
NUMBER OF TRITANGENTS IN A PENCIL OF DEGREE
d PLANE CURVES

GEORG OBERDIECK

1. Problem

We always work over C. Let C ⊂ P2 be a degree d plane curve. If C is
general, then it has precisely

1
2d(d− 2)(d− 3)(d+ 3)

bitangents. This can be proven by calculating the arithmetic genus of the
dual curve of C in two different ways, see Hartshorne Exercise IV.2.3. Fur-
ther, by a dimension argument, the locus of curves with a tritangent has
codimension 1 in the linear system |OP2(d)|, so C has no tritangents.

A pencil of degree d plane curves is a degree (1, d)-hypersurface in P1×P2,
viewed as a family of degree d curves via the projection to the first factor.
Since curves with a tritangent are codimension 1, a general pencil has finitely
many tritangents. We ask more precisely:

(*) In a general pencil of degree d curves in P2, how many
curves have a tritangent?

We will show below that the answer to (*) is

(d2 + 3d− 2)(d− 3)(d− 4)(d− 5)

The first values for d = 6, 7, . . . are

312, 1632, 5160, 12720, 26880, 51072, . . . .

The number 312 for sextics is related to a Noether-Lefschetz calculation, see
Section 3.

2. Solution

Let f be the equation of a curve of degree d in P2, and let L ⊂ P2 be a
fixed line. The line L is a tritangent to V (f) if and only if the restriction
f |L has at least three multiple roots, hence if and only if there exists a
subscheme z = x1 +x2 +x3 ⊂ L (viewed here as a Cartier divisor) such that

(1) f |2z = 0 ∈ H0(2z,OP2(d)|2z)
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with x1, x2, x3 distinct. (If the xi are not distinct, for example z = 2x + y,
then the line L would meet the curve V (f) with multiplicity (4, 2, . . .); since
this is a codimension 2 condition in the linear system |OP2(d)| this case will
not appear in a general pencil and we will drop the condition on xi to be
distinct below.) The idea to the solution is to interpret (1) as the zero locus
of some section on a projective bundle.

Let G = G(2, 3) be the Grassmannian of 2-planes in C3, or equivalently of
lines in P2 (i.e. the dual P2). On G we have the sequence of vector bundles

0→ U → O3
G → Q→ 0

where U is the universal rank 2 subbundle, and Q is the 1-dimensional
quotient line bundle. The projective bundle

L = P(U)

is the universal line over the Grassmannian. Here we use Fulton’s notation,
i.e. we identify a locally free sheaves E on a scheme X with the vector bundle
E = Spec Sym•(E∨), and the associated projective bundle is

P(E) = Proj Sym•(E∨).

The space of degree d equations on L is Ed = P(Symd(U∨)). Over Ed we
have a universal scheme

(2) Zd ⊂ Ed ×G L

whose fiber over a point [f ] ∈ Ed is the subscheme V (f) ⊂ Lπ([f ]). The
scheme Zd is cut out by the line bundle

OP(Ed)(1)⊗OL(d),

see also the following remark for a more detailed explanation.

Remark 1. We describe how (2) is cut out by a section of a line bundle. Let
X be a scheme with a line bundle L and let V = H0(X,L). The evaluation
map V ⊗OX → L induces a morphism

OX → V ∨ ⊗ L

which in turn defines a morphism of graded OX -algebras

Sym• V ∨ ⊗OX → (Sym• V ∨ ⊗OX)(1)⊗ L.

Applying the ∼ functor of the Proj construction to this sequence yields

OX×P(V ) → π∗P(V )OP(V )(1)× π∗XL

on the product X × P(V ), hence a section s of the line bundle on the right
hand side. The vanishing locus Z = V (s) is the family of subschemes
parametried by V in the sense that the fiber of Z over the point [f ] ∈ P(V )
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is precisely the subscheme V (f). The same construction works also when X
is taken relative to a base.

In our case, let L = OL(d) and let π : L→ G denote the projection. Then

π∗L = Symd U∨.

We let
Vd = π∗π∗L = π∗ Symd U∨.

By adjunction to the identity of π∗L → π∗L we obtain the evaluation map

Vd → L

hence OL → V ∨d ⊗ L which induces the sequence

Sym• V ∨d → (Sym• V ∨d )(1)⊗ L.

We have Ed×GL = P(Vd) so this yields a section sd of π∗Ed
OEd

(1)⊗π∗LOL(d)
such that the vanishing locus Zd = V (sd) has the desired properties. �

We now consider the scheme E = E3 = P(Symd(U∨)), the universal
subscheme Z0 ⊂ E ×G L as above (which is a Cartier divisor) and set

Z = 2Z0.

Consider the diagram

Z E ×G L P2

E

j

p
p̃

q

where q is the composition of the projection to L, followed by the inclusion
L ⊂ G × P2, followed by the projection to P2. Let f ∈ H0(P2,O(d)). We
consider the restriction to Z, which is

q̃∗f ∈ H0(Z, q̃∗OP2(d))

where we let q̃ = q ◦ j. We pushforward along p and get the section

s = p∗q̃
∗f ∈ H0(E, p∗q̃∗OP2(d)).

The fiber p∗q̃∗OP2(d)) over a point [z] ∈ E (corresponding to a subscheme
z ⊂ `, where ` = π([z])) is H0(z,O(d)|2z). Hence p∗q̃∗OP2(d) is a vector
bundle of rank 6. The section s vanishes at [z] if and only if L meets the
curve C = V (f) in the subscheme 2z.

Finally, we also allow our equation f to vary. Let W ⊂ |OP2(d)| be a
linear subspace and let

f ∈ H0(P2 ×W,OP2(d)⊗OW (1))
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be the equation cutting out the family of curves parametrized by W . The
taking the product of the above discussion with W , we obtain the section

s = p∗q̃
∗f ∈ H0(E ×W,p∗q̃∗OP2(d)⊗OW (1)).

The vanishing locus of s is the subscheme

V (s) = {([z], [f ]) ∈ E ×W |f |2z = 0}.

Let W be a general 1-dimensional linear system now. Since the class V (s)
is given by the top Chern class of the corresponding vector bundle, we have
found that the answer to question (*) is given by the following integral:

(3) Nd =
∫
E×W

cd(p∗q̃∗OP2(d)⊗OW (1)).

We evaluate (3): By Grothendieck-Riemann-Roch we have

ch(p∗q̃∗OP2(d))⊗ td(E ×W ) = p∗ (ch(q̃∗OP2(d))td(Z)) .

Using that on a projective bundle π(E) over a base X we have the exact
sequence 0 → Tπ(E)/X → Tπ(E) → π∗TX → 0 and since td is multiplicative
on short exact sequences we find

td(Z)
td(E ×W ) = td(E ×G L×W )

td(O(Z))td(E ×W )

∣∣∣
Z

=
td(TL/G)
td(O(Z))

∣∣∣
Z
.

Hence

ch(p∗(q̃∗OP2(d)⊗OW (1))) = pr∗
(

td(TL/G) · [Z]
td(O(Z)) · ch(OP2(d))ch(OW (1))

)
.

We know describe all the rings explicitly. Let z = c1(Q). Then

A∗(G) = Q[z]/z3.

Let h = c1(OL(1)). Then since c(U) = 1− z + z2 we have

A∗(L) = A∗(G)[h]/(h2 − zh+ z2).

Since OL(1) = i∗OP2(1), the class h is also the pullback of the hyperplane
class from P2. Similarly, with t = c1(OEd

(1)) we have

A∗(E) = A∗(G)[t]/(t4 + c1(Sym3(U∨))t3 + . . .+ c4(Symd(U∨)) = 0)

Then since Z is cut out by a section of OE(2)⊗OL(6) we get

[Z] = 2t1 + 6h.

Let also y = c1(OW (1)). Finally, by B.5.8 in Fulton, we have

c(TL/G) = c(U ⊗OL(1)) = 1 + (2h− z)
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so

td(TL/G) = 1 + 1
2(2h− z) + 1

12(2h− z)2.

So in conclusion we find

ch(p∗(q̃∗OP2(d)⊗OW (1))) = p̃∗(td(TL/G)(1− e−[Z])edhey).

Finally, we go from Chern characters to Chern classes using that a vector
bundle E satisfy the universal relation

c(E) = exp

∑
k≥1

(k − 1)!(−1)k−1chk(E)

 .
The result follows now from a direct calculation. But a more direct way is

to observe that the solution Nd is polynomial in d of degree ≤ 5. Hence we
only need to evaluate finitely many of the numbers Nd to determine the full
answer. This can be done using the Chow SAGE package [1]. The code for
this is on the webpage http://www.math.uni-bonn.de/˜georgo/topics.
html.

3. Noether-Lefschetz theory

Let C ⊂ P1×P2 be a general hypersurface on degree (2, 6). We have seen
above that the locus of curves in the linear system |OP2(6)| which have a
tritangent is a divisor of degree 312. Hence in the family of curves

C → P1

there are precisely 624 points t ∈ P1 such that Ct has a tritangent. This can
be interpreted in a different way.

Let X be the double cover of P1×P2 branched along C, i.e. if C = V (f),
then X is given by the equation V (y2 = f) ⊂ Tot(OP1×P2(−1,−3)) where
y ∈ O(1, 3) is a local coordinate. Then morphism

X → P1

is a family of K3 surfaces polarized by the pullback H of the hyperplane class
from P2. For a fixed t, the pullback of a bitangent of Ct is a rational curve in
|Ht|, and every rational curve in |Ht is of this form. We have precisely 324 of
these rational curves matching the Yau-Zaslow formula. Over a tritangent L
of Ct, the restriction f |L is a square, so the preimage of L to the K3 surface
Xt splits as the union of two smooth rational curves:

π−1(L) = L1 ∪ L2.

http://www.math.uni-bonn.de/~georgo/topics.html
http://www.math.uni-bonn.de/~georgo/topics.html
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Hence a curve Ct with a tritangent corresponds to K3 surfaces Xt whose
Picard group contain the lattice(

−2 3
3 −2

)
.

This lattice is of discriminant ∆ = −det = 5. The number of tritangents in
the family C → P1 is hence equal to the Noether-Lefschetz number

NX
∆=5

of the family X, see [2] for the notation and reference. Since in each such
lattice there are precisely 2 curve classes β with H · β = 1, we have hence
the following Noether-Lefschetz number:

NX
0,1 = 2 ·NX

∆=5 = 2 · 624 = 1248.

This matches perfectly the calculation in [2, Section 6.4] (see the coeffi-
cient of q5/4 = q∆/2m where ∆ = 5 is the discriminant and m = 2 is the
polarization degree).
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