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Abstract

This document contains supplementary material for the Pattern Recognition

Letters article “Picking Up the Pieces: Causal States in Noisy Data, and How

to Recover Them.”

A. Proof of Theorem 11

In this appendix we prove that the criterion in Theorem 1 is sufficient for2

HAB to have an infinite number of causal states. To begin with, we assume3

that the number of causal states is M <∞. We then show that this leads to a4

contradiction.5

Note that the distribution of future observations of the HMM from t + 16

on is completely determined by the hidden state probabilities at time t. The7

distribution over hidden states at t can be identified from the known HMM8

parameters and the symbols observed up until t. Consider a sequence of HMM9

observations Xt
−∞ = xt−∞ for which the causal state at t is well defined. (The10

probability that xt−∞ has an undefined causal state is zero.) Let the hidden-state11

probabilities associated with the current causal state be encoded by a vector12

pt ∈ Rn \0 with elements proportional to the probabilities of each hidden state13
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i, i.e., (pt)i ∝ P
(
St=i | Xt

−∞=xt−∞
)
, for i from 1 to n. The direction of pt14

uniquely gives the hidden-state distribution at t. By ignoring normalization we15

do not need to consider nonlinear renormalization operations later on.16

Knowing pt determines the causal state, but there may be different directions17

of pt that correspond to the same causal state. Decompose pt =
[
GrG0

][
vToT

]T
18

where v ∈ Cr \ 0 and o ∈ Cn−r. Trivially P
(
St+1=i | Xt

−∞=xt−∞
)
∝
(
ATpt

)
i
.19

Since G0o is in the null space of AT we have that ATpt = ATGrv. Hence the20

values in o do not affect future hidden state probabilities or observations, and21

the information in v suffices to fix the state.22

Distinct causal states are distinguished by different probability distributions23

for the future symbols. We have that P
(
Xt+1 = σ | Xt

−∞ = xt−∞
)
∝
(
BTATGrv

)
σ
.24

Therefore any change in direction for v will surely translate to a different25

next-symbol distribution if rank
(
BTATGr

)
= r. There is then a one-to-one26

mapping between the different directions of v ∈ Cr\0 and all the different beliefs27

about the future that can be conceived. Not all these beliefs will necessarily be28

causal states ofHAB (not everything that can be believed is right or incorporates29

the information in xt−∞), but each causal state is represented by a unique30

direction of v.31

For each additional symbol the HMM emits our beliefs about the future32

evolve according to the forward algorithm (Rabiner, 1989), as expressed by33

formula (5). Since we do not care about normalization, the algorithm can be34

written pt+1 = diag
(
b·xt+1

)
ATpt, where the history up until t is xt−∞ and xt+135

is the new observation. If pt is a causal state such that P
(
Xt+1 = σ | Xt

−∞ = xt−∞
)
>36

0 then pt+1 must also be a causal state of the process.37

Consider the causal state at t given the history xt−∞. Let vt be a vector in38

Cr \0 in the unique direction corresponding to this causal state ε
(
xt−∞

)
. From39

the forward algorithm we see that we always can write pt+1 = Grvt+1, where40

vt+1 = Hrdiag
(
b·xt+1

)
ATGrvt = Cxt+1vt.41

Now assume that conditions 1 through 3 in the theorem statement hold.42

Consider a sequence of M ′ ≥ M new, all identical observations Xt+m = σ for43

1 ≤ m ≤ M ′. σ is a symbol from the alphabet subset Asub ⊆ A (which is44
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nonempty) chosen such that qt = Q−1σ vt has two components (qt)i 6= 0 and45

(qt)j 6= 0 that satisfy | (Λσ)ii | 6= | (Λσ)jj | (this is possible due to condition 3;46

the decomposition Cσ = QσΛσQ
−1
σ exists by condition 2). Condition 1 ensures47

that P
(
Xt+m
t+1 = [σ, . . . , σ] | Xt

−∞ = xt−∞
)
> 0.48

Define the ratio ut+m = |
(
qt+m

)
i
/
(
qt+m

)
j
|, which is finite and nonzero.49

Applying the forward algorithm iteratively we can establish that qt+m = Λm
σ qt.50

This implies that ut+m = | (Λσ)ii / (Λσ)jj |mut. Since Cσ is nonsingular and51

| (Λσ)ii | 6= | (Λσ)jj | we have that the u-ratios satisfy either ut < ut+1 <52

. . . < ut+M ′ or ut > ut+1 > . . . > ut+M ′ , and so all qt+m-vectors (and all53

vt+m-vectors) have different ratios between these two components and must54

point in different directions. Since we started from a causal state, all these55

v-directions must represent other causal states of the process.56

We have used an observation series with strictly positive probability to57

generate a sequence of M ′ new causal states that are both mutually distinct58

and distinct from the (arbitrary) starting state, meaning that the process has59

at least M ′+ 1 ≥M + 1 causal states. This contradicts the original assumption60

that the process had only M causal states. Since our reasoning applies for any61

finite M the number of causal states must be infinite.62

B. Proof of Theorem 263

We wish to recover the causal structure of a CSSR-learnable process Xt64

using data from a distinguishable corruption Yt, and show that this is possible65

if disturbances are not too strong, so that the precausal states of Xt are still66

discernible as well-separated clusters in the next-symbol probability space of Yt.67

The central argument of the theorem is to establish that the probability that68

any limited-resolution statistical test performed during robust homogenization69

makes an error—that is, makes a decision inconsistent with the suffix assignment70

corresponding to the precausal states ofXt—goes to zero asN →∞. This result71

establishes that RCS produces a suffix clustering identical to the precausal states72

of Xt with probability one in the limit. It is then trivial that the same suffix73

grouping as the causal states of Xt results after determinization.74
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To begin with, we must establish that all nonzero-probability suffixes will75

have appeared nmax times or more in the data already after a finite (if stochastic)76

time, so that the limited resolution criterion in (10) is used for every test77

when RCS is applied from that point on. Noting that ΣLX is finite, it is a78

straightforward consequence of the law of large numbers that such a sample size79

exists with probability one. Once this point is reached, all robust homogenization80

suffix assignments when applying RCS will be based on whether dm (p, q) >81

Fsig (α) holds or not (so they are based on the metric dm), and it suffices to82

show that, as N → ∞, the (pre)causal states of Xt can be extracted reliably83

using this criterion applied to data from the corruption Yt.84

B.1. Distances in robust homogenization85

Consider an arbitrary test performed during homogenization, where the86

estimated next-symbol distribution of a suffix u ∈ ΣLX is compared against the87

estimated next-symbol distribution of a nonempty collection of other suffixes,88

the working state V ⊂ ΣLX . All suffixes v ∈ V are taken to be from the89

same precausal state of Xt, and thus have the same unperturbed next-symbol90

distribution qV . (Unless any previous test makes an error, all tests performed91

during homogenization of Xt and robust homogenization of Yt are of this type.)92

For RCS, the distribution estimates are based on an N -symbol string sampled93

from Yt. We let p̂u denote the next-symbol probability given history suffix94

u, as estimated from the available noisy data, while p̃u represents the actual95

next-symbol probability given u for the noisy process Yt (on which p̂u converges96

as N grows large).97

Since dm is a metric, the triangle inequality gives

dm (p̂u, q̂V ) ≤ dm (p̂u, p̃u) + dm (p̃u, pu) + dm (pu, qV )

+ dm (qV , q̃V ) + dm (q̃V , q̂V ) (B.1)

= dm (p̂u, p̃u) + dm (p̃u, pu)

+ dm (qV , q̃V ) + dm (q̃V , q̂V ) (B.2)
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in case u belongs in the same precausal state of the unperturbed process as V ,

and

dm (pu, qV ) ≤ dm (pu, p̃u) + dm (p̃u, p̂u) + dm (p̂u, q̂V )

+ dm (q̂V , q̃V ) + dm (q̃V , qV ) , (B.3)

which we rearrange to establish

dm (p̂u, q̂V ) ≥ dm (pu, qV )− dm (p̂u, p̃u)− dm (p̃u, pu)

− dm (qV , q̃V )− dm (q̃V , q̂V ) , (B.4)

if u does not belong in that precausal state. Note that the function dm is98

nonnegative.99

We now invoke the disturbance bound d̃ from (12). Since the theorem100

assumes dm to be convex and symmetric in the arguments, we have101

dm (qV , q̃V ) ≤ max
v∈V

dm (qV , p̃v) ≤ d̃. (B.5)

Thus the (ML estimated) expected perturbed precausal-state next-symbol distributions102

show limited differences from the unperturbed, original distributions, just like103

individual suffix distributions do. This bound—together with the earlier triangle104

inequalities (B.2) and (B.4), and the distinguishability dmin of next-step distributions105

defined in (11)—can be used to establish106

dm (p̂u, q̂V ) ≤ 2d̃+ dm (p̂u, p̃u) + dm (q̃V , q̂V ) , (B.6)

in case u belongs in the precausal state V , or

dm (p̂u, q̂V ) ≥ dmin − 2d̃

− dm (p̂u, p̃u)− dm (q̃V , q̂V ) , (B.7)

if u does not belong in V .107

To discriminate between perturbed distributions from the same unperturbed108

precausal state, and those from different states, we want to choose the significance109

parameter α such that Fsig (α) falls between the upper and lower bounds above.110
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Since Fsig is assumed to be monotonic and continuous on α ∈ [0, 1], and extends111

over the entire range of d, there exists a nonempty interval Isig such that112

α ∈ Isig ⇒ Fsig (α) ∈ (2d̃, dmin − 2d̃), which is also nonempty since 2d̃ < 1
2dmin113

by (12). Under the chosen nmax, Isig is the significance interval for which robust114

homogenization asymptotically will produce the desired suffix partitioning. It115

is centered on 1
2dmin. From now on, we assume α ∈ Isig.116

B.2. Limiting behavior117

For the terms representing the effects of stochastic variation in the finite118

samples used, we note that ‖p̂u − p̃u‖∞ → 0 as N →∞—specifically119

lim
N→∞

P (‖p̂u − p̃u‖∞ > µ) = 0 ∀u ∈ ΣLX , µ > 0 (B.8)

due to the weak law of large numbers. Because dm is continuous, it follows that120

dm (p̂u, p̃u) must converge on dm (p̃u, p̃u), which is zero—in other words,121

|dm (p̂u, p̃u)− dm (p̃u, p̃u)| = dm (p̂u, p̃u)→ 0 (B.9)

with probability one as N → ∞. A similar argument can be applied to show122

that dm (q̃V , q̂V ) goes to zero in the limit as well. (Unlike p̂u, which is based on123

statistics from a single suffix, the working state V may contain many component124

suffixes, all of which influence q̂V . However, the probability of q̂V failing to125

converge on q̃V is at most the sum of the probabilities of any component suffix126

failing to converge, which is a finite sum of zeros, and thus also evaluates to127

zero.)128

Since Fsig (α) > 2d̃, we have129

lim
N→∞

P (dm (p̂u, q̂V ) > Fsig (α)) = 0 (B.10)

if u belongs in the precausal working state V of the unperturbed Xt process.130

Similarly, Fsig (α) < dmin − 2d̃ ensures131

lim
N→∞

P (dm (p̂u, q̂V ) ≤ Fsig (α)) = 0 (B.11)

in case u does not belong in V . As RCS and CSSR only perform a finite number132

of tests, each of which (assuming no earlier test made an error) has an error133
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probability that approaches zero as above, and the error probability of the entire134

procedure is limited by the sum of all the individual test error-probabilities,135

the probability of any error in RCS also goes to zero in the limit N → ∞.136

Therefore RCS with the current L, nmax, and α ∈ Isig applied to data from the137

distinguishable corruption Yt converges in probability on the string clustering138

representing the precausal states of Xt.139

Finally, for determinization we note that our assumptions ensure that only140

the suffixes in ΣL+1
X ever occur in the data from Yt. This implies that, not141

only are the precausal states identical to those of Xt, the nonzero-probability142

next-step symbols for each precausal state are the same, too, even when estimated143

from data (after some finite amount of samples has been amassed, with probability144

one). Since these are the only quantities relevant to determinization, and145

the determinization procedure is deterministic, the same suffix clustering as146

the causal states of Xt must result after determinization. This completes the147

argument.148

C. Causal states of the flip process149

In this appendix, we show that the noisy flip process has an infinite number150

of causal states, rendering it non-learnable using CSSR, by verifying that all151

parts of the criterion in Theorem 1 apply. The steps of the proof mirror the152

checks performed in Algorithm 1.153

C.1. First parts of the theorem154

The flip process can be described as a four-state stationary and ergodic155

HMM with parameter matrices156

A =


1− pf pf 0 0

0 0 pf 1− pf
1− pf pf 0 0

0 0 pf 1− pf

 (C.1)
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and157

B =


1− ε/2 ε/2

ε/2 1− ε/2

1− ε/2 ε/2

ε/2 1− ε/2

 . (C.2)

We require that the flip probability satisfies pf ∈ (0, 1/2] (pf = 0 is nonergodic),158

and that the substitution probability satisfies ε ∈ [0, 1]. We shall see that for159

the interior of the parameter interval, corresponding to noisy flip processes, the160

number of causal states of the observed process is infinite.161

It is easy to see thatAT has rank two, with right eigenvectors g1 = [1− pf , pf , pf , 1− pf ]
T

162

(eigenvalue λ1 = 1) and g2 = [1− pf , pf , −pf , pf − 1]
T (eigenvalue λ2 =163

1− 2pf ). This gives164

Gr = γ


1− pf 1− pf
pf pf

pf −pf
1− pf pf − 1

 , (C.3)

where γ =
(

2− 4pf + 4p2f

)− 1
2

, which is always greater than zero. A corresponding165

Hr-matrix can be constructed from the left eigenvectors, as166

Hr =
1

2

 1 1 1 1

1 −1 1 −1

 . (C.4)

Some straightforward computations show that167

BTATGr = γ

 1 (1− ε) (1− 2pf )
2

1 − (1− ε) (1− 2pf )
2

 . (C.5)

This matrix has rank r = 2 whenever ε ∈ (0, 1) and pf ∈ (0, 1/2), that is,168

in the interior of the interval of parameter values considered. At the edges of169

the interval, where (1− ε) (1− 2pf )
2 is zero, the rank is one, and the theorem170

cannot be applied. These cases correspond either to an observation process Yt171

which is i.i.d. (pf = 1/2), and so has only one state, or to noise-free observations172

(ε = 0), where we know there are exactly two causal states.173
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We henceforth consider only the interior of the interval of process parameters.174

Take Asub = A, which is the only sensible choice for binary alphabets. Because175

all elements of B are strictly positive, point 1 of the criterion is always satisfied.176

Furthermore, it is easily verified that the forward matrices become177

C1 =
γ

2

 1 (1− ε) (1− 2pf )
2

1− ε (1− 2pf )
2

 (C.6)

and178

C2 =
γ

2

 1 (ε− 1) (1− 2pf )
2

ε− 1 (1− 2pf )
2

 . (C.7)

These matrices have determinant |C1| = |C2| = γ2

4 ε (2− ε) (1− 2pf )
2, which is179

greater than zero for the parameter interval considered. Point 2 of the criterion180

in Theorem 1 is thus satisfied.181

C.2. The final point of the theorem182

To verify that the third and final point of Theorem 1 applies, we will183

look at the eigenvalues and eigenvectors of the forward matrices. First, we184

show that the eigenvalues of the forward matrices have distinct absolute values.185

The characteristic equation |C1 − λ′I| = 0 yields a quadratic equation with a186

solution of the form187

λ′ = −a
2
±
√
a2

4
− b. (C.8)

In the present case,188

a =
γ

2

(
1 + (1− 2pf )

2
)
, (C.9)

while a2

4 − b evaluates to189

γ2

4

(
1

2
+

1

2
(1− 2pf )

4
+ (1− ε)2 (1− 2pf )

2

)
> 0. (C.10)

The second formula shows that the eigenvalues of C1 are real, and (since the190

determinant additionally is positive) have distinct absolute values and the same191

sign. The eigenvalues of C2 are identical to those of C1, since the characteristic192

equation is the same.193
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As a second result, we establish that the forward matrices have no common194

eigenvectors. These eigenvectors are simply identified by solving the (singular)195

system (Cσ − λ′I)v = 0. We only need to consider the first row of the linear196

system in order to identify the ratio between the eigenvector elements v1 and197

v2, which uniquely determines the direction of the eigenvectors. This gives198

v1
v2

= −γ 1− ε
γ − 2λ′

(1− 2pf )
2 (C.11)

for eigenvectors of C1, and199

v1
v2

= γ
1− ε
γ − 2λ′

(1− 2pf )
2 (C.12)

for eigenvectors of C2. Trivially, then, eigenvectors of C1 and C2 corresponding200

to the same eigenvalue cannot be collinear, since their v1/v2-ratios have opposite201

signs. For eigenvectors corresponding to different eigenvalues, these can only202

line up if203

γ − 2λ′1 = − (γ − 2λ′2) . (C.13)

Using (C.8), we see that this is equivalent to γ + a = 0. However,204

γ + a =
γ

2

(
3 + (1− 2pf )

2
)
> 0, (C.14)

so eigenvectors from C1 and C2 corresponding to different eigenvalues cannot205

be collinear (have the same v1/v2-ratios) either.206

The results above are sufficient to know that point three of Theorem 1 is207

satisfied. For any nonzero v ∈ Cr, we can choose some σ ∈ {1, 2} such that208

this v is not an eigenvector of Cσ, since there are no simultaneous eigenvectors.209

As v does not line up with any vector in the eigenbasis Qσ, q = Q−1σ v must210

have two nonzero elements. The associated eigenvalues λ′1 and λ′2 always satisfy211

|λ′1| 6= |λ′2|, since the eigenvalues of any Cσ-matrix all have distinct absolute212

values.213

In summary, we have established that all points of Theorem 1 are satisfied,214

meaning that the noisy flip process has an infinite number of causal states for215

ε ∈ (0, 1) ∩ pf ∈ (0, 1/2). We also note that the same computations can be216
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used to show that the number of causal states is infinite for the parameter217

interval ε ∈ (0, 1) ∩ pf ∈ (1/2, 1) as well. The noisy flip process is thus not218

CSSR-learnable for these parameter values.219
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