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Abstract
Series data, sequences of measured values, are ubiquitous. Whenever ob-
servations are made along a path in space or time, a data sequence results.
To comprehend nature and shape it to our will, or to make informed de-
cisions based on what we know, we need methods to make sense of such
data. Of particular interest are probabilistic descriptions, which enable us
to represent uncertainty and random variation inherent to the world around
us.

This thesis presents and expands upon some tools for creating prob-
abilistic models of sequences, with an eye towards applications involving
speech and language. Modelling speech and language is not only of use for
creating listening, reading, talking, and writing machines—for instance al-
lowing human-friendly interfaces to future computational intelligences and
smart devices of today—but probabilistic models may also ultimately tell
us something about ourselves and the world we occupy.

The central theme of the thesis is the creation of new or improved models
more appropriate for our intended applications, by weakening limiting and
questionable assumptions made by standard modelling techniques. One
contribution of this thesis examines causal-state splitting reconstruction
(CSSR), an algorithm for learning discrete-valued sequence models whose
states are minimal sufficient statistics for prediction. Unlike many tradi-
tional techniques, CSSR does not require the number of process states to
be specified a priori, but builds a pattern vocabulary from data alone, mak-
ing it applicable for language acquisition and the identification of stochastic
grammars. A paper in the thesis shows that CSSR handles noise and errors
expected in natural data poorly, but that the learner can be extended in a
simple manner to yield more robust and stable results also in the presence
of corruptions.

Even when the complexities of language are put aside, challenges re-
main. The seemingly simple task of accurately describing human speech
signals, so that natural synthetic speech can be generated, has proved dif-
ficult, as humans are highly attuned to what speech should sound like. A
pair of papers in the thesis therefore study nonparametric techniques suit-
able for improved acoustic modelling of speech for synthesis applications.
Each of the two papers targets a known-incorrect assumption of established
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methods, based on the hypothesis that nonparametric techniques can better
represent and recreate essential characteristics of natural speech.

In the first paper of the pair, Gaussian process dynamical models
(GPDMs), nonlinear, continuous state-space dynamical models based on
Gaussian processes, are shown to better replicate voiced speech, with-
out traditional dynamical features or assumptions that cepstral param-
eters follow linear autoregressive processes. Additional dimensions of
the state-space are able to represent other salient signal aspects such as
prosodic variation. The second paper, meanwhile, introduces KDE-HMMs,
asymptotically-consistent Markov models for continuous-valued data based
on kernel density estimation, that additionally have been extended with a
fixed-cardinality discrete hidden state. This construction is shown to pro-
vide improved probabilistic descriptions of nonlinear time series, compared
to reference models from different paradigms. The hidden state can be used
to control process output, making KDE-HMMs compelling as a probabilistic
alternative to hybrid speech-synthesis approaches.

A final paper of the thesis discusses how models can be improved even
when one is restricted to a fundamentally imperfect model class. Mini-
mum entropy rate simplification (MERS), an information-theoretic scheme
for postprocessing models for generative applications involving both speech
and text, is introduced. MERS reduces the entropy rate of a model while
remaining as close as possible to the starting model. This is shown to
produce simplified models that concentrate on the most common and char-
acteristic behaviours, and provides a continuum of simplifications between
the original model and zero-entropy, completely predictable output. As the
tails of fitted distributions may be inflated by noise or empirical variability
that a model has failed to capture, MERS’s ability to concentrate on high-
probability output is also demonstrated to be useful for denoising models
trained on disturbed data.

Keywords: Time series, acoustic modelling, speech synthesis, stochas-
tic processes, causal-state splitting reconstruction, robust causal states, pat-
tern discovery, Markov models, HMMs, nonparametric models, Gaussian
processes, Gaussian process dynamical models, nonlinear Kalman filters,
information theory, minimum entropy rate simplification, kernel density es-
timation, time-series bootstrap.
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Introduction

1 The Importance of Sequence Modelling
In the last few centuries, human society has evolved at a pace unprecedented
in the historical record. This development has propelled humanity from a
pre-industrial civilization to a technologically advanced information society,
leaving nary any aspect of life untouched.

A driving force in the recent societal evolution has been broad and sys-
tematic application of the scientific method of iteratively forming hypotheses
and validating these against natural data, rather than relying on intuition
and subjective beliefs alone. Identifying more accurate and appropriate
models of observed patterns and phenomena has allowed scientists and en-
gineers to better predict and shape the world. Such breakthroughs, in turn,
have enabled data collection of higher accuracy and greater scope than be-
fore, creating a feedback loop. Along the way, scientists and engineers have
amassed an ever-growing toolchest of methods for analyzing and describing
natural data. The purpose of this thesis is to present and expand on some
of these tools relevant for probabilistic sequence modelling.

1.1 Probability Theory

Since the beginning of the 20th century, probability theory has seen rapid
development and risen to prominence as an invaluable modelling tool in
applied sciences. Important early milestones of probability theory include
the presentation of Hilbert’s so-called sixth problem—a call [1], in 1900, to
put physics (including probabilities) on a firm mathematical basis—followed
by Kolmogorov’s subsequent axiomatization of probability theory [2] in the
1930s. Today, probability theory and randomness sit at the heart of our
gold-standard physical theories of the universe, as a key component of quan-
tum mechanical models. The famous Schrödinger equation, for instance, is
of fundamentally stochastic nature.

Probability theory has also seen widespread application far beyond
the microcosmic realm. An important early promoter of applications of
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probability theory outside physics was the biologist and statistician Sir
R. A. Fisher. At any scale, the real world is fraught with uncertainty, as is
the data we gather from it. Probability theory, which provides a principled
method to represent, quantify, and perform computation under uncertainty,
is therefore of interest.1 Some, such as Jaynes [4], have taken this reasoning
further, and interpret probability theory as an extension of logic to the case
where we do not have sufficient information. Cox’s theorem [5, 6] is an
attempt to derive this correspondence from first principles.

At present, probability theory permeates much of the scientific theory
and methodology in many fields of science—natural and social—including
speech and language as considered in this thesis.

1.2 Overview of Sequence Data Applications
Time-dependent data series are everywhere. They are in the stars, and in
the Earth. They appear in our society, and within ourselves. In astron-
omy, we encounter series showing periodic patterns of sunspots [7] or the
transient intensity profiles of gamma ray bursts and many other sources [8].
In geology and meteorology, time dependence is ubiquitous in, for instance,
temperature series and rainfall data [9, 10]. In biology and ecology, time se-
ries map the rise and fall of predator and prey populations [11], and appear
as sampled acoustic recordings of marine and terrestrial life [12]. In military
as well as civilian life, sonar and radar data take the shape of time series.
In economy and finance, time chronicles the wealth of nations as well as the
fluctuating prices of stocks and other financial instruments [13, 14, 15]. In
social sciences, political approval ratings and crime statistics, for instance,
change over time [16]. In physiology and medicine, electrocardiograms and
electroencephalograms are some well-known time-dependent signals, as are
epidemiological data. In culture and entertainment, series data manifes-
tations include music (scores and performances), motion-capture data for
computer graphics, as well as sports results.

Not all series data are necessarily time-dependent, either. The base-pair
sequences in DNA and RNA are important examples of dataseries indexed
by space rather than time. Other non-temporal examples include quantities
measured along spatial paths, for instance elevation profiles of roads.

1.3 Applications in Speech and Language
A particularly rich trove of sequence data concerns human communication in
different forms, most prominently speech and text. Our interest in collecting
and analyzing such data is not surprising: we use speech and language to
express and communicate abstract thought. In essence, these processes

1Other techniques for quantifying uncertainty also exist, e.g., fuzzy logic, which allows
non-binary (partial) set membership [3].
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map out the spaces where our thoughts reside. There is even evidence that
language shapes our cognition [17], and language development has (through
the “social brain hypothesis”) been proposed as an intimate correlate of brain
size in human evolution [18].

Much research effort in signal processing, natural language processing,
linguistics, machine learning, and artificial intelligence has been devoted to
devising models of speech and text. Such models are also of interest in fields
such as neurobiology and psychoacoustics, for instance for speech perception
research [19].

In some cases, breakthroughs in speech and text modelling have ush-
ered in widespread social and societal changes. The speech modelling and
signal processing (source coding) necessary for compressing and transmit-
ting speech across cellular phone networks (e.g., CELP [20]), in particular,
has had substantial impact in shaping modern society. In other areas, the
promise of automatic speech and language processing technology has not
been realized in full, and is subject to ongoing research. This includes
many speech and language understanding tasks such as automatic speech
recognition, or text translation and summarization, where machines still
lag behind human performance considerably, except, perhaps, in the most
narrowly-defined tasks [21].2 Another interesting example is speech synthe-
sis, where artificial speech can be at least as intelligible as human speech,
while the naturalness of synthetic speech remains noticeably inferior to hu-
man speech [23, 24].

Interestingly, models and tools developed for speech and language data
have frequently been useful in other applications as well. In fact, speech
and language applications have been a driving force in the development of
several widely used sequence-modelling paradigms, such as Hidden Markov
models and the recent efforts to use deep neural networks for time series
modelling [25] (both of which will be discussed in later sections).

1.4 Thesis Disposition
As seen in section 1.2, series data comes from many sources, and our study
of such data can have many goals. Given the myriad applications, there ex-
ists a vast body of different techniques for modelling such data. Not every
method is suited to every application, however, and it is therefore important
to select an approach that is appropriate for the task at hand. Discrete-
valued data, for example, is typically handled using different methods than
continuous-valued series. More subtle differences between applications ex-
ist as well: for instance, it turns out that optimal parameter estimates in
resolution-constrained source coding are different from entropy-constrained

2The curious fact that computers excel at many tasks that cause humans great diffi-
culty, but have problems with tasks we humans find easy, is known as Moravec’s paradox
[22].
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coding [26]. One aim of this thesis is to also consider in which situations
different techniques are preferable, for instance in classification versus syn-
thesis applications.

The remainder of this thesis introduction provides a more in-depth
overview of sequence models with applications to speech and language.
Specifically, section 2 defines stochastic processes, and describes some prop-
erties that set sequence data apart from other datasets. Section 3 then
outlines characteristics that define various problem classes of interest, and
how we may use models to solve the problems in the face of uncertainty.
A taxonomy of different types of models is presented in section 4, followed
by a closer study of common sequence modelling paradigms and some asso-
ciated assumptions in section 5. Section 6 then discusses the surrounding
procedure and considerations involved in applying the models in practice.
Section 7, finally, sets the stage for the manuscripts that constitute the body
of the thesis and concludes the introduction by discussing the results and
relations between the papers.

2 The Data
The goal of this section is to introduce stochastic processes as a general
framework for representing sources of random sequence data. This entails
defining stochastic processes (sections 2.1 and 2.2), discussing finite and in-
finite duration data sources (section 2.3), and outlining the one-dimensional
between-sample dependence properties that distinguish discrete-time pro-
cesses from many other data sources (sections 2.4 and 2.5).

2.1 Preliminary Notation
We begin by introducing some standard notation. In the following, capi-
tal letters, e.g., X, denote random variables (RVs), while lower-case letters
identify specific, nonrandom realizations x of the random variables, for in-
stance an observed sample value. Boldface indicates (possibly) vector or
matrix-valued variables, scalars are non-bold, while curly fonts generally
identify sets. In particular, X will represent the state space of X, the set
of values the random variable can take, i.e., x 2 X .

The function f will represent both probability density functions (pdfs)
of continuous-valued random variables and probability density functions
(pmfs) of discrete-valued RVs, depending on context. To distinguish differ-
ent distributions, we will write, e.g., f

X

(x) to represent the pdf or pmf of
X evaluated at x. f

X

(x), f
X

(·), or the shorthand f
X

may sometimes be
used to represent the entire distribution, that is, the function evaluated at
all x 2 X . Conditional distributions, for example of X given ⇥ = ✓, are
written as f

X|⇥ (x | ✓), while f
X

(x; ✓) with a semicolon represents a de-
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pendence on a non-stochastic, but possibly unknown, quantity or parameter
✓; these two examples also illustrate how Bayesian and frequentist interpre-
tations are differentiated. The set of x for which f

X

(x) is nonzero is the
support of X: it is a (not necessarily strict) subset of X . Occasionally, the
somewhat loose notation {X} may be used in pdfs or pmfs to indicate a set
of random variables, each taking values on the same space X .

2.2 Stochastic Processes
Simply put, a stochastic process is a collection of possibly dependent random
variables X

t

that share the same observation space or state space, here X .
The variables in the set are indexed by elements t of some index set T , so
we can think of the stochastic process as the set {X

t

: t 2 T }. 3

A rigorous definition of a stochastic process requires a measurable space
(X , ⌃X ) and a probability space (⌦, ⌃⌦, f), where ⌦ is a sample space,
⌃S ✓ 2

S signifies a sigma algebra over a set S, and f : ⌃⌦ ! [0, 1] is a mea-
surable function assigning consistent probabilities to the events (elements)
in ⌃⌦. A stochastic process is then a set of random variables {X

t

: t 2 T }
taking values on X . For more on this formal treatment, see, e.g., [28].

Throughout this thesis, we will apply a probabilistic perspective, and
consider the data under examination to be generated by a stochastic process
of some sort. (This does not necessarily imply that one needs to use prob-
abilistic methods to solve sequence-related tasks later on.) Discrete-time
sequence data, specifically, is characterized by stochastic processes where
the index set is scalar, fully ordered, and discrete. We will assume that this
set is integer valued: either the positive integers for processes with a spe-
cific starting point, or all of Z for bi-infinite sequences. (Other index sets for
sequences can generally be mapped onto these in an order-preserving fash-
ion.) We will term the resulting stochastic processes time series models, in
contrast to time series, which are observed, nonrandom data sequences.4

Unlike the index set T , few constraints will be imposed on the set of
possible values X . Nevertheless, as with regular random variables, the na-
ture of the state space has a substantial impact on the nature of the pro-
cess, as well as what modelling techniques that are preferable. Generally

3An alternative interpretation is that a stochastic process is a function-valued random
variable, that is, a distribution over the space of functions x (t), where the index set
T defines the domain of the function while the state space X defines its range. This
“function-space view” can be particularly helpful for processes on continuous index sets,
such as Gaussian processes as discussed in [27].

4Note that continuous-time processes (T = R, say) can be sampled by picking out
a discrete subset of the random variables contained in the process. If limitations are
imposed on the set of possible realizations of the continuous process, the samples may
sometimes be sufficient for reconstructing the full, continuous time function—an example
is the case of equidistant sampling from a band-limited function, which can be recon-
structed perfectly from samples with a sufficiently high sampling frequency, as per the
sampling theorem [29].
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speaking, discrete-valued processes over finite alphabets are the simplest to
model, but countably infinite alphabets, e.g., X = Z, are also possible. For
continuous-valued processes, where X ✓ RD in general, it is common to
make assumptions on the marginal pdfs f

Xt (xt

) such as continuity or a
specific parametric shape.

As a point of notation, we will from now on write X to denote a discrete-
time sequence of random variables—typically distributed according to some
time series model—and x to signify a realized string of observations, e.g., a
sampled series. In particular, we may write X to represent the stochastic
process itself. In situations where we want to refer to particular random
variables or observations from the process, we shall write X

⌧

, where ⌧ ✓ T
is a set of time indices. The special notation

Xt2
t1

= (X
t1 , Xt1+1, . . . , Xt2) (1)

identifies a contiguous sequence or sample from t1 up to and including t2,
i.e., Xt2

t1
= X

⌧

with

⌧ = {t1, t1 + 1, . . . , t2} . (2)

The capital letter T is frequently used to denote the end time of a sequence;
thus XT

1 is a set of T random variables, not a vector transpose, which would
be written X|. In rare cases, we write x(n) to refer to a specific sequence
(the nth sequence in some set), in contrast to x

n

, which identifies a single
sampled value. The notation X , finally, identifies the set of all possible
sequences and sub-sequences with elements taking values on X ; essentially
X = X 2T (or a subset if only contiguous sub-sequences are considered), 2T
being the powerset of T , representing all possible index sequences.

2.3 Finite and Infinite Duration
Some practical data sources only generate observations for a short time,
and, as a consequence, the length of observed sequences x may be limited
by the source itself. Other processes keep going forever, at least in theory.
We distinguish these as finite-duration and infinite-duration stochastic pro-
cesses, respectively. We can define finite-duration processes based on infinite
duration processes with the positive integers as index set, where we also in-
troduce a special output (observation) symbol 0· , representing “no output.”
Finite-duration processes are then, in principle, the processes supported on

X fin =

n

x 2 {X [ 0·}T : t, t0 2 T ^ x
t

= 0· ^ t0 � t ) x
t

0
= 0·
o

, (3)

the set of infinite sequences where all values beyond the first 0· also are 0· .
Since 0· represents no output and the sequence ending, one generally works
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with finite sequences xT

1 in practice; whether the considered sequence actu-
ally ended at T , or potentially continues beyond that point, is sometimes
ambiguous and has to be inferred from the context.

Finite-duration sequences can be created by chopping up infinite-
duration sequences at specific points, or otherwise extracting finite segments
from an infinite series, ignoring any dependences between the segments.
Sentences, for instance, are often seen as realizations of a finite-duration
process, even if they are part of a continuous stream of text or speech.

2.4 Sample Interdependence
While many elementary probability-theory problems assume that data sam-
ples are mutually independent, stochastic processes can be used as a frame-
work for representing dependence between a set of comparable observations.
Since it is common in practice for data samples to exhibit interdependence,
stochastic processes are very useful modelling tools.5

Dependence between variables, as for instance described by stochastic
processes, is a double-edged sword. If X and Y are two independent random
variables, then the joint probability density function factors as

f
X,Y

(x, y) ⌘ f
X

(x) f
Y

(y) . (4)

For dependent variables, this is no longer true. This complicates learning,
as a dependent pdf essentially has to be learned for all pairs (x, y), which is
generally more difficult—compare the pmf f

X

(x) f
Y

(y) of two independent
discrete random variables on an N -symbol alphabet, which has 2 (N � 1)

degrees of freedom, against the general joint pmf f
X,Y

(x, y) which has
N2 � 1.

Another effect when samples covary is that each new sample contains
less new information because of the redundancy. Consider the extreme case
when samples are known to be totally dependent, such that X

t

= X1 8t 2 T :
Here, all samples will have the same value, and no sample beyond the first
observation contributes any additional information about f

Xt . Hence we
cannot accurately infer, e.g., the mean µ = E (X

t

) even from an infinitely
long sample sequence. More generally, it can be shown that when nearby
samples are somewhat dependent, but not too strongly so, it is possible to
converge on the true mean at the same asymptotic rate as when samples
are IID, but with an error that is greater by a constant factor for any large
but fixed sample size. In other words, a larger amount of samples (by a
certain factor) is required to obtain a desired precision, compared to the

5From a philosophical point of view, it can even be argued that no events in the world
are truly independent, since the quantum-mechanical wave function of a particle generally
has infinite support except when confined to infinitely deep potential wells. This makes it
theoretically possible, though prohibitively unlikely, for particles to influence each other
at arbitrarily large distances.
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independent case. A more formal discussion of this property, complete with
an example, is provided in section 5.2.

On the other hand, non-independence between random variables is an
essential property in many applications, e.g., in machine learning, since de-
pendence allows analysts to infer the properties (distribution) of unobserved
quantities from observed ones. For instance, such dependence between ob-
served feature data and class labels is a necessity for informed classification.
In the case of time series specifically, dependence between nearby samples
can allow more accurate short-term time-series forecasting (prediction of
future values from past values), compared to the case where no nearby sam-
ples are available. For example, it is much easier to predict tomorrow’s
weather if one knows what the weather was like today.

2.5 The Time Dimension
As mentioned earlier, we consider stochastic processes where the index set
is the integers or a (typically infinite) contiguous subset thereof. This in-
troduces a natural ordering of the random variables X

t

, where variables
are assigned to regularly-spaced points on the real line. For other kinds of
stochastic processes, the index set can be grids or lattices, and it is also
possible to assign random variables to nodes in a general graph (cf. the
framework in section 5.3).

A key property of natural processes is that spatial or temporal ordering
reflects a natural tendency of nearby variables to covary more, while vari-
ables at great separation are virtually independent. In other words, depen-
dences are localized. For discrete-time sequence data, where variables are
arranged along a line, this means that dependences may be expected to have
a one-dimensional structure of some kind. (Note that “one-dimensional” in
this case only refers to the manner in which variables influence each other,
so each individual variable X

t

may be a high-dimensional vector, e.g., pixels
in a frame of video.)

Some specific localized dependence structures are introduced in sections
5.4 through 5.6. For now, we point out that these one-dimensional de-
pendences have a common property in that they simplify inference: Given
sufficient information about the current (and recent) values of the process,
the process variables are partitioned into a past set and a future set that
are conditionally independent. As a consequence, fast inference algorithms
such as the forward recursion in section 5.5 can be developed. The exis-
tence of such algorithms is highly significant for the practice of time-series
modelling, in that many models and methods that are computationally in-
feasible in the general case can, and are, used effectively to solve problems
involving sequence data.

In theory, grids and many other graphical network structures may also
be partitioned into conditionally independent sets if the values of a sufficient
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number of observables are given, but this number usually grows with graph
size, and generally does not lend itself to developing efficient algorithms.

3 Solving Problems Using Data

Our interest in sequence data stems from the fact that it carries information
about the process that generated it. Real-world data therefore can be used
to solve practical problems. While the details may vary between applica-
tions, this section provides an overview of different tasks, what sets them
apart, and how, in principle, we can use data to solve them.

We begin by characterizing different types of tasks (section 3.1), and
then consider methods for quantifying task performance (section 3.2) and
making optimal decisions under uncertainty (section 3.3). A discussion of
different constraints which may impose restrictions on how problems are
solved is given in section 3.4. Section 3.5 discusses the necessity of mak-
ing assumptions, such that decisions can be made based on empirical data
(section 3.6).

3.1 Task Archetypes

The central task of applied problem-solving can generally be phrased as
making a decision of some kind, based on the available data—after all, if
we already have decided what to do, and cannot be influenced by data on
the problem, there is rarely any interest in further analysis.

A function that accepts data as input and returns a decision is known as a
decision function or decision rule. In this context, a decision means choosing
an element from a set of different possibilities. If the decision function is not
completely manually specified, but also has a direct dependence on other
data from related decision situations, it may also be called a learner. The
ability to not decide solely on the prior beliefs of the analyst alone, but to
also provide an explicit entry point for information gleaned from the real
world to guide the decisions, has proved to be an extraordinarily powerful
and versatile approach to successful decision making. A more extensive
discussion of statistical decision theory can be found in [30].

Some common task archetypes, which differ in the nature of the inputs
and the outputs of the decision function, are classification, synthesis, re-
gression, prediction, and estimation. These are outlined below in turn.

3.1.1 Classification

In a classification problem, the training data D takes the form of labelled ex-
amples, that is, pairs of observed features x and an associated label variable
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c:

D = {(x
n

, c
n

)}N
n=1 , (5)

where N forthwith represents the sample size. Since we are working with
sequence data, we are particularly interested in cases where the each obser-
vation actually is a sequence,

x(n)
=

⇣

x
(n)
1 , x

(n)
2 , . . . , x

(n)
Tn

⌘

. (6)

These sequences may have different lengths (T
n

for sequence n). The clas-
sification task is to predict the unknown labels of new examples where only
the feature sequences can be observed. In other words, one should devise a
classifier, a function bc (x) that, given a sequence, returns an estimate of the
class label. The set of labels C (the possible decision choices) is generally
discrete and finite; at the very least, we expect C to have lower cardinality
than the set of possible feature sequences X .

Two subtypes of classification problems can be identified: in the simplest
kind, each feature sequence is associated with exactly one label. Without
loss of generality, c 2 C ✓ Z. Some examples of this setting are isolated
word recognition for speech [31, 32], or sentiment classification [33] or spam
filtering [34] for text data. In a more general setting, the “label” may actually
be a sequence c of discrete labels itself: c 2 C. One example of this is
automatic speech recognition (ASR), where the task is to convert speech
sequence input to appropriate sequences of words or phones [35]. Another
case is part-of-speech (POS) tagging in NLP, e.g., [36], where each word in
the input text should be labelled with an appropriate part-of-speech tag.
State estimation in automatic control is a third example.

The umbrella of classification is quite broad. Detection problems [37]
can be seen as classification tasks, where one is classifying sequences or
sequence frames into categories “signal present” and “signal not present.”
Certain collaborative filtering tasks can also be formulated as predicting
the user-rating label based on other labelled examples [38].

3.1.2 Synthesis

Synthesis problems are essentially classification problems in reverse. The
training set D takes the same feature-label pair form as in equation (5) from
before, but the task is different. Specifically, one is given a label c or label
sequence c, and asked to reconstruct an appropriate observation sequence
bx (·) to go with it. The set of possible choices in the decision problem is
then defined by the state space, i.e., bx 2 X , the conceivable realizations
of the stochastic process. The set X generally has greater cardinality than
the label set, which is the opposite situation from classification. Also, the
synthesis output is generally considered observable, whereas the class labels
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returned by a classifier may not be possible to observe directly. In case the
samples X

t

are continuous-valued, this is essentially a kind of regression
problem.

A prominent synthesis application is speech synthesis, where the task
is to create new, synthetic speech signals corresponding to given words or
phone sequences (labels) that are to be spoken [39]. The synthetic speech
features bx

t

, e.g., [40], are generally continuous-valued. Tasks such as ma-
chine translation [41] where the output is a text also have an element of
synthesis, as the output lives in the same space as the observations. In
contrast to speech synthesis, however, text output is discrete, and typically
consists of strings of characters or words, bx

t

2 X , X being a finite alphabet
or dictionary.

3.1.3 Regression and Prediction

Regression is another type of supervised learning problem, generally charac-
terized by finding a functional relationship (which may be stochastic) that
relates one continuous-valued random variable to another. The training
data takes the form

D = {(x
n

, y
n

)}N
n=1 , (7)

with the task being is to reconstruct the dependent variable y
n

from the
independent variables x

n

, i.e., create a predictor by (x). (The dependent/in-
dependent nomenclature here, although standard, can be confusing, as it
does not imply statistical independence among the elements of X.) Un-
like previous scenarios, X and Y typically take values on spaces of similar
cardinality.

We are interested in cases where the datapoints are sequences. A promi-
nent application area involving sequence pair data

�

x(n), y(n)
�

is control
theory, where one wants to use a series of inputs x to control the current
and future outputs Y of some process in order to maintain specific values or
satisfy certain constraints [42]. The specific task of identifying the relation-
ship between the input and output series is known as system identification
[43].

A notable special case of the above arises when a sequence of observations
from some process is available, with the variables of interest for prediction
being future values of the same process. In other words, the task is to
create a function bx

⌧

0 (x
⌧

), where ⌧ ⇢ T and ⌧ 0 ⇢ T here denote disjoint,
nonempty sets of time indices. (There is thus no distinction between X

t

and Y
t

-variables anymore, just between different times.) When the times
in ⌧ 0 exceed those in ⌧ , this prediction situation is frequently known as
forecasting. Since one essentially has a regression problem mapping values of
a process to other values of the process itself, another term is autoregression
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(see, in particular, section 5.4). Other variants involve extrapolating data
series backwards in time, or filling in missing values (imputation).

Like in synthesis problems, the decision variable in these prediction prob-
lems lives in the same space as the observations, and is considered explicitly
observable. However, the training data only consists of single dataseries
without explicit labels, similar to the unsupervised data for estimation tasks
below.

Forecasting is very common in certain application areas such as meteo-
rology [44], climatology [45], and economics [46], but is only rarely a goal
in itself when working with speech or language data. Nevertheless, pre-
dictive models have important applications in these areas as well: good
short-term speech-signal predictors are of importance for predictive speech
coding [20], while predictive models of text can be used as a component of
automatic speech recognition systems, to correct misheard or unintelligible
words based on context [47].

3.1.4 Estimation and Model Selection

Classification, synthesis, and regression are examples of so-called supervised
learning, as the training data both contains observations x and other values,
e.g., labels c, that interpret them or provide a reference or answer of some
kind. In unsupervised learning, only observed data samples x are available,
with no interpretation. The most prevalent example of unsupervised learn-
ing is model selection of some sort, where, for a given training dataset of
independent samples

D(us) = {x
n

}N
n=1 , (8)

the task is to select the most appropriate description m of the data from a
set of possible stochastic models M, each a distribution f

m

(x) over X . (The
letters “us” here stand for unsupervised.) Especially relevant to this thesis is
the case where the training dataset contains sequences x(n). Each sequence
is assumed to be independent, but samples within the same sequence may
show dependence.

Typically, the set of models to choose from forms a manifold or a set
of manifolds in the space of all possible distributions. If we introduce a
coordinate system over the manifold, the problem of model selection then
reduces to what is known as parameter estimation, where the parameter
✓ 2 P corresponds to the coordinates of a unique model on the manifold.
In other words, there is a bijection between M and P, and we have

f
m

(x) ⌘ f (x; ✓) (9)

for some m (✓). An estimator is thus a function b✓ ({X}) of random obser-
vations from a distribution, which we apply to the available (training) data
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D(us).6
Parameter estimation is most frequently encountered as a sub-task in

standard approaches to classification or synthesis: first, one uses the training
data subsets

D
c

= {x
n

2 D : c
n

= c} 8c 2 C (10)

to create a separate model m
c

for each label c; the resulting set of models
is then used to generate appropriate classifier outputs for given inputs. The
procedure will be discussed further in sections 3.6 and 6.1, while more com-
prehensive coverage specifically of estimation is provided in [48]. Most often,
the set of parameters P (possible decision choices) is continuous, as they are
coordinates on a manifold. Discrete parameters and estimation problems
also exist, for instance order selection [49] (estimating the order parameter
of a model, e.g., the degree of a polynomial in a regression model). These
typically correspond to selecting one of several possible manifolds in distri-
bution space; such discrete problems are often referred to as model selection
rather than parameter estimation.

There are also situations where the estimated value is seen as a goal in
itself, such as determining the signal-to-noise ratio of a wireless system [50],
estimating the mean value of a population, tracking an object on radar,
or identifying the value of fundamental constants in physics. These exam-
ples illustrate that estimation problems also can arise in non-probabilistic
settings, such as classical physics, and that there need not be a one-to-one
mapping between the estimated parameter and the model that generated
the data (e.g., many different distributions can have the same mean). In
this case, the one-to-one relationship from equation (9) might not apply,
and we may instead see the quantity ✓ to be estimated as a many-to-one
function ✓ (f

X

) of the actual distribution f
X

of the observations. However,
it is still suffices to estimate f

X

to obtain an estimate of ✓.
In addition to the situations discussed here, there are many other kinds

of decision problems, such as ranking [51] (choosing an ordering of a set
of elements) or the related problem of selecting a subset of items. Most
of these, however, are less common in sequence data applications, and will
therefore not be considered further in this thesis.

3.2 Loss Functions
For a given decision task, we frequently want to select a course of action that
is as good as possible under the circumstances. This suggests expressing the

6This presentation tends towards the frequentist perspective, where the parameter ✓
is treated as an unknown number without any probabilistic interpretation. A deeper look
at the alternative Bayesian view, where the parameters are treated as random variables
⇥ which covary with other observables, is provided in section 4.4, among others.
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task as a mathematical optimization problem. To make this more concrete,
we must quantify what constitutes good and bad performance.

A highly general method for evaluating different options in a decision
problem is to define a loss function or cost function L (

by, y) which associates
a cost with choosing the element by when the optimal choice would have
been y. (The symbol here y is a stand-in that could denote a class label,
observation sequence, or a distribution parameter—we are by no means
referring to regression exclusively.) Typically the loss L (y, y) of making
the optimal choice is zero, with other alternatives having equal or greater
loss. The loss-function concept can also be generalized to situations where
the decision and the world state occupy different spaces, though we will not
do so explicitly here.

The loss function encodes our priorities between different choices, so
the details are highly application dependent. Nevertheless, some common
alternatives exist. For classification, it is common to take

L01 (by, y) = I (by 6= y) , (11)

where I (·) is an indicator function. This is called 0-1 loss [52]. 0-1 loss con-
siders each deviation from optimality “equally bad,” and simply counts the
number of misclassifications a decision rule makes when applied to a dataset.
On continuous sets, for instance in regression problems, the quadratic loss
function

L2 (by, y) = kby � yk22 (12)

=

X

i

(by
i

� y
i

)

2 (13)

is often used. As this is a continuous function, the derivative of which
is linear in by, it frequently leads to linear equations, making it easier to
optimize than 0-1 loss. However, the quadratic loss is not invariant under
non-affine transformations of the input variables. For example,

L2 (0, 1) = 1 = L2 (1, 2) (14)
L2 (ln 0, ln 1) = 1 6= L2 (ln 1, ln 2) . (15)

It is therefore important to choose an appropriate data representation when
using the quadratic loss.

The quadratic loss function is also applicable for comparing densities of
random variables. If f b

Y

(y) is a selected density, while the true, reference
distribution (optimal choice) is f

Y

(y), we can simply replace the sum in
(12) by an integral, and obtain

L2

�

f b
Y

(y) , f
Y

(y)
�

=

ˆ
�

f b
Y

(y)� f
Y

(y)
�2

dy. (16)
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Another important loss function for comparing densities the Kullback-
Leibler divergence [53], or KL-divergence for short, which is defined by

LKL

�

f b
Y

(y) , f
Y

(y)
�

=

ˆ
f
Y

(y) ln
f
Y

(y)

f b
Y

(y)
dy (17)

= h (Y )� E
�

ln f b
Y

(Y )

�

, (18)

where h denotes the differential entropy [54]. Unlike the other loss functions
presented, the KL-divergence is asymmetric in the arguments. Specifically,
it tends to strongly penalize situations where f b

Y

has smaller support than
the reference f

Y

[55]. The KL-divergence has connections to information
theory, and may, for instance, be interpreted as the number of excess bits
sent in source coding when using a coding scheme optimal for the distribu-
tion f b

Y

when the true distribution is f
Y

.
If it is possible to assign reasonable numerical costs to the various possi-

ble errors in an application, that is usually preferable to using a standard loss
function like those above. Assessing the costs of different scenarios may be
relatively straightforward in financial mathematics, but can be challenging
in other areas, where values different wins and losses may not be monetary,
and thus not necessarily directly comparable.

3.3 Optimal Decisions under Uncertainty

A practical problem with loss functions as presented thus far is that one
must know the true optimal decision in order to be able to compute the loss.
Obviously, that information is not accessible in a real decision situation,
where the optimal course of action is unknown. Instead, one has to act
based on other information, available in the form of random variables that
have been observed. Such information is seldom sufficient to determine
the true optimal course of action with certainty, but induces a conditional
probability distribution over the different possible actions, indicating how
likely it is that each one of them is the reference option (the one with the
lowest cost once the answer is revealed). Based on this distribution, one can
form a decision in many different ways:

3.3.1 Supervised Problems

If, in a supervised learning problem, the joint distribution f
X, C

(x, c) of
features and labels is available, it is possible to minimize the expected loss,
also known as the risk, given the input data. In fact, risk minimization
only requires knowledge about the conditional distribution of the unknown
quantity given the knowns, e.g., the conditional distribution f

C|X (c | x)
of labels given the features in classification; the joint distribution is not
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necessary. The associated minimization problem can be written

bc (x) = argmin

c2C
E (L (c, C) | X = x) (19)

= argmin

c2C

X

c

02C
L (c, c0) f

C|X (c0 | x) . (20)

(Classification will be used as a running example in much of this section.
The corresponding problem for other supervised situations is completely
analogous.)

In supervised learning problems, minimizing the expected 0-1 loss L01

leads to a decision rule of the form

bcMAP (x) = argmax

c2C
f
C|X (c | x) (21)

= argmax

c2C
f
X|C (x | c) f

C

(c) . (22)

This is known as the maximum a-posteriori (MAP) decision rule, as it selects
the most probable alternative given the input data x. The term f

C

(c), the
distribution over the class labels in the absence of any further information
about the instance (i.e., before observing x), is termed the prior distribution.
In the special case when all class labels are equally likely a priori, so that
f
C

is a uniform distribution, this reduces to

bcML (x) = argmax

c2C
f
X|C (x | c) . (23)

This is known as the maximum likelihood (ML) rule as it maximizes the
likelihood function f

X|C (x | c), which is the probability of the observed
data as a function of an unobserved quantity or parameter, here c. In speech
synthesis, the MAP rule of maximizing the probability of the output given
the input is widely used, though it is confusingly labelled as “maximum
likelihood parameter generation” (MLPG) [56],

bxMLPG (c) = argmax

x2X
f
X|C (x | c) . (24)

For regression-type tasks, the expected quadratic loss, also known as
mean square error (MSE), is minimized by the conditional expected value
of the missing variable, e.g.,

bxMSE (c) = argmin

x2X
E
⇣

kx�Xk22 | C = c
⌘

(25)

= E (X | C = c) (26)

=

ˆ
xf

X|C (x | c) dx. (27)
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(This tacitly assumes that the conditional mean is an element of X , so that
it can be selected by the optimization. This is for instance satisfied if X
is convex. If E (X | C = c) /2 X , one may have to project the mean onto
X .) For Gaussian distributions, the mean is the same as the mode, and
this gives the same result as MAP. There are also other loss functions that
are minimized by the same mean value, in particular the so-called Bregman
divergences [57, 58], of which the quadratic loss function is a special case.

A more risk-averse alternative to the expected loss is to minimize the
worst-case-scenario loss. This can be written

bcminimax (x) = argmin

c2C
sup

c

02C(x)
L (c, c0) , (28)

where C (x) denotes the set of possible c-values given that the input features
are x. This is known as the minimax criterion, as it minimizes the maxi-
mum loss. Notably, the decision does not depend on the exact probability
distribution of the output variable given the input, but only on the possible
losses that can be incurred for a specific decision (the support of the pdf).
The principle is therefore also applicable in cases where there is no explicit
probability distribution over the output variable.

3.3.2 Unsupervised Problems

In unsupervised problems, where we want to identify the distribution or
other structure of an unlabelled dataset, we can use the quadratic or
Kullback-Leibler loss, respectively, to define the two optimization problems

bf2 (·) = argmin

g(·)2M

ˆ
(g (x)� f

X

(x))
2
dx (29)

bfKL (·) = argmin

g(·)2M

ˆ
f
X

(x) ln
f
X

(x)

g (x)
dx, (30)

where M is a set of models (probability densities). Like the supervised
case above, this requires that the data distribution f

X

is known. Note that
the problems are nontrivial if f

X

(·) /2 M. The set of models M may, for
instance, be a parametric family of distributions f (x; ✓) indexed by the
parameter ✓, so that

M = {f (·; ✓)}
✓2P . (31)

The previous optimization problems are then equivalent to the parameter
estimation problems

b✓2 = argmin

✓2P

ˆ
(f (x; ✓)� f

X

(x))
2
dx (32)

b✓KL = argmin

✓2P

ˆ
f
X

(x) ln
f
X

(x)

f (x; ✓)
dx. (33)
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Among the two loss functions, the KL-divergence is significantly more com-
mon in parameter estimation, whereas L2 minimization is the norm in non-
parametric density estimation, possibly because it simplifies calculations
[59]. Generally speaking, the KL-divergence is more sensitive to capturing
the tails of the distribution than is the L2 loss, so a distribution obtained
through KL-minimization is often more spread out, whereas L2-minimizers
are comparatively more accurate near peaks of f

X

.
Interestingly, KL-divergence minimization can, similarly to the super-

vised learning problems earlier, be formulated as minimizing an expected
value,

b✓KL = argmin

✓2P
E (ln f

X

(X)� ln f (X; ✓)) (34)

= argmax

✓2P
E (ln f (X; ✓)) . (35)

Notice that this amounts to maximizing the (expected) likelihood of the
data, and that the derivation and criterion do not require the parameter ✓
to be a realization of a random variable, which is appropriate for frequentist
methods. The ML-KL connection is explored further in section 3.6.

3.4 Tasks Constraints
Practical problems are not necessarily always as straightforward as outlined
above. Other side constraints on the data and how it is acquired or presented
may also affect the solution to the task. Some of these will be discussed in
this section.

Sometimes, there are restrictions on the information that is available. In
a supervised learning application, label data c may sometimes be expensive
to acquire, whereas feature data x comes cheap. Both speech and texts,
for instance, may be readily obtained in bulk from the Internet, but accu-
rate annotation (e.g., speech transcription or POS-tagging) requires costly
human intervention. In this case, a middle ground between supervised and
unsupervised learning, known as semi-supervised learning [60], exists. In
semi-supervised learning, only some of the training examples are labelled.
Often, it is possible to improve performance over pure supervised learn-
ing on the labelled examples only, as the distribution of unlabelled points
may carry information about where (for instance) different clusters in the
data may be located, which may then be identified as belonging to different
classes using the few labelled examples.

Another information restriction is censored data, where, for some dat-
apoints, only a subset of the elements in x are available. And even if all
elements are available, they may not be accurate. There could be saturation
effects in the features, or noise bursts that make elements unreliable. Partic-
ularly challenging are the situations where entire datapoints are misleading,
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due to labels being incorrect, as situation known as label noise [61].
Another class of constraints surrounds the manner in which data are

presented. The classic learning scenario—where a large set of training data
is provided, a classifier, synthesizer or other similar-problem solver is created
using the data, and the resulting decision function is applied to the task
at hand—is known as batch learning. Sometimes, however, data arrives
instance by instance in a stream. This is called online learning. In this
scenario, only part of the information in a new instance is provided at first,
and the learner is required to make a decision based on the incomplete datum
(e.g., predict the class from given features); after this, the true answer is
revealed, and there is an opportunity to refine the decision function based
on the new information.

The online learning situation is more demanding that batch learning,
because new information is constantly coming in, and procedures that can-
not be updated or generate output efficiently may be unable to keep up.
Generally speaking, an online algorithm can always be applied in a batch
setting, by presenting the training examples one by one until they have been
exhausted, and then applying the resulting problem-solver to the actual task
at hand. However, some results on converting batch learning algorithms to
an online setting do exist, e.g., [62].

In some online learning settings, it may be possible for the problem-
solving algorithm to influence the examples that arrive, for instance by
presenting different feature sets and being told the appropriate label. This
is known as active learning [63]. As this procedure has similarities with
how human infants and children develop, active learning may, among other
things, be of interest in artificial intelligence applications.

Though the above restrictions and paradigms are important, the remain-
der of this thesis will focus on offline, purely supervised or unsupervised
learning—specifically how to create and identify useful models for sequence
data of different kinds.

3.5 The Necessity of Assumptions
So far, we have seen how a variety of decision problems involving sequence
data can be formulated, and how they can be solved if the behaviour of the
data (meaning the distribution) is provided. In practice, the distribution is
unknown, and one must make some sort of assumptions to solve the problem.
This is a symptom of a general property in science and philosophy that some
things have to be taken for granted—even the fundamental building blocks
of mathematics are expressed as axioms [64], whose internal consistency
cannot be established beyond all doubt [65].

Without making assumptions that connect future decisions with past
decisions in the problems we are considering, every new situation is a blank
slate, and it is not possible to use past data to aid future decisions. There
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are theoretic arguments (see, e.g., chapter 2 in [66]) that assumption-free
learning cannot generalize to new instances. In machine learning, assump-
tions are often referred to as inductive bias, since they bias a learner towards
certain conclusions, particularly when data is scarce.

The question then becomes what assumptions to make. As usual, the an-
swer depends on the situation. In general, one typically makes assumptions
such that the problem is in some way solvable. Preferably, the assump-
tions should also match the characteristics of the practical situation under
consideration.

Beyond this, there is a myriad of different possible situations. A useful
view is to place different assumptions on a scale ranging from strong to
weak. Strong assumptions are typically necessary when only little data is
available. At the extreme end, if we propose a single, specific distribution
f
X

or f
X, C

, there is no need for training data at all—optimal decisions
under the assumed distribution can be computed directly from previously
presented principles. The hazards of making such strong assumptions are
that they could be wildly wrong, and there is no way for data to steer the
decision making in the right direction.

If the training dataset is large, one may consider making weaker as-
sumptions, leaving a bigger hole for the data to fill. The most conservative
assumption that can be made is arguably that the data distribution follows
the so called empirical distribution (in equation (36) below), which is sup-
ported exclusively on the observations in the given dataset. This does not
assume the existence of any possible observations beyond the values seen
in the training data. Sadly, this is too conservative and cannot general-
ize at all to new situations; see equation (45). Nevertheless, the empirical
distribution, as a probability distribution which (together with the sample
size N) uniquely represents the dataset, can be used as a tool for develop-
ing techniques for making decisions based on a mixture of assumptions and
empirical data, as outlined below.

As a middle ground between no assumptions, and assumptions only,
the classic approach to problem solving with data follows the example of
estimation and model selection: one assumes that the data was generated
by a distribution in a specific set M, and then uses the data to pick a fitting
model (or several—cf. 4.4 and 4.6) from the set. If the dimensionality of the
set is fixed, such that that it can be parameterized by a coordinate ✓ 2 Rp,
M is known as a parametric family, and the models that it contains are
called parametric models. If, on the other hand, the dimensionality of the
set of possible models grows without bound as the size N of the training
dataset increases, the setup is typically considered nonparametric.
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3.6 Data-Based Decision Making
We shall now look at techniques for making informed decisions and solving
the tasks from section 3.1, using a mixture of data and assumptions. The
hope is that, if the assumptions are reasonably close to the true situation,
a practically useful solution will result.

3.6.1 Unsupervised Problems

The decision criteria presented in section 3.3 are unrealistic, as they assume
that the relevant distribution f

X, C

(x, c) or f
X

(x) is known, whereas in a
practical application only training data D or Dun is available. To get around
this, one can define the empirical distribution

˙f (x) = ˙f
�

x | D(us)

�

=

1

N

N

X

n=1

� (x� x
n

) (36)

consisting of Dirac spikes at each datapoint. This distribution essentially
turns expected values into sums over the available datapoints. Inserting this
approximation as the reference distribution into equation (35), one obtains

b✓ML

�D(us)

�

= argmax

✓2P

1

N

N

X

n=1

ln f (x
n

; ✓) (37)

= argmax

✓2P
ln f

�D(us); ✓
�

(38)

= argmax

✓2P
f
�D(us); ✓

�

(39)

In other words, minimizing the KL-divergence between the parametric ap-
proximation and the empirical distribution is the same as choosing the pa-
rameter according to the maximum likelihood rule in equation (23) (cf. [67]);
b✓ML is the parameter choice which maximizes the probability of the given
data.7

Maximum likelihood is the classic frequentist parameter estimation pro-
cedure, as it has numerous desirable properties. Most importantly, it is
[70, 71]:

7For the record, minimizing the quadratic loss (L
2

-norm) between the empirical dis-
tribution and a parametric family yields the estimator

b✓
2

�
D

(us)

�
= argmin

✓2P

 
1

2

ˆ
(f (x; ✓))2 dx�

1

N

NX

n=1

f (xn; ✓)

!
. (40)

A cross-validation version of this estimator is commonly used with nonparametric meth-
ods, specifically in bandwidth selection for kernel density estimation (KDE) [68, 69], but
the formula has received relatively little attention in the traditional parameter estimation
literature, compared to the maximum likelihood approach.
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1. Consistent: if the true f
X

(x) ⌘ f (x; ✓) for some ✓, the estimator
(37) will converge in probability on this value as N ! 1.

2. Asymptotically efficient: as N grows large, b✓ML will be as close as
possible to the true value ✓ for the given dataset size (again assuming
the true model is in M).

3. Parameterization invariant: if ✓0
= g (✓) is an alternative parameteri-

zation of the parametric family M, and b✓
0
ML

�D(us)

�

is the maximum
likelihood estimate of this alternative parameter for a given dataset,
then b✓

0
ML

�D(us)

� ⌘ g
⇣

b✓ML

�D(us)

�

⌘

. As parameters are not con-
sidered directly observable, there may be more than one compelling
parameterization of a family M; this result assures us that how we
represent the family of distributions will not affect the result.

This is a frequentist treatment, in that the parameter ✓ is considered un-
known but not stochastic, and we do not use a probability distribution to
quantify the uncertainty in ✓. The Bayesian alternative is to instead intro-
duce a probability distribution over the models in M. This is equivalent to
letting the true parameter be a random variable ⇥ with a prior distribution
f⇥ (✓). The joint distribution can be written

f
X,⇥ (x, ✓) ⌘ f

X|⇥ (x | ✓) f⇥ (✓) , (41)

where f
X|⇥ (x | ✓) ⌘ f

X

(x; ✓) are functionally identical, but carry differ-
ent interpretations. Minimizing the expected 0-1 loss for ✓ leads to the
maximum a-posteriori parameter estimate

b✓MAP

�D(us)

�

= argmax

✓2P
f⇥ (✓)

N

Y

n=1

f
X|⇥ (x

n

| ✓) (42)

= argmax

✓2P
f⇥|{X}

�

✓ | D(us)

�

, (43)

completely analogous to the MAP rule in equation (21). A more in-depth
treatment of the Bayesian perspective will be reserved for section 4.4.

3.6.2 Supervised Problems

For supervised problems, the situation is usually a little more complex.
The empirical distribution in (36) has very narrow support, so the induced
conditional distribution

˙f
C|X (c | x) =

˙f
X, C

(x, c)
˙f
X

(x)
(44)

=

˙f
X, C

(x, c)
P

c

02C
˙f
X

(x, c0)
(45)
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is undefined unless x 2 {x
n

}N
n=1. The risk minimization rule (20) then

cannot be applied directly. In classification, the classic way to get around
this is to:

1. propose a parametric family

M = {f
X, C

(·, ·; ✓)}
✓2P (46)

for the joint distribution f
X, C

,

2. estimate the parameters ✓ of the joint distribution using unsupervised
learning (typically maximum likelihood) on the data D, and

3. insert the selected pdf f
X, C

⇣

x, c; b✓
⌘

into a decision rule, commonly
MAP (21) or maximum likelihood (23), to obtain a classifier.

Assuming data samples are independent, the maximum likelihood objective
function for the parameter estimation factors as

f{X, C} (D; ✓) =

N

Y

n=1

f
X, C

(x
n

, c
n

; ✓) (47)

=

Y

c2C

N

Y

n=1

�

f
X|C (x

n

| c; ✓) f
C

(c; ✓)
�

I(cn=c) (48)

=

Y

c2C
f
C

(c; ✓)
|Dc| f{X}|C (D

c

| c; ✓) , (49)

where D
c

from equation (10) is the subset of datapoints corresponding to
label c, and |D

c

| denotes its cardinality. Typically, the class-conditional dis-
tributions f{X}|C (D

c

| c; ✓) depend on disjoint subsets ✓
c

of the parameters
for each class. As the objective function factors, these parameters can then
be estimated independently, class by class, simplifying the computations.

3.6.3 Discriminative Procedures

The proposed maximum likelihood classification approach based on unsu-
pervised parameter estimation typically yields reasonable results, but may
underperform in cases where the assumptions are incorrect and the true dis-
tribution of the data is not part of M. There are several techniques, known
as discriminative learning, which attempt to optimize objectives that are
closer to the supervised task at hand. The general idea is to worry less
about describing the distributions accurately, and instead concentrate on
the decision boundaries (the inputs x at which bc changes value), and try to
position these as appropriately as possible.
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One discriminative strategy, known as maximum mutual information
(MMI) training [72], is to select the parameters to maximize the conditional
probability

b✓MMI (D) = argmax

✓2P

N

Y

n=1

f
C|X (c

n

| x
n

; ✓) (50)

of the correct class. This maximizes the information-theoretic mutual in-
formation between labels and observations, evaluated on the training data.
Compared to MAP parameter estimation for unsupervised data, this proce-
dure optimizes the conditional probabilities used in a MAP decision (21) for
the supervised task. This is much closer to the supervised task performance
we ultimately are interested in, and hence (50) tends to improve results in
practice, at the expense of being more difficult to optimize than traditional
approaches such as (37).

Another possibility is to consider the decision function, e.g., (21) or
(23), as an abstract function of both the input data and the parameters ✓.
Minimizing the expected loss as a function of the parameters then yields
the formulation

b✓ = argmin

✓2P
E (L (bc (X; ✓) , C)) , (51)

in the case of classification. Note that this is a valid problem also in cases
where the classifier bc is just an arbitrary function with no probabilistic in-
terpretation at all. We can treat the performance of the decision function
on the training data (i.e., the empirical distribution) as a proxy for perfor-
mance on future examples. This suggests selecting parameters according
to

b✓ (D) = argmin

✓2P

1

N

N

X

n=1

L (bc (x
n

; ✓) , c
n

) . (52)

For the special case of 0-1 loss, this yields an estimate

b✓MCE (D) = argmin

✓2P

N

X

n=1

I (bc (x
n

; ✓) 6= c
n

) . (53)

This is known as minimum classification error (MCE) [73], as it chooses a
parameter set that minimizes the number of misclassifications that bc makes
on the training data. While MCE often achieves good practical performance
on the task under consideration, the objective function is not straightfor-
ward to optimize, as it only takes on N different, discrete values.

Equation (52) and the reasoning behind it also applies to synthesis tasks.
For speech, assuming a quadratic loss function (more appropriate than 0-1
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loss now that X is continuous and equipped with a metric) and a given data-
generation procedure bx (·; ✓) such as MLPG, one obtains the parameter
estimation problem

b✓MGE (D) = argmin

✓2P

N

X

n=1

(

bx (c
n

; ✓)� x
n

)

2 . (54)

This is known as minimum generation error training (MGE), and tends to
improve subjective results over synthesis from ML-estimated models [74].
Again, this is achieved by considering an optimization problem more closely
related to the practical problem of interest.

3.6.4 Computational Considerations

As a final remark, it is not uncommon that the eventual optimization prob-
lem one obtains cannot be solved analytically, especially for discriminative
methods. Often, however, optimization techniques such as gradient descent
can be applied to solve the problem iteratively. Typically, these methods
take a proposed solution and improve it, such that the value of the objective
function increases. Applying the procedure multiple times eventually con-
verges on a local stationary point of the original objective [75]. Aside from
gradient descent another example of this procedure is the EM-algorithm
[76], which can be formulated as interleaving two optimizations of two dif-
ferent sets of variables [77]. In other cases, the problem can simplified or
approximated to a form which can be solved more readily (e.g., by relaxing
the optimization problem [78]), but the resulting solution may then not be
identical to that of the original formulation.

4 Common Model Paradigms
The assumptions made when solving practical problems with the methods
from 3.6 are to a large part embodied by the model set M. Consequently,
the different modelling techniques that have been proposed are almost as
varied as the decision problems we may face.

This section establishes some of the major paradigms in general statisti-
cal modelling and problem solving, complete with example techniques from
the different classes; the companion section 5 discusses assumptions and
models specific to sequence data. Topics covered here include the distinc-
tions between parametric and nonparametric models (section 4.1), between
discriminative and generative models (section 4.2), and between probabilis-
tic and geometric approaches (section 4.3). Methods that combine multiple
models, either from a Bayesian perspective (section 4.4), using mixtures
(section 4.5), or through other means (section 4.6), are also considered.
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4.1 Parametric vs. Nonparametric
The distinction between parametric and nonparametric methods, intro-
duced in section 3.5, is quite significant in practice. The ever-growing set of
distributions M that nonparametric methods can describe as the number
of samples N increases enables asymptotic convergence as N ! 1 even
under very weak assumptions on the generating distribution (see, for in-
stance, [79]). On the other hand, the weak assumptions mean that larger
datasets generally are necessary to attain a certain performance; [80] gives
some upper bounds for performance in density estimation. In addition,
computational complexity often grows superlinearly with dataset size N ,
whereas common parametric approaches typically are linear in N , though
they may be superlinear in p, the dimensionality of the parameter space P.
Approximations can frequently be employed in nonparametric approaches
to make the computational load linear in N , but at the expense of the
asymptotic convergence properties; in a sense, such approximations make
nonparametric methods parametric.

Parametric distributions are exceedingly common in applications. Most
well-known is probably the normal or Gaussian distribution, which is a
member of the important exponential family, consisting of distributions that
can be written as

f
X

(x; ✓) = h (x) exp (⌘|
(✓)T (x)�K (✓)) . (55)

Here, T is a vector of natural sufficient statistics,8 ⌘ is a corresponding
set of natural parameters (the distribution is written in natural form if
⌘ (✓) ⌘ ✓), while lnK (✓) acts as a normalization. This family also includes
several other important continuous and discrete distributions such as the
beta and gamma distributions, the von Mises-Fisher distribution, as well as
the geometric and Poisson distributions. Mixture distributions, see section
4.5, are generally not in the exponential family. Student’s t-distribution, in
particular, can be written as an infinite mixture and is not in the exponential
family.

To be in the exponential family it is additionally required that the sup-
port of the distribution is independent of ✓. The set of uniform distributions
on, e.g., [0, ✓], is therefore not an exponential family. Being in the exponen-
tial family has certain advantages for parameter estimation, for instance the
existence of a sufficient statistic (the Pitman-Koopman-Darmois theorem)
whose dimension remains bounded as the sample size N ! 1, but we shall
not elaborate further on these here.

8Here, a statistic is any function of the available data, and a sufficient statistic is a
function computable over the data which contains all information relevant for optimal
parameter estimation. This means that the mutual information between the parameter
and the sufficient statistic is the same as the mutual information between the parameter
and the data, regardless of how the parameter is distributed [54].
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The most prominent nonparametric density estimation method is ar-
guably kernel density estimation (KDE) [81, 82], shadowed by its closely
related “dual” k-nearest neighbour density estimation, although the latter
does not lead to normalizable densities [83]. Other techniques include se-
ries expansions and maximum penalized likelihood methods (closely related
to splines). Some discussion of different nonparametric density estimation
methods is available in [59, 80].

4.2 Generative vs. Discriminative

Equation (20) shows that minimum-risk decisions only require knowledge
about the conditional distribution of the decision quantity given the input.
Approximate minimum-risk decisions can thus be made based on approxi-
mations of this distribution, e.g., f

C|X

⇣

c | x; b✓
⌘

. A model that describes
this conditional probability directly is said to be discriminative, since it
is designed for class discrimination. The alternative is to instead approxi-
mate the full joint feature-label distribution f

X, C

(x, c)—such a model can
subsequently be used for discrimination by rearranging the relations

f
X, C

(x, c) ⌘ f
X

(x) f
C|X (c | x) (56)

⌘ f
C

(c) f
X|C (x | c) , (57)

but is in addition capable of sampling new feature-label pairs, or new fea-
tures given labels, which is useful in synthesis tasks. Such models are known
as generative models. We note that (56) suggests that f

C|X may have fewer
degrees of freedom than f

X, C

, and thus may be easier to estimate from
finite datasets, giving discriminative methods a statistical advantage.

The density models discussed in the previous section can all easily be
adapted as class-conditional feature distributions f

X|C , which, together
with a categorical distribution f

C

for the classes, form a full, generative
model—cf. (57). The spline-based method for log-likelihood ratios in [84],
in contrast, exclusively describes the conditional class distribution f

C|X ,
without suggesting a joint distribution f

X, C

. A curious intermediate case
is k-nearest neighbour classification, which gives unnormalizable pdfs in un-
supervised density estimation, but does lead to well-formed probabilities in
classification [83].

The difference between using a discriminative and a generative model
for a discriminative task is not substantial. When parameters in generative
models are chosen using MAP or ML, it becomes possible to use the gener-
ative properties of the approach to investigate what the model has learned
about the typical example, for instance by sampling. This interpretability
can often be advantageous in understanding how well a certain statistical
model works for a problem. If, however, the model is misspecified (the true
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pdf is not in M) a parameter estimation approach grounded in the dis-
criminative perspective, such as MMI or MCE training, often yields better
ultimate performance on the task. Aside from experimental evidence, this
can be seen theoretically following [85], where it is shown that MMI is equiv-
alent to ordinary maximum-likelihood estimation in an expanded model; the
greater flexibility (increased number of parameters) of this model makes it
possible to adjust to a larger variety of situations than before.

One downside of discriminative models is that they only are trained to
describe the conditional distribution f

C|X accurately, so any joint distribu-
tion f

X, C

formed by slotting in discriminatively trained parameter values
such as b✓MMI or b✓MGE into a generative family may not be meaningful. It
can also happen that a generative view may increase end performance in
discrimination: one example is unsupervised pre-training for deep neural
networks (DNN), which is an explicit data-generation perspective that has
shown recent success in initializing DNNs for discriminative tasks [86].

4.3 Probabilistic vs. Geometric
In equation (53), we saw one example that solutions to classification prob-
lems need not be derived from probabilistic principles in order for empir-
ical risk minimization to be possible. In general, as long as the task is
not explicitly to estimate a density or density parameter, there also exist
nonprobabilistic solution techniques. Instead of being based on maximiz-
ing probabilities, these are generally founded on minimizing distances, and
are therefore termed geometric methods. Because they do not describe any
probabilities or distributions, geometric models do not allow sampling and
can only be used discriminatively.

A simple geometric approach is exemplar-based classification, where in-
stances are classified based on which of two class examples they are closest
to in feature space, according to some distance metric. Under the Euclidean
distance metric, the decision regions are then separated by a hyperplane. A
more general example of this geometric notion is maximum-margin methods
such as support vector machines (SVM) [87], which separate classes using
a hyperplane in a high-dimensional feature space [88]. SVMs have turned
out to be very strong performers on many binary classification tasks. An-
other geometric method, used, e.g., in prediction and forecasting, is linear
regression by least squares, the “squares” being square Euclidean distances
[83].

It has turned out that many geometric methods are special cases of a
corresponding probabilistic model. For instance, the two-exemplar based
approach above yields identical decision surfaces to classification based on a
model where both classes are Gaussian distributed with identical covariance
matrices. Furthermore, while the arithmetic mean is the point which mini-
mizes the sum of square distances to all datapoints in a set, the mean is also
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the maximum likelihood estimate of the location parameter and mode of a
Gaussian distribution for the same dataset. The correspondence extends
to finding sets of reference points that minimize the square distances to
the closest reference point (through the k-means algorithm [89]), and train-
ing mixtures of Gaussian components with identical standard deviations.
Probabilities of different points for a Gaussian distribution with arbitrary
covariance matrix C can be mapped one-to-one to Mahalanobis distances
[90]

d (x, µ) =

q

(x� µ)
|
C�1

(x� µ) (58)

from the mean vector µ. In general, every Bregman divergence, inter-
pretable as a kind of asymmetric distance measure, can be connected to
a corresponding distribution in the exponential family [58].

Another example that highlights the connection between geometric and
probabilistic methods is nearest-neighbour classification, where the esti-
mated class is chosen as the class of the example in the training data that is
closest to the input features according to some distance metric. This is obvi-
ously a geometric decision—yet the same technique can also be interpreted
probabilistically, as a special case of k-nearest neighbour from before. A
notable example where, on the other hand, identifying an equivalent proba-
bilistic model has been difficult is the case of SVMs; [91] represents a more
successful interpretation attempt. There exist, however, methods closely
related to SVMs that are probabilistic from the ground up, e.g., relevance
vector machines (RVMs) [92].

Geometric intuition can often aid the solution of machine learning prob-
lems, as well as add to the understanding of statistical methods, e.g., by
considering ML-estimation as a minimal KL-divergence projection in in-
formation geometry—this is how equation (37) was derived. Furthermore,
many discrimination and prediction rules, also those derived from proba-
bilistic principles, can be formulated in terms of distances.

Probabilistic approaches, however, bring more to the table than their ge-
ometric counterparts, since they in addition explicitly model the uncertainty
in the decision situation. This makes them naturally capable of estimating
stochastic quantities such as the overall expected risk of a classifier, or how
certain a learner is of its decision for a given input. (One caveat is that the
selected models are biased towards overestimating their own performance
on the training material, since they were selected among all other models for
having the greatest apparent accuracy there [93, 94].) It may also be possi-
ble for probabilistic methods to flag unusual input data that falls in feature
regions where the model has not seen many examples and its decisions may
be inaccurate.
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4.4 Fully Bayesian Approaches
Section 3.6 introduced the Bayesian notion of assigning initial (prior) prob-
abilities to the different models in the set M. These probabilities, together
with the observations, determine the final model selected, as seen in equa-
tion (42). By taking the logarithm of the objective function,

b✓MAP (D) = argmax

c2C

�

ln f⇥ (✓) + ln f{X, C}|⇥ (D | ✓)� (59)

= argmax

c2C

 

ln f⇥ (✓) +

N

X

n=1

ln f
X, C|⇥ (x

n

, c
n

| ✓)
!

, (60)

we see that the log prior ln f⇥ can be seen as an additive regularizer of
the data log-likelihood ln f{X, C}|⇥, biasing the estimate towards certain
regions of parameter space, with the additional property that f⇥ also has a
probabilistic interpretation. The Bayesian framework has more implications
than this, however. Since the parameter ⇥ in the Bayesian framework is
a random variable, one can marginalize it out in many decision situations:
both in supervised settings such as classification, where we can form

bc (x | D) = argmin

c2C
E (L (c, C) | X = x, D) (61)

= argmin

c2C

X

c

02C
L (c, c0) f

C|X, {X, C} (c
0 | x, D) , (62)

using the law of total probability to compute

bf
C|X, {X, C} (c

0 | x, D) =

ˆ
f
C|X,⇥ (c0 | x, ✓) f⇥|{X, C} (✓ | D) d✓, (63)

as well as in unsupervised density estimation, where one obtains the predic-
tive distribution

bf
X|{X}

�

x | D(us)

�

=

ˆ
f
X|⇥ (x | ✓) f⇥|{X}

�

✓ | D(us)

�

d✓. (64)

(We assume samples are conditionally independent given ⇥.) Methods
like the above, which take into account the entire posterior distribution
f⇥|{X, C} or f⇥|{X} for the parameter, are known as fully Bayesian, in con-
trast to MAP or maximum likelihood, which are based on point estimates
(single values) b✓MAP or b✓ML.

The fully Bayesian strategy of incorporating all possibilities into deci-
sions lends some protection against situations where there is substantial
uncertainty about what parameter value that is appropriate. In such cases,
picking a single value through point estimation can be highly misleading,
as will be discussed in section 6.3. Weighting models together as in (64)



4 Common Model Paradigms 31

also enables the approach to represent certain distributions not contained
in M, but within the convex hull spanned by M [95]. On the other hand,
marginalizing over all parameter values complicates the mathematics of fully
Bayesian approaches, and often necessitates approximations, e.g., so-called
variational inference [96], or computationally intensive simulation methods
such as Markov chain Monte Carlo (MCMC) [97, 98]. Sometimes the dis-
tributions formed by summing over models in M can be physically unrea-
sonable, for instance leading to speech models having more formants (vocal
tract resonances) than natural human speech can contain.

Despite the conceptual appeal, Bayesian methods have a somewhat con-
troversial history in statistics. This is partially because the choice of prior
distribution often cannot be motivated on theoretical grounds, and partially
because of the subjectivist philosophical interpretations that are sometimes
attached to Bayesian methods.

In certain applications a prior distribution can be inferred from previ-
ously available information. When creating a speaker-specific speech recog-
nizer, for instance, we can use the distribution of voice parameters seen in a
previous training material of many speakers as our prior. Sometimes, how-
ever, there is a desire to select a “non-informative prior,” which represents
having no knowledge about the distribution. This condition of perfect ig-
norance has proved difficult to describe mathematically. An early proposal,
attributed to Bayes and Laplace, is the principle of indifference: assume
a uniform prior over all parameter values. Unlike ML-estimation, which
only is a point estimate, the distribution given by this rule depends on the
parameterization for continuous variables. This is unappealing, since it is
hard to argue which representation should be preferred for a fundamentally
unobservable quantity such as a distribution parameter.

Other proposals for objective prior selection exist, notably the so-called
Jeffreys prior [99]

fJe↵ (✓) /
q

detE
��r

✓

f
X|⇥ (X | ✓)� �r

✓

f
X|⇥ (X | ✓)�| | ⇥ = ✓

�

, (65)

which is independent of representation and only depends on the model f
X|⇥.

While attractive, the Jeffreys prior is not a panacea. Frequently, it is not a
normalizable probability distribution (it has infinite integral over the param-
eter space), in which case it is said to be improper. This may be acceptable
as long as the posterior distribution used for making decisions based on
data is a proper distribution, which is often the case. However, there are
situations (notably mixture models [100]) where the posterior is always im-
proper. There are also arguments that the Jeffreys prior is unsatisfactory
for multidimensional parameters [101].9

9An alternative approach to non-informative priors, investigated, e.g., in [102], is
to formulate weakly informative priors: prior distributions designed with the intention
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In recent years, the prior distribution has come to be seen as more of
an asset and less of a liability, and Bayesian methods have experienced
increased use in applications. For one thing, it can be argued that non-
Bayesian methods also make assumptions, but that these simply are not
stated as explicitly. Having the assumptions up front, and formulated prob-
abilistically as a Bayesian prior distribution, provides a clearer picture of
what is being taken for granted. The prior also provides a very explicit
entry-point for other available information about the expected behaviour of
the variable(s) in question. This can be used to (gently or strongly) bias
results in the right direction, and possibly increase performance compared
to methods that make weaker assumptions.

In contrast to the use of Bayesian methods as an applied tool in spe-
cific situations, the philosophical interpretation of Bayesian probabilities as
subjective probabilities (as in, e.g., [103]) remains controversial. For some
discussion see [104] and the accompanying commentary.

4.5 Mixture Models
Fully Bayesian methods are part of a broad category of approaches where
more than one model is employed to solve a single problem. A general term
for such techniques is ensemble methods. From a high-level perspective, the
idea of combining different approaches and opinions is compelling, as it is
frequently used in real-life decision making, e.g., panels of experts, juries,
and scientific research groups—cf. [105].

Perhaps the simplest class of ensemble models is mixture models, where
the pdf is a weighted sum of different models. Most well-known are Gaussian
mixture models (GMMs), which have the form

f
X

(x; ✓) =

K

X

k=1

p
k

N (x; µ
k

, C
k

) , (66)

where N (x; µ, C) denotes a normal-distribution pdf with mean vector µ
and covariance matrix C evaluated at x, while µ

k

and C
k

are parameters
for component k, with nonnegative component probabilities p

k

satisfying
P

K

k=1 pk = 1. K, the number of components, is typically fixed (nonrandom).
Many component shapes other than Gaussians are possible, for instance
mixtures of beta distributions for data confined to an interval [106].

Mixture-model samples are most easily understood as generated through
a two stage process: For every datapoint X

n

, a discrete random variable
Q

n

is first drawn from the distribution f
Q

(k) = p
k

. The realization k = q
n

then tells us which component distribution f
X|Q (x

n

| q
n

) to use when gen-
erating the observed x-value. Q

n

here is thus an unobservable (hidden)

to exert little influence over the conclusions of an experiment while being sufficiently
informative to avoid the pathologies of standard non-informative priors.
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random variable that helps generate the nth observation. Such unobserv-
able variables, which are sampled anew for each datapoint, are known as la-
tent variables, in contrast to Bayesian parameters ⇥, which have the same,
though unobservable, value for the entire dataset. This “hidden selector”
structure also suggests that mixture models may be particularly appropri-
ate in cases where the studied distribution is composed of many different
subpopulations with potentially different properties.

Mixture models are superficially similar to fully Bayesian approaches
in that the predictive data distributions (64) and (66) in both cases are
a weighted combination of different pdfs from simpler models, often from
the exponential family. However, the distributions resulting from the two
methods often can show quite different asymptotic learning behaviour (that
is, when we let the training set size N grow). For a Bayesian model, the
likelihood term in (60) will eventually swamp the prior (wherever the prior
is nonzero) as the amount of data becomes large. If, for example, M is a
set of distinct categorical distributions, the posterior probability will even-
tually come to strongly favour the one among these that is closest to the
true data distribution. The resulting predictive distribution (64) will be
virtually indistinguishable to one of the distributions in M. A mixture
model, in contrast, may retain all components and keep them distinct even
as N ! 1, and can therefore more easily converge on a variety of shapes
that are different and more complex than any of the components. In cases
where the true generating distribution is not in M, the standard Bayesian
approach with conjugate priors often converges on a compromise model
which best explains the entire dataset (but see also [95]), while mixture
models, roughly speaking, partition the state space X into K pieces, and
use a separate model for each part. However, the two ideas can be combined
to form Bayesian mixture models, e.g., [83, 106], in which the component
probabilities and parameters are random variables.

Theoretical results show that mixture models can approximate any dis-
tribution well, given a sufficient number of components [83]. Models with
a large number of components may require substantial amounts of data to
be accurate, however. Somewhat surprising, then, is that Bayesian mixture
models with an effectively infinite number of components can be formulated
and made practical [107]; these are of particular interest when it is difficult
to propose an adequate number of components K a priori.

4.6 Ensemble Methods
While Bayesian approaches and mixture models have a long history in statis-
tics, other kinds of ensemble models have recently surged in popularity
due to their consistently strong showings in prediction contests such as
the widely publicized Netflix Prize. Three important approaches—bagging,
boosting, and stacking—are discussed below:
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Bagging [108] stands for bootstrap aggregating, and is the simplest of the
three techniques. In this method, the bootstrap [109] (resampling from D
with replacement) is applied to create a large number of different datasets
based on the original data. Individual problem solvers with the same struc-
ture are then trained on the resampled datasets, leading to a potentially
different parameter estimate for each. To form a decision, the outputs of
the trained problem solvers are combined using, e.g., averaging (minimizing
the squared error on continuous spaces) or simple majority voting (discrete
spaces).

Compared to bagging, boosting, e.g., [110, 111], is a more directed
method specifically for classification. Boosting trains a sequence of clas-
sifiers on different weightings of the available data. After each model is
trained, the data is reweighted so that incorrectly classified examples are
given more weight when the next classifier is created. This creates a se-
quence of models that in some sense complement each other. To obtain the
final decision, the different learners are typically weighted together depend-
ing on their classification accuracy. There are some impressive theoretical
results showing that boosting asymptotically can approach optimal clas-
sification accuracy, even if the component classifiers are only marginally
different from chance [112].

Stacking, finally, is the idea to create a pool of learners, and then use
another, higher-level learner to combine their outputs [113]. Notably, the
two best-performing teams from the Netflix Prize competition both used
large, stacked ensembles for their predictors [114]. Artificial neural networks
can be seen as an extreme example of stacking, where each layer is an
ensemble of simple classifiers (perceptrons) with linear decision surfaces.

Generally, ensemble methods appear to perform better the more differ-
ent the component models are, as this allows them to complement each
other more effectively. Bayesian methods are therefore sometimes consid-
ered relatively weak ensembles [114], as all component models share the
same structure and the parameter distribution tends to concentrate on a
small subset of the possible models once sufficient amounts of data becomes
available. Nevertheless, the ability to average over multiple models makes it
possible for Bayesian approaches to converge on distributions not present in
M [95]. This is appealing, as many traditional convergence and optimality
results, e.g., for maximum likelihood, only consider the situation where the
true distribution is in M.

5 Modelling Sequence Data
The model paradigms from section 4 all apply to sequence models as well,
but sequence models have the additional complication that samples also
may depend on each other. Handling this requires assumptions on the na-
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ture of how samples interact, and models that express and quantify the
dependences. This section introduces stationarity (section 5.1) and ergod-
icity (section 5.2) as two central assumptions in sequence data models, and
outlines Bayesian networks as a framework for visualizing dependence struc-
tures (section 5.3). Thereafter, Markov models (section 5.4), hidden Markov
models (section 5.5), and various combinations (section 5.6) are described,
along with example techniques from each class. Finally, we sketch how the
models can be applied to situations that do not satisfy stationarity or er-
godicity (section 5.7), and touch upon some alternative paradigms which do
not fit well in standard state-based sequence modelling frameworks (section
5.8), for instance detector-based techniques.

5.1 Stationarity
For sequence data, as considered in this thesis, there are two commonly-seen
standard assumptions: that data series are stationary, and that they are
ergodic. Stationarity can be seen as a way to make the dependences of the
process uniform and structured, while ergodicity is a concept for localizing
the influence of the dependences. In this section we explore stationarity in
greater detail, with a discussion of ergodicity reserved for section 5.2.

Stationarity is the notion that the probabilistic properties of samples
from different times are comparable. Just as it is commonly assumed that
the laws of nature are invariant over time, a stationary process is governed
by the same distribution regardless of what the time-variable t is. More
specifically, a sequence is strictly stationary if, for any sequence of obser-
vations x, the probability (or pdf for continuous-valued processes) of that
sequence appearing in a pattern is identical at all times—that is, the process
satisfies

f
X⌧

(x) ⌘ f
X⌧+`

(x) (67)

for all `, as long as the time indices

⌧ = {t1, . . . , tT } (68)
⌧ + ` = {t1 + `, . . . , t

T

+ `} (69)

for the pattern both are subsets of the index set T . In other words, any
substring x has the same probability of appearing at any time.

Stationarity also comes in other forms than strict stationarity. A pro-
cess is weakly stationary or wide-sense stationary (WSS) if its second-order
properties do not depend on time,

E (X1) = E (X
t

) (70)
E (X1X

|
`

) = E
�

X
t

X|
t+`

�

(71)
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for all valid t and lags `; in other words, means and covariances are time-
independent. Note that this does not require the distributions at different
times to be the same.

The advantage of stationarity is that is simplifies learning. Under strong
stationarity, there essentially is a single, translated distribution to learn,
rather than a new distribution for each time t. In the case of weak sta-
tionarity, the distributions at individual times may differ, but there are still
invariant means and variances that can be identified.

If the properties of the process (its distribution) change slowly with time
or otherwise are confined to a small set of similar distributions, a model that
assumes stationarity can still yield good results on a dataset. Speech signals,
for instance, change relatively slowly on the millisecond scale, so stationary
models are often sufficiently accurate over intervals of 20 ms or so.

In other cases, nonstationarity may have to be incorporated into the
model itself. Seasonal dependences, which are common in time series of
geological, biological, or societal origin, can be expressed through cyclo-
stationary processes. These can be thought of as a set of T

p

alternating
(and possibly dependent) stationary processes, T

p

being the period, where
sample X

t

is generated from process number tmodT
p

. Cyclostationary
models can be created by letting process parameters (e.g., the mean) vary
according to a given pattern [115]. It may then be possible to remove the
nonstationary aspects of the data and obtain a stationary residual process.
There are also nonparametric approaches to seasonality, for instance the
climate data example from [27]. Common cycle periods are days and years;
tides also have a monthly component, while weekly patterns often appear
in data affected by human activity. Similar techniques can also be applied
to describe ongoing trends in the data, for instance by adding terms that
model linear growth.

Many deviations from stationarity are, unlike cyclostationarity, difficult
to describe in a structured manner. One example is one-shot, transient
processes, i.e., finite-duration phenomena. To accurately estimate the be-
haviour of such processes, it is typically necessary to have several indepen-
dent realizations of the process. A deeper look at methods for working with
nonstationary time series can be found in [116].

5.2 Ergodicity
Ergodicity is often presented as a short-memory property. Essentially, it is
the idea that long samples from a process will be representative of all the
possible behaviours of the process. More formally, if ⌧ and ⌧ 0 are two sets of
time indices and (X

⌧

= x) and (X
⌧

0 = x0
) are two positive-measure events,

meaning that the two output patterns can be generated by the process, then
the process is ergodic if the event

�

X
⌧

= x \X
⌧

0+`

= x0� also has positive
measure for some `. In other words, all possible patterns can also co-occur
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in the same realization, at least if they are sufficiently far apart. (This
definition is a slight simplification of that given in [117].)

Though, technically, ergodicity can be defined though a measure-
preserving transform without requiring stationarity, stationarity is com-
monly assumed before ergodicity is considered. If a process is both sta-
tionary and ergodic, which is common to assume in applications, this means
that the behaviour is time-invariant, and that time average of any integrable
function g (x) converges to the ensemble average (the standard expected
value of the function),

lim

T!1

1

T

T

X

t=1

g (X
t

) =

ˆ
g (x) f

X1 (x) dx (72)

almost everywhere [118]. For such a process, a single sample sequence, if
long enough, suffices to learn the behaviour of the process to an arbitrary
(given) accuracy. Ergodicity thus implies that the data satisfies a kind of
law of large numbers for dependent samples.

Of course, some ergodic systems converge to the ensemble average faster
than others, and between independence and simple ergodicity exist several
different kinds of so-called mixing (weak and strong). This is reminiscent of
the various strengthened versions of the law of large numbers, including the
central limit theorem. Exactly how quickly an ergodic system forgets can
be quantified by mixing coefficients or by the autocovariance time TCov. If
the process X is weakly stationary with mean value µ and variance �2, the
autocovariance time is defined through

1
X

`=1

|Cov (X
t

, X
t+`

)| = �2TCov, (73)

assuming the sum is finite. This number affects how quickly the sample
mean

bµ
N

(x) =
1

N

N

X

t=1

x
t

(74)

converges to the true mean µ = E (X
t

)—specifically one can show [119] that

E (L
Q

(bµ
N

(X) , µ)) = E
⇣

(bµ
N

(X)� µ)
2
⌘

(75)

 �2

N
(1 + 2TCov) . (76)

This result can be used to extend the law of large numbers, and also quanti-
fies how learning from dependent data requires more samples than learning
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from independent samples due to the redundancy, as was mentioned in sec-
tion 2.4. More precisely, an accuracy that is achievable with N datapoints
for independent data (which has TCov = 0) now requires N (1 + 2TCov)

samples instead, an increase by a constant factor. It is as if one is working
with uncorrelated datapoints spaced 2TCov samples apart; this explains the
interpretation of TCov as an amount of time.

It is a theorem that non-ergodic stationary processes can be decomposed
into a set of component processes, each of which is ergodic [120]. Essentially,
a process is either free to show all possible behaviours in a single realization,
or restricted to pick a subset of them; within such a subset, all behaviours
associated with the subset can be observed in a single realization. As a
consequence, ergodicity is not always necessary for prediction: if we are
asked to predict the likely future observations of a long sample, the sample
will be relevant to the current ergodic component, and that is the only
ergodic component that matters for the prediction task at hand.

5.3 Bayesian Networks

We have seen that, in order to be able to efficiently learn a process from its
output data, variable dependences must be localized (ergodicity). Learning
also becomes much easier if the dependences have some form of invariant
structure (stationarity). Fortunately, many observed processes satisfy these
criteria to a large degree.

In the following subsections, we introduce the two dominant paradigms
for modelling stationary and ergodic sequence data. The methods can be
extended to also handle certain types of nonstationarity (particularly trends
and seasonality) and to model finite-duration sources.

When classifying sequence models, dependences among variables will be
illustrated in the language of Bayesian networks [121, 122], which are a
type of graphical model. More specifically, a Bayesian network is a directed
acyclic graph (DAG) which expresses the causal dependences among a set of
random variables.10 To be concrete, let V = {1, . . . , N} be a topologically
ordered indexing of the nodes in a DAG, so that the set of vertices E satisfies
E ✓ {(i, i0) 2 V ⇥ V : i0 > i}. Let further J (i) ✓ E be the edges pointing
to i. Also let XV = {X

i

: i 2 V} be a set of possibly dependent random
variables. The graph (V, E) is then a Bayesian network with respect to XV

10Markov random fields (MRFs), one alternative to Bayesian networks, utilize undi-
rected graphs, and can therefore be symmetric in the relations between variables. This
is useful, e.g., in models of atomic interaction such as the Ising model and spin glasses
[123]. Reduced Boltzmann machines, common building blocks in deep neural networks,
are also expressed as MRFs [124, 125]. Hybrid models which combine both paradigms
exist as well [126, 25].
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if the joint probability distribution of XV satisfies

f
XV (xV) ⌘

Y

i2V
f
Xi|XJ (i)

�

x
i

| xJ (i)

�

. (77)

(Note that this is different from the factorization

f
XV (xV) ⌘

Y

i2V
f
Xi|X1, ...,Xi�1

(x
i

| x1, . . . , xi�1) (78)

which applies to all sets of random variables.)
We see that the absence of an edge between i and i0 > i in a Bayesian

network means that the corresponding variables are conditionally indepen-
dent, given the variables in J (i0)—that is, the joint pdf factors as

f
Xi,Xi0 |XJ (i0)

�

x
i

, x
i

0 | xJ (i0)

�

⌘ f
Xi|XJ (i0)

�

x
i

| xJ (i0)

�

f
Xi0 |XJ (i0)

�

x
i

0 | xJ (i0)

�

(79)

when i /2 J (i0) , i < i0. Though they may not look like much, such inde-
pendences can substantially simplify computations.11

We shall see that a useful notion of localized dependences is models that
have Bayesian networks on V ◆ T whose causal dependences, i.e., the sets
J (i), do not grow indefinitely with i 2 V. For probability distributions that
represent stationary processes, the sets J (i) generally have some recurring
structure to them, such that the causal dependences at any point simply are
translated versions of the dependences at any other point. Such a Bayesian
network is known as a dynamical Bayesian network.

Although general inference in a Bayesian network is NP-hard to even
approximate [128], the factorization in (77) suggests a sequential computa-
tion such that sampling or probability computation for sets of contiguous
variables starting at i = 1 can be performed efficiently. This property is
important for efficient computations with the models presented here.

5.4 Markov Processes
Possibly the simplest assumption that can be made when creating a
sequence-data model is that the generating process has limited-range mem-
ory, so that only the most recent data samples are informative for predicting
future behaviour, assuming the underlying model is known. This notion is
formalized by the well-known Markov property

f
Xt|Xt�1

�1

�

x
t

| xt�1
�1
� ⌘ f

Xt|Xt�1
t�p

�

x
t

| xt�1
t�p

�

; (80)

11An important caveat is that dependences in the network change depending on
whether or not the value of a variable is known, though simple algorithms exist to take
this into account, e.g., [127].
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Figure 1: Bayesian network representing first-order Markov model.

any process that satisfies this for all t is said to be a Markov process of order
p.

Relation (80) implies that future evolution is conditionally independent
of the past, given the current context or state xt�1

t�p

.12 Given xt�1
t�p

, we can
recursively apply (80) to find the joint probability distribution of any future
samples. The state is thus what is known as a sufficient statistic for predic-
tion. In Bayesian network terminology, we have J (t) = {t� p, . . . , t� 1}.
The associated between-variable dependences (and conditional indepen-
dences) are represented graphically in figure 1 for p = 1. As a special
case, one can assume that a process has no memory at all and p = 0, in
which case the data is IID.

5.4.1 Markov Chains

Discrete-valued Markov processes are often known as Markov chains. (Some
authors use this term to refer to continuous-valued processes, but this text
will not.) Stationary Markov chains on finite alphabets (meaning |X | < 1)
are extremely common as language models in speech and text modelling. A
highly appealing property is that the general next-step or transition distri-
bution f

Xp|Xp�1
1

: X p+1 ! [0, 1] of these models can be specified using only
|X |p+1 numbers (i.e., parameters), which is polynomial in the alphabet size.
The values of f

Xp|Xp�1
1

are called transition probabilities.
Any finite-order Markov chain on X can be converted to a first-order

Markov chain over the alphabet X p. For first-order Markov chains on fi-
nite alphabets with time-independent next-step distribution, the transition
probabilities can be arranged into a transition matrix A 2 [0, 1]

|X |⇥|X | with
elements

(A)

ii

0 = a
ii

0
= f

X2|X1
(i0 | i) . (81)

Despite the capital font, A is typically not a random quantity; the capital
here merely highlights that it is a matrix. Note that some texts define
transition matrices as A|, the transpose of our A.

12In this view, the state is essentially a random variable which, if known, decouples
the future evolution of a process from its past. As will become apparent in section 5.5,
such a state need not take values on X . The term “state space” will therefore sometimes
be used to refer to a space other than X , depending on what we mean by the “state” of
the process under consideration.
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The simple idea of collecting transition probabilities in a matrix is sur-
prisingly powerful, in that many meaningful properties or relevant proba-
bilities of Markov chains can be expressed in linear algebraic terms using
A. Since the elements on each row of A form a probability distribution,
one for example has that

A1 = 1, (82)

where 1 is a column vector of all ones.13 1 is thus a right eigenvector
with eigenvalue 1, which necessarily is the largest eigenvalue of A. Many
important properties of stationary and ergodic models can then be derived
from the Perron-Frobenius theorem [129, 130]. If f

Xt (i) is a stationary
distribution of the Markov chain and the vector ⇡ has elements ⇡

i

= f
Xt (i),

we have

A|⇡ = ⇡, (83)

so ⇡ is a left eigenvector of A. If this eigenvector is unique (the eigenvalue
1 has multiplicity 1) and ⇡ > 0, the Markov chain is ergodic. The spectral
gap of A (the difference between the moduli of the two largest eigenvalues)
bounds the asymptotic decay rate towards the stationary distribution ⇡ for
a Markov chain with an arbitrary starting state.

5.4.2 Continuous-Valued Markov Models

Continuous-valued data with stationary and finite Markovian dependences
can be modelled using numerous different techniques. Most prominent are
perhaps standard linear autoregressive models (AR models), where new val-
ues are generated as a linear combination of recent observations plus some
weakly stationary, independent zero-mean driving noise E ,14 i.e.,

X
t

=

p

X

`=1

A
`

X
t�`

+ E
t

(84)

f
Xp+1|Xp

1
(x

p+1 | xp

1) = fE

 

x
p+1 �

p

X

`=1

A
`

x
p+1�`

!

, (85)

where A
`

are (typically nonrandom) matrices of auto-regressive parameters.
These are models for which linear prediction based on past values is optimal.
Certain conditions apply on {A

`

}p
`=1 and the variance of E

t

for the process
to be stable and stationary. Extending the model to a nonzero mean is
straightforward.

13Nonnegative real matrices satisfying (82) are said to be right stochastic, which is an
unfortunate term as the matrix itself need not be a stochastic quantity. Matrix-valued
random variables are instead known as random matrices.

14Think of this notation as “capital epsilon,” with " representing a specific realization.
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Autoregressive models are sometimes introduced from a geometric per-
spective, as methods for minimizing the mean square prediction error. Pre-
dicting the conditional mean of the next datapoint then becomes a linear
regression problem. These geometric models have straightforward proba-
bilistic analogues where samples are perturbed (driven) by, for instance,
IID zero-mean Gaussian noise E around the geometric predictions. Such a
model leads to one additional parameter to estimate, namely the noise stan-
dard deviation, but in turn provides a generative, probabilistic model of the
data. As with the Gaussian distribution examples in section 4.3, the mean
of the probabilistic and the geometric predictions coincide, so estimates of
the remaining parameters are the same in the two interpretations.

Autoregressive moving-average models (ARMA) [131] are also very com-
mon in applications. These are a minor generalization of AR models where
the noise is a moving-average process, as in

X
t

= µ+

p

X

`=1

A
`

(X
t�`

� µ) +

o

X

`=0

B
`

E
t�`

, (86)

o being the order of the moving average, µ being the process mean param-
eter, and {B

`

}o
`=0 being parameters of the moving average. It is generally

assumed that B0 = I, the identity matrix.
AR and ARMA models are often among the first techniques a practi-

tioner will apply to a new problem. The Wold decomposition [132] shows
that any weakly stationary and ergodic process can be decomposed into a
(possibly infinite-order) linear ARMA process driven by a white noise pro-
cess, meaning a process which is weakly stationary and has samples which
are mutually independent but not necessarily IID. This decomposition can
be seen as a motivation for the widespread use of truncated (i.e., finite-order)
linear ARMA models in applications.

For more complex data, nonlinear approaches are generally of interest.
A simple trick is to transform the data, in the hope that the process be-
comes more linear, for instance by taking the logarithm of dataseries which
experience multiplicative updates. If this is not sufficient, a plethora of non-
linear models exists for the analyst to choose from. One may for example
consider piecewise-linear, regime-switching approaches such as self-exciting
threshold autoregressive (SETAR) models [133], when driven by a function
of the context variable, or geometric methods such as (non-recurrent) time-
delay neural networks for recognition [134] or kernel-based AR models for
prediction [135, 136], to name a few different alternatives.

Common to all these models is the fact that they are parametric, and
thus only can represent a restricted family of continuous-valued Markov
processes of a given order. Somewhat surprisingly, perhaps, there exist
procedures which are capable of learning much wider classes of continuous-
valued Markov models, e.g., [137]. The idea, also used as a component
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of thesis paper [138], is to use KDE for nonparametric estimation of the
Markov transition density f

Xt|Xt�1
t�p

.

5.4.3 Variable-Order Models

In the above treatment, the order p is treated as given and fixed. In practice,
it is not known what p is, or even if it has a finite value. As models with low
p nearly always constitute special cases of models with higher p, one may be
tempted to choose large-order models, but these have many parameters and
can be difficult to learn, cf. section 6.3. A more refined approach is to treat
p as a parameter and attempt to estimate it, i.e., perform order selection.
A review of some order-selection criteria is provided in [49]; cross-validation
techniques are a popular choice in applications. See also section 6.3.

For Markov chains, there also exist methods that let the order of the
model depend adaptively on the latest observations (the context): some-
times many symbols into the past have to be evaluated before the state
can be uniquely determined, whereas at other times only a few of the most
recent observations may suffice. This is essentially the same as grouping
certain strings in X p whose latest symbols are similar, and assuming that
their statistics are the same. These descriptions are known as variable-
order Markov models (VOMs) or variable-length Markov models (VLMMs).
The order required by each context can be adaptively learned from data in
various ways, for instance following [139].

Variable-order techniques are also referred to as context-tree methods,
since contexts can be arranged in a tree, with observed symbols on the
branches and where each leaf corresponds to a specific predicted distribution
for the next sample. A more sophisticated embodiment of the same idea
is the causal state learning algorithm in [140, 141], which compactly can
represent certain strictly sofic processes [142], where some contexts may have
essentially infinite order. Specifically, an unbounded amount of lookback
may be required for a strictly sofic process in order to uniquely identify the
state, though, once a sufficiently long history is provided, the number of
possible distributions for future samples is finite.

Instead of simply selecting a single order, or a single order per con-
text, it is also possible to combine models of different orders. This results
in ensemble models of various sorts, with the potential to provide greater
predictive accuracy; see section 4.6. The (binary) context-tree weighting
(CTW) method in [143] is an example of a weighted ensemble of Markov
chains of varying order.

5.5 Long-Memory Models
For processes with long-range dependences, a Markov model may require
high order, many parameters, and lots of data to provide a reasonable de-
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Figure 2: Bayesian network representing a first-order hidden-state
model. Shaded nodes represent observables while other nodes are
unobserved latent variables.

scription. A more common approach to create models with long memory is
to let the state of the process be a latent variable Q

t

. This latent variable
generates the data we see at time t, but is itself not directly observable.
We call this a hidden-state model. Like before, we let the state follow a
finite-order Markovian process, i.e., satisfy (80), so that the entire model
may be specified by the two distributions f

Xt|Qt
and f

Qt|Qt�1
t�p

. This leads
to a Bayesian network over both state and observation variables, with a
dependence structure as illustrated in figure 2 for a first-order hidden-state
process.

5.5.1 Hidden-Markov Models and Kalman Filters

Naturally, the nature of the space Q on which the q
t

-variables take values
a substantial effect on the processes that result. Discrete state-spaces, in
particular, lead to hidden Markov models (HMMs) [35], of which innumer-
able variations exist. Continuous state-spaces, on the other hand, produce
Kalman filters [144] and nonlinear extensions thereof, e.g., [145, 146].

HMMs are a very natural fit for connecting speech and language (text)
data, as they can represent continuous-valued observations, as in a sound
signal, which are generated based on an underlying discrete grammar or
language over a set of phones or words. In speech modelling for recognition
and synthesis, one thus takes x as a representation of the speech signal,
and identifies the corresponding label sequence c with a sequence of HMM
states q. This enables the use of the forward-backward or Viterbi algorithm
to perform decoding for automatic speech recognition [35] or provide specific
state sequences as input to control parametric speech synthesis [39].

Even though the underlying hidden state has limited-range memory in
HMMs and Kalman filters, the X process observations need not satisfy the
Markov property. Among other things, this is evident in how the forward
algorithm

f
Qt|Xt

t0

�

q | xt

t0

�
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= f
Xt|Qt
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02Q
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�

q0 | xt�1
t0

�

(87)

for state-inference in HMMs [35] recursively depends on all previous obser-
vations. Hidden-state models can therefore integrate predictive information
over arbitrary lengths of time. This is crucial in many applications, as it
makes it simple to model long-range signal structure such as, for instance,
the order of sounds in speech signals or various chart patterns in financial
technical analysis, using only a limited state space (possible values for the
hidden-state variable). Patterns with variable durations are especially easy
to represent.

All Markov chains can be formulated as HMMs where f
Xt|Qt

(x
t

| q
t

) =

I (x
t

= q
t

), so HMMs are strictly more general than finite-order Markov
chains. At the same time, it is sufficient that the underlying Markov chain
is ergodic for the entire HMM to be ergodic as well [147]. Furthermore,
unlike many other possible models with long-range memory, fast inference
is possible for HMMs using the forward-backward algorithm [35]. (The
same holds for linear Kalman filters where all variables are Gaussian [148,
149].) This combination of expressive power and computational efficiency
has been central to the success of HMMs in applications, since it enables
the models to be efficiently trained and refined on very large databases.
Efficient algorithms are not as easily derived for multidimensional stochastic
processes, e.g., on grids or lattices; more general results on graphs which
admit fast inference are provided by [150, 151].

Another advantage of the discrete state in a hidden-Markov model is
that it, like the components in a mixture model, effectively partitions the
data into different subsets, each of which may be explained by different
distributions. This makes it possible to capture detailed features of the
observation distribution. Unlike regular mixture models, however, HMMs
also describe how different components correlate across time, creating a
class of mixture models suitable for describing time series.

On the other hand, the fact that the state is not directly visible com-
plicates learning. While the EM-algorithm [76] can be used for iterative
parameter-estimation in HMMs, and is guaranteed to converge on a local
optimum in some special cases [152, 153], the method assumes that the
number of states is known a priori. This is not necessarily true in prac-
tice, and data-driven criteria for deciding on a suitable number of states are
therefore of interest. The causal-state learning algorithm in [140, 141] can
be seen as an example of such a method, capable of learning more general
representations than finite-order Markov chains, and yielding a number of
states that converges on the true number of so-called causal states (a certain
information-theoretic representation of stochastic processes [154]). Thesis
paper [155] extends these ideas to be more robust to noise.
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Figure 3: Illustration of dependences and observables in a recur-
rent neural network for classification. The model is discriminative
rather than generative, so the graph cannot directly be interpreted
as a Bayesian network.

5.5.2 Models Incorporating Neural Networks

Hidden state-variables can also be introduced to add long memory to non-
probabilistic discriminatory models, for instance by creating artificial neural
networks where the activations of certain units, instead of being expressed
directly in the output, are fed into the inputs of other units at the next time
step. Such constructions are known as recurrent neural networks (RNN).
Many variants exist, with one interesting example being long short-term
memory (LSTM) networks [156], where internal network activations do not
decay with time and gating units allow information to flow in or out of
memory.

Probabilistic extensions of LSTMs have been shown to do well on certain
time series tasks such as recognizing handwritten text [157]. Unlike naïve
HMM implementations, these models do not assume a one-to-one mapping
between states and recognition labels, and instead use their memory state
Q

t

as a middle layer between X
t

and C
t

, as in figure 3. This is similar to
the traditional input-state-output setup of Kalman filters in control theory,
e.g., [148, 149].

Other approaches use neural networks for state-to-observation mappings,
but employ HMMs for the state-dynamics back end. An example is the use
of MLP features for speech recognition, e.g., [158, 159], which are features
based on phone activations for each frame, derived from multilayer per-
ceptrons (a type of artificial neural network) trained to recognize phones.
These features can be used in isolation or in tandem with more traditional
feature representations.

In recent years, deep belief networks based on reduced Boltzmann ma-
chines (RBMs) have produced strong results in ASR when paired with an
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HMM back-end [25]. This work has garnered substantial interest from the
speech community. Unlike feedforward MLPs, these constructions have
probabilistic interpretations and are often initialized from a probabilistic
perspective. They are thus compelling to use in a generative setting, and
applications of deep neural networks to speech synthesis have just begun to
spring up, e.g., [160, 161, 162].

5.5.3 Hidden Semi-Markov Models

A practical shortcoming of standard HMMs is that they have very poor
ability to model different duration distributions. Since the HMM only re-
members its current state, and essentially flips a coin at each t to decide
whether it should stay in the state or transition elsewhere, the time spent
in each state follows a discrete memoryless (i.e., geometric) distribution

f
D

(d; a) = ad�1
(1� a) , (88)

where the parameter a is the probability of remaining in the state and d
is a positive integer duration value. This distribution has a relatively large
standard deviation that is coupled to the average duration, and attains
its mode at the shortest possible duration d = 1 for all valid a. Natural
processes such as phone durations in speech, in contrast, often show distri-
butions peaked around a value larger than the minimal duration, and with
a narrower dispersion around this value than a fitted geometric distribution
would provide; see also figure 2 in [163] for an example plot of ground-truth
durations from TV programming data.

One possibility to better model non-geometric state-duration distribu-
tions is to let each state also contain a model of the duration distribution
of the state. Whenever a new state is entered, a duration is generated
from this distribution, and the process remains in the state for exactly as
many steps as the generated duration shows. Following this, the process
moves to another state according to a Markov chain with time-independent
transition probabilities where self-transitions are forbidden, and the proce-
dure repeats. This creates a so-called hidden semi-Markov model (HSMM),
which can describe arbitrary state-duration distributions.

The name semi-Markov comes from the fact that the process is Marko-
vian (in the sense that past and future are conditionally independent) given
knowledge about the current state Q

t

and a counter D
t

specifying how long
the process has remained in the current state. The state space is therefore
effectively two-dimensional, which creates issues with applying standard al-
gorithms efficiently. If, however, the duration distribution is log-concave
(which implies unimodality), fast dynamic-programming analogues of the
Viterbi algorithm exist [163]; these can be used as part of approximate EM
training.
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Alternatively, certain non-exponential duration distributions, e.g., the
negative binomial distribution, can be represented as ordinary HMMs by
creating a group of states tied to have the same output distribution, so that
the H(S)MM has identical output distributions as long as the state remains
in the tied group. This enables one to apply standard EM training algo-
rithms. The duration distributions that can be represented by combining
geometric distributions in this manner are known as phase-type distribu-
tions. Continuous-valued phase-type distributions are dense on [0, 1), and
can therefore approximate any duration distribution well, when given a suf-
ficient number of sub-states [164].

Hidden semi-Markov models have been used in automatic speech recog-
nition [165], but the gains they produce there are perceived as relatively
minor. For parametric speech synthesis, in contrast, the improvements in
duration modelling delivered by HSMM systems are more noticeable [166],
and HSMMs are used in state-of-the-art text-to speech systems, e.g., HTS
[167]. An application to segmentation of TV recordings substantially low-
ered frame classification error [163]. Other HSMM uses involve modelling
durations of human motion patterns, for example [168] and [169].

An alternative to using hidden-semi Markov models to obtain natural
duration distributions is to introduce a continuous state space (that is, use
a possibly nonlinear Kalman filter), which can represent gradual, interme-
diate progress between states and behaviours even while remaining strictly
Markovian. This approach was explored in papers [170] and [171] by the
thesis author and collaborators.

5.6 Combining Models and Paradigms

Often, real-world data series exhibit both short-range correlations and long-
range structure and patterns. Theoretically, all this can be represented by a
discrete-state HMM, given a sufficient number of states, but in practice that
number may be prohibitively large. In a nutshell, HMMs trade the limited
memory range of Markov models for limited memory resolution. Instead,
it is often preferable to combine the Markovian observation dependences
and hidden-state approaches discussed above within a single model. The
result is a network structure as illustrated in figure 4, where between-sample
dependences follow a Markov process with properties determined by the
hidden state.15 Importantly, fast inference remains possible.

Typically, the Markovian part in a model of the above type captures sim-
ple and predictable local aspects of the data such as continuity, allowing the
hidden state to concentrate on more complex, long-range interactions. In

15More general dynamic Bayesian networks for speech recognition have been considered
in [172]. There are also algorithms to learn the structure of dynamic networks from data
[173].
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Figure 4: Bayesian network representing a model with Markovian
and hidden-state dependences. Shaded nodes represent observ-
ables while other nodes are unobserved latent variables.

speech signal modelling, for example, autoregressive models describe corre-
lations between analysis frames due to physical constraints on the motion of
speech articulators, while the hidden states typically are based on a language
model (e.g., n-grams), thus accounting for grammar and other large-scale
structures of speech and language.

Joint Markovian and hidden-state structure is seen in, e.g., GARCH
models [14] from econometrics, or in SETAR models driven by an unob-
servable Markov chain, so-called Markov switching models [174, 133]. The
practice of adding dynamic features such as velocity and acceleration—used
in acoustic models for speech recognition and synthesis [175], and in sig-
nature verification [176], for example—can be seen as a trick for introduc-
ing implicit between-frame correlations. However, this is mathematically
inconsistent, in that it assigns probability mass to impossible feature se-
quences and tends to underestimate data variability [177]. More principled
approaches to modelling temporal correlations such as autoregressive HMMs
(AR-HMMs) [178] or trajectory models [126] yield improved model accuracy
in the case of speech [177]. Thesis paper [138] can be seen as a combination
of continuous-valued nonparametric Markov models similar to [137] with the
discrete hidden state of HMMs. Such a hidden state provides a method to
control the Markov process output, making it useful for language modelling
in speech signals.

If may not be strictly necessary to explicitly introduce Markovian depen-
dences in order to enforce output with a high degree of continuity. Papers
[170] and [171] investigate ideas based on continuous-valued state spaces,
where the dynamics and output mapping pdfs change continuously with
state-space position.

In the context of long-memory modelling of text and other discrete data,
there are methods which, rather than add a hidden state, instead create
Markov-chain models without any explicit bound on the memory length,
where the model order then grows with every observed symbol. Examples
include context trees extended to unbounded depth [179], unbounded-length
prediction by partial matching (PPM*) [180], and the sequence memoizer
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[181, 182]. All of these can be viewed as ensemble methods, combining pre-
dictions based on Markov models of different orders. In contrast to the other
proposals, the sequence memoizer is Bayesian and based on Pitman-Yor pro-
cesses [183], which are capable of replicating the power-law like behaviour
exhibited by many text sources. (We say power-law like, as it turns out that
many sources claimed to be governed by power-laws in the literature show
significant differences from true power-law distributions [184].) A shortcom-
ing of creating and combining Markov-chain models of unbounded order is
that the computational complexity of training on a given sequence often
becomes quadratic in sequence length.

5.7 Finite Sequences
For processes that are not bi-infinite, a distribution over the starting state
(X1 or Q1) must be specified. To ensure stationarity, this f

Q1
must satisfy

f
Q2

(q) =

ˆ
f
Q2|Q1

(q | q0
) f

Q1
(q0

) dq0 (89)

= f
Q1

(q) (90)

for all q. If the process is ergodic, f
Q1

is uniquely is determined by the
conditional next-step distribution f

Q2|Q1
. For Markov chains, this is the

stationary distribution vector ⇡ from section 5.4.
Finite-duration Markov chains and HMMs can be formed by adding an

attracting state (a state that only transitions to itself) associated with the
“no output” symbol 0· . By starting in a different state than the attracting
one, transient behavior results. Even if the resulting model is not stationary
in the ordinary sense of the word—for one thing, f

Q1 (i) 6= ⇡
i

for several
i—it can still be governed by an unchanging (time-independent) next-step
distribution

f
Qt|Qt�1

(q | q0
) ⌘ f

Q2|Q1
(q | q0

) . (91)

This introduces similar advantages for learning as conventional stationarity
does in infinite-duration models. Finite-duration models of this type are
commonly used to represent single speech utterances.

5.8 Other Approaches
Not all techniques for working with sequence data fit neatly into the above
state-based framework. Early efforts in speech recognition were based on
templates or exemplars; incoming speech was time stretched or compressed
through dynamic time warping [185, 31] such that a maximal geometric
similarity to each reference example could be computed. Hidden Markov
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models, popularized in part by a timely 1989 tutorial [35] by Rabiner, pro-
vided a more principled method for assigning alignment and similarity costs,
and have largely superseded time-warping methods.16 Under the surface,
however, both paradigms use very similar dynamic programming techniques
to compute how well duration-variable speech matches a given hypothesis.

In speech synthesis, HMM-based methods show substantial flexibility,
and can adapt their voice to recreate different speakers and affective states.
Higher naturalness, however, is generally provided by concatenative or unit
selection synthesis approaches (cf. [187]), where fast search algorithms are
used to find fitting signal segments from a speech database, segments which
then are concatenated to express a desired target phrase. These techniques
can be seen as geometric methods, as they are based on non-probabilistic
target and join costs. (The target costs measure how well a segment well it
expresses the desired phone or phone sequence in context, and the join cost
how the segment matches neighbouring segment candidates). Unit selection
approaches have some connections with nonparametric methods, in that the
different possibilities that the method can express is explicitly linked to the
training database and its size. (They are not ensembles, however, since
only a single model—a single realization even—is used at any given point
in time.)

There are also problem-solving techniques that do not model or treat
the datastream on a sample-by-sample or frame-by-frame basis. One such
approach to classification, and specifically speech recognition, is to use de-
tectors—small functions, each of which is designed to be sensitive to the
occurrence of a certain events in a datastream. In ASR, relevant events
may be the occurrence of speech building blocks such as phones or simple
words.

A set of detectors continuously scan the incoming data, and if the prob-
ability is sufficiently large for a specific event to have occurred at some t, a
detection is flagged for that time for the detector in question. Subsequent
processing tries to make sense of the set of detections, which is not a sam-
pled time series in any typical sense, nor is it modelled as such. An example
of a detector framework of this kind is [188]. An alternative view grounded
in (continuous-time) point processes can be found in [189].

Detectors can also be utilized in a more traditional time-series approach:
If the detection probabilities for the set of detectors for each frame are ar-
ranged in a vector, a sequence of detector-based feature vectors is obtained.
This data can be described with traditional time-series models. The use of
MLP features in speech recognition [159], already mentioned in section 5.5,
is an example of this approach.

16This is not to say that geometric methods are out of the picture; [186] provides an
innovative recent SVM-based discriminative model for ASR.
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6 Solving Practical Problems
So far, we have introduced the most common tasks involving sequence data,
as well as the mathematical models and techniques used for solving them. In
this section, we summarize how everything can be put together and discuss
some important considerations for successful applied problem solving; [114]
provides another view of several key issues in practical machine learning.

We begin by outlining a typical protocol followed when approaching a
new problem (section 6.1). Thereafter (in section 6.2), feature engineering,
the step that adapts the data to a form suitable for modelling, is considered.
The phenomenon of overfitting, perhaps the most famous nemesis of data
analysts and statisticians, is explored subsequently (section 6.3). Another
notable practical problem is mismatch between training and application,
where we discuss (in section 6.4) some methods, falling partially or wholly
outside traditional parameter estimation, to enhance models for specific
applications.

6.1 Solution Procedure

In solving a practical problem with the assistance of sequence data, there
are a few standard steps:

1. Define the problem by deciding on a specific quantitative perfor-
mance measure to optimize.

2. Gather data. This can, e.g., entail recording speech data or obtain-
ing a suitable text corpus, but also transcribing speech recordings or
annotating corpora (i.e., adding labels to the data).

3. Create a feature extractor. This is a very important step, espe-
cially for supervised learning, in which the data is transformed to a
form that is more suitable for modelling. An overview of the consid-
erations involved is given in the next section.

4. Specify a model for the feature data. Many of the distinguishing
characteristics of different model paradigms have been covered previ-
ously, and will not be repeated here.

5. Estimate the model parameters based on training data. Even
nonparametric methods often have tuning parameters that need to be
adjusted. Sometimes the procedure is not as simple as just applying
the standard parameter estimation techniques from section 3.6, but
may also involve additional processing as discussed in section 6.4 to
improve performance.
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6. Estimate performance. Since the apparent performance on the
training data can be significantly misleading, this is usually done on
held-out data not used during training, a form of cross-validation, but
other methods also exist.

7. Tweak the feature extractor, the model, and possibly other processing
steps until system performance is satisfactory.

8. Apply the resulting solution model to the original problem.

A few of these steps have been discussed in previous sections, particularly
the parts that relate to model building. We now turn to discuss some of the
surrounding aspects, such as feature creation and various types of prepro-
cessing and postprocessing to adapt to different situations. While crucial
to successful problem solving, these tend to be highly application depen-
dent and are frequently difficult to put on an objective basis. Although
a substantial amount of work has been done to put several of these con-
siderations on a firmer theoretical footing, the fact remains that successful
problem solving requires a combination of art and science.

6.2 Feature Engineering
Especially in supervised learning problems, it is quite uncommon to model
the raw input data directly. Often, the feature data that the model describes
is a processed version of the original input. The process that transforms
the raw input to suitable features is known as feature extraction, and the
process of designing such extractors is known as feature engineering. This
is generally the most application-dependent aspect of any machine-learning
application, as once the data is in a suitable form, one can just apply one
of the many available mathematical models to describe the situation and
obtain a solution to the problem.

In classification, feature extraction is often considered a one-way trans-
formation, but to perform synthesis it is important that the feature data can
be inverted to recover a signal in the original input domain. It is not neces-
sary for this inverse to be unique, just that some reasonable “pseudoinverse”
in the original input space can be selected.

6.2.1 Information Removal

Feature extraction generally has two goals:

1. To remove information in the data that is redundant or of no or little
value to the task at hand. This yields a lower-dimensional description
that requires fewer bits and is faster to process.

2. To transform the remaining information into a form that exposes the
structure of the problem and allows it to be modelled efficiently.
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To see why the first objective, information removal, can be beneficial, one
can think of CD-quality speech signals. These have a very high bitrate,
but many frequencies may be fundamentally inaudible or masked by other
sounds at different times—this is why lossy compression of audio can be
so efficient [190]. Obviously, the human-audible signal aspects alone suffice
for high-accuracy speech recognition, as evidenced by human recognition
performance on lossily compressed speech data. Furthermore, many per-
ceptible vocal cues such as pitch may convey emphasis, speaker emotional
state, and facilitate turn-taking, but are not of central importance for rec-
ognizing the words themselves (though pitch can be of importance in tonal
languages such as Mandarin).

In situations where the experimenter does not know a-priori what infor-
mation to keep, feature extractors can be made to incorporate unsupervised
dimensionality-reduction techniques such as principal component analysis
(PCA) or factor analysis [191] to discard information while retaining most
of the empirical variability. The use of autoencoders in deep neural networks
[192] can be seen as an approach for performing nonlinear dimensionality
reduction. There are also dimensionality-reduction techniques utilizing la-
belled data, e.g., [193], which may be better at selecting information aspects
relevant for specific supervised tasks. Though PCA and the concept of di-
mensionality reduction often are motivated on geometric grounds, there ex-
ist probabilistic extensions as well, for instance probabilistic PCA (PPCA)
[194].

6.2.2 Exposing Problem Structure

The second objective of feature extraction is to expose the structure of
a problem in a way that can be described and learned efficiently. (This
assumes that there is some kind of structure to the problem, otherwise
learning is impossible, as discussed in section 3.5). One way to think about
this is to consider where the features fall in the high-dimensional space of
the raw input—typically, certain values go together, so that the data lies
on a low-dimensional manifold in the high-dimensional space. The feature
extraction is then essentially the task of extracting meaningful, or at least
useful, coordinates on this manifold. It is easy to see that coordinates
based on the structure of the problem can be expected to be helpful, e.g.,
for geometric methods. In the case of discrete-valued data such as text,
the situation is a little less straightforward to visualize, but elements of this
reasoning still remain.

A subtask of exposing the structure of the data is to separate indepen-
dent or uncorrelated aspects of the material. This can make a significant
difference in the number of parameters that need to be estimated: com-
pare the diagonal covariance matrices appropriate for Gaussian-distributed
vectors with independent elements against the general covariance matrix,
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which has D2 degrees of freedom. (D here denotes the feature-vector di-
mensionality; naturally, dimensionality reduction will reduce the parameter
set as well.)

6.2.3 Finding Fitting Features

Solving a learning task efficiently requires a synergy between features and
models: the distribution and behaviour of the features should match the
assumptions made by the model. If, for instance, the features as designed
are naturally Gaussian distributed, then a Gaussian model may be expected
to be appropriate. If feature-vector components are independent, Gaussian
distributions with diagonal covariances or other models that assume inde-
pendence may be used, otherwise correlated Gaussians or GMMs may be
required. Sometimes, it can be necessary to apply mathematical transfor-
mations to adjust the range of the data and express the data in a natural
and well-behaved way.

Often, nature can be used as a source of inspiration in creating effec-
tive feature extractors. Take speech signals as an example: Mel-frequency
cepstrum coefficients, MFCCs, common in speech recognition [195] both
incorporate a short-term Fourier transform (similar to the effect of the
human cochlea) as a step to decorrelate the feature data and remove in-
audible aspects based on a psychoacoustic frequency-discrimination scale.
The perceptual theme can be used to reduce feature vector dimensionality
even further based on models of human hearing [196]. Features related to
MFCCs are also used in speech synthesis, though somewhat different and
augmented by pitch tracking and other feature data, e.g., [40], in order not
to sacrifice quality by discarding too much information. (See also the ASR
versus synthesis comparison in [175].)

The auditory frequency scales used in MFCCs and similar representa-
tions, originally introduced based on the human auditory system and psy-
choacoustics, have recently been related to mathematical invariance and
stability properties under frequency transposition and other perturbations
in so-called wavelet scatterings [197]. This interesting line of work also con-
nects with modulation features, another biologically-linked speech feature
[198], and with cascades of nonlinear processing units seen in convolutional
deep belief networks [199].

6.3 Bias, Variance, and Overfitting
Apart from selecting features and models that go well together, an im-
portant practical concern is choosing a model family of adequate complex-
ity. Theoretical results show that methods such as maximum likelihood are
asymptotically consistent if the data generating distribution is an element
in M. This seems to suggest that model families should be chosen as in-
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clusive as possible, to ensure that they contain the “true generating model,”
or a close approximation thereof. This intuition is however very wrong in
finite-sample situations. In fact, even if the data were generated by a model
in M (which is so unlikely in an application as to be practically impossible),
a simplified model might—surprisingly—give better predictions both in su-
pervised and unsupervised settings. The task of the analyst is thus not to
determine the theoretically correct parametric family, but to propose a set
of models M which yields a good solution to the task, given the available
data. This was succinctly articulated by George E. P. Box in his famous
quotation that “all models are wrong, but some models are useful” [200].

The problem of choosing an appropriate model family is compounded
by the fact that large, complex model families M often are able to fit
the training data well, even when their actual explanatory value is very
poor. This phenomenon is known as overfitting, and relates to the fact that
a model with many parameters may be capable of fitting all the random
peculiarities of the data, whereas a simpler model is forced to choose a
shape which captures the broad tendencies of the material, in order to fit
the data as well as possible. Simpler models therefore often generalize better
to unseen instances, and thus provide more reliable solutions to the problem
at hand.

In section 4.3 we mentioned how the apparent training data performance
is biased towards overly optimistic values, simply because one chooses the
model that maximizes this value. This bias becomes worse the more different
models we choose from (i.e., the larger M is) [93], which essentially is why
overfitted models are so easily selected by the unwary analyst. There exist
analytical methods to compensate for the inherent bias in the training-data
performance of large models, e.g., Akaike’s information criterion (AIC) [201]
or the Bayesian information criterion (BIC) [202],17 but cross-validation
as touched upon in section 5.4 is possibly the most common approach in
practice.

Fully Bayesian methods as in section 4.4 lend some protection against
overfitting, since the distribution is computed as the average over all plausi-
ble models, rather than picking the single model that looks most appealing.
If the Bayesian approach is uncertain about which model that is most ap-
propriate, the set of models considered probable will be broad, and one may
expect the predicted distribution to be smoothed out and be less sensitive
to stochastic variation than a distribution based on a point estimate. Non-
parametric modelling can be seen as another method to combat overfitting,

17As an aside, it can be proved that AIC is an inconsistent estimator of the true
order [203, 204], tending to overestimate the order of Markov chains, where BIC, in
contrast, is consistent. This is often a bit of a red herring, however, since models of fixed,
overestimated order generally learn to let higher-order terms go to zero, and thus also
converge on the correct predictor in the limit—hence, consistent order estimation is not
necessary for consistent distribution estimation.
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by gradually growing the model set as more data becomes available, letting
model complexity adapt to dataset size.

For any technique we use, there are limits on how much data that is suf-
ficient or necessary to have a high probability of learning a well-performing
model. More specifically, the excess risk in classification (i.e., the difference
between the average loss of a learner and the lowest achievable average loss)
can be bounded using results from computational learning theory [66]. One
important tool in such efforts is Hoeffding’s inequality, which puts bounds
on the difference between the empirical and the true probability of an event,
and thus can be used to relate the expected generalization performance to
the observed error rate.

Mathematically, the task of selecting a proper model (family) complex-
ity can be expressed as a so-called bias-variance trade-off. Simple model
families have a large asymptotic bias (systematic error), in that their best
model may never be close to the generating model. The optimal parameters,
being few, can, however, be estimated accurately from modest amounts of
data. Complex M, on the other hand, typically have the potential to come
closer to the true distribution, but as there are many models to choose from,
more data will be needed to get there. The selected models therefore have
a strong dependence on random properties of the sample data, and show a
lot of variation (random error) around the most appropriate model.

To make the bias-variance trade-off more concrete, consider a case where
the estimate b✓ of an unknown parameter ✓ satisfies b✓ ⇠ N �

µ, �2
�

. The
mean square error of the estimate is then
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which elegantly decomposes into a term relating to the systematic bias, and
a term relating to the random uncertainty. Both bias and variance have to be
small for the total expected error to be small. An example where the above
trade-off can be used explicitly in model selection is bandwidth selection for
KDE, where the asymptotic mean integrated square error (AMISE) takes
the form of a sum of a bias and a variance term [59]. Bias-variance-type
trade-offs also exist for other loss functions, e.g., 0-1 loss [52].

6.4 Preprocessing and Postprocessing
In applications of machine learning, speech, or language technology to real
life, there is often a mismatch between how a model is created and trained,
and how it later is applied. An example is the profusion of different noise
environments, speaker accents, and other signal degradation sources that a
general speech recognizer must face without having seen them all in the lab.
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The mismatch between training and application is challenging to predict
through theory, and often has to be compensated for by the analyst, using
methods external to the standard estimation and decision procedures. Fre-
quently, as we shall see in this section, this compensation occurs either as a
data preprocessing (typically as part of the feature extraction stage) or as
a kind of postprocessing after model selection or parameter estimation has
been performed.

6.4.1 Domain Adaptation

A canonical example of how training data and application can differ is that
models often are trained on data from a subset of individuals or cases,
while the input data in subsequent applications typically comes from other
individuals or cases, having a different probability distribution. As a matter
of notation, the data is said to come from the source domain, with the target
domain being the intended application; methods to mitigate problems due
to the mismatch are collectively referred to as domain adaptation or transfer
learning [205].

Feature extraction, as covered in section 6.2, can be seen as a form of
preprocessing. Certain types of feature normalization can, for instance,
make a speech recognizer more robust to variations in the speaker voice and
the ambient acoustic environment. An example is cepstral mean normaliza-
tion (CMN), e.g., [206], where each utterance feature sequence is translated
to have mean zero. This moves both training and test data to a common
region in feature space, and constitutes an example of feature-based domain
adaptation. A simple extension is to normalize both mean and variance.
A preprocessing to correct spelling errors could be seen as a method for
reducing uneven performance when working with texts written by different
individuals. Another notable feature-based domain adaptation scheme from
NLP which takes the form of a preprocessing step is described in [207].

If the mismatch is simply due to uneven sampling, where cases that are
commonly encountered in practice are less common in the training database,
this can be overcome by selecting or weighting datapoints prior to training
[208], a type of instance-based domain adaptation. This requires retraining
(picking a new model) every time the domain changes, however, and cannot
compensate for cases where application-relevant training examples are not
merely scarce, but absent altogether.

A third option is model-based domain adaptation, where the trained
model is adjusted to fit the application. This can, for instance, be done
by re-estimating certain parameters, e.g., vocal tract length normalization
(VTLN) in speech recognition [209, 210], or by transforming means and
variance parameters in HMMs [211]. This is thus a kind of model postpro-
cessing.



6 Solving Practical Problems 59

6.4.2 Smoothing

Even if we do not know any specifics about the target domain, models can
be estimated and processed in ways that typically increase performance in
applications. A basic, but important, example of this is model smoothing,
which is of importance in language modelling for speech recognition, as well
as in other NLP tasks [212].

Smoothing addresses a problem with maximum likelihood estimation
for categorical distributions, for instance in language models, which assigns
zero probability to any event not observed in the training data. Such an
event could be a unique word or word combination (n-gram). Paradoxically,
extremely uncommon events can occur quite often in practice: for large text
corpora, for instance, it is typical that about half the words in the corpus
only occur once, so-called hapax legomena. Even if a previously unseen
word combination occurs only once in an entire sequence of test data, the
probability of the entire sequence will still be estimated to be zero. The
model therefor rejects many perfectly valid texts, which is known as the
zero-probability or zero-frequency problem [213].

The idea of smoothing is to broaden the support of the estimated dis-
tribution, so that events previously considered impossible now have some
probability of occurring. This can be seen as a recognition of the fact that
practical diversity is greater than the variability found in the training data.
A simple scheme for categorical data is to add an initial count of one, or
some other number, to every bin (possible observations), e.g., [214]; these
pseudocounts, together with the empirical frequencies from the data, are
used to determine the estimated distribution. The pseudocounts can be in-
terpreted as a Bayesian prior, where the experimenter a priori creates “fake
observations” to indicate that all elements in X have a real possibility of
occurring. Jeffreys prior, in particular, amounts to adding a count of 1/2 to
every bin.

Smoothing to broaden the support of estimated distributions can also be
performed after model estimation, as a postprocessing step. For uncommon
word combinations, another approach is to interpolate between a high-order
Markov (n-gram) model and a lower order model [215], a kind of model
combination.

The opposite situation of the zero-probability problem, when a selected
model assigns much probability mass to observations that are very unlikely
to be generated by the true process, can be an issue in generative tasks.
Speech sampled from state-of-the-art parametric speech synthesis models,
for instance, sounds warbly and bubbly in a manner human speech does not
[177]. Evidently, most of the probability mass is assigned to models which
are radically unlike natural speech. Texts generated from Markov chains
are another example: while the words and local word combinations may be
standard, the text as a whole is generally incoherent in a manner atypical
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for texts of human origin.
The above failings can be seen as fundamental shortcomings of the mod-

els, being unable to capture and represent important sources of variation
and instead interpreting these as random noise. For want of better models,
the issues can be lessened by reducing the support of the output distribu-
tions after training to concentrate on the most probable and representative
observations. Speech synthesis using MLPG [56], for instance, takes this to
the extreme, by only generating the single most probable output element.
An information-theoretic scheme for continuously selectable levels of this
type of “sharpening” (as an opposite of smoothing) is the topic of thesis
paper [55], some ideas of which were first published in [216].

7 The Thesis Research

We now move our focus towards the specific research contributions contained
in this thesis. To start, some context is provided (section 7.1), explaining
why research on speech and language models remains relevant. Thereafter
an overview of the different research papers and their objectives is presented
(section 7.2), followed by a list of main contributions of the individual papers
and some brief words on future topics to explore (in section 7.3).

7.1 Thesis Context

A common theme of machine learning and artificial intelligence has been
that machines can do things that no human can, but many things that
humans find easy are very difficult for a computer. Speech and language
is a good example of this divide. While computers can record, edit, store,
transmit, and reproduce text and sound in ways that could hardly have
been imagined just fifty years ago, we still cannot interface with machines
through speech and text nearly as naturally as we do with human beings.

That speech and natural language technology falls short in important
areas is not for lack of trying. Massive research efforts have been directed to-
wards automatic speech recognition, text-to-speech systems, machine trans-
lation, and similar applications, and have produced numerous insights and
breakthroughs big and small. Today, tools and technologies exploiting these
efforts are widely deployed, but remain held back from realizing their full
potential by lingering limitations in the underlying science. The hunt is
thus still on for better models which capture the true essence of speech and
language, or at least improve our modelling capacity to deliver solutions
that improve on the state of the art.
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Paper A B C D
Core technique GPDMs CSSR/RCS MERS KDE-HMMs

Type Generative Generative Generative Generative
Observations Continuous Discrete Any Continuous
Application Synthesis Language Synthesis, Synthesis

acquisition denoising
Has Markov

3 3 3dependence?
Long-memory Continuous Unbounded Unbounded Discrete
mechanism state order order/none state

Nonparametric 3 3 Yes and no
What’s new? Application Criterion, Algorithm, Model,

algorithm application algorithm

Table 1: Overview of the ideas presented in the thesis papers.
Tick marks mean “yes” while empty cells signify a “no.” Further
explanation and discussion is provided in the text.

7.2 Overview of Work

We need better speech and language models, and the research contained in
this thesis represents efforts to identify and examine promising candidates.
In one way or another, each paper in the thesis demonstrates a method
for overcoming limitations of entrenched modelling paradigms in particular
application scenarios. Often, but not always, this is accomplished by in-
vestigating model classes with greater descriptive power than the standard
methods, e.g., through nonparametric techniques, or Markov chains with
potentially unbounded memory.

The majority of the thesis papers focus on synthesis applications, but
paper B considers a method primarily suitable for NLP-related recogni-
tion tasks (e.g., named-entity recognition) or pattern discovery for lan-
guage acquisition. Papers A and D, meanwhile, both look to overcome
shortcomings in traditional HMM-based acoustic models used in parametric
speech synthesis, either through applying a more powerful and appropriate
state-space representation (replacing the oversimplification of a discrete,
one-dimensional phonetic state), or by developing novel, controllable and
consistent nonparametric Markov models for continuous-valued processes
(which may capture speech dynamics better than the linear Markov models
currently in use). Paper C, finally, considers how we best can make do with
the imperfect models we have, with results that are applicable to continuous
as well as discrete-valued sources, i.e., both speech and text.

To illustrate how the research efforts included in thesis connect, and
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where they differ, table 1 provides a structured comparison of the four the-
sis papers. While the table is largely self-explanatory, a few comments are in
order: The “Markov dependence” row refers to whether or not causal depen-
dences between observations exist if all latent variables (if any) are given.
GPDMs show that a hidden, continuous-valued state suffices to generate
smoothly changing output, without additional between-observation Marko-
vian dependences, though paper A conjectures that introducing such depen-
dences (which is straightforward using dynamic features) may further im-
prove synthesis quality. “Unbounded order” long memory in the table means
that the most straightforward way to think about the technique in question
is as a Markov process of possibly unbounded or infinite order, at least for
certain contexts. MERS can be solved explicitly for (continuous-valued)
Gaussian processes with arbitrary power spectral densities—meaning in-
finite order—but in the case of discrete-valued processes only finite-order
Markov chains are considered in the paper. KDE-HMMs have a set of non-
parametric Markov processes that generate the observations, but the models
switch between the different processes based on a parametric hidden Markov
chain; these models therefore contain both parametric and nonparametric
elements.

7.3 Summary of Contributions and Outlook
To provide some more detail on the individual research efforts, the main
achievements of the thesis papers can be summarized as follows:

• Paper A: The first (to our knowledge) application of Gaussian process
dynamical models (GPDMs) [217, 218] to speech generation. GPDMs
are a class of nonparametric dynamic models where autoregressive
state dynamics f

Qt|Qt�1
and state-conditional output distributions

f
Xt|Qt

are given by Gaussian processes [27]. It is shown that GPDMs
produce more natural output for voiced speech than do comparable
hidden Markov models, both under sampling and MLPG. This is at-
tributed to the ability of the continuous state-space to represent grad-
ual transitions and recreate natural phone durations. Additional state-
space dimensions are shown to enable the representation of prosodic
variation.

• Paper B: An algebraic criterion for deciding when the causal-state
representation of a process can be learned by the causal-state splitting
reconstruction (CSSR) algorithm from [140, 141]. The criterion is ap-
plied to show that CSSR cannot learn a simple two-state process when
disturbed by non-zero probability substitution noise. A specification
of how to apply the criterion algorithmically is also provided.

• Paper B: A modified CSSR algorithm, dubbed robust causal states
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(RCS). It is proved that, unlike CSSR, the algorithm is capable of
recovering the underlying causal states of a process also in the presence
of noise (substitutions, deletions, and insertions). The conclusions are
supported by simulation data.

• Paper C: A general information-theoretic scheme, minimum entropy
rate simplification (MERS), for simplifying stochastic processes by
concentrating on the most representative observations. Inspired by
rate-distortion theory in source coding [54], MERS is formulated as
an optimization problem over a set of stochastic processes, selecting
the process with the least entropy rate, subject to a constraint on
the permitted dissimilarity from the original reference process. A
multitude of different process classes and dissimilarity measures can
be used.

• Paper C: Explicit solutions to the MERS problem for Gaussian pro-
cesses under different dissimilarity measures and constraints on the
process under consideration. The solutions formulas also apply to
entropy maximization under similar constraints.

• Paper C: An explicit solution formula to the MERS problem for
first-order Markov chains under a reverse KL-divergence dissimilarity.
The solution also applies to entropy maximization under similar con-
straints. Experiments demonstrate the results of MERS on Markov
chains, including text generation and an application to denoising a
model trained on disturbed data, where MERS outperforms an alter-
native scheme based on thresholding.

• Paper D: KDE-HMMs, a new signal model extending asymptotically
consistent continuous-valued Markov processes based on kernel den-
sity estimation (a construction likely first considered in [137]) with a
discrete hidden Markov state. This is promising for modelling the tra-
jectories of acoustic parameters in speech (which have proved difficult
to describe well-enough to generate natural-sounding speech [177]),
with the added latent state enabling synthesis output to be controlled.

• Paper D: Guaranteed-ascent generalized EM-based parameter update
formulas for KDE-HMMs, as well as relaxed update formulas which
allow faster convergence in practice. Experiments show that KDE-
HMMs can be trained using the relaxed formulas to achieve superior
prediction performance on nonlinear time series, compared to several
reference models.

In-depth information can be found in the papers themselves, which are
included in part II below.
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Of course, many threads remain to be explored. To name a few items,
the acoustic models of paper A need to be extended to handle discontinuities
and to allow the synthesis of arbitrary speech utterances. The learning tech-
niques in paper B are not yet practical in large-scale scenarios. Minimum
entropy rate simplification from paper C may investigate new applications
and additional dissimilarity measures. And the models of paper D, despite
their many appealing properties, have yet to be adapted to perform non-
parametric speech synthesis. These are but a few of many possible research
tasks still ahead of us in speech and language modelling.
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