NUMBER OF TRITANGENTS IN A PENCIL OF DEGREE
d PLANE CURVES

GEORG OBERDIECK

1. PROBLEM

We always work over C. Let C C P? be a degree d plane curve. If C is
general, then it has precisely

%d(d —2)(d—3)(d+3)

bitangents. This can be proven by calculating the arithmetic genus of the
dual curve of C in two different ways, see Hartshorne Exercise 1V.2.3. Fur-
ther, by a dimension argument, the locus of curves with a tritangent has
codimension 1 in the linear system |Op2(d)|, so C' has no tritangents.

A pencil of degree d plane curves is a degree (1, d)-hypersurface in P! x P2,
viewed as a family of degree d curves via the projection to the first factor.
Since curves with a tritangent are codimension 1, a general pencil has finitely
many tritangents. We ask more precisely:

(*) In a general pencil of degree d curves in P2, how many
curves have a tritangent?

We will show below that the answer to (*) is
(d* +3d —2)(d —3)(d — 4)(d — 5)
The first values for d = 6,7, ... are
312,1632, 5160, 12720, 26880, 51072, . . ..
The number 312 for sextics is related to a Noether-Lefschetz calculation, see

Section 3.

2. SOLUTION

Let f be the equation of a curve of degree d in P?, and let L C P? be a
fixed line. The line L is a tritangent to V(f) if and only if the restriction
flz has at least three multiple roots, hence if and only if there exists a
subscheme z = 1 + x93+ 23 C L (viewed here as a Cartier divisor) such that

(1) flaz =0 € H%(2z,0p2(d)|22)
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with z1, z9, 3 distinct. (If the z; are not distinct, for example z = 2z + y,
then the line L would meet the curve V(f) with multiplicity (4,2,...); since
this is a codimension 2 condition in the linear system |Op2(d)| this case will
not appear in a general pencil and we will drop the condition on z; to be
distinct below.) The idea to the solution is to interpret as the zero locus
of some section on a projective bundle.

Let G = ((2,3) be the Grassmannian of 2-planes in C3, or equivalently of
lines in P2 (i.e. the dual P2). On G we have the sequence of vector bundles

0=U—=04—=Q—0

where U is the universal rank 2 subbundle, and @ is the 1-dimensional
quotient line bundle. The projective bundle

L=P)
is the universal line over the Grassmannian. Here we use Fulton’s notation,

i.e. we identify a locally free sheaves £ on a scheme X with the vector bundle
E = SpecSym®(£V), and the associated projective bundle is

P(£) = Proj Sym*®(£Y).

The space of degree d equations on L is E; = P(Sym%(U"Y)). Over E; we
have a universal scheme

(2> Zg C Egxag L

whose fiber over a point [f] € Ey is the subscheme V(f) C Ly The
scheme Z; is cut out by the line bundle

Opx,) (1) ® OL(d),
see also the following remark for a more detailed explanation.

Remark 1. We describe how is cut out by a section of a line bundle. Let
X be a scheme with a line bundle £ and let V = H°(X, £). The evaluation
map V ® Ox — L induces a morphism

Ox - VV®eL
which in turn defines a morphism of graded O x-algebras
Sym* VYV @ Ox — (Sym* VY ® Ox)(1) ® L.
Applying the ~ functor of the Proj construction to this sequence yields
Oxxp(v) = Tp)Op(v)(1) X X L

on the product X x P(V'), hence a section s of the line bundle on the right
hand side. The vanishing locus Z = V/(s) is the family of subschemes
parametried by V' in the sense that the fiber of Z over the point [f] € P(V)
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is precisely the subscheme V'(f). The same construction works also when X
is taken relative to a base.
In our case, let £ = Or(d) and let 7 : L — G denote the projection. Then

T L = Symd Uv.
We let
Vy=r'mL =7n*Sym?U.
By adjunction to the identity of m.L — 7L we obtain the evaluation map
Vao— L
hence O, — VY ® £ which induces the sequence
Sym® V) — (Sym* V,))(1) ® L.

We have Egxg L = P(Vy) so this yields a section sg of W*EdOEd(l) ®@m;OL(d)
such that the vanishing locus Z; = V(s4) has the desired properties. ([

We now consider the scheme E = F3 = P(Sym%(U")), the universal
subscheme Zy C E X L as above (which is a Cartier divisor) and set

Z =2Z.

Consider the diagram

7 - ExgL —1 p2
Xlﬁ
E

where ¢ is the composition of the projection to L, followed by the inclusion
L C G x P2, followed by the projection to P2. Let f € H°(P%2,O(d)). We
consider the restriction to Z, which is

q'f € H(Z,§" Op2(d))
where we let § = q o j. We pushforward along p and get the section
s =p.G"f € HY(E, p.q*Op2(d)).

The fiber p,.g*Op2(d)) over a point [z] € E (corresponding to a subscheme
z C L, where ¢ = 7([2])) is H%(z,O(d)|2.). Hence p.d*Op2(d) is a vector
bundle of rank 6. The section s vanishes at [z] if and only if L meets the
curve C' =V (f) in the subscheme 2z.

Finally, we also allow our equation f to vary. Let W C |Op2(d)| be a
linear subspace and let

f € H°(P? x W, 0p2(d) @ Ow (1))
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be the equation cutting out the family of curves parametrized by W. The
taking the product of the above discussion with W, we obtain the section

s=p«qf€ HO(E X W, pq" Opz2(d) @ Ow (1)).
The vanishing locus of s is the subscheme
V(s) ={([z],[f]) € E x W|fl|2z = 0}.

Let W be a general 1-dimensional linear system now. Since the class V (s)
is given by the top Chern class of the corresponding vector bundle, we have
found that the answer to question (*) is given by the following integral:

(3) N, = /E L cilpd Opa(d) © Ow ().

We evaluate : By Grothendieck-Riemann-Roch we have
ch(p«G*Op2(d)) @ td(E x W) = p, (ch(¢* Op2(d))td(2)) .

Using that on a projective bundle 7(€) over a base X we have the exact
sequence 0 — Trgy/x — Tre) — ™ Tx — 0 and since td is multiplicative
on short exact sequences we find

td(Z) td(E xg L x W) ’ ~ td(Tre)

td(E x W) td(O(Z2)td(E x W)lz ~ td(0(2)) ’z'

Hence

(7O (D Ow (V) = pr. (1(Tj6) - i

td(O(2))
We know describe all the rings explicitly. Let z = ¢1(Q). Then
AX(G) = Q[2]/=".
Let h = ¢1(Op(1)). Then since ¢(U) =1 — z + 22 we have
A*(L) = A*(Q)[h]/(h? — zh + 2%).

. ch(Ops (d))ch(OW(l))> .

Since Or,(1) = i*Op2(1), the class h is also the pullback of the hyperplane
class from P2. Similarly, with ¢t = ¢;(Og, (1)) we have

AY(E) = A(G)[t]/(t" + er(Sym* (U ) + ...+ ca(Sym?(UY)) = 0)
Then since Z is cut out by a section of Og(2) ® OL(6) we get
[Z] = 2t; + 6h.
Let also y = ¢1(Ow(1)). Finally, by B.5.8 in Fulton, we have
c(Tr)q) =c(U®OL(1)) =1+ (2h - 2)
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SO
1 1
td(Tyyq) = 1+ 5(2h —2) + 15(2h = 2)%.
So in conclusion we find

ch(p:(§* Op2(d) ® Ow (1)) = pu(td(T ) (1 — " H)eter).

Finally, we go from Chern characters to Chern classes using that a vector
bundle E satisfy the universal relation

¢(E) = exp (Z(k‘ - 1)!(—1)k_lchk(E')) :
E>1

The result follows now from a direct calculation. But a more direct way is
to observe that the solution N is polynomial in d of degree < 5. Hence we
only need to evaluate finitely many of the numbers N, to determine the full
answer. This can be done using the Chow SAGE package [I]. The code for
this is on the webpage http://www.math.uni-bonn.de/~georgo/topics.
html.

3. NOETHER-LEFSCHETZ THEORY

Let C C P! x P? be a general hypersurface on degree (2,6). We have seen
above that the locus of curves in the linear system |Op2(6)| which have a
tritangent is a divisor of degree 312. Hence in the family of curves

C — P!

there are precisely 624 points ¢ € P! such that C; has a tritangent. This can
be interpreted in a different way.

Let X be the double cover of P! x P? branched along C, i.e. if C = V(f),
then X is given by the equation V(y? = f) C Tot(Op1yp2(—1, —3)) where
y € O(1,3) is a local coordinate. Then morphism

X P!

is a family of K3 surfaces polarized by the pullback H of the hyperplane class
from P2. For a fixed ¢, the pullback of a bitangent of C; is a rational curve in
|H¢|, and every rational curve in | Hy is of this form. We have precisely 324 of
these rational curves matching the Yau-Zaslow formula. Over a tritangent L
of C}, the restriction f|z, is a square, so the preimage of L to the K3 surface
X splits as the union of two smooth rational curves:

7Y L) = L1 U Le.
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Hence a curve C; with a tritangent corresponds to K3 surfaces X; whose
Picard group contain the lattice

(5 %)

This lattice is of discriminant A = — det = 5. The number of tritangents in
the family C' — P! is hence equal to the Noether-Lefschetz number
Na-s

of the family X, see [2] for the notation and reference. Since in each such
lattice there are precisely 2 curve classes § with H - § = 1, we have hence
the following Noether-Lefschetz number:

Ng G =2+ NX_; =2-624 = 1248.

This matches perfectly the calculation in [2, Section 6.4] (see the coeffi-
5/4 _ qA/2m

polarization degree).

cient of ¢ where A = 5 is the discriminant and m = 2 is the
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