = q) = πq of the Markov
chain. This also gives the initial state probabilities of the
model.) The full set of KDE-HMM parameters is thus θ =
{A, K}. In Section 4 we derive update formulas to estimate
these parameters from data.

To the best of our knowledge, models of the above form
have not been considered previously. KDE-HMMs general-
ize [8] and [31] by introducing hidden states (when M > 1)
and different kernels and bandwidths for every lag l. Our
proposal is also more general than HMMs with KDE out-
puts, dubbed KDE/HMM, previously investigated in [35].
We recover KDE/HMMs by setting p = 0, making samples
conditionally independent given the state sequence, similar
to Fig. 1b.

Like with KDE-MMs, the next-step distribution of KDE-
HMMs can be broken into two parts: one, κqn, choosing
an exemplar Zt ∈ {p+ 1, . . . , N} from D for the next
step, given the context xt−1

t−p and the current state qt, and
the other adding kernel-shaped noise around the selected
exemplar value yzt . The dependences among variables in
a KDE-HMM with p = 1 are illustrated in Fig. 3. Despite
the increased complexity, sampling is straightforward, and
efficient inference remains possible for all p using standard
forward-backward recursions. Specifically, past and future
values of Q and Z are conditionally independent given the
sequence x and the state qt at time t, as can be verified, e.g.,
using the algorithm in [36].

Adding a hidden state has several advantages. Aside
from the benefits discussed in Sections 2.2 and 2.3, the state
essentially partitions the space of contexts xt−1

t−p into regions
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associated with different models, thus allowing different
bandwidths for different situations. This can be a significant
advantage in many cases—even when the data-generating
process is Markovian—since it often is desirable to apply
different degrees of smoothing in the modes versus the tails
of distributions: see, for instance, [24] or [37], where the
latter’s filtering functions ρj (·) closely resemble our weights
wqn. Letting the bandwidth depend on the lag l furthermore
allows better representation of phenomena such as variable
(typically decreasing) predictive value of older samples, and
separates context sensitivity (hql for l > 0) from the added
noise (hql for l = 0) during sampling. This distinguishes
KDE-HMMs from KDE-MMs even if the number of states,
M , is one. As before, the advantages come at a price of
greater demands for data and computation, compared to
parametric approaches.

4 PARAMETER ESTIMATION

To use models in practice, we must identify parameters
that fit well for a given process of interest. In this section,
we consider bandwidth selection and parameter estimation
for KDE-MMs and KDE-HMMs. In particular, we derive
guaranteed-ascent maximum likelihood update equations
based on the EM-algorithm for the case of Gaussian kernels,
along with relaxed update formulas which converge faster
in practice.

4.1 Parameter Estimation Objective Function
Numerous principles have been proposed for choosing
bandwidths in a data-driven manner (see [27] and [28]
for reviews). In practice, the preferred scheme depends
on the data and on the intended application, including
the performance measure (loss function) of interest. In this
paper we concentrate on the classic Kullback-Leibler (or KL)
divergence from information theory,

DKL

(
fX

∣∣∣∣∣∣ f̂X) =

∫
fX (x) ln

fX (x)

f̂X (x)
dx, (19)

previously used with KDE in signal processing and ma-
chine learning by [35] and [30]. Minimizing DKL between
empirical and estimated distributions leads to traditional
maximum-likelihood (ML) parameter estimation, cf. [38].
While likelihood maximization is not considered appro-
priate for heavy-tailed reference densities fX [27], [39],
likelihoods are asymptotically a factor N faster to evalu-
ate compared to other bandwidth-selection criteria such as
integrated squared error [30].

The likelihood function is given by Eqs. (9) and (16)
applied to the training data sequence D = yN

1
, but it is not

appropriate to optimize this function directly. In the limit
where bandwidth goes to zero, the KDE f̂X shrinks to a
set of point masses (spikes) placed at the points in D and
the likelihood diverges to positive infinity. A similar issue
exists in common models such as Gaussian mixture models
(GMMs) and Gaussian-output HMMs: by dedicating one
component or state to a narrow spike centred on a single
datapoint, arbitrarily high likelihood values can be achieved
[1, pp. 433–434].

With KDE, a standard workaround is to use cross-
validation, for every t omitting the component centred

at yt when computing the likelihood term at f̂X (yt; h).
This prevents points in the training data from “explain-
ing themselves” and removes the degenerate optimum at
zero. The resulting objective function f̃ is known as the
pseudo-likelihood. It can be shown that, under certain con-
ditions, maximizing the pseudo-likelihood asymptotically
minimizes the KL-divergence of KDE [40].

For simplicity, we exclude the first p points of all se-
quences, where the context is incomplete, from the KDE-
HMM likelihood evaluations in this paper. (KDE-MMs use
the periodic extension from footnote 4.) Using (17) and (16)
then leads to the pseudo-likelihood

f̃X
(
yN

1
; θ
)

=
∑
qN
p+1

∑
zNp+1

f̃X,Q,Z
(
yN

1
, qN
p+1

, zNp+1; θ
)

(20)

f̃X,Q,Z
(
yN

1
, qN
p+1

, zNp+1; θ
)

= P
(
QN
p+1

= qN
p+1

; A
)

·
N∏

t=p+1

(1− δztt)wqtzt
∏p
l=0 kqtl

(
yt−l−yzt−l

hqtl

)
hqt0

∑N
n=p+1, n6=t wqtn

∏p
l=1 kqtl

(
yt−l−yn−l

hqtl

) . (21)

The cross-validation terms (1− δztt) are introduced to set
the probabilities of sequences having zt = t to zero.

To reduce clutter, we will from now on take the indices
in expressions and summations to range as q ∈ {1, . . . , M},
l ∈ {1, . . . , p}, and t, n ∈ {p+ 1, . . . , N}, unless other-
wise specified. Primed indices follow the same limits as
unprimed ones.

4.2 Expectation Maximization for KDE-HMMs

As with other latent-variable models such as GMMs and
HMMs, direct analytic optimization of the (log) pseudo-
likelihood is infeasible due to the sums over latent variables
in (20). Instead, we seek an iterative optimization procedure
based on the expectation maximization (EM) algorithm [41],
by maximizing the auxiliary function

Q
(
θ′; θ̂

)
= E

(
ln f̃X,Q,Z

(
y, Q, Z; θ′

) ∣∣∣ X = y; θ̂
)

. (22)

Using Jensen’s inequality, one can prove that any revised
parameter estimate θ̂

(new)
satisfying

Q
(
θ̂

(new)
; θ̂
)
≥ Q

(
θ̂; θ̂

)
(23)

is guaranteed not to decrease the actual likelihood of the
data; this is used to establish convergence. In particular,
convergence does not require maximizing (22) at every
step, and procedures that increase Q without necessarily
maximizing it are termed generalized EM (GEM). Because
the pseudo-likelihood is equivalent to the regular likelihood
together with a specific cross-validation prior on Z, conver-
gence is assured also in our case.

At each EM iteration the shape of the auxiliary function
is determined by the conditional posterior distribution of
the latent variables Q and Z. For KDE-HMMs, the relevant
forward-backward recursions to determine the conditional
hidden-state distributions, also known as state occupancies,

γqt = P
(
Qt = q

∣∣∣ XN
1 = yN

1
; θ̂
)

(24)
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are identical to those of other HMMs with Markovian
output distributions, such as [18], apart from enforcing
P (Zt = t) = 0 ∀t due to cross-validation. The occupancies
are used to update the state transition probabilities A of the
KDE-HMM following standard HMM formulas available in
[11].

Determining conditional posterior distributions, or re-
sponsibilities, of the latent KDE component variables Zt is
similarly straightforward, and one obtains

%num
qnt = P

(
Zt = n

∣∣∣ Qt = q, Xt
t−p = yt

t−p; K̂
)

(25)

=
(1− δnt)κqn

(
yt−1

t−p; K̂
)
kq0

(
yt−yn
ĥq0

)
∑
n′ 6=t κqn′

(
yt−1
t−p; K̂

)
kq0

(
yt−yn′
ĥq0

) . (26)

The auxiliary function for weights and bandwidth parame-
ters K then takes the form

QK

(
K′; K̂

)
=

∑
q, t, n6=t

γqt%
num
qnt

(
lnw′qn −

1

2
lnh′q0

)

+
∑

q, t, n6=t

γqt%
num
qnt

p∑
l=0

ln kql

(
yt−l − yn−l

h′ql

)

−
∑
q, t

γqt ln

∑
n 6=t

w′qn
∏
l

kql

(
yt−l − yn−l

h′ql

) . (27)

Optimal values for the next-step bandwidths h′q0 are readily
identified [35] and are presented in (28) below. The weights
and context bandwidths (w′qn and h′ql for l > 0) present
an obstacle, however, as these appear in a negative term
with a sum inside a logarithm and cannot be optimized
analytically. Such terms are common in models that feature
conditional probabilities with renormalization, e.g., stan-
dard maximum mutual information (MMI) discriminative
classifiers [42].

To identify GEM updates ofK with Gaussian kernels we
construct a global lower bound Q

K
of QK in (27) which is

tight at K′ = K̂. Any updated parameters K′ that does
not decrease Q

K
is then guaranteed not to decrease the

true auxiliary function, and the key convergence relation
(23) remains satisfied. This approach is known as minorize-
maximization and can be seen as a generalization of EM [43].

While many bounds on log-sum-exp-type expressions
exist [44], we chose to base our bound Q

K
on so-called

reverse-Jensen bounds [45], [46]. These apply to Gaussian and
other exponential-family kernels that satisfy the conditions
of Lemma 2, page 139 in [46]. Importantly, the reverse-
Jensen bounds have the same parametric dependence onK′

as the other terms in Eq. (27), enabling us to to derive ana-
lytic expressions for the parameters K̂

(new)
that maximize

the lower bound Q
K

.
A mathematically similar application of reverse-Jensen

bounds to MMI training of HMM classifiers can be found
in [47]. The resulting updates resemble those produced by
a common MMI training technique called extended Baum-
Welch (EBW) [48], [49]. However, while standard EBW equa-
tions include a heuristically set [50] tuning parameter that
limits the update magnitude, the reverse-Jensen procedure
selects the tuning parameter automatically, requiring no
user intervention.

4.3 Generalized EM Update Formulas for KDE-HMM

For Gaussian kernels as in (4), maximizing the reverse-
Jensen lower bound yields the GEM update equations

ĥ
2(new)
q0 =

∑
t, n6=t γqt%

num
qnt (yt − yn)2∑

t, n6=t γqt%
num
qnt

(28)

ĥ
2(new)
ql =

Wqĥ
2
ql +

∑
t, n6=t γ

diff
qnt (yt−l − yn−l)2

Wq +
∑
t, n6=t γ

diff
qnt

(29)

ŵ(new)
qn =

Wqŵqn +
∑
t γ

diff
qnt

Wq +
∑
t, n′ 6=t γ

diff
qn′t

(30)

γdiff
qnt = γqt

(
%num
qnt − %den

qnt

)
(31)

Wq =
∑
t, n6=t

γqt
(
%den
qnt + ωhqnt + ωwqnt + ω′qnt

)
; (32)

the state occupancies γqt in these formulas are defined by
(24), while the responsibilities %num

qnt and the terms from the
reverse-Jensen bound follow (26) and

%den
qnt = P

(
Zt = n

∣∣∣ Qt = q, Xt−1
t−p = yt−1

t−p; K̂
)

(33)

=
(1− δnt)κqn

(
yt−1

t−p; K̂
)

∑
n′ 6=t κqn′

(
yt−1
t−p; K̂

) (34)

ωhqnt = 2G

(
1

2
%den
qnt

) p∑
l=1

(
ξhql

)2
(35)

ωwqnt = 4G

(
1

2
%den
qnt

)
ξwqn (36)

ω′qnt = %den
qnt max

(
max
l

(
ξhql

)
, ξwqn

)
(37)

ξhql = (yt−l − yn−l)2 ĥ−2
ql − 1 (38)

ξwqn = ŵ−1
qn − 1. (39)

The function

G (γ) =


(
γ−1
ln γ

)2
− 1

4 ln γ if γ < 1/6(
1/6−1
ln 1/6

)2
− 1

4 ln 1/6 + γ − 1
6 otherwise

(40)

follows Eq. (5.10) in [46, p. 99].
The update formulas in (28) through (30) should increase

the pseudo-likelihood except at local extreme points. Since

Wq +
∑
t, n6=t

γdiff
qnt > 0, (41)

the updated parameters are always well defined.

Prop. 1. Let θ̂
(i)

for i ∈ Z+ be a sequence of parameter estimates,
computed iteratively from D = yN

1
using the update procedure

above, and let f̃ (i) be the corresponding pseudo-likelihoods in Eq.
(20). Define the minimum separation dmin through

dmin = min
t, n6=t

|yt − yn| . (42)

Assume dmin is strictly positive and N > p + 1. Then
limi→∞ f̃ (i) exists.

The proof proceeds by establishing that the pseudo-
likelihood has a finite upper bound f̃max, and then showing
that f̃max ≥ f̃ (i+1) ≥ f̃ (i) ∀i, which ensures convergence.
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Table 1
Accelerated training of Guassian-kernel KDE-HMMs.

function TRAINKDE-HMM(yN
1
, Â, wqn, ĥq0, ĥql)

ξwqn ← 0

compute initial state distribution π̂ from Â
repeat

compute α̂qt, β̂qt, γqt using forward-backward [11]
re-estimate Â using standard formula [11]
recompute π̂ from Â
compute %numnt , %dennt using (26), (34)
compute γdiffqnt using (31)
compute ξhql using (38)
compute ω̃h

qnt, ω
′
qnt using (43), (37)

compute W̃q using (44)
re-estimate ĥq0, ĥql using (28), (29)

until convergence
return Â, wqn, ĥq0, ĥql

end function

4.4 Accelerated Updates

Studying the update equations, we see that the quantity
Wq limits the update step length: if Wq is large compared
to
∣∣∣∑t, n6=t γ

diff
qnt

∣∣∣, we have ĥ
(new)
ql ≈ ĥql, and similarly

for ŵ(new)
qn . Unfortunately, Wq often substantially exceeds∣∣∣∑t, n6=t γ

diff
qnt

∣∣∣ on large datasets, and the time required until
eventual convergence is then infeasibly long.

To reduce Wq and obtain formulas that produce larger
updates, one may let the weights wqn be fixed (as their
updates drive up theWq-factors the most) and only consider
updating the bandwidths. We can then set ξwqn = 0 in all
formulas. Moreover, we apply the approximation G (γ) ≈ γ,
which is the first of several steps involved in connecting
reverse-Jensen update formulas to standard EBW heuristics
[47]. This yields the approximate weights

ω̃hqnt = %den
qnt

∑
l

(
ξhql

)2
, (43)

and the associated relaxed Wq-factors

W̃q =
∑
t, n6=t

γqt
(
%den
qnt + ω̃hqnt + ω′qnt

)
. (44)

(It is important to remember that ω′qnt here should use
ξwqn = 0.) The resulting KDE-HMM training algorithm is
summarized in Table 1.

Since W̃q in (44) tends to be of roughly the same order of
magnitude as

∣∣∣∑t, n6=t γ
diff
qnt

∣∣∣, EM-training with W̃q instead

of Wq converges quite quickly. On the other hand, W̃q re-
mains sufficiently conservative to virtually always increase
the likelihood at every step in our experiments.

4.5 KDE-MM Bandwidth Selection

We now turn to consider the special case of KDE-MMs.
While bandwidth selection formulas for KDE-MM-like
models do exist in the literature, e.g., [51], these focus on
mean squared error rather than pseudo-likelihood. Since
KDE-MMs essentially are single-state KDE-HMMs with
fixed, uniform weights w1n = 1

N and all bandwidths tied
to be equal, the approach in this paper can also be used
to derive pseudo-likelihood maximization formulas for the

KDE-MM bandwidth h. Assuming a Gaussian kernel this
yields the iterative updates

ĥ2(new) =
Wĥ2 +

∑
t, n6=t

(
%num
nt (yt − yn)2 + p%diff

nt d
2
nt

)
W +

∑
t, n6=t

(
%num
nt + p%diff

nt

)
(45)

%diff
nt = %num

nt − %den
nt (46)

W = p
∑
t, n6=t

(
%den
nt + ωnt + ω′nt

)
(47)

ωnt = 2pG

(
1

2
%den
nt

)(
d

2
ntĥ
−2 − 1

)2
(48)

ω′nt = %den
nt max

(
d

2
ntĥ
−2 − 1, 0

)
(49)

d
2
nt =

1

p

∑
l

(yt−l − yn−l)2 . (50)

with %num
nt and %den

nt defined as in Eqs. (26) and (34), respec-
tively, but with all references to the state q omitted. Just
as for KDE-HMMs, the approximation G (γ) ≈ γ can be
introduced to obtain relaxed weights

W̃ = p
∑
t, n6=t

(
%den
nt + ω̃nt + ω′nt

)
(51)

ω̃nt = p%den
nt

(
d

2
ntĥ
−2 − 1

)2
(52)

which increase the stepsize of the updates. Alternatively, it
is straightforward to maximize the pseudo-likelihood using
general-purpose numerical optimization methods, as KDE-
MMs only have a single free parameter.

4.6 Initialization

Similar to traditional training schemes for HMMs, the pro-
posed parameter estimation schemes for KDE-MMs and
KDE-HMMs rely on iterative refinements, and thus require
initialization. For standard EM-training of models such as
HMMs and AR-HMMs, it is sufficient to provide an ini-
tial guess γ̂qt of the state occupancies given yN

1
to begin

estimating parameters. In contrast, our KDE-HMM update
formulas, like EBW, depend on previous parameter values.
Initial weights and bandwidth parameters must therefore be
assigned explicitly. We propose to set the weight parameters
based on state occupancies according to

ŵqn =
γ̂qn∑
n′ γ̂qn′

, (53)

as an estimate of the conditional component probabilities
P (Zt = n | Qt = q; θ). Initial bandwidths ĥq0 and ĥql can
then be set using the multidimensional KDE “normal refer-
ence rule” from [52], [53], with each point weighted accord-
ing to wqn, while the transition matrix may be initialized
based on co-occurrences,

âqq′ =

∑N−1
t=1 γ̂qtγ̂q′(t+1)∑N−1

t=1 γ̂qt
. (54)

Sometimes occupancy estimates γ̂qn for seeding the
model can be computed based on domain knowledge or
by inspecting the data. This approach will be used for the
experiments in this article. Another common principle is
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Table 2
Initialization of Gaussian-kernel KDE-HMMs.

function GAMMASTOKDE-HMM(yN
1
, γ̂qt)

compute Â using (54)
compute ŵqn using (53)
compute ĥq0, ĥql using weighted reference rule [52], [53]
return Â, ŵqn, ĥq0, ĥql

end function
function HMMTOKDE-HMM(yN

1
, an HMM λ)

compute γ̂qt from λ using forward-backward [11]
take Â from λ
compute ŵqn using (53)
compute ĥq0, ĥql using weighted reference rule [52], [53]
return Â, ŵqn, ĥq0, ĥql

end function

to base advanced models on faster, simpler methods, e.g.,
using k-means to initialize GMMs. For KDE-HMMs it is
natural to set γ̂qn = γ

(HMM)
qn , where γ(HMM)

qn are the state
occupancies of a trained parametric hidden-state model
such as an HMM or an AR-HMM.

The mechanics of KDE-HMM initialization are summa-
rized in Table 2. Given a trained model, the probability of
any given observation sequence under θ can be evaluated
with the forward algorithm, just like for regular HMMs [11].
Sequentially generating samples from the model is similarly
straightforward.

5 EXPERIMENTS ON SYNTHETIC DATA

To investigate the probabilistic modelling capabilities of
KDE-MMs and KDE-HMMs, we applied these techniques to
a selection of datasets, and compared their prediction per-
formance against other, standard time-series models repre-
senting the different time-dependence paradigms discussed
in Section 2.

In this section, we consider an application to synthetic
data, illustrating the strong, general asymptotic convergence
properties of KDE-based models, also for non-Gaussian pro-
cesses that baseline predictors cannot describe. Applications
to nonlinear real-life datasets are considered in Section 6.

5.1 Data Series

As a first test, we generated data from a simple reference
process having both hidden-state and Markovian depen-
dences as in Fig. 1c. Specifically, we used a first-order linear
AR-HMM with two states as the data source. We let both
state-conditional AR-processes have the same mean (zero)
and correlation coefficient 2/3, but gave one state a much
larger standard deviation for the driving noise (σ1 = 1
versus σ2 = 5). We can write this process as

Xt =
2

3
Xt−1 + σQt

Ut, (55)

where Ut is zero-mean, unit-variance white noise. A sym-
metric hidden-state transition matrix A was chosen, with
a probability aqq = 4/5 of staying in the same state, and
1 − aqq = 1/5 of switching to the other state at each time
step. This produced time series cycling through volatile and
quiescent periods, similar to stock market data.

We considered two variations of the above model, dif-
fering in the properties of the driving noise Ut. In the first

Table 3
Comparison of models used in the experiments. Hidden-state models

used M ≤ 15 states, with M = 1 equivalent to no hidden state. Explicit
Markovian dependences were of order p ≤ 10, with p = 0 equivalent to

no explicit Markovian dependence between observations.

Model Time dependence Added
type Hidden state Markov noise
AR no linear AR Gaussian

HMM yes no Gaussian
AR-HMM yes linear AR Gaussian
KDE-MM no KCDE, 1 bandwidth

KDE-HMM yes KCDE, M (p+ 1) bandwidths

application, we let Ut be i.i.d. standard normal distributed,
while in the second, we used independent samples from the
bimodal zero-mean Gaussian mixture

fUt
(u) =

1√
2πσU

1∑
c=0

exp

(
−1

2

(
u− (−1)c µU

σU

)2
)

(56)

µU =

√
36

37
, σU =

1√
37

, (57)

which also has unit variance.
For each of the two data sources above, five different

training data sizes N between N = 101.5 and N = 103.5

were considered. For each data size, 30 independent re-
alizations were generated of each process, along with 30
independent validation sets of T = 1000 samples.

5.2 Experiment Setup

We applied five different models to the datasets to inves-
tigate model convergence speed and asymptotic prediction
performance as a function of training data size. The tested
models were a first-order linear Gaussian autoregressive
model; a two-state Gaussian-output HMM; a two-state, first-
order Gaussian AR-HMM (combining the first two models);
a first-order KDE-MM trained by numerically optimizing
the pseudo-likelihood; and a two-state, first-order KDE-
HMM trained using the algorithm in Table 1. The models
are summarized in Table 3.

All hidden-state models in this paper, KDE-HMMs in-
cluded, were initialized based on estimated state occupan-
cies γ̂qn as outlined in Section 4.6. Because of the cyclic
nature of the data series considered, we found it natural to
compute γ̂qn based on estimates of the progression through
these cycles, i.e., by quantizing simple estimates of the
instantaneous phase. To be as fair as possible, the same
initial occupancy values were used across all hidden-state
models in a given experiment.

For the heteroscedastic data considered in this first ex-
periment, the state (discrete phase) of the variance cycle was
estimated based on the magnitude of process value changes.
We then assigned datapoints to low or high-volatility states
using the simple thresholding scheme

γ̂1n =


1 if n > 1 and |yn − yn−1| ≤ ∆th

1/2 if n = 1 (since y0 is undefinded)
0 otherwise

(58)

and γ̂2n = 1− γ̂1n, where

∆th = median {|yn − yn−1|}Nn=2 . (59)
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(b) GMM-driven AR-HMM data.

Figure 4. Median held-out set performance of parametric and nonparametric models from different paradigms as a function of training dataset size,
with error bars at 25% and 75% quantiles. The data was generated by a simple two-state, first-order AR-HMM, but the two figures differ in the
nature of the underlying driving noise.

Similar to KDE-HMMs, the single KDE-MM bandwidth
parameter was initialized based on the normal reference rule
[52], [53].

For each dataset generated, each of the five models we
consider was initialized and subjected to 500 iterations on
the training data (excluding linear AR models which do
not require iteration). The trained models were then asked
to compute the log-probability of the corresponding set of
separate but similarly generated validation data. Figs. 4a
and 4b illustrate the median validation set performance for
different training data sizes N on the two data sources,
with one curve for each method, surrounded by 25% and
75% quantile intervals. Higher log-probabilities are better;
an upper bound on expected performance is given by the
differential entropy rate of the data source.

5.3 Analysis

Despite the simplistic choice of weights wqn, KDE-HMMs
were capable of learning good models of autoregressive
hidden-state processes driven both by Gaussian noise as
well as by more general GMM noise, given a sufficient
amount of data. On the other hand, neither pure Markovian
nor pure hidden-state models were a good fit for GMM-
driven data, though the models are likely to improve in
asymptotic performance if more states or higher orders were
to be considered.

Unsurprisingly, parametric models converged faster
than KDE-HMMs, but provided inferior asymptotic perfor-
mance unless the data was generated by a model within
their particular parametric class. This is why Gaussian AR-
HMMs show good performance in the first figure, where Ut
happens to be Gaussian, but not in the second, where Ut
follows a GMM. In fact, all non-KDE models show reduced
asymptotic performance for the second dataset, even though
the underlying process has lower entropy rate, making it, in
principle, easier to predict. The issue is that the paramet-
ric models place the majority of their probability mass in
regions near the next-step conditional mean E

(
Xt+1

∣∣ xt1),
where the true pdf is quite small.

6 EXPERIMENTS ON REAL-LIFE DATA

In our second set of experiments, we investigated the
capabilities of KDE-MMs and KDE-HMMs for describing
several challenging natural processes of interest in nonlin-
ear prediction, and compared against baseline models. The
results affirmed the advantages of KDE-based techniques.
Moreover, the lag-dependent bandwidths and hidden-state
memory of KDE-HMMs were shown to improve on KDE-
MM performance for all datasets.

6.1 Data Series

For our first real-world application, we considered the laser
data (dataset A and its continuation) from the Santa Fe time-
series prediction contest described in [54]. This data was
also used in [55] and [5], for instance. The data consists
of integer-quantized intensity measurements from a laser
in a chaotic state. To avoid issues with degenerate likeli-
hoods due to coinciding points (a problem with all latent-
variable models considered) uniform noise over (−1/2, 1/2)
was added to the data.

A plot of the first 300 points of the laser data is provided
in Fig. 5a. The series shows oscillations, about seven samples
long, that slowly increase in magnitude, only to eventually
fizzle out and start over again.

The second data series consisted of raw AD-converter
values from an ECG signal sampled at 128 Hz, specifically
series 16265 in the MIT-BIH Normal Sinus Rhythm Database
from PhysioNet [56]. This data was previously considered
in [57]. Like the laser data, uniform noise was added to
counteract quantization effects. A plot of the first 300 points
of the data is provided in Fig. 5b. The data has the character-
istic ECG shape, showing regular, distinct pulses with lesser
activity in between.

For both datasets, the first N = 3000 points were used
for training and the N subsequent points for validation.

6.2 Markov-Model Experiment

A number of experiments were performed on each dataset.
In a first application, three different types of Markov models
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(e) Hidden Markov model performance on laser data.
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Figure 5. Training series and held-out set (natural) log-probability of various models for real-life data experiments. Standard AR models are dash-
dotted, HMMs and AR-HMMs are dashed, KDE-MMs are dotted, and KDE-HMMs are drawn solid. Asterisks mark the best model of each kind. In
the last two figures, colours reflect model order p.
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were compared. Specifically, linear AR-models, KDE-MMs,
and KDE-HMMs with a single state (so no long-range
memory) of orders p = 0 (corresponding to a conditional
independence assumption) through 10 were fitted to the
training data. The models were initialized as in Section 4.6,
but with γ1t = 1 since only a single state was used. Due
to the low dimensionality of the parameter space, Matlab
fminunc sufficed for optimizing KDE bandwidths.

After training, the models were asked to assess the
probability of the held-out validation data, with results as
shown in Figs. 5c and 5d. Higher probabilities are preferred,
as before. Apart from stochastic effects, increased held-out
set log-probability directly implies a proportional reduction
in KL-divergence, cf. (19).

The results of the Markov-model experiment high-
light the power of nonparametric approaches for nonlinear
datasets. KDE-MMs greatly outperform linear AR models
of the same order. Single-state (M = 1) KDE-HMMs, which
additionally offer lag-dependent bandwidths, are better still,
showing minor improvements over KDE-MMs everywhere
except at p = 0, where the two models coincide. Since the
nonparametric models use the information provided by the
context more efficiently, their performance saturates faster,
and at a higher level, as p increases.

The fact that general nonparametric density estimation
rapidly becomes more data-demanding in higher dimen-
sions [24] could be cause for concern, as our models concep-
tually are based on estimating fXp+1

1
using KDE. However,

the experiments show that high dimensionalities are not
as problematic as may have been anticipated, and KDE-
HMMs consistently work well all the way up to p+ 1 = 11-
dimensional contexts. One explanation is that KDE-HMMs
are capable of automatic relevance determination: by set-
ting hql large, the corresponding context values yn−l exert
negligible influence on the distribution of yn. Models can
thus ignore non-informative lags. (Linear AR-models have
similar abilities to exclude variables from consideration.)
The learned laser data bandwidth parameters were found
to be very wide for l > 6, consistent with this hypothesis.
KDE-MMs, in contrast, are constrained to use the same
bandwidths for all lags and may suffer when the context
includes variables of little predictive value, explaining the
performance roll-off after p = 6 in Fig. 5c.

6.3 Hidden Markov Model Experiment

Next, we investigated the benefits of adding a hidden state
to the various models. To do this, we trained both KDE-
HMMs and regular HMMs with Gaussian autoregressive
outputs (AR-HMMs [18]) of orders p = 0 through 3, with
M states, M ∈ {1, . . . , 15}, for each p. When p = 0,
the AR-HMMs reduce to ordinary HMMs with Gaussian
output distributions, while the KDE-HMMs resemble the
KDE/HMMs in [35]. Many Markov models in the previous
section are special cases for M = 1.

All the participating models were initialized using the
same scheme as in the previous experiments. Like in Section
5.2, initial state occupancies γ̂qt were based on the estimated
cycle state. To estimate the continuous instantaneous phase
for initialization, the peak of each oscillation cycle in the
data was extracted; by assuming consecutive peaks were

separated by a phase difference of 2π, instantaneous phase
values ϕ̂t for all t could be interpolated using cubic splines.
The initial occupancies were computed as a soft quantiza-
tion of this phase,

γ̂qt = max

(
0, 1− M

2π
min (∆ϕ̂qt, 2π −∆ϕ̂qt)

)
(60)

∆ϕ̂qt =

(
ϕ̂t − 2π

q − 1

M

)
mod 2π. (61)

This satisfies
∑
q γ̂qt = 1 for all t, as required, and provides

a sparse initialization where most γ̂qt-values are zero. The
setup promotes a hidden-state memory that tracks the cur-
rent position in the cycle, for instance biasing ECG pulses to
appear at regular intervals.

Following training, the log-probability of the held-out
dataset was computed under each model, with results as in
Figs. 5e and 5f. A number of trends are evident in these fig-
ures. First, combining the local continuity of Markov models
with the hidden state variable of HMMs as suggested in 2.3
increased the accuracy of both the parametric and the non-
parametric techniques. For a fixed p, increasing M typically
improved performance across all models. This is especially
clear when going from M = 1 to M = 2, but we also
note that hidden-state model performance at high M ex-
ceeds the asymptotic levels attained by the Markov-models
in Figs. 5c and 5d, even though these used considerably
higher p-values. Conversely, given a fixed M , increasing p
often proved beneficial, particularly at low orders. In other
words, more parameters tended to help, both for the linear,
parametric baseline models and for KDE-HMMs.

Most importantly, even though the weaker linear AR
models obviously had the most to gain from adding a
hidden state, the figures show that KDE-HMMs provided
greater accuracy than parametric models of similar order p
and state-set size M . This is true for all graphs in Fig. 5f,
and for the laser results in 5e once p ≥ 2.5

For the ECG data in 5f, KDE-HMM behaviour at p ≥ 1
appears somewhat inconsistent, in that performance seems
to fluctuate between two distinct levels, one noticeably
better than the other. This suggests that the maximization
procedure, being sensitive to initialization, sometimes con-
verged to local optima of inferior quality. Despite the fluctu-
ations, KDE-HMMs always outperform their matching AR-
HMM counterparts for all (M, p) combinations in the figure.

As discussed in Section 2.2, the addition of a hidden
state helps both by partitioning the context-space and by
providing long-range memory. The results show that such
partitioning is useful for all model types, but especially ben-
efits weaker models like Gaussian, linear AR, by enabling
a crude form of nonlinearity where different parts of the
data are described by different models. KDE-HMMs further
improve on parametric hidden-state approaches by relaxing
assumptions on distributions and within-state linearity.

Data partitioning also gives KDE-HMMs an edge over
KDE-MMs, since it allows for context-dependent band-
widths. This is illustrated by Fig. 6, displaying a scatter plot
of the laser training data, with each datapoint coloured by

5. Given how regular the laser data is, having p ≥ 2 context values
is highly informative, as it not only reveals the most recent value of the
process, but also in which direction it is changing and how rapidly.
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Figure 6. Scatter plot illustrating state-dependent kernel widths ĥq̂nl of
KDE-HMM trained on the laser data. Colours are based on datapoint
state assignment q̂n = argmaxqγqn. The swirly pattern of the data is
due to structure in the strange attractor.

state assignment (q̂n = argmaxqγqn) for the best-performing
KDE-HMM (M = 15, p = 3). Drawing each point as
an ellipse centred on (yn−1, yn) with axes dimensioned
according to ĥq̂nl, we can confirm that the trained model
adaptively uses wider bandwidths in regions where data
is sparse, but employs narrower bandwidths to bring out
detail in more concentrated regions. A KDE-MM, in con-
trast, cannot do this, and is forced to use a wide compromise
bandwidth throughout.

As anticipated, parametric models were faster to work
with throughout the experiments, since their computa-
tional demands per training iteration are linear in N ,
whereas KDEs with pseudo-likelihood maximization scale
as O

(
N2
)
. We envision that additional approximations,

particularly in the style of [30], will be essential to fast com-
putation in large-scale applications. We also expect KDE-
HMM accuracy would improve further, and the top-left dip
in the performance curves in Fig. 5e could be eliminated, if
the weights wqn could be trained efficiently.

7 CONCLUSIONS AND FUTURE WORK

We have described KDE-MMs and KDE-HMMs as nonlin-
ear, nonparametric models of stochastic time series. Unlike
traditional parametric approaches, these models can repre-
sent a broad class of continuous-valued stochastic processes,
including all Markov processes. We also detailed how the
models can be trained, and demonstrated good modelling
performance in applications to synthetic and natural data.

For future applications it is especially compelling to
investigate the use of KDE-HMMs in speech synthesis. The
KDE-HMM data-generation mechanism, which in essence
concatenates datapoints from the training material in a
context-sensitive manner, is evocative of concatenative
speech synthesis as popularized by [58], except that KDE-
HMMs also are fully probabilistic. This is promising, seeing
that synthesis techniques based on probabilistically-guided
exemplar concatenation have produced leading results in
recent speech-synthesis challenges [59], [60].
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