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Artificial modeling of human speech has depended on an ongoing dialogue between speech
scientists and engineers: speech science helped synthesis get started [1]. Reciprocally, insights
into speech sciences, such as evidence for categorical speech perception and speech perception
theory were reached with the use of synthetic stimuli [2].

Unfortunately, the fields have grown apart in pursuit of different goals. Speech technology
has strived for ever more realistic-sounding synthesis, recently culminating in neural vocoders
[3] and sequence-to-sequence systems [4] based on deep learning. The result being that tech-
nology is now capable of imitating human speech remarkably well [5], but with little or no
explicit control over the output. Synthesis controlability, i.e., the ability to create and manip-
ulate stimuli with precise control over acoustic cues such as pitch, duration, etc., is central to
speech-research goals. Particularly those involving the disentanglement of different types of
information in speech and their perceptual and neurophysiological correlates.

As speech technology has as of yet been unable to offer adequate control functionality,
speech science remains reliant on outdated synthesis methods such as formant-based speech
generation [6] (1950s) or acoustic feature editing (e.g., PSOLA [7], 1990s) that do offer control
functionality. However, as these methods generally have low perceptual similarity to natural
speech, the field runs the risk of insufficient universality and robustness of the associated re-
search findings [8].

This work aims to push for progress in both speech science and technology by combin-
ing synthesis realism and control. We propose Wavebender GAN, a speech-synthesis system
capable of bridging this gap. The idea of Wavebender GAN is to use deep learning to predict
mel-spectrograms from low-level signal properties alone (e.g., formants, spectral slope, and the
f0 contour). A high-quality speech waveform is then synthesized using state-of-the-art neural
vocoders such as WaveGlow [9] and HiFi-GAN [10]. This resembles some modern text-to-
speech systems with f0 control [11, 12], but we use low-level signal properties as the only
inputs, and no text.

At a glance (see Figure 1), the process of creating our Wavebender GAN system can be
split into four key stages: (1) select uncorrelated low-level signal properties as system inputs,
that contain sufficient information to predict natural-sounding speech mel-spectrograms and
are also of interest to manipulate independently; (2) perform data augmentation (e.g., pitch
and gain manipulation) to allow the model to explore the domain of relevant input and output
features more effectively; (3) use the augmented data to train Wavebender Net, a version of the
ResNet architecture [13] adapted to predict mel-spectrograms from the selected low-level signal
properties; and (4) improve the realism of the predicted mel-spectrograms by enhancing them
using a conditional GAN (cGAN) [14]. Currently, our Wavebender GAN has been trained on
the publicly available, single-speaker LJ Speech dataset [15]. Initial subjective evaluations of
output control and quality suggest very good results on both measures.

Taken together, Wavebender GAN enables speech scientists to construct end-to-end pipelines
for stimulus creation and testing of phonological models. The system provides a technological
update to these pipelines in that it generates synthetic speech signals that are controllable as
well as correlated with a larger share of natural speech cues.
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Figure 1: Wavebender GAN implementation workflow.
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