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INTRODUCTION

The Kuznetsov component Kuys of a cubic fourfold M, introduced in
[Kuz10], is a full triangulated category

Kupr == (O, Opr(1), Opr(2))F < D(M)

defined as the complement of three line bundles. It turns out to be a subtler
and more interesting derived invariant of M than the whole derived category.

For instance, the Kuznetsov component Cuys behaves in many ways like
the derived category D°(S) of a K3 surface S. In , the author pro-
posed a seminal conjecture connecting properties of the Kuznetsov compon-
ent Kuys to the rationality problem of the cubic fourfold M. Precisely, he
conjectured, that the cubic fourfold M is rational if and only if its Kuznetsov
component Kuys is equivalent to the derived category of a K3 surface.

Assume the cubic fourfold M admits a group action by a finite group G.
Then the line bundle Oy, (1) and the semiorthogonal decomposition

DP(M) = (Kupr, Onr, Onr(1), Or(2))

are preserved by the group action of G. Hence we obtain the semiorthogonal
decomposition

Dg(M) = (Kufiy, {On)® {On (1)), {On (2))%)

of the equivariant derived category of M, where (Oy;(i))® denotes the
equivariant category of the subcategory (O (7)) for i = 0,1,2 and

Ku§p = O (On(1))Y, {0 (2))5HE

is called the equivariant Kuznetsov component of M. It is natural to ask
whether lCuf/[ is equivalent to the derived category of a smooth variety and
whether explicit examples, which satisfies this property can be constructed.

We study such an example. Let M := V(F) < P° be a smooth cubic
fourfold, where F' = Fy(xq,x1,x2)+ Fi(x3, x4, x5) for Fy, F} cubic equations
and G := Z/37. We pick a generator g of G, whose action on M is given by

glxo:wiixo i wg iy xs] = [wo: 21 1 w2 ¢ 23 g @23, 62”/%5].



2

The quotient space M /G is denoted by X. For simplicity, we denote V (Fp)
by Eo and V(Fy) by E1, both being smooth elliptic curves inside P?.
The main result of this thesis is

Theorem 0.1. (Theorem Ku§; =~ D*(Ey x Ey).

This has already been proved in [HO18, Remark 5.8], [Lim21, Main The-
orem], [BFK14, Example 3.10] and [BO20al, Example 7.4]. However, each of
them used quite complicated methods and proved the result in different gen-
eralized forms. In this thesis, we will give a simpler proof in our particular
case.

The main ingredient of our proof is the derived Mckay correspondence
established in [BKRO1] by Bridgeland, King and Reid. We use the G-Hilbert
scheme Y = G-Hilbc (M) to establish an equivalence between the derived
category D(Y) on Y and the equivariant derived category Dg(M ) on M.
Moreover, we show that ¥ — X is a crepant resolution.

Take a (universal) family Z ¢ Y x M together with natural projections

y <z M
Then according to [BKRO1], if the fiber product
VxxV =A{(yy2) €Y xY|r(y1) = 7(y2)} ¥ x Y

has dimension < 5, then there is an equivalence between the derived category
D(Y) and the equivariant derived category D% (M) given by the functor

® := Rq. op*: D*(Y) — DY%(M).
By analyzing the geometry of the G-Hilbert scheme Y, we get the follow-
ing description of Y (see Theorem [4.5)):
G-Hilbc(M) = (Blye(M))/G = Blg, x g, (P? x P?),
where M© is the fixed locus of the G-action on M. Then we verify that
dim Y xx Y < 5 and obtain the equivalence
Db(Y) = D% (M).

Let Oy (a, b, ¢) be the line bundle associated to the divisor aE’+bH; +cHo,
where E’ is the exceptional divisor of the blow-up Blg,x g, (P? x P?), and
let H; denote the divisor coming from the i-th factor of P? x P? for i =
1, 2. We explain in Section 5.2/ that D*(Y') and DY (M) admit the following
semiorthogonal decompositions

DY) = (D"(Ey x E1), 0y (0,0,0),0y(0,0,1), 0y(0,0,2), 0y (0,1,0),
OY(Ov 1, 1)7 OY(O) 1) 2)a OY(Ov 2a O)a OY(Ov 27 1)7 OY(Oa 2> 2)>a
DEL(M) = {Ku§;, On ® X0, Onr @ X1, Onr & X2, O (1) ® X0, Onr(1) ® X1,
Om(1) ®x2,0M(2) ® x0, Om(2) ® x1, O (2) ® X2,

where o, X1, x2 are characters of the group G and O (i) ® xo is taken with
the canonical G-structure such that

5
HO(M, OM(l)) = @ka = CSXO@CSXL
k=0

Naively, one may try to compare the image of D’(Ey x E;) under the
functor ® with the equivariant Kuznetsov component ICU% and obtain the
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equivalence we want. However, for practical reasons, it is more convenient
to use a functor in the other direction, i.e. let

U = [p$ o Lg* : D& (M) — D°(Y)]°,

where p¢ denotes the equivariant pushforward. Since U shares the same
Fourier-Mukai kernel as ®, it is also an equivalence.

After an explicit computation (see Section [5.3.1|5.3.2| and [5.3.3)), we get
a semiorthogonal decomposition of D’(Y') in terms of ¥(DY)

Db(Y) = <‘1J(ICUG(M))a Oy, OY(L =2, *1)a Oy(l, -1, *2)7 OY(Oa 1, 0)7
Oy(1,-1,-1),0y(0,0,1), 0y (0,2,0),0y(0,0,2), Oy (0,1,1)).

Then by mutation functors, we can finally identify ICU% with Db(Ey x Ey).

Open questions. In [LZ22|, Laza and Zheng gave a complete classificaton
of symplectic automorphism groups of cubic fourfolds and the case that we
considered is one of them. It is natural to ask

Question 0.2. Can the derived Mckay correspondence be applied to other
cases listed in [LZ22, Theorem 1.2 and 1.8]?

In general, if a cubic fourfold M admits a finite symplectic automorphism
group action of G, then the corresponding equivariant Kuznetsov component
ICu]\% is known to be a 2-Calabi-Yau category. (See [BO20b, Section 6.3 and
6.4] and [BO20a), Proposition 4.3]) Since finding new examples of 2-Calabi-
Yau categories arising from geometry is a quite interesting task, we are
wondering:

Question 0.3. Will equivariant Kuznetsov components ICU%Z give us new
examples of 2-Calabi-Yau categories?

Notations and Conventions. We always work over C. The bounded
derived category of coherent sheaves on a smooth projective variety X is

denoted by D?(X).
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Part 1. Preliminaries
1. SEMIORTHOGONAL DECOMPOSITION

We recall some well-known facts about semiorthogonal decomposition and
mutation functors closely following the treatment in [KP16]. The reader can
consult [BK90] , [Bon90] and [Huy+06] for more details.

Definition 1.1. Let A be a triangulated category. A semiorthogonal de-
composition

A= (A, A

is a sequence of full, triangulated subcategories Ajq, ..., A, of A, which are
called the components of the decomposition, such that:

(1) For all i > j, F; € A;, Hom(F;, Fj) = 0;
(2) For any F € A, there is a sequence of morphisms
0=F,—>Fp1—> —>F1—>Fo=F
such that Cone(F; — Fi_1) € A;.
Moreover, if Hom(F;, F;) = Hom(F;, F;) = 0 for all 4,5, F; € A; and Fj €
Aj, then we call (A, ..., A,) a completely orthogonal decomposition of A.

Definition 1.2. [KP16, page 3] A full triangulated subcategory A c A is
called right admissible if the inclusion functor « has a right adjoint o : A —
A, left admissible if o has a left adjoint a™: A — A, and admissible if it is
both right and left admissible.

If A ¢ A isright admissible, then there is a semiorthogonal decomposition

A= (A A,
and if A is left admissible, then there is a semiorthogonal decomposition
A= (A TA.

Here A’ resp. - A denote the right resp. left orthogonal categories to A re-
spectively, defined as the full subcategories of A given by
At = {Fe A|Hom(G,F)=0foral Ge A},
tA={FeA|Hom(F,G)=0forall Ge A}.

1.1. Mutations. Let a: A — A be admissible, then for any object F € A,
the counit morphism aa!(}" ) — F can be completed to a distinguished
triangle

ad (F) — F — La(F),
where £ 4(F) is defined as the cone of the counit morphism. Similarly, for
the unit morphism F — aa™*(F), there is also a distinguished triangle

RA(F) »> F - aa™(F)
Since these triangles are functorial (see [KP16, Remark 2.2]), we can define
the functors:
LoAi:A—>Aand Rgq:A— A
called the left and right mutation functors of A < A.
The restrictions:
Laglig *A— At and Ry |y A — +A
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are mutually inverse equivalences (by|[BK90, Lemma 1.9]). The following
proposition explains that the mutation functors £ 4, R4 act on semiortho-
gonal decompositions, which will turn out to be exceptionally useful for our
later purpose.

Proposition 1.3. [BK90, Lemma 1.9] Let A = (A, ..., A;,) be a semiortho-
gonal decompositions with admissible components. Then for 1 <t <n—1
A= (A, Aicr, La,(Ais1), Aiy Aiga, o A

is a semiorthogonal decomposition, and for 2 <i—2 < n
A= (A, Aimo, Ais Ra, (Aiz1), Ay oo A

is a semiorthogonal decomposition.
We will recall several useful lemmata about mutation functors.

Lemma 1.4. [KP16, Lemma 2.4] Let A = (Ay, ..., Ay,) be a semiorthogonal
decomposition with admissible components. Assume for some i the com-
ponents A; and A4;;1 are completely orthogonal, i.e. Hom (F, G) = Hom
(G,F)=0forall Fe A, Ge Aiy1. Then L4,(G) = G for any G € A;41,
and R4, ,(F) = F for any F € A;. In particular,

A= <.A1, ...,Ai_1,Ai+1,AZ‘,AZ‘+2, ,An>

is a semiorthogonal decomposition.

Proof. For any F;y1 € A;11, computing £ 4,(F;+1) amounts to constructing
a distinguished triangle

Fi—Fiz1— 69

with ; € A;and G € .Aii, in which case L4, (Fi+1) = G. Since Hom(F;, Fit1)
0, G =~ F;+1. The same argument applies to the corresponding statement
on right mutation functors. O

Lemma 1.5. [Perl6, Lemma 2.7] Let Aj,..., A, is a semiorthogonal se-
quence of admissible subcategories of A, then (A, ..., A,) € A is also ad-
missible and

(1) Loar,hny = LayoLayo-0Ly,;

(2) Riear, Ay = Ra, ©Ru, 0 0RA,.

We are mainly interested in the case when A is isomorphic to D°(X),
where X is a smooth projective variety and D’(X) is the derived category
of coherent sheaves on X, which comes equipped with the Serre functor .

Let us first recall its definition:

Definition 1.6. Let A be a C-linear triangulated category with finite di-
mensional Hom’s. A Serre functor for A is an equivalence S : A — A
together with a collection of binatural isomorphisms

na.p : Hom(F, G)= Hom(G, S(F))¥ for F, G € A.

Remark 1.7. If A = D*(X), where X is a smooth projective n-dimensional
variety, then by Serre duality, D’(X) admits a Serre functor given as

S(F) = FQuwx|n]
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for 7 € D*(X). Here wy is the canonical line bundle of X.

Proposition 1.8. Let A be a C-linear triangulated category with finite
dimensional Hom’s, which admits a Serre functor.

(1) If Ac A is an admissible subcategory, then
S(tA)=A+  SHAh)=tA
(2) If A admits a semiorthogonal decomposition A = (A, ..., A, ) with
admissible components, then

Loay,an(An)= (S(An), A1, .y Anct)
Rias,..an(AD)= (Az, s A, STH(AL))

Proof. See [BK90, Proposition 3.6 and 3.7]. O

2. EQUIVARIANT DERIVED CATEGORIES

In this section, we recall some facts about equivariant derived categories.
In addition, we always work on C-linear categories and all functors are also
C-linear. Our main reference will be [BO20b|, [BO20a|, |[KP16],[BKRO1]
and |Elalb], where the discussion is more detailed.

2.1. Categorical actions. For the reader’s convenience, we recall the defin-
ition of categorical actions and equivariant categories following [BO20b).

Definition 2.1. [BO20bl Definition 2.1] Let G be a finite group and D be
a category. A categorical action (p,0) of G on D consists of

(1) for every g € G, an autoequivalence py: D — D;
(2) for every g,h € G, an isomorphism of functors 0y : pg © pr — pgn
such that the following diagram

pgo0h K
PgPhPk — PgPhk

(3) 0g,n0Pk Og.hk

Ogh,k
Pgh Pk > Pghk

commutes for all g, h, k € G.

We say a categorical action (p,0) of G on D is trivial, if for each g € G
there exists a natural isomorphism 7, : id — pg, such that

0,1 ©Tgn = pi(Tg) 0 Th
for all g,h € G.

Definition 2.2. [BO20b, Definition 3.1] Let (p,6) be a categorical action
of a finite group G on an additive C-linear category D. The equivariant
category D¢ is defined as follows:
(1) Objects of D¢ are pairs (E, ¢), where E is an object in D and the lin-
earisation ¢ := (¢g)geq, ¢g: E — pg(F) is a family of isomorphisms
such that the following diagram



¢ g,10(E)
4) B —" g B) 2 o) M (B
¢gh

commutes.
(2) A morphism from (E, ¢) to (E’,¢') is a morphism f: F — E' in D
which commutes with linearizations, i.e. the following diagram

E— T g

(5) g 4

ng Pg (f) ng/

commutes for every g € G.

Note that for any objects (E,¢) and (E’,¢') in D¢, there is an induced
action of G on Homp(E, E') via

9.f = (85) " o pg(f) o ¢y

for every g € G. Thus we have
Homp,. ((E, ), (E',¢'))= Homp(E, E')C.

Remark 2.3. [BO20a, page 8] The equivariant category D¢ is naturally
equipped with a forgetful functor

Res: Dg - D, (E,¢) - E
and a linearization functor

Ind: D — Dg, E > (Dyeq pgE: 0).

Here the linearization ¢ is given by considering 9;2,19: pgE = prhpp-14E

and then taking the direct sum over all g, i.e. for each he G
Sn = Dy by -1y Dy pgE = pr( @By pn-1E) = pn(@By pyF)
By [Elal5, Lemma 3.8], the linearization functor Ind is left and right ad-

joint to the forgetful functor Res. We will just write E for (F,¢) if the
linearization is of this form.

2.2. Triangulated equivariant categories. Take a finite group G acting
on a triangulated category A by exact autoequivalences. It is very natural to
ask: when is Ag a triangulated category? The category Ag is triangulated
only in certain situations. The following two circumstances are of particular
interest to us:

(1) A = D®(X) for a smooth projective variety X and G acts via auto-
morphisms of X;

(2) A is a semiorthogonal component of D(X) and G acts via auto-
morphisms of X that preserve A.
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Theorem 2.4. [Elall|[Elal5|[KP16] Let X be a quasi-projective variety
with an action of a finite group G. Let D*(X) = {(Ay,...,.A,) be a semi-
orthogonal decomposition preserved by G, i.e. each A; is preserved by the
action of G. Then there is a semiorthogonal decomposition

(6) DG(X) = (AT, AD)

of the equivariant category DbG (X), where .AZG is the equivariant category of
A;.

Proof. This claim follows directly from [Elall, Theorem 6.3] and [Elalb,
Proposition 3.10]. O

For a semiorthogonal component A of D?(X) preserved by G, the following
proposition gives us a completely orthogonal decomposition of A as long as
G induces a trivial action on A.

Proposition 2.5. [KP16] Let A be a triangulated category with a trivial
action of a finite group G. If the equivariant category Ag is also triangulated,
then there is a completely orthogonal decomposition

(7) AG = <AG®‘/07‘”7AG®V71>7
where V), ..., V,, are all irreducible representations of the finite group G.

Example 2.6. Take a point * endowed with a trivial finite group action of
G, then the equivariant derived category D%(*) is isomorphic to the derived
category of representation D®(Repg(G)). So it has a complete decomposition

Vo, Vi, vy Vi),
where Vg, ..., V,, are all the irreducible representation of G.

Remark 2.7. In particular, for a finite abelian group G, its irreducible
representations one-to-one corresponds to characters. We also use Ag ® x;
to denote Aq®V;, where x; is the character corresponding to the irreducible
representation Vj.

2.3. Equivariant sheaves and derived categories. In this section, we
collect some facts from [Krul8, Section 2.2] about the equivariant derived
categories and functors that we will need later.

Let a finite group G act on a smooth projective variety M. We use
Cohg (M) and D% (M) to denote the abelian category of equivariant coherent
sheaves and the equivariant derived category. By [Elal5, Theorem 9.6] we
have D% (M) =~ D°(Cohg(M)).

For a non-trivial character y of G, we get an autoequivalence

—® x: Cohg (M) — Cohg(M).

Let G act on another smooth projective variety N and f: M — N be
a G-equivariant morphism. For our purposes, we can assume f is project-
ive. Then we have a natural pullback functor f£: Cohg(N) — Cohg(M)
and a push-forward functor f&: Cohg(M) — Cohg(N). We also have the
following two isomorphisms of functors, which play important roles later.

Proposition 2.8. Let M and N be smooth projective varieties admitting
actions of a finite group G. If f: M — N is a G-equivariant morphism and
x a character of GG, then we have isomorphisms



fFE=®x) = fE(—)@x, fa(—®x) = fi(—) ®x.

Furthermore, all functors mentioned above induce corresponding derived
functors on the level of derived categories, we use L f# resp. R £ to denote
the derived pull-back resp. derived push-forward G-equivariant functors. For
the functor — ® x, we do not have to change notation for its derived coun-
terpart, since it is exact.

For any two objects F,G € Dg(M ), we denote the graded Hom-space by

Homg,(F,G) := (—BEX‘EE(}", G) and Extg(}",g) = Hong(M)(}",g[i]).

€L
In addition, we write 7 = ResF for F € D%(M) and Hom*(F,G) for
HOHIE;;(M) (Res F,Res G). By Remark we know that

Hom{(F,G) =~ Hom*(F,G)C.

If G acts trivially on M, then a G-equivariant sheaf F is simply a sheaf of
G-representations. Sectionwise, taking the G-invariants of F(U) for every
open subscheme U < X yields a functor (—)%: Cohg(M) — Coh(M).
Moreover, we also have the following isomorphisms between functors in this
case.

Proposition 2.9. If f: M — N is a morphism between varities and G acts
on M, N and f trivially, then we have the following isomophisms between
functors

()0 fd = fio(—)and (—)% 0 f& = f&o(—)°.
3. DERIVED MCKAY CORRESPONDENCE AND (G-HILBERT SCHEMES

In [BKRO1]|, Bridgeland, King and Reid used derived categories to extend
the classical McKay correspondence. In this section, we will review the main
theorem in that paper. In the meantime, we also need to recall some basic
facts about G-Hilbert schemes, which are key objects in both [BKRO01]| and
this paper.

The classical McKay correspondence originated from an observation by
McKay in [McK]|. He found a bijection between non-trivial irreducible rep-
resentations of a finite group G < SL(2, C) and rational curves in the excep-
tional locus of the minimal resolution Y — C?/G of the quotient singularit-
ies.

Later, in [GV83], Gonzalez-Springer and Verdier established an isomorph-
ism between the Grothendieck group K¢ (C?) of G-equivariant coherent
sheaves on C? and the Grothendieck group K (Y') of the minimal resolution
Y of C?/G. Since bounded derived categories can be thought as “categorific-
ations” of Grothendieck groups, it is natural to expect that the isomorphism

KG(C?) = K(Y)
can be lifted to an equivalence of derived categories. This has already been

proved by Kapranov and Vasserot in [KV98].

Theorem 3.1. [KV98, Section 1.4] Let M be a surface equipped with a
holomorphic symplectic form w and suppose that there is a G finite action
on M preserving w. Then

DH(Y) = DY (M),
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where Y — M/G is the minimal resolution of M/G and D%(M) is the
derived category of G-equivariant coherent sheaves on M.

It is natural to suspect an extension of the derived Mckay correspondence
to higher dimensional cases. However, a minimal resolution need not exist,
even if M is of dimension three. A natural replacement would be a crepant
resolution, which is always minimal in dimension two. In [IN96] and [IN99|,
Ito and Nakumura introduced the G-Hilbert scheme G-Hilb¢(M) as a can-
didate for a crepant resolution of M /G and proved that if dim M = 2, then
G-Hilb¢(M) — M/G is a crepant resolution.

Let us recall the definition of G-Hilbert schemes.

Definition 3.2. Let S be a scheme and M a S-scheme, The G-Hilbert
functor of M over S

G-Hilbg(M) : (S — schemes)? — (sets)
is defined by

Quotient G-sheaves [0 — Z — Oy, — Oz — 0]
on Xp,where Z is finite flat over T', for everyt e T':
H°(Z;,0y,)is isomorphic to the regular representation
of G

for an S-scheme T'. If we take T' = S = Spec(C), every element in G-
Hilbc(M)(Spec(C)) represents a G-cluster. Here a cluster Z < M is a
zero-dimensional subscheme and a G-cluster is a G-invariant cluster whose
set of global sections HY(Qy, Z) is isomorphic to the regular representation

C[G].

Proposition 3.3. [Blu07, Proposition 4.13] If M is (quasi-)projective over
S, then the functor G-Hilbg(M) is represented by a (quasi-)projective S-
scheme, which we denote by G-Hilbg(M).

G-Hilbg(M)(T) =

Remark 3.4. For a smooth projective variety M over C with finite group
action of G, there is a Hilbert-Chow morphism 7: G-Hilbc(M) — X, where
X = M/G. On the closed points, 7 sends a G-cluster to the orbit supporting
it. Moreover 7 is a projective morphism, is onto and is birational on one
irreducible component of G-Hilb¢ (M )ﬂ

When dim(M) > 2, Bridgeland, King and Reid gave a criterion for the
morphism Y — M /G to be crepant, in [BKRO1], where Y is an irredu-
cible component containing all free G-orbits in G-Hilb¢ (M). Moreover, they
have shown the equivalence between derived category D°(Y) of Y and the
equivariant derived category D% (M) of M.

To be precise, let us recall the main theorem in [BKRO1]:

Let M be a nonsingular quasi-projective variety of dimension n, G <
Aut(M) be a finite group of automorphisms of M, with the property that
the stabiliser subgroup of any point 2z € M acts on the tangent space T, (M)
as a subgroup of SL(T,(M)). With this condition, the quotient variety
X = M/G has only Gorenstein singularities (see [BKRO1, Introduction]).

IThe reader can consult [Blu07] for the explicit construction of 7 and [Fog68, Section 4.3]
or [FGIO5| Section 7.1] for the properties of T
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Denote by Y the irreducible component of G-Hilbc (M) that contains the
free orbits. We consider the universal closed subscheme Z < Y x M and
write p and ¢ for its projections to Y, M respectively. Then there is a
commutative diagram of schemes

X‘

/M

in which ¢ and 7 are birational, p and 7 are finite, and p, moreover, flat

since Z is a universal family of Y. Moreover, equipping X and Y with

trivial G-actions, all morphisms in the above diagram are equivariant.
Define the functor

® := Rgy op* : D*(Y) — D%(M),
where a sheaf F on Y is viewed as a G-sheaf, endowed with the trivial action.

Note that, as p is flat, the pullback functor p* is already exact, so we do not
need to derive.

Y%Z
xX

Theorem 3.5. [BKRO1, Theorem 1.1] Suppose that the fiber product
YxxY ={(y1,12) eY xY|7(y1) = 7(y2)} c Y xY

has dimension < n + 1. Then Y is a crepant resolution of X and & is an
equivalence of categories.

Remark 3.6. When dim M < 3 the condition of the theorem is automat-
ically satisfied, since the dimension of the expectional locus of Y — X is
smaller than 2.

If dim M < 3, then the dimension of Y X x Y depends heavily on the
geometry of the G-Hilbert scheme Y. However, in general, understanding
the geometry of Y is hard. In our paper, we rely on the following result to
ease this problem.

Proposition 3.7. [Blu07, Proposition 2.40] Let G = Spec C[z]/(z" —1) be
the group scheme of rth roots of unity, and V' be an n-dimensional repres-
entation of G over C.

We define 7 : M := Ac(V) — X := Ac(V)/G, where Ac(V) denotes
the affine plane AZ. Denote origin point of Ac(V) by 0. Then there is an
isomorphism

G-Hilb¢c (M) = (BlpX)/G

over C.

Part 2. Equivariant Kuznetsov component

Let M := V(F) c P? be a smooth cubic fourfold, where F' = Fy(xo, z1, 22)+
Fi(x3,x4,x5) for Fy, Fy cubic equations and G := Z/3Z. We pick a gener-
ator g of G, whose action on M is given by ' ' '

glxo:wiixe gy xs] = [wo: X1 w2 ¢ 23 g @23, 627”/31'5].
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The quotient space M /G is denoted by X and we write Y for the G-Hilbert
scheme G-Hilbc M.

Since M is smooth, we know by the Jacobian criterion that V (Fp) < P?
and V (F}) < P? are smooth elliptic curves. For simplicity, we denote V (Fp)

by Ey and V(Fy) by E7. Our main goal is to prove Theorem stating
DY(Ey x Fy) = Kug(M),

where the equivariant Kuznetsov component Kug(M) will be defined in
Section [B.1]

Our proof for the main theorem proceeds in two steps: Firstly, we
analyze the geometry of the G-Hilbert scheme Y. It turns out that ¥ =~
Blg, x g, (P? x P?) and satisfies the condition for the derived Mckay corres-
pondence of Theorem Using this, we establish the category equival-
ence between the derived category of the G-Hilbert scheme D°(Y) and the
equivariant derived category Dg(M ). Finally, we compute the image of
components of D% (M) in D*(Y) and then by using mutation functors, we
identify Kug(M) with DY(Eq x Ey).

4. STEP I: THE GEOMETRY OF THE GG-HILBERT SCHEME Y

4.1. The main goal and central idea. We want to construct the G-
Hilbert scheme Y explicitly. Since there is no systematic method to do this,
we need to first guess the explicit description of Y and then prove it is
correct.

Optimistically, the G-Hilbert scheme would yield a crepant resolution of
M /G. Intuitively speaking, the fixed point locus M is the only obstruction
to M /G being smooth. To get our resolution of singularities, it is then
natural to blow up the fixed locus first and then take the quotient of the
group action.

By direct calculation, the fixed locus M in M can be identified with the
union of two elliptic curves Ey x 0 |J 0 x Ej, where

[20: 21 : 2] € V(Fp) < P? }

E0><0:={[:L‘O:;Ulzxgzxg:m4:a:5]eM| andzs — 24 = 25 = 0

cxwy:x5] € VI(F)) < P2
0x By = {[xo tx1 T x3 g x5] €M | [xgangico :E:E’]xl =(3:21)=C0 }

Now, let us study the quotient space Bl,;c(M)/G of the blow up Bl,,c (M)
of the fixed locus M“ on M.

4.2. The geometry of Bl,;c(M)/G. The first thing, that we should check
is that our intuition holds water and Bly;¢(M)/G — X is a resolution,
i.e. Bly;e¢(M)/G is smooth over Spec(C).

Proposition 4.1. Bl;;¢(M)/G is smooth over Spec(C).

Proof. The idea of the proof is to compute Bl,,¢(M)/G locally and then
use the Jacobian criterion to show the smoothness of Bly,e(M)/G.

We observe that Bly;o(M)/G is a closed subvariety of Blpz o joxp (P%)/@,
since P2 x 0 (1M = Eyg x 0 and 0 x P2 (\M = 0 x E;. To obtain the local
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description of Bl;¢(M)/G, our strategy is as follows: We first do the com-
putation for Blp2, g joxp (P%), then we use the equations of M in P° to
acquire the local equation of Bl,,c(M).
Step 1: We compute Blpz o joxp2(P?). Since P? x 0{0 x P? = &, we have
Blpz,o(joxp2 (P?) = Blp2yo(Bloxp2(P?)). And this allows us to decompose
the computation into two easier steps.

Firstly, Blyyp2(P?) is given by

T3Y4 = T4Y3, T3Ys5 = T5Y3, T4Ys5 = T5Y4

in P° x P2, where [xg : ¥1 : @9 : ¥3 : ¥4 : 5] X [y3 : Y4 : y5] are coordinates
of P> x P2, Then the further blow-up Blpz,o(Blyyp2(P°)) is cut out by the
equations

oY1 = T1Yo, ToY2 = T2Yo, T1Y2 = T2YI1,

T3Y4s = T4Y3, T3Y5 = TpY3, T4lY5 = T5Y4
in P° x P2 x P? where [zo: 21 : 2223 : 24 25] X [Yo : y1 2 y2] X [Y3 1 ya : y5]
are coordinates for P° x P? x P2
Step 2: Now we consider the quotient Blpz, o joxp2 (P%)/G. The blow-up
Blp2,ojoxp2 (P%) has a canonical affine cover

{(Ussn | 0<i <5, 0<j<2and 3<k<5},

where Uy, y; .y, 18 given by z; = y; = yr. = 1 in Blpa, o joxp2 (P°). Without
loss of generality, we only do the computation for U y, 45 All the argu-
ments below can be easily repeated and are essentially the same for the other
affine subvarieties Uy, y. v, -

The equations of Uy 4.4 in A% x A2 x A% become

1 = Y1, T2 = Y2, T4 = T3Y4, T5 = T3Y5.

Thus we have

Umo,yo,yg, = Spec(c[mh T2,X3,Y4, y5]) = A%
and we can take x1, x2, T3, Y4, y5 as the coordinates of Uy, yy,4,- The gen-
erator g € GG acts on the coordinates y4 and ys trivially, since
9-x4 = (9.73)ys, 9.75 = (9-73)Ys,

so the action of g on Uy 4.y, is given by

27

[1:x1:mo:x3:ys:ys] — [lixr:xo:€3 x3:ys:ys)]
Thus

U:Co,yo,yg/G = Spec((c[xlu xT2,T3,Y4, y5]G) = Spec((c[xh T2, x§7 Ya, y5]) = A%?

where for the last isomorphism, we write x% for 3.
Step 3: Finally we restrict the previous computation to Bly;e(M)/G. We
use U to denote Bly;a(M)/G(\(Uzyyo,ys/G)- Then the equation of

£0,Y0,Y3

U, in Uy yows/G = A2 is:

Z0,Y0,Y3

(8) Fo(1,w1,x2) + Fi(ws, x3ys, x3ys) = Fo(1, 1, 22) + 23F1(1,y4,y5) = 0.
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Since there is no closed point in Uy, . such that
0Fy oFy
0( 73717372) ) a.fCl ) (71172
oFy oFy
Fi(1 =0, =—=0, —=0
1( 7$47$5) ’ 61'4 ) 6:1}5 )
by the Jacobian criterion, Uy . . is smooth over Spec(C). O

We have the following global description of Bly,e(M)/G.
Theorem 4.2. Blg, g, (P? x P?) =~ (Bl,c(M))/G.

Proof. Let [T : 1 : &3] x [¥3 : &4 : ©5] be coordinates of P? x P2. Recall
that the equations of Ey and F; are Fy(Zo, Z1,Z2) = 0 and Fy(Z3,%4,%5) =0
respectively. Then the blow-up Blg, x g, (P? x P?) is cut out by the equation

1F0(Zo, T1, T2) + JoF1(%3,24,%5) = 0

in P2 x P2 x P!, where [fj : §1] are the coordinates of P1. Let W;,, be the
affine open variety of P? x P? x P! given by &; = #; = ¢, = 1. Write Wi,,l,m
for the restriction of Blg,x g, (P? x P?) to W; .

Without loss of generality, we take the affine piece I/V(’)’gy1 with its defining
equation in A% given by

F0(17 jflv 532) + gOFl(:l? '%47 '%5) = 0.
Let U, be the affine open subvariety of (Bl;¢(M))/G that we used in

£0,Y0,Y3

the proof of Proposition Then there is an isomorphism between W 5

/ .
and Uy oo v, given by

(‘%17 j?a 3?47 i.57 gO) g (fL'l, x2,Y4,Ys5, w{})
Similarly, one can check a similiar isomorphism for the other 17 pairs of affine
open subvarieties from Blg,« g, (P? x P?) and (Bl;c(M))/G. Moreover, we
can verify that these given local isomorphisms can be glued together. This

yields an the isomorphism as claimed.
O

4.3. The identification of G-Hilbc (M) with Bl,,¢(M)/G. Until now we
have already shown that Bl,;c(M)/G is smooth over Spec(C). Moreover, it
has a simple global description: Blg,x g, (P? x P?). Now we want to identify
Bly;e(M)/G with the G-Hilbert scheme G-Hilbc(M).

Before delving into the details, let us briefly introduce the strategy we
will use here. Since the G-Hilbert functor is stable under base change, it is
enough to understand the G-Hilbert scheme of G-Hilb¢(P).

We will start with figuring out the geometry of G-Hilbc(A®), the open
subset of G-Hilbg(PP?) obtained by taking xp = 1 in the coordinates [z :
Ty 1 @9 : a3 : x4 : x5] of P°. Then the generator g € G acts on A® by
mapping (1, 2, 3, 4, T5) to (L1, T, €2 /3x3, €2™/32,, €2 /3 x5). If we only
consider the last three coordinates (z3, x4, s), we can identitify A3 with a
closed subscheme of A® via

A3 >0 x A3 c A®

and A3 is endowed with a natural G-action given by



15

o2mi/3 2mi/3

g.(x3,24,75) = ( x4, €2 Byy).

Since G acts on the coordinates x1 and xo trivially, it is natural to expect
that one can move this part out from G-Hilbc(A®). Explicitly, we have the
following isomorphism:

I3, e

Lemma 4.3. G-Hilbg(A%) =~ A% x G-Hilbg(A3).

Proof. This is a direct corollary of [Tér04, Proposition 1.4.4] or [Blu07, Co-
rollary 4.24], where the following general statement is proved: Let X and
Y be schemes with a G-action over S. If Y is endowed with the trivial
G-action, then

G-Hilbg(X) xgY =~ G-Hilbg(X xgY).
O

Proposition 4.4. The G-Hilbert scheme G-Hilbc(A%) can be embedded as
an open subscheme of G-Hilbc(P?) and the G-Hilbert scheme G-Hilbg (P°)
is isomorphic to (Blpz o joxp? (P%))/G.

Proof. According to [Blu07, Remark 4.19], if X’ is a scheme endowed with
a G-action over S and S’ is an S-scheme, then there is an isomorphism of
S’-functors

(G-Hilbg(X"))g: = G-Hilbg (X%).
In addition, by [Blu07, Remark 4.22 (2)], we have
G-Hilbc (P?) = G-Hilbgs ; (P°) and G-Hilbe(A®) = G-Hilbys ¢ (A®).
Thus we have the following Cartesian diagram:

G-Hilbg (A%) = G-Hilbys (A%) «— s G-Hilbg(P?) = G-Hilbgs (P?)

A%/ < g P5/G

where g and ¢’ are open immersions. By Lemma and Proposition
we obtain

G-Hilbc(A®) = A? x (Blg(A%)/G) = Bly2,o(A%)/G.

By taking other z; = 1 for i = 1,2,3,4,5, we can get a Zariski cover of
G-Hilbc(P?). Moreover, the gluing of this cover is completely determined
by the open immersions A® < P5, and by a direct check, we get

G-Hilbe(B®) = (Blpz o[ joxp2 (P*))/G.

Theorem 4.5. G-Hilbc(M) = (Bly;e(M))/G = Blg,x g, (P? x P?).
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Proof. We proceed as in Proposition [£.4 and we get the Cartesian diagram:

G-Hilbe (M) = G-Hilb /(M) S AN G-Hilbe (P?) = G-Hilbps i (P°)

f

M/G < P°/G

where f and f’ are closed immersions. On the other hand, by Remark
G-Hilbe (P) = Blpzy | joxp2(P?), so the fiber product in the diagram above
can also be computed as

(Blp2 o joxr2(P?))/G xpsjc M/G = Blye(M)/G,
hence we obtain the isomorphism
G-Hilbe (M) = (Blye(M))/G = Blg,x g, (P? x P?),
that we desired. O

Theorem 4.6. Let Y be the G-Hilbert scheme G-Hilbc(M) and X be the
quotient space M /G. Then Y is a crepant resolution of X. Moreover, we
have an isomorphism: D*(Y) ~ D% (M).

Proof. By Theorem Y := G-Hilbge(M) is isomorphic to Blg, x g, (P? xP?),
which is irreducible. Since the dimension of the fixed locus M€ is 1, we have
dim(Y xx Y) < 5. We take the family Z ¢ Y x¢ M to be Bly,e(M) (see
Remark to justify that it is indeed a family) and, via Theorem 3.5, we
know that Y is a crepant resolution of X and D’(X) =~ D%(M). O

Remark 4.7. In the statement of Theorem Z is the universal family
of Y x¢ M. However, throughout the proof in [BKRO1|, the universality
of Z never plays a role. We only need Z to be a family of G-Hilb(M)
over Y. We verify this condition for Z := Bl;¢(M): We define the map
j: Z2—>Y x¢ M by j = q x bl, where q: Bly;¢(M) > Y = Bly,e(M)/G is
the quotient map and bl: Bly;e (M) — M is the blow-up morphism. By a
direct check, we see that j is a closed immersion.

We conclude this section with an alternative proof of the fact that Y is
a crepant resolution of X. Although this is a direct corollary of Theorem
[3.5] we can also show this result independently via direct computation. We
present it here for interested readers.

Before stating of the proposition, we need to recall the definition of ca-
nonical singularities:

Definition 4.8. |Rei+85, Definition 1.1] Let X be a normal, quasi-projective
variety over an algebraic closed field k£ of characteristic 0. We say X has
canonical singularities, if it satisfies the following two conditions:
(1) The canonical class Kx is Q-Cartier, i.e. for some integer r > 1, the
WEeil divisor rKx is Cartier;
(2) For any resolution f:Y — X,
rKy = f*(?"Kx) + Z a; I;

for some a; = 0, where FE;’s are exceptional divisors.
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Example 4.9. [Rei80, Proposition 1.7 and Remark 1.8] If a finite group
quotient singularity is Gorenstein, then it is also canonical.
Proposition 4.10. Y := (Bly,e¢(M))/G — X := M/G is a crepant resol-

ution of X.

Proof. Recall the commutative diagram from our previous discussion:

Z = Blye(M) g M

Y = Blye(M)/G —T—— X := M/G

By a direct check, the stabiliser subgroup of any point x € M acts on the
tangent space T, M as a subgroup of SL(T, M), hence X has only Gorenstein
singularities (see [BKRO1, Introduction]). We write U := im w(M\M%) and
l+wy becomes a line bundle, where [: U — X is the natural open immersion,
then the canonical line bundle wx = l,wy. Since G acts on U freely, the
morphism 7r|7r_1(U) is étale and we have m*wy = wpr|r-1(y). Moreover, M
is smooth and the codimension of M% is 3, so we get 7*Kx =~ K. By the
fact that ¢ is a birational morphism, we have

Kz =~ ¢* Ky + 2E,

where E is the exceptional divisor.

By Definition 4.8 and Example we know that X has canonical singu-
larities, so Ky = 7*Kx + ), a;E;, where E; are prime effective divisors of Y’
and a; > 0 for all i. The next step is to calculate p* Ky . Since p is a finite
morphism, by the adjunction formula, we know that

Kz =p*Ky + E,

where E is the ramification divisor of p. By taking x¢g = yg = y3 = 1, the
associated ring map of p is

Clzy, 2, 23, ya, ys] . Clz1, 2,73, Y4, Ys5]
(Fo(1,z1,22) + angl(l,y4, Ys)) (Fo(l,x1,x9) + x%Fl(l, Ya,Ys5))
Here we use the coordinates appearing in the proof of Proposition
Then the ramification divisor E is the support of Qz /Y |zo=yo=ys=1, Which is
2V (z3) = 2(Ep % 0)]zo=1 x AZ. By similar computations, it is not hard to
verify that the ramification divisor is E = 2E, where E is the exceptional

divisor of q. Moreover, since the ring map

(C[xlu X2, .’E%, Y4, y5] - C[l’l, x2,T3,Y4, y5]

is flat and flat morphism is stable under base change, we obtain p is flat.
Hence the pullback p*(E;) is still an effective divisor, which is determined
by p~}(E;). Since ¢*(7*Kx) = p*(7*Kx), we have

Kz +2E =Kz +2E-) ap '(E),
%

hence a; has to be 0 for all ¢. This proves 7 is indeed a crepant resolution
of X. O
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5. STEP II: THE EQUIVARIANT KUZNETSOV COMPONENT OF M

The goal of this section is to identify the equivariant Kuznetsov compon-
ent Ku§, of D% (M), which we will define in Section with D?(FEy x Ey).

5.1. An overview of the strategy of Step II. The purpose of this section
is to review some necessary notions and explain the main ideas to achieving
our goal.

The derived category D®(M) of the cubic fourfold M admits a semiortho-
gonal decomposition, which was first introduced by Alexander Kuznetsov in
[Kuz07):

(9) DY (M) = (Kupr, Opr, Opr (1), Or(2)),

where the Kuznetsov component Kwuys is by definition the orthogonal com-
plement (O, Opr(1), Opr(2))*. Furthermore, by Theorem the equivari-
ant derived category Dg(M ) also admits a semiorthogonal decomposition:

(10) Dg(M) = (KuSy, (O, Omr (1)), {On(2))%),
where the equivariant Kuznetsov component ICu% by definition the equivari-
ant triangulated category of Kuyy.

On the other hand, from Theorem we know Y = Blg, g, (P? x P?).
By Orlov’s blow-up formula [Orl93] and [Huy+06, Proposition 11.16 and
11.18], we have

(11) DY) = (D1, Dy).

where D_1 = DY(Ey x E;) and Dy = D?(P? x P?). (See Section below
for definitions of equivalences.)
Recall from Theorem that we have the following commutative dia-

gram:
Z
VRN
Y M
X .

Here Z is Bly;6(M), as explained in Remark For the purpose of com-
putation, we will use the functor in the opposite direction with the same
Fourier-Muaki kernel of ®, namely
U := p, o Lg*: D%(M) — D°(Y).

Since the morphism p is finite, in particular affine, p, is an exact functor.
This justifies writing p, instead of Rp,. By computing the image of the three
components (O )¢, (Opr(1))% and (Op(2))¢ of DE(M) under ¥ and using
mutation functors, we can finally find an explicit functor to identify ICu%
with D*(Ey x Ey).

5.2. D*(Y), D%(M) and the functor ¥. We first need a refined semi-
orthogonal decompositions of D*(Y') and D% (M).

Following [Or]93] and [Huy+06l Proposition 11.16 and 11.18] for the fur-
ther decomposition of D?(Y), we utilize the diagram
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El
Ey x B, Y = Blg,x g, (P? x P?)
where E' is the exceptional divisor of the blow-up p’ := Y — P2 x P2,

The morphism 7’ is the closed immersion from E’ to Y and 7’ is the natural
projection. The subcategory D_; is given by ¢_1(D?(Ey x Ey)), where
¢_1:=1ix0(Op(—E")® () on*: DY(Ey x Ey) — D'(Y).
Moreover, D_1 is equivalent to D?(Eyx E1) by ¢_1. Dy is given by the image
of (p')* DP(P? x P?) and equivalent to D?(P?2 x P2) via (p/)*. In particular,
(D_1, Dy) is a semiorthogonal decomposition of D’(Y").
Consider the diagram

T
P2 xp2 P2, p2
pri

PQ
where pr; is the projection to the i-th factor. By [Orl93] and [Huy+06]
Proposition 8.28 and Corollary 8.36] we get that

Do = D°(P? x P?) =(pri D*(P*) ® Op2 2, pr3 D" (P?) ® pri Op2 (1),
pr3D°(B?) @ pri Op2(2)).
Moreover, by [Bei78|, we know that D°(P?) = (Op2, Op2(1), Op2(2)), so
DP(P?2 x P?) has the decomposition:

Db(P? x P?) = (Opa2,p2(0,0), Opayp2 (0, 1), Opz,p2(0,2), Op2 p2(1, 0),
Op2yp2(1,1), Op2p2(1,2), Op2p2(2,0), Op2 p2(2, 1), Op2 4 p2(2,2)),
where Op2p2 (7, j) denotes priOpz2(i) ® priOpz2(7), and we write Oy (0,1, j)

for (p/)*(priOpz(i) ® priOpz2(j)) for convenience.

Combining the decomposition of D_; and , we obtain a finer semi-
orthogonal decomposition of D?(Y):

Db(Y) :<D*17 OY(Ov 0, 0)7 OY(Oa 0, 1)a OY(O7 0, 2)7 OY(Oa 1, O)>
OY(Oa 17 1)) OY(Oa 17 2)7 OY(O7 2> 0)7 OY(Oa 27 1)7 OY(Oa 27 2)>
At the same time, we know
De;(M) = (Kufy, (Oa)®, (Om (1)) (Onm(2))%).
And by [2.5 we get
(Oum(n))? = (Oum(n) ® Vo, Onr(n) ® Vi, Oni(n) @ Va ),

where V;’s range over irreducible representations of G. For G = Z/3Z, they
are given by the characters yo, x1 and xa2.

By the discussion above, we have the following semiorthogonal decompos-
ition of DY (M):
(14) DY(M) = (Ku§y, Onr & xo, Onr @ x1, Onr ® X2, Onr (1) ® Xo,
Om(1) ® x1, Om (1) ® x2, O (2) ® X0, Om(2) ® X1, Omr(2) @ x2)-

(12)

(13)
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And Op(i) ® xo is taken with the canonical G-structure such that

HO(M, 0 (1 @ Cay, = Cxo @ C*x1.
k=0

We observe that besides subcategories D*(Ey x E1) = D(Y) and Ku§,
D%(M ), that we are after, there are exactly nine terms in the semiorthogonal
decomposition and both for D°(Y") and D%(M). Using the functor
® of to somehow identify these nine terms with each other on both sides
seems like the most natural idea. However, for the purpose of practical
computation, it is better to use

U := ps o Lg* : D%(M) — DY)
instead. Here Lg*: D% (M) —> DY(Z) is the derived functor induced by
the G-equivariant map ¢q: Z — M, and p, is the composition

Db (2) LY b (Y) e Db(Y),

where p denotes the equivariant pushforward and G acts trivially on Y.
The functor ¥ shares the same Fourier-Mukai kernel with ®. Moreover,
since ® is an equivalence, so is W. (See [Krul8, Proposition 2.9])

5.3. Computing ¥ (O (i) ® x;). For the reader’s convenience, we recall
the commutative diagram defined in [3

The pullback Lg* of Op (i) ® Xg is still an equlvarlant line bundle and
the equivariant pushforward p{(Lg*(Op (i) ® x;)) is a rank 3 equivariant

vector bundle since p is flat and finite of degree 3. Therefore, after taking
G-invariants, we have the following result

Lemma 5.1. V(O (i) ® x;) := p«Lg*(Opm () ® x;) is a line bundle on Y.
Proof. G acts trivially on Y, by |BKR01 Section 4.2], we know

p$ (Lg* (Oum(3) ® x0)) (—Bp*Lq (O (i) ® x0) ® X;-
7=0

It follows from Proposition [2.8| that

P«Lg* (O (1) ® x0) ® x5 = p«Lg* (O (i) ® x;5).-
Hence,

3 3
pf(Lq (Onm (i) ® x0)) 2@ pxLg*( i) ® X;j) :@ (1) ® x;5)-

Since W(Oy(1)®Yx;) is a direct summand of the vector bundle p§ (Lg* (O (1)®
X0)), it is a locally free sheaf. Moreover, ¥ is an equivalence, so ¥(Ops (i) ®
X;) is not 0 and must be a line bundle. (]
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By Theorem we know that Y is isomorphic to Blg, g, (P? x P?), which
is smooth over C. So we know that this line bundle on Y is uniquely determ-
ined by its corresponding Weil divisor. The Picard group of Blg, x g, (P? x P?)
also has an explicit characterisation.

Proposition 5.2. Let H; denote the divisor of the pullback pr(Op2(1)) for
i=1,2 and E’ denote the exceptional divisor of the blow-up Blg,x g, (P? x
P2). Then

Pic(Y) = ZE' @ Pic(P? x P?) ~ ZE' @ ZH, @ ZHs.
Proof. By |Harl3|, Chapter II Exercises 7.9 and 8.5]. O

We take P! as a fiber of B/ — Ey x E; and a line in P?. The image
W (O (i) x x;j)|pr for different P1’s can then be computed in order to get
degree of the corresponding divisor, i.e. F, Hy and Hs. In the end we can
then recover all images W(Ox(7) ® x;) in terms of divisors.

Definition 5.3. Let \I’(OM(Z) ®Xj) = OM((IL]'E/ + b@jHl + C@'J‘HQ).
According to the strategy, we split our computation into three parts.

5.3.1. The coefficients a; ;. Recall from the proof of Theorem that the
blow-up Blg,x g, (P? x P?) is cut out by
(15) J1Fo(Z0, 1, T2) + Go b1 (T3, T4, 75) = 0

in P2 x P2 x P!, where [Zg : 21 : T2] x [Z3 : T4 : &5] % [Jo : §1] are coordinates
of P2 x P2 x P!. Take a point « € Eg x E1. Then we have the following fiber
product diagram:

PL < » Bl x g, (P? x P?)
p/
T A P? x P2,

where ¢’ is a closed immersion and p’ denotes the blow-up morphism intro-
duced in Section

Since 2 € Ey x E1, it is not hard to see that Pl is a closed subscheme of
the exceptional divisor E’. Without loss of generality, we use

[1:3) - 2h) x [1: &) zf]
to denote the coordinates of z. By pluging the coordinates of x into the
Equation , we get the coordinates
[1:&) 5] < [1:a) : &L] x [§o : §1] of PL.

Recall that the morphism p: Z := Bly;e (M) — Blg,x g, (P? x P?) is finite,
flat and of degree 3. Using the isomorphism in the proof of Theorem [4.5
we can compute the preimage p~!(PL) of PL, even explicitly in coordinates.

Recall the isomorphism: Uéo,yo,y:a =~ Wy 3,1 given by
(16) (1‘1,$2ay4a3/5,37§) = (j17j27j4aj57g0)

from the proof of Theorem If we restrict the morphism p to the af-
fine open subvariety Uz yo,y5 in Blyse (M), the image p(UQTo,yo,y:),) is exactly
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Ul wous i BlEgx g, (P2 x P?). Furthermore, the associated map of p, restric-

ted on Uz yo.,ys» 1S

Cla1, x9, 23, Y4, y5] . Clz1, 22, 3, ya, y5]
(Fo(1,21,%2) + 3F1(1,y4,95)) (Fo(1, 21, 2) + 23F1 (1, 4, 5))
Therefore, the restriction of the morphism p on Uy, 4.y, is given by

(17) (5517552794795,553) = ($17$2,y47y53$§, = CC%)
Here we use the notations of the proofs of Theorems [4.6]
Combining the maps [I6] and [I7], yields:
(w1, %2, Ya, Y5, ¥3) > (1, o, E4, T5, o = 25)
This implies that the prelmage p H(PL) is isomorphic to P! and we are

justified in denoting it by PL. The coordinates of P1 can be denoted by
[zo : x3], since all the other coordinates are fixed. Moreover, the morphism

p, restricted on P!, is given by
Pl =P = Py [zo: 23] = [fo = 23, 51 = ;).

We know that the morphism ¢: Z — M is exactly the blow-up of the fixed
locus M and if we restrict the morphism g to P!, then by a straightforward
computation, we know that the restriction of the morphism ¢ to P! is an
isomorphism, which is given by

[z0 : x3] — [x0 : 3]
Since the coordinates of the image q(ﬁ) of P1 is the same as the coordinates

of IP’1 we will not distinguish them and it is clear that both carry the same

G action. Moreover, we also use P! to denote q(Pl)
Now, if we want to compute the image of p.(Lg*On(i) ® x;j)|p1, it is
enough to compute ps«(Lg*(Onm (i) ® X;|zr)). And by the previous discus-

sion, we know that the restriction of ¢ to P is an isomorphism. So the
G-equivariant pullback Lg*(On (i) ® x;l51) is exactly Oz(i) ® x|z Since
the restriction of Oz(i) to Pl is Oz (i), we know that

(Ol ® xl5:) = O (1) ® x;.
Next we need to compute px (Lg*On (1)®x;) |p1, which is equal to ps (O (1)®
Xj)- We know that p,(Lg*Op (1) ®;) is a line bundle so psx (Lg* O (i) ®x;)
restricted on Pl is also a line bundle and it is equal to Op1 (—ai ), since E' is

an exceptional divisor. In order to compute the line bundle Op1 (—a;,;) on Pl
explicitly, it is enough to compute the dimensions of the sheaf cohomology

W (PL, p(Oc (i) ® x;))
for [ =0, 1.

Theorem 5.4. With notation as in Definition we have
ago =0, ap1 =1, ap2 =1,
a1 =0, a;1=1, a12=0,
a20=0, a1 =0, az2=0.

Proof. Recall that Rp, is the composition of functors:
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Db (2) Rrg Db(Y) e Db(Y).
Hence,
H'(Py, ps (O (1) ® x5)) = H'(BL, 97 (O (1) @ x7)]) for 1 =0, L.
for [ = 0, 1. By Proposition 2.8 and 2.9} we know
hS(—®x) = h{ (=) ® x and (—)% 0 h{ = h{ o (—)°,

where h$ := Cohg(Y) — Cohg(Spec(C)) is the equivariant global sections
functor. Since the invariant functor (=) and —®y: Cohg(M) — Cohg(M)
are exact, we have the following isomorphisms of equivariant derived func-
tors:

RS (—®x) = RhY(—) ® x and (—)% o RRS =~ RAS o (—)C.

The derived pushforward (Rh$)! is the sheaf cohomology H! for | = 0, 1.
Therefore,

H'(Py, [p$ (05 (1) ® x;)]%) = [H'(Py, ¢ (O (1)) ® x51,
where we use pf(Oﬁ (1)) by abuse of notation to denote Res(p$ (O (1))

Since the derived pushforward functor p¢ is exact, we have
H'(P, p$ (O () = H'(PT, O (1)).

Now, to compute h!(P ,p*((’) :(1)®x;)) for I = 1,2, it is enough to compute
the dimension dimc[H' (IP’l 51 (1) ® x;1¢.

Since we know that the Coordlnates of P1 are [z : x3], we can explicitly
describe the natural G-structure of H'(P1, O (4)):

IF)I
H'(P!, Oy (7)) = 0 for i = 0,1, 2, hence
dime[H'(PL, 05 (i) ® x;1¢ = 0.

fori,j7 =0,1,2.
Fori=0,1=0,

dime[HO(P, O5) ® x0]% = dimc[Spanc(1® x0)]¢ = 1
dimC[HO(IPl Op1) ® x1]¢ = dime[Spanc(1®x1)]¢ = 0
dime[H(PL, 05) ® x2]¢ = dime[Spang(1® x2)]¢ = 0.

Combining these results, we get

apo =0, ap1 =1, apo =1

Fori=1,1=0,
dime[HO(PL, O (1)) ® x0]¢ = dime[Spang(zo ® xo, 73 ® x0)]¢ = 1
dimC[HO(IfP\I, Omn (1) ® x1]¢ = dim¢[Spanc(zo ® x1, 23 ® x1)]¢ = 0
dim@[HO(IfP\i, Om (1) ® x2]¢ = dimc[Spanc(zo ® x2, 3 ® x2)]¢ = 1.
Thus

a10=0, a11=1, a12=0.
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Fori:=2,1=0,

dime[HO(PY, 051(2)) ® x0]“ = dime[Spanc (2§ ® X0, 23 ® X0, Zoz3 ® X0)]°
dim¢ [Ho(ﬁﬁ, Opi (2) ® x1]G = dimc[Span(c(x% ® X1, x% ® X1, Tox3 ® Xl)]G
dime[H(PT, O, (2)) ® x2] ¢ = dime[Spanc (23 ® X2, 23 ® X2, 7073 ® x2)]°

Therefore,
az0 =0, a1 =0, ags=0.

5.3.2. The coefficients b; ;. Without loss of generality, we take
y=1[1:0:0]eP\E,

from the second factor of P? of Y = Blg,x g, (P? x P?). Then we take a line
L, = P! in Blg,x g, (P? x P?), with coordinates

Fo=0, F3=1, 4 =0, &5 =0,
where [#g : @1 : T2] x [Z3 : &4 : ©5] are the coordinates of P? x P2, Recall
that the blow-up Blg,x g, (P? x P?) is cut out by the equation
(18) 1 Fo(Zo, T1, 2) + YoF1 (T3, T4, T5) = 0

in P? x P2 x P!, where [Zg : @1 : @] x [Z3 : T4 : T5] X [fo : §1] are the
coordinates of P? x P? x P1. By inserting the equation of L, in P? x P2, the
equation becomes

(19) 71F0(Zo, %1,0) + 7o F1(1,0,0) = 0.

Recall that the morphism p: Z = Blyc(M) — Blg,x g, (P? x P?) is finite,

flat and of degree 3. Using the isomorphism in the proof of Theorem

we can compute the preimage p‘l(Ly) of Ly, even explicitly in coordinates.
Recall the isomorphism U ~ Wy 3,1 given by

Z0,Y0,Y3
(20) (1‘1,$2ay4a3/5,37§) = (j17j27j4aj57g0)

from the proof of Theorem If we restrict the morphism p to the af-
fine open subvariety Uy, yo,ys i Blye (M), the image p(Uszg yo,45) Is exactly
Uzoos 10 BlEgx g, (P2 x P?). Furthermore, the associated map of p, restric-
ted on Uz yo.,ys» 1S

Clx1, w2, 3, Ya, Ys] . Clz1, x2, 3, ya, y5]
(Fo(1,z1,22) + 23 F1 (1,94, y5)) (Fo(1,z1,22) + 23 F1(1,ya,y5))

Therefore, the restriction of the morphism p on Uy 4y, is given by

(2]—) (5517552794795,553) = ($17$27y47y57$% = 55%)
Here we use the notations of the proofs of Theorems
Combining the maps 20| and [21], yields:
(21,22, Y2, Ys, x3) — (F1, 2, £a, Ts, o = 23).

It is straightforward to verify that the equation of the preimage p~'(L,)
restricted to Uz yo,ys 18

Fo(1,21,0) + 23F1(1,0,0) = 0.

=1
=1
=1.
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Therefore, it is not hard to verify that the global equation of p~!(L,) in
BI]P’QXOUOX]P’Q (P5) is given by
FO(I'Oa 1, 0) + ngl(la 07 0) = 0.

By taking the plane L to be a plane P? Blpz,o(joxp2 (IP°) with coordinates
[20 : 21 : 0 : x3 : 0 : 0], we know that the preimage p~'(L,) < L. If we
further assume that Fy(zg,21,0) = 0 has three distinct solutions, then by
the Jacobian criterion, the preimage p~!(L,) is smooth. Since p~1(L,) is
also a hyperplane in L of degree 3, it is a smooth elliptic curve by the
adjunction formula and we use C' to denote it.

We know that the morphism ¢: Z — M is exactly the blow-up of the fixed
locus M and if we restrict the morphism p to C, then by a direct computa-
tion, we see that the restriction of the morphism p to C' is an isomorphism,
which is given by

[1‘0 | :333] —> [l’o O 1‘3].
Since the coordinates of the image ¢(C') of C' is the same as the coordinates
of C and it is also clear that both carry the same G action, we will not
distinguish them and also use C' to denote p(C').

Similiar to @L in order to compute py(Lg* (O (i) ®x;)|L,, it is enough
to compute py(Lg* (O (1) ® xj|c)). By the discussion above, we know that
the restriction of the morphism ¢ on C'is an isomorphism. The G-equivariant
pullback Lg* (O (i) ® xjlc) is then O¢(i) ® x;, where Oc(i) == Op2(i)|c.
In total,

P« (Lg*On (i) ® X;) |2, = p«(Oc(i) ® x;)-
We know that ps(Lg*Op (i) ® x;) is a line bundle, so is py(Lg*On (1) ®
Xj)|L,- In order to compute it explicitly, it suffices to compute the dimen-
sions of the sheaf cohomology

W (Ly, p«(Oc (i) ® x;))
for [ =0, 1.

Theorem 5.5. With notation as in Definition [5.3] we have:
boo =0, bo1=—2, bpo=—1
bio=1, b1 =-1, b1o=10
boo =2, ba1 =0, byo=1.

Proof. By using the same argument as in proof of Theorem we obtain
an isomorphism:

H'(Ly, [p¢ (05 (1) @ x7)1°) = [H'(Ly, p¢ (Oc(30) @ X1
Moreover, we have
H'(Ly, ¥ (Oc(i)) = H'(C,p«(0c (i) ® x;)).
Therefore, in order to compute the dimension h!(C, p,(Oc(3i) ® x;)) for

[ = 1,2, it is enough to compute dimc[H!(C,O0c(3i)) ® x;]¢. Since C is a
closed subscheme of L >~ P2, we have the following short exact sequence:

(22) 0 —— Op2(-3) Op2 Oc 0,

which induces the following long exact sequence:
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0 —— HOY(P2, Op2(—3)) —— HO(P?, Op2) H°(C,0¢)

7%/”_/7

HY(P?, Op2(—3)) —— H'(P2, Op2) HY(C,0¢)

7%/”_/7

H2(P?, Op(—3)) —— H2(P2, Op2) — H2(C,0¢) = 0

We have
H°(C,0¢) = HO(P?, Op2) = Cxq

HY(C,00) =~ H*(P?, Op2(—3)) = C — Cxo.
Tox1L3
Then for i =0, =0, 1, we have
dimc[H°(C, Oc) ® xo] = dime[Spang (x0)] = 1,
dime[H(C, Oc) ® x1] = dimg[Spang(x1)]F = 0,
dimc[H(C, Oc) ® x2] = dime[Spanc(x2)]¢ = 0,
dimg[H'(C, O¢) ® x0] = dime[Spane(x2)]¢ = 0,
dime[HY(C, Oc) ® x1] = dimg[Spanc(x0)]F = 1,
dimc[H*(C, Oc) ® x2] = dime[Spanc(x1)]¢ = 0

Hence,
boo =0, bo,1 = —2, bpo = —1.
Now, we tensor with Op2(1) to obtain the short exact sequence
0 —— Op2(—2) —— Op2(1) —— O¢(1) —— 0,

whose associated long exact sequence is:

0 —— HO(P2, Op2(—2)) — H°(P?, Op2(1))
—_— s

H(C,0c(1))

HY(P?, Opa(—2)) —— H(P2, Opa (1)) H(C,00(1))
T HE(B, Opa(-2)) —— HE(B2, 05(1)) —— H(C,00(1)) = 0.
We get that
H°(C,0c(1)) = H(P?, Op2(1)) = Spang(zo, z1,73) = C*xo P Cx1,
HY(C,00(1)) =~ H (P?, Op2(—2)) =

Then for i =1,1=0, 1,

dimc[H(C, O (1)) ® xo] = dlmc[((CQXO P Cx1) ®x0]“ =2,
dime[H(C, 0c(1)) ® x1] = dime[(C*x0 D Cx1) @ x1]¢ = 0,
dime[H®(C, 0o (1)) ® x2] = dime[(C*xo @ Cx1) ® x2] = 1,
dimc[H(C, 0c(1)) ® x;] = dime[Spanc(0® y;)]¢ = 0 for j = 0,1,2
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Therefore,
bl,O =1, b1’1 = —1, bl,g = 0.

For ¢ = 2, we tensor the last short exact sequence with Op2(1) to get
0 —— Op2(—1) —— Op2(2) —— O¢(2) —— 0,

whose associated long exact sequence is

0 —— HO(P?,Op2(—1)) —— H(P?, Op2(2))
= 12 1y

H°(C,0c(2))

H'(F?, Op2(—1)) —— H'(P2, 0p2(2)) HY(C,00(2))
T HA(P2, Opa(—1)) —— H2(P2, 0 (2)) ——~ H(C,00(2)) = 0.

Again, we get that
HO(P2,001 (2)) = HO(]P)Q,OP2(2)) ~ Span(c(xg,a:oxl,x%,moxg,xla:g,a:g)

= C?0 P C*x1 P Cxo,
HY(C,00(2)) = H*(P?, Op2(—1)) = 0.

Fori=2and =0, 1,

dimC[HO(C’, Oc(2)) ® xo0] = dimc[((C3X0 (—B(C2X1 @ Cx2) ® XO]G =3,
dimc[H(C, 0¢(2)) ® x1] = dime[(C*xo P C*x1 B Cx2) @ x1]° = 1,
dime[HY(C, 0c(2)) ® x2] = dimc[(C*xo P C?x1 P Cx2) ® x2]¢ = 2,
dime[H(C, 0c(2)) ® ;] = dime[Spanc(0® x;)]¢ = 0 for j = 0,1,2.

Finally,
bg}o = 2, 5271 = 0, bg’g =1.
(]

5.3.3. The coefficients c¢; j. By renaming E; to Ep, we can easily repeat
every step in the previous section to compute the coefficients ¢; ;. We omit
the details and only state the result.

Theorem 5.6. With notation as in Definition [5.3| we have

co,0 =0, co1 =—1, co2 = —2,
clo=0,c11=-1, c12=1,
c20=0, co01 =2, co0=1.

Combining Theorem and we get all line bundles ¥ (O (1)®x;)

in terms of divisors:
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Line bundles  Divisor £ Divisor H; Divisors Ho

U (O ® xo) 0 0 0
\IJ(OM®X1) 1 -2 -1
\IJ(OM®X2) 1 -1 -2
Y (Om(1) ® xo0) 0 1 0
Y(OM(1)®x1) 1 -1 -1
T(Om(1) ® x2) 0 0 1
U(Om(2) ® xo0) 0 2 0
V(OM(2)®x1) 0 0 2
V(OM(2) ® x2) 0 1 1

For convenience, we also use Oy (—aj j, b; j, ¢; ;) to denote the line bundle
Y (Om (1) ® x;)-

5.4. The isomorphism between D’(Ey x E;) and Kug(M). In the last
section, we calculated the images W(On(71)®x;) for 0 <i < 2and 0 < j <2,
which are all line bundles on Y. Since V¥ is an equivalence between D% (M)
and D®(Y), we have the following decomposition for D°(Y):

DY) = (¥ (Kug(M)), Oy, Oy (1,2, 1), Oy (1,~1,-2),
(23) Oy (0,1,0),0y(1,—-1,-1),0y(0,0,1), 0y (0,2,0), Oy (0,0, 2),
Oy (0,1,1)).
Also recall the semiorthogonal decomposition of D*(Y) from (5.4)):
DP(Y) =(D_1,0y(0,0,0),0y(0,0,1),0y(0,0,2), 0y(0,1,0), Oy (0,1, 1),
0y (0,1,2),0y(0,2,0),0y(0,2,1),0y(0, 2, 2)).

Now, the idea is to find a functor to give isomorphisms from the nine line
bundles in to the nine line bundles above. We will do this by twisting
¥ of Section by mutation functors

Lemma 5.7. RHom(Oy, Oy (1,—-1,—1)) = 0.
Proof. Since
¥(Om ®x0) = Oy, ¥(Ou(1) ® x1) = Oy(1,-1,-1),
and ¥ is an equivalence, we have
Hompy(yy(Oy, Oy (1, -1, -1)) = HomD%(M)((’)M ®x0, Om (1) ® x1)-
Using the short exact sequence,
0 —— Ops(—2) —— Ops(1) —— Op(1) —— 0,

we get
; (C?)X() P (C3X1 ifi=0
H (M,OpN (1)) =
(M, On(1)) {0 if i > 0.
We conclude that

Hom (Onr ®xo0, On(1) ® x1) = [HH(M, 0y (1)) ® x1]9 =0
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for all 7 = 0. O
Now we are equipped to prove the main theorem of this paper.
Theorem 5.8. Kug(M) = D*(Eq x Ey).

Proof. First, consider the inverse Serre functor S~!(—) = (=) ® wy'[—4]
on D®(Y), where wy is the canonical line bundle of Y. We use the func-
tor STI[4](~) := () @ wy instead of S~!(—) for simplicity. And wy' =~
Oy (—1,3,3), since wy = (p')*wpzyp2 ® Oy (E), where p’ is the projection
map from Y to P2 x P2 and E is the exceptional divisor.

We first apply the functor S~![4] and get the following semiorthogonal
decomposition:

DY) =(Oy, Oy (1,-2,-1),0y(1,—-1,-2),0y(0,1,0), Oy (1, -1, —1),
Oy (0,0,1),0y(0,2,0), 0y(0,0,2), Oy (0,1,1), ¥(Kug(M)) @ wy').

By Proposition 2.5 since (¥ (O (1) ®x0), ¥(On (1) ®x1), ¥(Onr (i) ®x2)) is
a completely orthogonal decomposition for all 0 < ¢ < 2, the decompositions:

<(9y, Oy(l, -2, —1), Oy(l, -1, —2)>
<(9y(0, 1, 0), Oy(l, —1, —1), Oy(O, 0, 1)>
<Oy(0, 2, 0), Oy(o, 0, 2), Oy(o, 1, 1)>

are also completely orthogonal. As a result, we can change the order of the
above semiorthogonal decomposition of D?(Y) to

DY) =(Oy(1,-2,-1),0y(1,—1,-2),0y, Oy (1, -1, -1),0y(0,1,0),
0y (0,0,1), 0y(0,2,0), 0y (0,0,2), Oy (0,1,1), ¥ (Kug(M)) @ wy ).
Next, we use the functor S~![4] again to get
DY) =(Oy, Oy (1,—1,-1),0y(0,1,0),0y(0,0,1), Oy (0, 2,0), Oy (0,0, 2),
Oy (0,1,1), ¥(Kug(M)) ® wy', 0y (0,2,1), 0y (0, 1,2)).

By Lemmal5.7, we can change the order (Oy, Oy (1,—1,-1)) to (Oy (1, —1,
—1), Oy ). After that, one more application of S~![n] derives

DY) =(0y,0y(0,1,0),0y(0,0,1),0y(0,2,0),0y(0,0,2), 0Oy (0,1, 1),
U (Kug(M)) ®wy', 0y (0,2,1), 0y (0,1,2), 0y (0,2,2)).
Now, we use A to denote the admissible subcategory
(Oy,0y(0,1,0),0y(0,0,1), Oy(0,2,0),0y(0,0,2),0y(0,1,1)).

By using the mutation functor L4, we get the following semiorthogonal
decomposition of D°(Y):

DY) =(LA(¥(Kug(M)) ®wyt), Oy, Oy (0,1,0),0y(0,0,1), Oy (0,2,0),
OY(07 07 2)7 OY(07 17 1)7 OY(O) 2) 1)7 OY(Oa ]-7 2)7 OY(Ov 27 2)>

Note that the semiorthogonal decomposition given by the last nine terms is

excatly Dg in (5.4), so we have
D = LA(V(Kug(M)) ®wy') = U(Kug(M)).

Then a combination of this and the isomorphism
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DY(Eq x E1) =~ D_1 =~ Dy

explained at the beginning of Section [5.2] implies that
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Kug(M) = D*(Ey x Ey).
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