NUMBER OF TRITANGENTS IN A PENCIL OF DEGREE d PLANE CURVES

GEORG OBERDIECK

1. Problem

We always work over \mathbb{C}. Let $C \subset \mathbb{P}^{2}$ be a degree d plane curve. If C is general, then it has precisely

$$
\frac{1}{2} d(d-2)(d-3)(d+3)
$$

bitangents. This can be proven by calculating the arithmetic genus of the dual curve of C in two different ways, see Hartshorne Exercise IV.2.3. Further, by a dimension argument, the locus of curves with a tritangent has codimension 1 in the linear system $\left|\mathcal{O}_{\mathbb{P}^{2}}(d)\right|$, so C has no tritangents.

A pencil of degree d plane curves is a degree ($1, d$)-hypersurface in $\mathbb{P}^{1} \times \mathbb{P}^{2}$, viewed as a family of degree d curves via the projection to the first factor. Since curves with a tritangent are codimension 1, a general pencil has finitely many tritangents. We ask more precisely:
(*) In a general pencil of degree d curves in \mathbb{P}^{2}, how many curves have a tritangent?
We will show below that the answer to $\left({ }^{*}\right)$ is

$$
\left(d^{2}+3 d-2\right)(d-3)(d-4)(d-5)
$$

The first values for $d=6,7, \ldots$ are

$$
312,1632,5160,12720,26880,51072, \ldots .
$$

The number 312 for sextics is related to a Noether-Lefschetz calculation, see Section 3.

2. Solution

Let f be the equation of a curve of degree d in \mathbb{P}^{2}, and let $L \subset \mathbb{P}^{2}$ be a fixed line. The line L is a tritangent to $V(f)$ if and only if the restriction $\left.f\right|_{L}$ has at least three multiple roots, hence if and only if there exists a subscheme $z=x_{1}+x_{2}+x_{3} \subset L$ (viewed here as a Cartier divisor) such that

$$
\begin{equation*}
\left.f\right|_{2 z}=0 \in H^{0}\left(2 z,\left.\mathcal{O}_{\mathbb{P}^{2}}(d)\right|_{2 z}\right) \tag{1}
\end{equation*}
$$

[^0]with x_{1}, x_{2}, x_{3} distinct. (If the x_{i} are not distinct, for example $z=2 x+y$, then the line L would meet the curve $V(f)$ with multiplicity $(4,2, \ldots)$; since this is a codimension 2 condition in the linear system $\left|\mathcal{O}_{\mathbb{P}^{2}}(d)\right|$ this case will not appear in a general pencil and we will drop the condition on x_{i} to be distinct below.) The idea to the solution is to interpret (1) as the zero locus of some section on a projective bundle.

Let $G=G(2,3)$ be the Grassmannian of 2-planes in \mathbb{C}^{3}, or equivalently of lines in \mathbb{P}^{2} (i.e. the dual \mathbb{P}^{2}). On G we have the sequence of vector bundles

$$
0 \rightarrow U \rightarrow \mathcal{O}_{G}^{3} \rightarrow Q \rightarrow 0
$$

where U is the universal rank 2 subbundle, and Q is the 1 -dimensional quotient line bundle. The projective bundle

$$
L=\mathbb{P}(U)
$$

is the universal line over the Grassmannian. Here we use Fulton's notation, i.e. we identify a locally free sheaves \mathcal{E} on a scheme X with the vector bundle $E=\operatorname{Spec} \operatorname{Sym}^{\bullet}\left(\mathcal{E}^{\vee}\right)$, and the associated projective bundle is

$$
\mathbb{P}(\mathcal{E})=\operatorname{Proj} \operatorname{Sym}^{\bullet}\left(\mathcal{E}^{\vee}\right)
$$

The space of degree d equations on L is $E_{d}=\mathbb{P}\left(\operatorname{Sym}^{d}\left(U^{\vee}\right)\right)$. Over E_{d} we have a universal scheme

$$
\begin{equation*}
Z_{d} \subset E_{d} \times_{G} L \tag{2}
\end{equation*}
$$

whose fiber over a point $[f] \in E_{d}$ is the subscheme $V(f) \subset L_{\pi([f]) \text {. The }}$. The scheme Z_{d} is cut out by the line bundle

$$
\mathcal{O}_{\mathbb{P}\left(E_{d}\right)}(1) \otimes \mathcal{O}_{L}(d),
$$

see also the following remark for a more detailed explanation.
Remark 1. We describe how (22) is cut out by a section of a line bundle. Let X be a scheme with a line bundle \mathcal{L} and let $V=H^{0}(X, \mathcal{L})$. The evaluation map $V \otimes \mathcal{O}_{X} \rightarrow \mathcal{L}$ induces a morphism

$$
\mathcal{O}_{X} \rightarrow V^{\vee} \otimes \mathcal{L}
$$

which in turn defines a morphism of graded \mathcal{O}_{X}-algebras

$$
\operatorname{Sym}^{\bullet} V^{\vee} \otimes \mathcal{O}_{X} \rightarrow\left(\operatorname{Sym}^{\bullet} V^{\vee} \otimes \mathcal{O}_{X}\right)(1) \otimes \mathcal{L}
$$

Applying the \sim functor of the Proj construction to this sequence yields

$$
\mathcal{O}_{X \times \mathbb{P}(V)} \rightarrow \pi_{\mathbb{P}(V)}^{*} \mathcal{O}_{\mathbb{P}(V)}(1) \times \pi_{X}^{*} \mathcal{L}
$$

on the product $X \times \mathbb{P}(V)$, hence a section s of the line bundle on the right hand side. The vanishing locus $Z=V(s)$ is the family of subschemes parametried by V in the sense that the fiber of Z over the point $[f] \in \mathbb{P}(V)$
is precisely the subscheme $V(f)$. The same construction works also when X is taken relative to a base.

In our case, let $\mathcal{L}=\mathcal{O}_{L}(d)$ and let $\pi: L \rightarrow G$ denote the projection. Then

$$
\pi_{*} \mathcal{L}=\operatorname{Sym}^{d} U^{\vee}
$$

We let

$$
V_{d}=\pi^{*} \pi_{*} \mathcal{L}=\pi^{*} \operatorname{Sym}^{d} U^{\vee}
$$

By adjunction to the identity of $\pi_{*} \mathcal{L} \rightarrow \pi_{*} \mathcal{L}$ we obtain the evaluation map

$$
V_{d} \rightarrow \mathcal{L}
$$

hence $\mathcal{O}_{L} \rightarrow V_{d}^{\vee} \otimes \mathcal{L}$ which induces the sequence

$$
\operatorname{Sym}^{\bullet} V_{d}^{\vee} \rightarrow\left(\operatorname{Sym}^{\bullet} V_{d}^{\vee}\right)(1) \otimes \mathcal{L}
$$

We have $E_{d} \times{ }_{G} L=\mathbb{P}\left(V_{d}\right)$ so this yields a section s_{d} of $\pi_{E_{d}}^{*} \mathcal{O}_{E_{d}}(1) \otimes \pi_{L}^{*} \mathcal{O}_{L}(d)$ such that the vanishing locus $Z_{d}=V\left(s_{d}\right)$ has the desired properties.

We now consider the scheme $E=E_{3}=\mathbb{P}\left(\operatorname{Sym}^{d}\left(U^{\vee}\right)\right)$, the universal subscheme $Z_{0} \subset E \times_{G} L$ as above (which is a Cartier divisor) and set

$$
Z=2 Z_{0}
$$

Consider the diagram

where q is the composition of the projection to L, followed by the inclusion $L \subset G \times \mathbb{P}^{2}$, followed by the projection to \mathbb{P}^{2}. Let $f \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(d)\right)$. We consider the restriction to Z, which is

$$
\tilde{q}^{*} f \in H^{0}\left(Z, \tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d)\right)
$$

where we let $\tilde{q}=q \circ j$. We pushforward along p and get the section

$$
s=p_{*} \tilde{q}^{*} f \in H^{0}\left(E, p_{*} \tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d)\right)
$$

The fiber $\left.p_{*} \tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d)\right)$ over a point $[z] \in E$ (corresponding to a subscheme $z \subset \ell$, where $\ell=\pi([z]))$ is $H^{0}\left(z,\left.\mathcal{O}(d)\right|_{2 z}\right)$. Hence $p_{*} \tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d)$ is a vector bundle of rank 6 . The section s vanishes at $[z]$ if and only if L meets the curve $C=V(f)$ in the subscheme $2 z$.

Finally, we also allow our equation f to vary. Let $W \subset\left|\mathcal{O}_{\mathbb{P}^{2}}(d)\right|$ be a linear subspace and let

$$
f \in H^{0}\left(\mathbb{P}^{2} \times W, \mathcal{O}_{\mathbb{P}^{2}}(d) \otimes \mathcal{O}_{W}(1)\right)
$$

be the equation cutting out the family of curves parametrized by W. The taking the product of the above discussion with W, we obtain the section

$$
s=p_{*} \tilde{q}^{*} f \in H^{0}\left(E \times W, p_{*} \tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d) \otimes \mathcal{O}_{W}(1)\right)
$$

The vanishing locus of s is the subscheme

$$
V(s)=\left\{([z],[f]) \in E \times W|f|_{2 z}=0\right\} .
$$

Let W be a general 1-dimensional linear system now. Since the class $V(s)$ is given by the top Chern class of the corresponding vector bundle, we have found that the answer to question $\left(^{*}\right)$ is given by the following integral:

$$
\begin{equation*}
N_{d}=\int_{E \times W} c_{d}\left(p_{*} \tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d) \otimes \mathcal{O}_{W}(1)\right) \tag{3}
\end{equation*}
$$

We evaluate (3): By Grothendieck-Riemann-Roch we have

$$
\operatorname{ch}\left(p_{*} \tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d)\right) \otimes \operatorname{td}(E \times W)=p_{*}\left(\operatorname{ch}\left(\tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d)\right) \operatorname{td}(Z)\right)
$$

Using that on a projective bundle $\pi(\mathcal{E})$ over a base X we have the exact sequence $0 \rightarrow T_{\pi(\mathcal{E}) / X} \rightarrow T_{\pi(\mathcal{E})} \rightarrow \pi^{*} T_{X} \rightarrow 0$ and since td is multiplicative on short exact sequences we find

$$
\frac{\operatorname{td}(Z)}{\operatorname{td}(E \times W)}=\left.\frac{\operatorname{td}\left(E \times_{G} L \times W\right)}{\operatorname{td}(\mathcal{O}(Z)) \operatorname{td}(E \times W)}\right|_{Z}=\left.\frac{\operatorname{td}\left(T_{L / G}\right)}{\operatorname{td}(\mathcal{O}(Z))}\right|_{Z}
$$

Hence

$$
\operatorname{ch}\left(p_{*}\left(\tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d) \otimes \mathcal{O}_{W}(1)\right)\right)=\operatorname{pr}_{*}\left(\operatorname{td}\left(T_{L / G}\right) \cdot \frac{[Z]}{\operatorname{td}(\mathcal{O}(Z))} \cdot \operatorname{ch}\left(\mathcal{O}_{\mathbb{P}^{2}}(d)\right) \operatorname{ch}\left(\mathcal{O}_{W}(1)\right)\right)
$$

We know describe all the rings explicitly. Let $z=c_{1}(Q)$. Then

$$
A^{*}(G)=\mathbb{Q}[z] / z^{3} .
$$

Let $h=c_{1}\left(\mathcal{O}_{L}(1)\right)$. Then since $c(U)=1-z+z^{2}$ we have

$$
A^{*}(L)=A^{*}(G)[h] /\left(h^{2}-z h+z^{2}\right) .
$$

Since $\mathcal{O}_{L}(1)=i^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)$, the class h is also the pullback of the hyperplane class from \mathbb{P}^{2}. Similarly, with $t=c_{1}\left(\mathcal{O}_{E_{d}}(1)\right)$ we have

$$
A^{*}(E)=A^{*}(G)[t] /\left(t^{4}+c_{1}\left(\operatorname{Sym}^{3}\left(U^{\vee}\right)\right) t^{3}+\ldots+c_{4}\left(\operatorname{Sym}^{d}\left(U^{\vee}\right)\right)=0\right)
$$

Then since Z is cut out by a section of $\mathcal{O}_{E}(2) \otimes \mathcal{O}_{L}(6)$ we get

$$
[Z]=2 t_{1}+6 h .
$$

Let also $y=c_{1}\left(\mathcal{O}_{W}(1)\right)$. Finally, by B.5.8 in Fulton, we have

$$
c\left(T_{L / G}\right)=c\left(U \otimes \mathcal{O}_{L}(1)\right)=1+(2 h-z)
$$

SO

$$
\operatorname{td}\left(T_{L / G}\right)=1+\frac{1}{2}(2 h-z)+\frac{1}{12}(2 h-z)^{2} .
$$

So in conclusion we find

$$
\operatorname{ch}\left(p_{*}\left(\tilde{q}^{*} \mathcal{O}_{\mathbb{P}^{2}}(d) \otimes \mathcal{O}_{W}(1)\right)\right)=\tilde{p}_{*}\left(\operatorname{td}\left(T_{L / G}\right)\left(1-e^{-[Z]}\right) e^{d h} e^{y}\right)
$$

Finally, we go from Chern characters to Chern classes using that a vector bundle E satisfy the universal relation

$$
c(E)=\exp \left(\sum_{k \geq 1}(k-1)!(-1)^{k-1} \operatorname{ch}_{k}(E)\right)
$$

The result follows now from a direct calculation. But a more direct way is to observe that the solution N_{d} is polynomial in d of degree ≤ 5. Hence we only need to evaluate finitely many of the numbers N_{d} to determine the full answer. This can be done using the Chow SAGE package [1]. The code for this is on the webpage http://www.math.uni-bonn.de/~georgo/topics. html.

3. Noether-Lefschetz theory

Let $C \subset \mathbb{P}^{1} \times \mathbb{P}^{2}$ be a general hypersurface on degree $(2,6)$. We have seen above that the locus of curves in the linear system $\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right|$ which have a tritangent is a divisor of degree 312. Hence in the family of curves

$$
C \rightarrow \mathbb{P}^{1}
$$

there are precisely 624 points $t \in \mathbb{P}^{1}$ such that C_{t} has a tritangent. This can be interpreted in a different way.

Let X be the double cover of $\mathbb{P}^{1} \times \mathbb{P}^{2}$ branched along C, i.e. if $C=V(f)$, then X is given by the equation $V\left(y^{2}=f\right) \subset \operatorname{Tot}\left(\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{2}}(-1,-3)\right)$ where $y \in \mathcal{O}(1,3)$ is a local coordinate. Then morphism

$$
X \rightarrow \mathbb{P}^{1}
$$

is a family of K 3 surfaces polarized by the pullback H of the hyperplane class from \mathbb{P}^{2}. For a fixed t, the pullback of a bitangent of C_{t} is a rational curve in $\left|H_{t}\right|$, and every rational curve in $\mid H_{t}$ is of this form. We have precisely 324 of these rational curves matching the Yau-Zaslow formula. Over a tritangent L of C_{t}, the restriction $\left.f\right|_{L}$ is a square, so the preimage of L to the K3 surface X_{t} splits as the union of two smooth rational curves:

$$
\pi^{-1}(L)=L_{1} \cup L_{2}
$$

Hence a curve C_{t} with a tritangent corresponds to K3 surfaces X_{t} whose Picard group contain the lattice

$$
\left(\begin{array}{cc}
-2 & 3 \\
3 & -2
\end{array}\right)
$$

This lattice is of discriminant $\Delta=-\operatorname{det}=5$. The number of tritangents in the family $C \rightarrow \mathbb{P}^{1}$ is hence equal to the Noether-Lefschetz number

$$
N_{\Delta=5}^{X}
$$

of the family X, see [2] for the notation and reference. Since in each such lattice there are precisely 2 curve classes β with $H \cdot \beta=1$, we have hence the following Noether-Lefschetz number:

$$
N_{0,1}^{X}=2 \cdot N_{\Delta=5}^{X}=2 \cdot 624=1248
$$

This matches perfectly the calculation in [2, Section 6.4] (see the coefficient of $q^{5 / 4}=q^{\Delta / 2 m}$ where $\Delta=5$ is the discriminant and $m=2$ is the polarization degree).

References

[1] Lehn, Sorger, Chow - A SAGE library for computations in intersection theory, https: //www.math.sciences.univ-nantes.fr/~sorger/chow_en.html
[2] D. Maulik, R. Pandharipande, Gromov-Witten theory and Noether-Lefschetz theory, A celebration of algebraic geometry, 469-507, Clay Math. Proc., 18, Amer. Math. Soc., Providence, RI, 2013.

[^0]: Date: December 18, 2019.

