
A Flexible Front-End for HTS

Matthew P. Aylett12, Rasmus Dall2, Arnab Ghoshal2, Gustav Eje Henter2, Thomas Merritt2

1CereProc Ltd., U.K.
2CSTR, University of Edinburgh, U.K.

matthewa@inf.ed.ac.uk

Abstract
Parametric speech synthesis techniques depend on full context
acoustic models generated by language front-ends, which anal-
yse linguistic and phonetic structure. HTS, the leading paramet-
ric synthesis system, can use a number of different front-ends to
generate full context models for synthesis and training. In this
paper we explore the use of a new text processing front-end
that has been added to the speech recognition toolkit Kaldi as
part of an ongoing project to produce a new parametric speech
synthesis system, Idlak. The use of XML specification files,
a modular design, and modern coding and testing approaches,
make the Idlak front-end ideal for adding, altering and experi-
menting with the contexts used in full context acoustic models.
The Idlak front-end was evaluated against the standard Festival
front-end in the HTS system. Results from the Idlak front-end
compare well with the more mature Festival front-end (Idlak -
2.83 MOS vs Festival - 2.85 MOS), although a slight reduction
in naturalness perceived by non-native English speakers can be
attributed to Festival’s insertion of non-punctuated pauses.
Index Terms: speech synthesis, text processing, parametric
synthesis, Kaldi, Idlak

1. Introduction
Hidden Markov Model (HMM)-based synthesis has been shown
to be effective in synthesising speech. HTS (H Triple S - Hidden
Markov Model Speech Synthesis System) is the dominant open
source system, and was pioneered at Tokuda’s group at Nagoya
over a decade ago. The current system is mature and produces
leading results in synthesis based on parametric modelling [1].
In speech synthesis, the task of analysing text to decide pro-
nunciation and linguistic structure is often termed the front-end.
The process of generating waveforms from this analysed text is
then the back-end. HTS is a back-end system only, and depends
on 3rd party systems to carry out the initial stage of processing.
Whereas significant research has been devoted to the back-end
of parametric speech synthesis, relatively little work has looked
at the effect of the contexts chosen and the algorithms used to
produce their values in the front-end of a parametric system.
Lu and King [2] examined the use of Bayesian approaches to
selection and factorisation of context features, but in general
the selection of the context features tends to default to those
suggested in HTS publications (e.g. [3]), and the decision tree
process is assumed to deal with any extraneous contexts.

Research focusing on the acoustic model context architec-
ture using HTS is currently hampered by practical considera-
tions. Firstly, it requires familiarity with 3rd party system front-
ends, some of which have been developed over many years and
are hard to modify without considerable investment of time and
energy; secondly, a requirement that the question set used to
build the decision trees matches the feature set used. These

question set files are generally written by hand, so modifying
features is a painstaking and error prone operation.
Idlak is a project to build an end-to-end parametric synthesis
system within Kaldi [4] – a liberally licensed automatic speech
recognition (ASR) toolkit. As part of Idlak, a front-end that gen-
erates full context models compatible with HTS has been devel-
oped. Based on a modular design, modern coding and testing
approaches, and with XML as a main interface, this front-end
aims to simplify the front-end process for parametric synthesis
while still producing state-of-the-art results. In this paper we
present the design decisions made to achieve this, and an evalu-
ation of this new front-end using a standard, publicly available,
HTS-demo. All the results reported here can be reproduced by
other research groups, and we hope that the availability of the
Idlak front-end will encourage research into the context extrac-
tion part of parametric synthesis, as well as the development of
Idlak front-ends for other languages.

The remainder of the paper is structured as follows: Section
2 describes the goals and design of Idlak. Section 3 describes
how Idlak was adapted to the context extraction requirements of
HTS. Section 4 provides an experimental evaluation of the new
Idlak HTS front-end, with results discussed in section 5, while
section 6 concludes.

2. Design of Idlak
2.1. Background

Kaldi is an open source speech recognition toolkit available un-
der the Apache 2.0 license. Kaldi’s objective was to produce a
modern flexible code base in C++, which is easy to understand,
modify and extend. The system compiles on Unix-like systems
and on Microsoft Windows and is available from SourceForge
(see http://kaldi.sf.net/).

As Kaldi was created for ASR there is potential for cross
over between research in ASR and parametric text-to-speech
(TTS). In addition, parametric TTS also offers a means for
building speech synthesis systems in many languages and ac-
cents where full unit selection systems are not commercially vi-
able. However the currently dominant parametric TTS system
(HTS) has a number of limitations:

• Licensing based on HTK and patches prevents open de-
velopment and limits commercial exploitation

• 3rd party packages are required for front-end processing
and the state-of-the-art systems are dependent on restric-
tively licensed packages (combilex [5], STRAIGHT [6])

• Although mature and with excellent quality, it is hard to
create new voices or languages for the speech synthesis
novice as well as the ASR professional

Figure 1: Example XML output from the Idlak front-end for the
word “Hello” in the sentence “Hello there, one two three”

The Kaldi speech synthesis project (Idlak) addresses these is-
sues by offering:

• A simple permissive licensing environment
• A close connection with state-of-the-art ASR techniques

through its integration with Kaldi
• An end-to-end system for both creating and synthesising

from parametric TTS voices

2.2. Architecture

Kaldi is based on a series of command line programs which can
operate on groups of files of various types. The Idlak front-end
follows this approach but introduces a new file format to Kaldi,
in the form of XML. A number of different components make
up the Idlak front-end:

2.2.1. Text Processing Modules

Written to the Google coding standard1 and integrated into the
Kaldi codebase, the Idlak text processing modules each oper-
ate on an XML marked-up stream of text. Each module will
typically add structure to the XML and may be dependent on
structure added by previous modules. For example, a syllab-
ify module requires a pronunciation generated by a pronounce
module (Figure 1 shows an example of some XML output from
the syllabify module). The modules can be chained into com-
mand line binaries that use Kaldi-style options, and can take in-
put from pipes or files. Currently two command line programs
are in the system: idlaktxp which carries out text processing,
and idlakcex, which takes output from idlaktxp and adds con-
text model names in either a Kaldi or an HTS format. Figure 2,
shows the current modules that form idlaktxp.

2.2.2. Text Processing Database (TPDB)

A number of XML files which contain the linguistic and pho-
netic information required for the text processing modules. For
example, a lexicon built from the open source CMU General
American lexicon2, letter to sound rules built from this lexi-
con, files which determine UTF8 handling, files describing how
punctuation affects pausing etc. The files are structured by lan-
guage (an ISO 2 letter code), accent (a non standard two let-
ter code), speaker (a non standard 3 letter code) and region (an
ISO 2 letter code). A synthetic voice would contain a set of
these XML data files customised for a specific voice, whereas a
General American grapheme to phoneme system would contain
speaker independent data files.

1https://code.google.com/p/google-styleguide/
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Figure 2: Idlak text processing system (idlaktxp). The system
comprises of a set of modules operating on XML input and pro-
ducing further tagged XML.

2.2.3. Voice Building System

In contrast to ASR, TTS systems are very dependent on text
normalisation (for instance the conversion of dates and currency
formats), which introduces a dependence between the front-end
and models built for the back-end. The voice building system in
Idlak is a python-based framework with clear input and output
specifications.

1. Customise a general text processing system to a specific
voice and voice database (for example duplicate speaker
specific pausing and pronunciation).

2. Allow an audit trail, so that errors in the final synthesis
can be tracked back to the voice building step that caused
them.

3. Allow a single-click modular build process.

Figure 3 shows the structure of the Idlak voice building sys-
tem. In order to generate appropriate front-end output for HTS a
bespoke voice building module (hts test) was added which was
dependent on the alignment and context extraction modules.

3. Idlak Model Context Extraction for HTS
In HTS, contexts are specified in the full acoustic model name
for each phone. In the default system, 43 contexts over a num-
ber of linguistic and phonetic domains (6 phone, 18 syllable, 11
word, 5 phrase, 3 utterance) are used. These vary from contexts
such as quinphone context, the number of syllables since the
last stressed syllable, part of speech, to phrasing information

Figure 3: The python-based voice building architecture of Idlak,
capable of single-click end-to-end voice building.

etc. Each context is either a string (such as a phone name) or an
integer (such as the number of syllables in a phrase). In order to
produce a model name for HTK these contexts are concatenated
with a delimiter between each context. Below is a full context
model name for a schwa (ax in the second syllable of the word
“Alice”) generated by Festival for the HTS-demo (line breaks
and indentation are added for readability).
aeˆl-ax+s=w@2_2/A:1_1_1/B:0-0-3@2-1&2-21
#1-12$1-3!1-1;1-7|ax/C:1+0+3/D:0_0
/E:content+2@1+15&1+7#0+2/F:aux_1
/G:0_0/H:22=15ˆ1=1|NONE/I:0=0/J:22+15-1

In HTS there is a critical dependency between the final deci-
sion trees, the question set and the front-end. Furthermore, in
HTK decision tree questions are based on regular expressions
which means a poor use of delimiters can cause further errors.
Different choices in how a specific context is extracted, what a
NULL value may be, and the sequence of contexts will all cause
failures if not consistent across all parts of the system.

In Idlak a unique context name is used to tie the function
which extracts the context from the XML output of idlaktxp, the
type, the delimiter and the questions that can be asked about it.
To further increase the flexibility a lookup table can be added to
map output from the extraction function to alternative symbols
(for example making it easy to swap ‘sil’ for ‘pau’ if required).
For a specific voice, a set of contexts are selected and the system
ensures they remain consistent with the question set, the model
building stage and the synthesis stage.

Take for example the number of phones in the current syl-
lable. In Idlak, the unique name of this context is SyllableNum-
Phones, it is an Integer context, and the extraction function will
search for the nophons attribute in the XML phon tag and return
the value. The entry in the XML context architecture, which can
be customised by users without requiring code changes, is:
<feat

delim="/09:"
htsname="C-Syl_Num-Segs"
desc="current_syllable_no_segments"
name="SyllableNumPhones"
min="0"
max="7"/>

Where delim is the delimiter to use before the context value in
the full context model name, htsname is the HTS feature name
from the HTS question set, desc is a description, and min,max

is a range for an integer valued context. This combines with the
entry in the question specification file shown below:

<feat htsname="C-Syl_Num-Segs"
name="SyllableNumPhones">

<qs name="C-Syl_Num-Segs==0">
0

</qs>
...
<qs name="C-Syl_Num-Segs<=1">

0 1
</qs>
...

</feat>

An example model for the same phone produced by this system
is shown below (line breaks and indentation are added for read-
ability). Using the CMU lexicon and LTS rules built upon it
the phone from the second syllable of “Alice” is represented by
an unstressed front low vowel (ah). Apart from phone context
which uses HTK style delimiters, all other delimiters are in the
form /nn: where nn is a two digit number.
ˆpau˜ae-l+ah=s/00:0/01:2/02:1/03:0/04:1/05:PAU
/06:NN/07:VBD/08:1/09:3/10:3/11:0/12:2/13:1
/14:15/17:LL

In Idlak, we have begun with a conservative set of 21 features
(7 phone, 6 syllable, 6 word, 2 phrase, 0 utterance). However
the architecture makes it easy to add more if required.

In the current HTS system, a single text file containing two
sentences will produce a different quantity, and type, of models,
compared with synthesising each sentence in its own file. This
is because the silence model between the sentences will not be
the same as the two silence models ending file one and starting
file two. To avoid this problem, in Idlak, each model file rep-
resents a phrase (defined as speech separated by silence) rather
than an utterance or sentence. There are thus always two silence
models between all phrases, one completing the previous phrase
and one starting the subsequent phrase.

4. Evaluation
In order to evaluate the differences between the Idlak and Fes-
tival front-ends, the Idlak front-end was incorporated into the
the HTS demo3. The current HTS demo does not generate test
models using Festival but includes the acoustic models as part
of the distribution. As it was unclear which version of Festi-
val generated these models, models were also recreated using
the Festival system downloaded for the HTS demo. The test
sentences in the HTS demo are from the initial paragraphs of
Lewis Carroll’s “Alice in Wonderland”.

Next, Idlak was used to generate model files by phrase,
based on the Arctic 16 kHz release of SLT (the same voice
data used in the HTS demo) and a question file for building
the decision trees. In addition, timing information from the Id-
lak alignment was used to replace the 48 kHz voice data audio
in the HTS demo with 48kHz data cut up by phrase rather than
recorded utterance.

20 random phrases, between 6 to 20 words in length, were
chosen from the output synthesised by the HTS demo. Speech
matching these word sequences with a matching start and end
pause was also taken from output generated from test acoustic
models found in the HTS demo distribution (block 1), and mod-
els generated from scratch using Festival (block 2). Currently
Idlak will only insert pauses based on punctuation, whereas the

3http://hts.sp.nitech.ac.jp/archives/2.3alpha/HTS-demo CMU-
ARCTIC-SLT.tar.bz2

Figure 4: Evaluation results by system and pause grouping.
–pau - neither Idlak not Festival inserted pauses into the phrase.
+pau - Festival inserted between 1 and 2 pauses in the phrase
whereas Idlak output was pause free.

SLT voice distributed by CMU, and used with Festival, will also
insert pauses based on n-grams trained on pausing and part of
speech tagging.

33 subjects with normal hearing (25 native English speak-
ers and 8 non-native English speakers with a very high level of
spoken English) were allocated to each block (15 to block 1 and
18 to block 2). They listened, over headphones, to each synthe-
sised section of speech based on Festival and Idlak models, and
were asked “How natural is the audio?”, responding on a 5 point
scale (Bad, Poor, Fair, Good, Excellent).

Informal feedback suggested that non-punctuated pause in-
sertion had a positive impact on perceptions of naturalness. e.g.
“I find that I like the [synthesised speech] more pausing gener-
ally – however sometimes it ruins the sentence quite a bit when
the pauses are too long (or misplaced).”

4.1. Analysis

In order to take into account the effect of inserted pauses, sen-
tences from both blocks were split into two groups, those where
Festival and Idlak had the same pause structure (12), and those
where the pause structure was different (28). A mean opinion
score (MOS) was calculated for each group by subject.

A by-subjects, repeated measures ANOVA was carried out
with front-end type and pause difference (+/-pau) as nested vari-
ables, and with block and subject nativeness as grouping vari-
ables. An MOS-based ANOVA is acceptable based on the cen-
tral limit theorem since each cell has at least ten data points.
Neither block nor nativeness has a significant effect on MOS
scores, however +/-pau had a substantial impact on the re-
sults (F(1,29) = 11.616, p<0.005). This drop in MOS across
both systems cannot be attributed to pause insertion, as the Id-
lak stimuli matching the Festival +pau did not contain pauses.
Rather we can attribute an overall drop in MOS for the +pau
condition to a longer phrase length (mean word length 13.5
+pau vs 8.4 -pau). To support the informal feedback, that
Festival pause insertion improved naturalness, we would have
expected a significant interaction between +/-pau and system
which was no the case.

However, although nativeness did not have a significant ef-
fect on MOS, when separate ANOVAS were carried out on
native and non-native subjects a different reaction to inserted
pauses appears for non-native subjects. As with the combined

analysis, native subjects show a significant effect for +/-pau
(F(1,23)=39.779, p<0.001), whereas non-native subjects show
a weakly significant result for a +/-pau insertion with sys-
tem (F(1,6) = 6.653, p<0.05); see Figure 4. Therefor there
is marginal evidence that non-punctuated pause insertion im-
proved naturalness for HTS synthesis.

5. Discussion
Overall the Idlak front-end performed well, producing very sim-
ilar results in terms of synthetic speech naturalness as Festival,
except for Festival’s insertion of non-punctuated pauses. Infor-
mal feedback suggested the pausing was an important element
in the perception of naturalness but this effect was only signifi-
cant for non-native speakers. However as Figure 4a shows this
is also a tendency for native subjects.

The Idlak front-end currently has less than half of the con-
texts used by standard HTS front-ends. This is important be-
cause less contexts simplify implementation and also decision
tree output. However, the results presented here cannot guaran-
tee that more contexts do not improve naturalness. Given more
stimuli and more subjects they may. The assumption in HTS is
that, at worst, they will do nothing. Therefore although many of
the contexts appear to have a marginal effect on quality, this is
not an argument to remove them.

Rather as, Lu and King [2] argue, we may look more closely
at the contexts used, their dependencies, to try to identify a high-
performing and suitably parsimonious set of contexts. Using a
very large set of contexts is not without substantial engineer-
ing cost in terms of context extraction code, data to support a
context, and calculating the context for input text.

Idlak offers a flexible and efficient means of examining, in
more depth, the interaction between contexts used in full models
and their effect on speech synthesis quality.

6. Conclusion
There was no evidence that the phrase based (rather than ut-
terance based) approach to modelling pausing used by Idlak
caused any degradation in quality. In addition the 21 features
currently used by the Idlak front-end performed well and pro-
duce comparative results with the HTS demo using Festival.
Results from this work also suggest that non-punctuated pause
insertion may yet be able to deliver improvements in speech
synthesis quality, especially in parametric systems.

Future work hopes to extend Idlak’s front-end to additional
languages and use the flexible context architecture in the system
as a means of exploring the effect of context choice on speech
synthesis quality. The data evaluated in this work can be gen-
erated from open source downloads and instructions for gener-
ating this test can be found in the Idlak documentation within
Kaldi4.

The next stage in Idlak will be to use the front-end to build
the decision trees and full context acoustic models and compare
this output against baseline HTS demo output.

7. Acknowledgements
This work was funded by the Royal Society through a Royal
Society Industrial Fellowship and by the EPSRC Programme
Grant EP/I031022/1 (Natural Speech Technology), also thanks
to Richard Williams for code refactoring and development.

4Currently the Idlak branch of Kaldi can be installed with svn co
https://svn.code.sf.net/p/kaldi/code/sandbox/idlak

8. References
[1] H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. Black, and

K. Tokuda, “The HMM-based speech synthesis system (HTS) ver-
sion 2.0,” in Proc. of Sixth ISCA Workshop on Speech Synthesis,
2007, pp. 294–299.

[2] H. Lu and S. King, “Using Bayesian networks to find relevant
context features for HMM-based speech synthesis.” in INTER-
SPEECH, 2012.

[3] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and
K. Oura, “Speech synthesis based on hidden Markov models,” Pro-
ceedings of the IEEE, vol. 101, no. 5, pp. 1234–52, 2013.

[4] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in Proc. ASRU, 2011.

[5] S. Fitt and K. Richmond, “Redundancy and productivity in the
speech technology lexicon-can we do better?” in INTERSPEECH,
2006.

[6] H. Kawahara, J. Estill, and O. Fujimura, “Aperiodicity extraction
and control using mixed mode excitation and group delay manipu-
lation for a high quality speech analysis, modification and synthesis
system STRAIGHT,” Proc. MAVEBA, pp. 13–15, 2001.

