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1. Introduction

In this thesis we are going to generalize a classical result of Borcherds. The goal is to
count line bundles of a fixed degree in families and degenerations of elliptic K3 surfaces.

Let Ml be the moduli space of quasi-polarized K3 surfaces (X,L) of degree L2 = l.
We can define the Noether-Lefschetz divisors NLd ⊂ M for every d < 0 which consist
set-theoretically of all quasi-polarized K3 surfaces (X,L) whose Picard group contains
elements

v ∈ Pic(X)

such that the intersection product admits

v2 = 2d, (1.0.1)

v · L = 0.

Given a quasi-polarized family of K3 surfaces X → C over a curve C, this allows us to
count line bundles as above for all surfaces of the family at once: Firstly, we map C to
the moduli space Ml by just taking the isomorphism class of the corresponding surface
for every point. Then we can calculate the intersection

NLd · C

which computes the number of line bundles v that satisfy (1.0.1) with a multiplicity. As
it turns out, there are many relations between the intersections (NLd · C)d, which have
been investigated by Borcherds: Taking into account the Hodge bundle λ ∈ Pic(Ml) we
get:

Theorem. The generating series

C · φ = C · λ+
∑
n>0

C ·NL−nqn (1.0.2)

is a modular form of weight 21
2 for a subgroup of SL(2,Z).

As the space of such modular forms is finite dimensional, knowing finitely many of the
intersection products amounts to knowing all of them. For example in [MP07] they
calculated them for generic families of K3 surfaces of small degree: In the degree d = 2
case a general K3 surface is a double cover of the projective space along a sextic curve.
Taking a generic hypersurface of type (6, 2) in

P2 × P1
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one can construct a family of K3 surfaces by taking the double cover with branch locus
this surface. Then

C · φ =
1

1024
(U21 − 12U17V 4 − 402U13V 8 − 572U9V 12 − 39U5V 16)

for
U =

∑
n∈Z

qn
2/4, V =

∑
n∈Z

(−1)nqn
2/4.

In this thesis we will investigate this behavior for elliptic K3 surfaces and extend the
theory to degenerations.

The plan is as follows:
In Section 2 we will introduce elliptic K3 surfaces which carry two distinguished divisors:
a section s and a fiber f . The span 〈s, f〉Z is a lattice with intersection form

U =

(
−2 1
1 0

)
.

As it turns out, every K3 surface that has a sublattice U is elliptic. Therefore we can
form the moduli space of such K3 surfaces by allowing only U -quasi-polarized surfaces,
i.e. a certain lattice polarization. This is explained in detail in Section 3. Again, we can
define the Noether-Lefschetz divisors similar to the classical case. By Borcherds result,
one obtains that the generating series (1.0.2) is a modular form of weight 10 for the full
modular group SL(2,Z), i.e. an integral multiple of the Eisenstein series E10.

We would like to generalize this result to degenerations of K3 surfaces. These are intro-
duced in Section 4. Instead of allowing only families of K3 surfaces, we allow families
X → C such that there are finitely many points p ∈ C where the surface Xp is not
necessarily K3. Under mild assumptions on the degeneration, one can classify them into
three classes: type I (i.e. K3 surfaces), type II and type III. In this thesis only type II
degenerations are treated. Unfortunately, the period map

C 99KM

does not necessarily extend to the whole of the curve C as the spaceM is not compact.

To avoid this circumstance, we introduce compactification of the moduli space in Section
5. One choice is the Baily-Borel compactification Mbb. This space adds three boundary
components: One for type III degenerations and two for type II degenerations. As these
components have high codimension, the space is singular and we have to take another
compactification into consideration: The toroidal compactification MTor

Σ which depends
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on the choice of a fan Σ. It comes equipped with a map MTor
Σ →Mbb. Therefore the

boundary has three components as well, two corresponding to type II and one for type III
degenerations. From an explicit description of the type II boundary - which is given in
Section 5 - it follows that these type II components do not depend on the choice of fan Σ.

For any degeneration X → C the period map extends to a map

C →MTor
Σ .

We can take the closure NLd of the Noether-Lefschetz divisor in the spaceMTor
Σ and an

extension λ of λ. In Section 8 we will prove the following main theorem. It was proven
for one of the type II components by François Greer in [Gre18] and we will follow his
argument with slight modifications to allow both type II components.

Theorem. Let X → C be a degeneration of K3 surfaces, such that C → MTor only
meets the boundary in type II components. Then the generating series

C · φ = C · λ+
∑
n>0

C ·NL−nqn

is an element of

ZE10 ⊕
1

480
ZDE8.

where DE8 is the derivation of the Eisenstein series E8, i.e. a quasi-modular form of
weight 10 for the full modular group SL(2,Z).

In Section 9, we will calculate the modular form for a specific example similar to the one
presented before. As explained in Section 2, a double cover of F4

p−→ P1 over the section
times a generic element in OF4(3) ⊗ p∗O(12) produces an elliptic K3 surface. Taking
certain quadratic pencils creates degenerations

X → P1

of type II. We will compute that - under certain conditions on the pencil - we get

P1 · λ̄+
∑
n∈Z
n>0

P1 ·NL−nq
n = −E10 −

263

480
DE8

= −1 + 144q1 + 67578q2 + 3470244q3 + . . .

3



2. Elliptic K3 Surfaces

2.1. Basics on K3 Surfaces

Definition 2.1. A K3 surface is a smooth complex surface X such that

ωX = OX
and

H1(X,OX) = {0}.
Remark 2.2. As we will see later on, we impose some conditions on these K3 surfaces
such that we are mainly concerned with algebraic K3 surfaces.

Next, we will analyse the structure of the second integral cohomology which comes
equipped with an intersection form from the map H2(X,Z)×H2(X,Z)→ H4(X,Z) ∼=
Z.

Proposition 2.3 (Huybrechts[Huy16]). A complex K3 surface is Kähler and the Hodge
diamond of a K3 surface is given by

1
0 0

1 20 1
0 0

1

.

Theorem 2.4 (Huybrechts [Huy16]). For a complex K3 surface X, the lattice H2(X,Z)
is isomorphic to

Λ3,19 = E8(−1)2 ⊕ U3.

As we will see in Section 3 these two facts give rise to a simple classification of K3 surfaces.
Later on, we are interested in counting certain line bundles on K3 surfaces. Doing this
amounts to knowing the Hodge decomposition as can be seen from this lemma:

Lemma 2.5 (Huybrechts [Huy16]). For a complex K3 surface we have the following
canonical isomorphism

Pic(X) ∼= H1,1(X) ∩H2(X,Z)

which is induced by the first Chern class of a line bundle and respects the intersection
pairing.

Remark 2.6. By the last lemma we can identify line bundles L with their first Chern
class c1(L) ∈ H2(X,Q). Therefore we use the notation L ∈ H2(X,Q) from now on as
no distinction is needed for our purposes.
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2.2. Elliptic Surfaces

In this section we introduce a special class of K3 surfaces, namely elliptic ones. This
will later on allow us to pick two line bundles - the fiber and the section class - which
simplifies the constructions in Section 8. Here we mainly follow [Mir89].

2.2.1. Elliptic K3 Surfaces

Definition 2.7. An elliptic surface is a complex surface X together with an elliptic
fibration, i.e. a holomorphic map p : X → C to a smooth curve C, such that

• the general fiber of p is a smooth connected curve and has genus 1,

• every fiber is irreducible and

• the map p admits a section s : C → X.

By [Huy16], a surjective map X → C from a K3 surface to a smooth curve C can only
exist if C ∼= P1. Hence, we define further:

Definition 2.8 ([CD07]). An elliptic K3 surface is a K3 surface X that admits an
elliptic fibration p : X → P1.

A simple calculation determines the lattice generated by a fiber and the section:

Lemma 2.9. Let X
p−→ P1 be a elliptic K3 surface. Then the lattice L = 〈f, s〉Z, where

f is a fiber and s is the section, has the intersection form(
0 1
1 −2

)
.

Proof. A fiber and the section meet transversally at one point. Hence f · s = 1. On the
other hand any two distinct fibers are linearly equivalent as they are just the pullback
of different points of P1. Hence f · f = 0. As any section is isomorphic to P1, we get by
the adjunction formula

−2 = 2g − 2 = s · (s+ ωX) = s · s,

where ωX is the canonical sheaf, which is trivial.
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Remark 2.10. Substituting s by s + f , one sees that this lattice is isomorphic to the
standard two-dimensional indefinite unimodular lattice U (see appendix A). On the
other hand, a deeper result shows, that if there exists a line bundle L with L.L = 0,
then X has an elliptic fibration, i.e. a map as above but without a section. Moreover
every K3 surface that admits an injection U ↪→ Pic(X) is elliptic.

Our goal is now, to construct elliptic K3 surfaces from rational surfaces. Recall that we
defined OF4(a, b) = OF4(a) ⊗ p∗OP1(b) for the Hirzebruch surface F4

p−→ P1 in appendix
D.

Lemma 2.11. Any smooth double cover X of F4 = P(O ⊕ OX(−4))
p−→ P1, whose

associated branch locus belongs to OF4(4, 12), is a K3 surface.

Proof. Denote by f : X → F4 the double cover. As shown in appendix D, ωF4 =
OF4(−2,−6). From the standard theory of double covers we get

ωX = f∗(ωF4 ⊗OF4(2, 6)).

Hence
ωX = f∗OF4 = OX .

Furthermore any double cover is a finite morphism. Hence we can compute the coho-
mology in the easier space F4. First we compute f∗OX = OF4 ⊕OF4(−2,−6). Then

H1(X,OX) = H1(F4, f∗OX) = H1(F4,OF4)⊕H1(F4,OF4(−2,−6)).

Using Serre duality, we get for the second term

H1(F4,OF4(−2,−6)) ∼= H1(F4,OF4)∗.

Again, by appendix D this cohomology group is 0, hence H1(X,OX) = 0 and X is a K3
surface as claimed.

An elliptic fibration is now constructed by specifying the branch locus further: Recall
from appendix D that Z ∈ OF4(1, 0) is chosen such that V (Z) is the section.

Corollary 2.12. Let X
p−→ F4 be a double cover of F4

π−→ P1 that is associated to a
section of the form

Z · h,

where the vanishing locus of the irreducible h ∈ OF4(3, 12) is smooth and disjoint from

the one of Z. Then X
π◦p−−→ P1 is an elliptic K3 surface.
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Proof. By the foregoing lemma, X is a K3 surface. The only thing we need to show is the
ellipticity. We know that V (Z) ⊂ F4 is a section of the ruling, and by the assumptions
p−1(V (Z)) ∈ X maps isomorphically to its image in F4. Hence S = p−1(V (Z)) is a

section of X
p−→ P1. On the other hand, let F

i
↪−→ X be a generic smooth fiber of p. Then

by locality of the construction of the double cover, F is a double cover of P1 (as X is
a double cover of the P1-bundle F4) with corresponding equation in i∗OX(4). Then by
the Hurwitz equation, we get

2g − 2 = 2(2g′ − 2) + 4 = 0.

Therefore the genus of F is 1, i.e. an elliptic curve.

This construction even exists in greater generality, as is shown in the next chapter.

2.2.2. Weierstraß Fibrations

Definition 2.13. A map p : X → C from a surface X to a curve C is called a Weierstraß
fibration if

• p is flat and proper,

• every geometric fiber has arithmetic genus 1,

• the general fiber is smooth and

• there is a given section that does not hit possible singularities of the fibers.

For elliptic curves E it is well known that they admit a Weierstraß form determined by
two numbers a, b ∈ C, i.e.

E ∼= V(y2 = x3 + ax+ b).

It turns out, that there are sections of line bundles A,B on C, that mimic this behavior
pointwise, i.e. give Weierstraß data for the fiber Xc for every c ∈ C.

Theorem 2.14 (Miranda[Mir89]). For a Weierstraß fibration p : X → C with section
s : C → X, the sheaf L = R1p∗OX ∼= s∗Ω−1

X/C is a line bundle and p is totally determined

by giving two sections A ∈ H0(C,L4) and B ∈ H0(C,L6).

Moreover every Weierstraß fibration has an explicit description in two different ways:
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Lemma 2.15 (Miranda[Mir89]). Let p : X → C be a Weierstraß fibration with funda-
mental line bundle L and Weierstraß data A ∈ H0(C,L4), B ∈ H0(C,L6). Then X → C
is isomorphic to the divisor

Y 2Z = X3 +AXZ2 +BZ3

in the P2-bundle W = P(O ⊕ L−2 ⊕ L−3)
π−→ C, where Z ∈ H0(W,OB(1)), X ∈

H0(W,OB(1)⊗ π∗L2) and X ∈ H0(W,OB(1)⊗ π∗L3).

Therefore we get as a corollary the second description by looking at the double cover
that is induced by the double cover E = V(y2 = x3 + ax + b) → P1, which just omits
the y-coordinate.

E

P1

Figure 1: Projection of an elliptic curve to projective space.

Hence we have, with the same notation as above:

Lemma 2.16. Let F = P(O ⊕ L−2)→ C. Then X is isomorphic to the double cover of
F over the curve

Z · (X3 +AXZ2 +BZ3).

The following Lemma analyses the fundamental line bundle L further:

Proposition 2.17. Let X
p−→ C be a Weierstraß fibration. Then

ωX = p∗(ωC ⊗ L).
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Proof. See [Mir89].

Lemma 2.18. An elliptic surface X over P1 that is a Weierstraß fibration with funda-
mental line bundle L is a K3 surface if and only if L ∼= OP1(2).

Proof. It is obvious from the proposition, that if X is a K3 surface then L = O(2) as
ωP1 = O(−2). On the other hand, if L = O(2), we get that

ωX = OX .

But by 2.16, we get that X has the structure as in 2.11. Hence X is a K3 surface.

Remark 2.19. Assume that X is not a product of curves. Then as is shown in [Mir89],
the irregularity q of X → C for any Weierstraß fibration is given by g(C), the geometric
genus pg = g(C) + degL− 1. The plurigenera Pn for a Weierstraß fibration over P1 are
given by 0 if degL ≤ 1 and Pn ≥ 1 else. On the other hand, Castelnovu’s rationality
theorem states

(pg, q, P2) = (0, 0, 0)⇐⇒ X is rational.

Hence by the above, a Weierstraß fibration X → P1 is rational if and only if

L = OP1(1).

By the canonical bundle formula, we moreover get

ωX = p∗OP1(−1),

i.e. the class is the negative of the class of an elliptic fiber E.
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3. Moduli of K3 Surfaces

In this section, we recall the construction of the moduli space of elliptic K3 surfaces.

3.1. The Period Map

Definition 3.1. A smooth, proper, surjective map X
f−→ C between two complex mani-

folds is called family of K3 surfaces, if the fibers f−1(t) are K3 surfaces for every t ∈ C.

In the following we are only interested in the case where C is a curve. As follows from
the theorems on the Hodge structure (see e.g. Appendix B), we know that H2,0(Xt) ⊥
H1,1(Xt) and H2,0(Xt) = H0,2(Xt). Thus, by just knowing the 1-dimensional space
H2,0(Xt), we can recover the full Hodge structure on H2(Xt,Z) ∼= Λ3,19. Hence, a K3
surface determines a well-defined element in P(Λ3,19⊗C) after choosing an isomorphism
H2(Xt,Z) ∼= Λ3,19. As we know that 〈x, x〉 = 0 and 〈x, x〉 > 0 for every x ∈ H2,0(Xt)(see
appendix B) this gives rise to the following definition:

Definition 3.2. The space

D = P(x ∈ Λ3,19 ⊗ C | 〈x, x〉 = 0 ∧ 〈x, x〉 > 0)

is called period domain.

Now, we would like to construct a map from a family of K3 surfaces to this space.
Unfortunately this depends on the chosen isomorphism H2(Xt,Z) ∼= Λ3,19. But in the
case that the base curve C is simply connected we get:

Proposition 3.3. Let X
f−→ C be a family of K3 surfaces with C a simply connected

curve. Moreover let φ : H2(X0,Z)
∼−→ Λ3,19 be an isomorphism for a basepoint 0 ∈ C.

Then there is an isomorphism φc : H2(Xc,Z) ∼= Λ3,19 for every c ∈ C which leads to a
well defined holomorphic map C → D given by

c→ [φc(H
2,0(Xc))] ∈ D

for every c ∈ C.

For the proof, we need the two following facts:

Lemma 3.4. Let f : X → C be a family of K3 surfaces. Then there is a natural
holomorphic injection

f∗Ω
2
X/C ↪→ R2f∗C⊗OC

10



of vector bundles, which corresponds to

H2,0(Xt) ↪→ H2(Xt,C)

in every fiber.

Proof. See [Huy16].

Lemma 3.5 (Ehresmann [Dun18]). Let f : M → N be a smooth, proper, submersive
map between two manifolds M,N . Then f is a locally trivial fibration.

Proof of Propostion 3.3. Due to the preceding lemma, we have that the sheaf R2f∗Z is
a local system. As C is simply connected the local system is constant by [ZS10]. Hence
R2f∗Z ∼= Λ3,19, where the latter is considered as a constant system. As the stalk of

R2f∗Z at a point c ∈ C is isomorphic to H2(Xc,Z), we get a well defined isomorphism
φc : H2(Xc,Z)→ Λ3,19 for every cohomology of the fiber. Hence the map

C → D
c 7→ φc(H

2,0(Xc))

is continuous. The holomorphicity follows directly from Lemma 3.4.

If C is not necessarily simply connected we can choose different paths γ1, γ2 in C and
take the corresponding isomorphisms φ1, φ2, that we get from the locally constant system
R2f∗(X,Z). They only differ just by some automorphism of Λ3,19. On the other hand
there is a group action O(Λ3,19) × D → D on the period domain. Therefore taking the
orbit space O(Λ3,19)\D we get the following well-defined map for any curve C

C → O(Λ3,19)\D
c 7→ φc(H

2,0(Xc))

where φc : H2(Xc)→ Λ3,19 is any isomorphism.

Unfortunately this space is not Hausdorff. But this can be avoided as shown in the next
section.

3.2. Polarized K3 Surfaces

Definition 3.6. Let L be a lattice and L′
i
↪−→ L a sublattice. The embedding is called

primitive, if coker(i) is torsion free.
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Definition 3.7. A quasi-polarized K3 surface of degree 2d is a tuple (X,L), where X is
a K3 surface and L is primitive line bundle, such that it is nef, big and satisfies L2 = 2d.
If moreover L is ample, then (X,L) is called polarized.

Remark 3.8. By definition a line bundle L is nef if and only if L · C ≥ 0 for any curve
C ⊂ X. It is called big if L2 > 0. As is shown in [MP07] any K3 surface X with an
quasi-polarization is algebraic.

As our main interest lies in algebraic elliptic K3 surfaces, which contain fiber and section
cycles, we see that the Picard group of every such surface contains a sublattice L with
intersection form (

0 1
1 −2

)
(see Lemma 2.9), which is equivalent to the standart unimodular lattice with intersection
form

U =

(
0 1
1 0

)
.

We now explain a polarization with respect to an arbitrary lattice, where in our case
only the hyperbolic lattice U above will be considered afterwards.

Definition 3.9 ([KMPS10]). Let Λ ⊂ Λ3,19 be a fixed primitive sublattice. The tuple
(X, j : Λ ↪→ Pic(X)) is called a Λ-quasi-polarized K3 surface if j is a primitive emdedding

Λ ↪→ Pic(X)

such that there exists an isomorphism H2(X,Z)→ Λ3,19 which restricts to the inclusion
j on the sublattice Λ. Furthermore Λ ⊂ Pic(X) has to contain a quasi polarization, i.e.
a line bundle that is nef and big. If it is moreover ample, (X, j) is called Λ-polarization.

Definition 3.10. A family of U -polarized K3 surfaces is a family of K3 surfaces X → C
together with a primitive sublattice Z ⊂ Pic(X), such that

U ∼= Z|Xt ⊂ Pic(Xt)

is a U -quasi-polarization for every K3 surface Xt and there is a line bundle L ∈ Z that
is nef and big on every fiber.

Definition 3.11. Two Λ-quasi-polarized K3 surfaces X,X ′ are said to be isomorphic,
if there exists an isomorphism of surfaces φ : X → X ′, such that

Λ Pic(X ′)

Λ Pic(X),

φ∗

12



commutes.

Accordingly, we define isomorphisms of K3 surfaces

Definition 3.12. Two elliptic K3 surfaces (X, p, s), (X ′, p′, s′) with p, p′ the fibrations
and s, s′ the sections are isomorphic, if there exists an isomorphism of surfaces φ : X → X ′,
such that φ(s) = s′ and

X X ′

P1

p p′

commutes.

Denote by Up,s ⊂ Pic(X) the lattice generated by the section and a fiber of the fibration
p. Then [CD07] shows, that there is a one-to-one correspondence

{elliptic fibrations (X, p, s) onX} ⇐⇒ {U -quasi-polarizations ofX}
(X, p, s) 7→ (Up,s ↪→ Pic(X)).

Furthermore the mapping takes isomorphic elliptic K3 surfaces to isomorphic U -quasi-
polarizations. Modulo isomorphism, the map is still one-to-one. Hence, we can construct
our moduli space of elliptic K3’s as a moduli space of U -polarized K3 surfaces as in
[Dol95].

3.2.1. Moduli of Polarized K3 Surfaces

In this section the moduli space for U -polarized K3 surfaces is constructed. For a detailed
description, see [Dol95]. By Lemma A.9 U is a direct summand of the lattice H2(X,Z).
Furthermore by A.10, the embedding of U is unique up to automorphism, hence we can
assume that U is the first component of

H2(X,Z) ∼= Λ3,19 = E8(−1)2 ⊕ U3

modulo automorphism of H2(X,Z). As U ↪→ Pic(X) and H2,0(X) ⊥ Pic(X), we know
that the image of the period map lies in

P(U⊥) ∩ D ∼= P(E8(−1)2 ⊕ U2) ∩ D.

As Λ2,18 := E8(−1)2⊕U2 is an unimodular lattice of signature (2, 18), we get that every
automorphism of U⊥ extends to an automorphism of H2(X,Z), just by acting as the
identity on U . The following theorem is now the starting point for the Noether-Lefschetz
theory.
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Theorem 3.13 ([Dol95]). The space

M = O(Λ2,18)\P{x ∈ Λ2,18 ⊗ C| 〈x, x〉 = 0, 〈x, x̄〉 > 0}

is a coarse moduli space of U -quasi-polarized K3 surfaces.

Proof. See [Dol95].

Similarly, in the case of quasi-polarized K3 surfaces (X,L) of a fixed degree L.L = d,
we get that up to automorphism L = e + df , where e, f ∈ U ⊂ Λ3,19 are the standard
vectors of the lattice U in a fixed U -component of Λ3,19. The image of the period map
then lies in

Λd := L⊥ ∼= E8(−1)2 ⊕ U2 ⊕ Z(−d)

and the following theorem holds:

Theorem 3.14 ([Huy16]). The space

Md = Õ(Λ3,19)\P{x ∈ Λd ⊗ C| 〈x, x〉 = 0, 〈x, x̄〉 > 0},

where
Õ(Λ3,19) = {g|Λd | g ∈ O(Λ3,19), g(e+ df) = e+ df}

is a coarse moduli space for quasi-polarized K3 surfaces.

The huge advantage of these spaces in contrast to the space O(Λ3,19)\D is, that the
following holds:

Theorem 3.15. The spaces M and Md are Hausdorff and admit the structure of a
quasi-projective variety.

Proof. See [Huy16].

Due to Borel, also the following holds:

Theorem 3.16 (Borel, Theorem 3.10 [B+72]). Let V be an algebraic variety and V
f−→M

a holomorphic map between analytic spaces. Then f is also algebraic.

Hence the period map C →M is even a morphism between algebraic spaces.
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4. Degenerations

Definition 4.1. A proper, surjective map f : X → C, where X is a smooth threefold
and C a curve, is called a degeneration of K3 surfaces, if there is a finite subset {pi}i ⊂ C
such that

f |X\f−1({pi}) : X\f−1({pi})→ C\{pi}
is a family of K3 surfaces. A U -quasi-polarization is given by a primitive sublattice
Z ⊂ Pic(X) such that this is a U -quasi-polarization for the family f |X\f−1({pi}).

Unfortunately, the fibers that are non-K3 can be arbitrarily bad, e.g. singular and
reducible. As an example, see the construction of such degenerations in the Sections
4.3.1 and 4.3.2. But, as it will turn out, a mild local condition can improve the situation,
such that we get a complete description of all possible fibers.

4.1. Kulikov Degenerations

This section will loosely follow [Fri84] and [Bru15]. We will impose a local condition for
degenerations, which will allow us to classify those completely. Denote by ∆ ⊂ C the
unit disc ∆ = {z ∈ C | zz̄ < 1}.

Definition 4.2. A degeneration X → ∆ of K3 surfaces is called a Kulikov degeneration,
if

• X → ∆ is semistable, i.e. X is smooth, Xt is a K3 surface for all t 6= 0, and X0 is
a reduced normal crossing divisor,

• ωX = OX .

Remark 4.3. As cited in [HT15], this condition is rather mild. It can be shown that for
any degeneration of K3 surfaces there exists a base change ∆ → ∆, t → tn for some n,
such that the resulting space X ′ admits a birational morphism X ′′ → X ′, such that X ′′

is semistable.
Moreover if X → ∆ is any semistable degeneration of K3 surfaces, such that the compo-
nents of the central fiber are Kähler, then there is a birational morphism X ′ → X, such
that X ′ is a Kulikov degeneration and X ′ → X is an isomorphism outside the central
fibers.

To state the classification, we need to define the monodromy map N : Fix a 0 6= t ∈ ∆.
By the assumption and the Ehresmann lemma 3.5, the degeneration is topologically
locally trivial outside the central fiber. Therefore we can define

T : H2(Xt,Z)→ H2(Xt,Z)

15



to be the map, that is induced by a path γ : I → X, that starts and ends in t and goes
around 0 ∈ ∆ counterclockwise once. As ∆∗ = ∆\{0} is homotopy equivalent to S1,
and hence π1(∆\0) = Z, this map is well-defined. If a degeneration is semistable then
T is unipotent (of index at most 3), as is shown in [PS00]. Hence we define

N = log T =

i=1∑
m−1

(−1)i+1(T − Id)i.

For better readability and to match the notation in later on sections we denote by 〈x, y〉
the cup product between two cohomology classes x, y ∈ H∗(X). As the isomorphism T
respects the cup product, we get

〈Nx, y〉 = −〈log(T−1)x, y〉.

But 〈(T−1 − Id)x, y〉 = 〈x, Ty〉 − 〈x, y〉 = 〈x, (T − Id)y〉. Therefore 〈log(T−1)x, y〉 =
〈x, log(T )y〉 and

〈Nx, y〉 = −〈x,Ny〉

is skew-symmetric.

Theorem 4.4 ([Fri84]). Let X → ∆ be a Kulikov degeneration. Then three cases can
occur:

• N = 0: The central fiber X0 is a K3 surface, (Type I)

• N2 = 0, N 6= 0: X0 = Y1 ∪ ... ∪ Yn, where Y1, Yn are rational, Yi(1 < i < n) is
elliptic ruled, and Yi ∩ Yj = Dij is an elliptic curve, (Type II)

• N3 = 0, N2 6= 0: X0 = ∪iYi is a union of rational surfaces and Dij = Yi ∩ Yj are
cycles of rational curves. The dual graph of X0 is a triangulation of the sphere S2.
(Type III)

Remark 4.5. In the above theorem, the dual graph Γ of X0 = ∪Yi is a simplicial com-
plex constructed as follows: The vertices are the components Yi, and the k-simplex
〈Yi1 , ..., Yik〉 belongs to Γ if and only if Yi1 ∩ . . . ∩ Yik 6= ∅.

As our main interest lies in Type II degenerations, we make the following simplifying
assumption:

Definition 4.6. A Kulikov degeneration of Type II is called short, if the central fiber
only has two components X = V1 ∪E V2. Furthermore it is d-semistable if the normal
bundles satisfy

NE/V1 ⊗NE/V2 = OE .

Remark 4.7. As shown in [Fri84], every surface with normal crossings X = V1 ∪E V2

- with an elliptic curve E - that is d-semistable is a central fiber of a degeneration.
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Moreover d-semistability is immediate for Kulikov degenerations, it even suffices that X
is a simple normal crossing:

NE/V1 = OV1(E)|E = OX(V2)|V1 |E = OX(V2)|E

and
NE/V2 = OX(V1)|E

analogously. Thus, the product satisfies

NE/V1 ⊗NE/V2 = (OX(V1)⊗OX(V2))|E
= OX(V )|E
= OE .

Proposition 4.8. A short degeneration satisfies

E ∈ | − ωVi | for i = 1, 2.

If it is furthermore d-semistable, we get

ω2
V1 + ω2

V2 = 0.

Proof. By the adjunction formula we get

ωV1 = (ωX +O(V1))|V1 .

But on the other hand

OX = OX(X0) = OX(V1) +OX(V2).

as X0 is a fiber. Hence

ωV1 = (ωX −OV2)|V1 = −OV1(E).

If X → ∆ is moreover d-semistable, then

degNE/V1 = degOV1(E)|E = (E.E)V1 = ω2
V1 .

But the degree is additive, therefore

0 = degOE = NE/V1 ⊗NE/V2 = ω2
V1 + ω2

V2 .
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4.2. Hodge Theory of Kulikov Degenerations

In this section, we are going to analyze the mixed Hodge structures that we associate to
the central fiber:

• The mixed Hodge structure of Deligne of the central fiber X0(see Appendix B)

• The limit mixed Hodge structure associated to a degeneration, only depending on
a punctured disc around the central fiber.

Again, fix some 0 6= t ∈ ∆. By means of the nilpotent N , there is a natural way to
define a weight filtration W = (Wi)i on Hn(Xt,Q), which in our case of degenerations
with N2 = 0 and n = 2 is simply given by

0 ⊂W0 = 0 ⊂W1 = ImN ⊂W2 = KerN ⊂W3 = H2(Xt,Q) ⊂ H2(Xt,Q)

and for N3 = 0

0 ⊂W0 = ImN2 ⊂W1 = W0 ⊂W2 = KerN2 ⊂W3 = W2 ⊂W4 = H2(Xt,Q)

for H2(X,Q).

As explained in [SZ85], there is an increasing filtration F on H2(Xt,Q) constructed as
follows: Let

D = P(Λ3,19 ⊗ C).

Now let X → ∆∗ and the universal cover H p−→ ∆∗ be given by x → exp(2πix). Hence,
we get the period map

F : H→ D

as H is simply connected. Now, we define a map

F̃ : H→ D
τ 7→ exp(−τN)F (τ).

As F (z + 1) = TF (z), we get

F̃ (τ + n) = exp(−τN − nN)F (τ + n)

= exp(−τN) ◦ exp(−nN)TnF (τ)

= exp(−τN) ◦ T−nTnF (τ)

= exp(−τN)F (τ)

= F̃ (τ),

we get that F̃ is invariant under translation in Z and hence descends to a map

F : ∆∗ → D.
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By the nilpotent orbit theorem (see e.g.[SZ85]), we get that F even extends holomor-
phically to

∆→ D.

Hence
F (0) ∈ D

yields a decreasing filtration F = (Fq)q ⊂ H2(Xt,C) by setting

H2,0 = 〈F (0)〉C
H0,2 = H2,0

H1,1 = (H2,0)⊥

analogously to the usual case and taking the corresponding decreasing filtration, see
Appendix B.

These filtrations satisfy the following theorem, see e.g. [PS00]:

Theorem 4.9. The filtrations W,F on H2(Xt,Q) as above, yield a mixed Hodge struc-
ture (H2(Xt;Q), F,W ), called the limit mixed Hodge structure H2

∞. Moreover the map
N : H2(Xt,Q)→ H2(Xt,Q) is a map of mixed Hodge structures of weight −2.

By a theorem of Schmid, there is a retraction c : X × [0, 1]→ X:

Proposition 4.10 (Schmid, as stated in [PS00]). Let p : X → ∆ be a semistable
degeneration. Then there is a retraction

c : X × [0, 1]→ X

to X0, such that

X × [0, 1] X

∆× [0, 1] ∆

p×id p

commutes, where the lower horizontal is the radial projection, i.e. (x, t) 7→ (1 − t)x.
Moreover

ct = c|Xt×1 : Xt → X0

is an isormorphism outside the singularities of X0. This map is called the Clemens map.

There is a useful tool to compare the limiting Hodge structure H2
∞, to the mixed Hodge

structure naturally associated to the central fiber (see Appendix B).
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Theorem 4.11 (Clemens-Schmid exact sequence, [Fri84]). Let X → ∆ be a Kulikov
degeneration. The sequence

0→ H0(Xt,Q)→ H4(X0,Q)
µ−→ H2(X0,Q)

c∗−→ H2
∞

N−→ H2
∞

is an exact sequence of mixed Hodge structures, where the Hodge structure on H4(X0,Q)
comes from the natural one of H4(X0,Q) pushed forward by the duality H4(X0,Q) ∼=
H4(X0,Q)∗ and the one on H2(X0,Q) is the one of Deligne. Moreover µ is of weight 6
and c of weight 0.

Remark 4.12. As the Clemens map is a retraction - even of the whole space - to X0, we

get that H2(X0,Q)
c∗−→ H2

∞ factors as

H2(X0,Q)
c∗,∼=−−−→ H2(X,Q)

incl∗−−−→ H2(Xt,Q) = H2
∞.

On the other hand, as c is a deformation retraction we get that

H2(X0,Q)
c∗,∼=−−−→ H2(X,Q)

is the inverse of
H2(X,Q)

incl∗−−−→ H2(X0,Q).

Hence, exactness of the Clemens-Schmid-sequence implies, that for every cycle f ∈
H2(Xt,Q) we have Nf = 0 (i.e. Tf = f) if and only if there is a F ∈ H2(X,Q) such
that F |Xt = f . This is called invariant cycle theorem.

Setting 4.13. Let from now on X → ∆ be a Kulikov degeneration of Type II with short
central fiber X0 = V1 ∪E V2.

Lemma 4.14. For X → ∆ as above, we have dimH2(X0,Q) = 21.

Proof. As V1, V2 are rational they satisfy dimH1(Vi,Q) = dimH3(Vi,Q) = 0. Moreover
dimH2(Vi,Q) = 10− ω2

Vi
. From the Mayer-Vietoris sequence on cohomology we obtain

0→ H1(E,Q)
α1−→ H2(X0,Q)

α2−→ H2(V1,Q)⊕H2(V2,Q)
α3−→ H2(E,Q)→ 0.

As E is elliptic, we have dimH1(X,Q) = 2 and dimH2(E,Q) = 1. Hence

dim Imα2 = dim Ker (α3) = 20− ω2
V1 − ω

2
V2 − 1 = 19,

dim Ker (α2) = 2.

Therefore dimH2(X0,Q) = 21.

Next, we want to calculate the graded pieces of the limiting mixed Hodge structure H2
∞.

To do so, we first define an important element of H2(X0,Z): Let

E = OX(V1)|X0 ∈ H2(X0,Z).
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This is well defined as X0 = V1 ∪ V2 is a normal crossing divisor. Furthermore, E ∈
H2(X0,Z) satisfies E|V1 = OV1(−E) and E|V2 = OV2(E), asOV1(−E)|E+OV2(E)|E = OE
by d-semistability. By construction it maps to Ẽ = OV1(E) − OV2(E) ∈ H2(V1,Z) ⊕
H2(V2,Z) under the first map in the following Mayer-Vietoris sequence:

H2(X0,Q)→ H2(V1,Q)⊕H2(V2,Q)→ H2(E,Q).

Lemma 4.15 (Friedman[Fri84]). Let Ẽ = OV1(E) − OV2(E) ∈ H2(V1,Z) ⊕ H2(V2,Z).
Then the Clemens Schmid exact sequence is exact over Z. Furthermore we have

W1H
2
∞
∼= W1H

2(X0) ∼= H1(E,Z)

and
Gr2H

2
∞
∼= Ẽ⊥/ZẼ

as a quotient of a sublattice in H2(V1,Z)⊕H2(V2,Z). Moreover this lattice has signature
(1, 17).

Proof. For the first statement see [Fri84]. For the other statements, we analyse the
weight filtration of the Clemens Schmid exact sequence: First observe that

H4(X0,Q) = H4(V1,Q)⊕H4(V2,Q)

carries a pure Hodge structure, and hence the dual Hodge structure on H4(X0,Q) is
pure of weight −4 by definition. Therefore the weight filtration is given by

0 = W−5 ⊂W−4 = H4(X0,Q) = W−3 = . . . = W4.

Hence:
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W−5 0 0 0 0

...
...

...
...

...

W−1 H4(X0,Z) 0 0 0

W0 H4(X0,Z) 0 0 0

W1 H4(X0,Z) H1(E,Z) ImN ImN

W2 H4(X0,Z) H2(X0,Z) KerN KerN

W3 H4(X0,Z) H2(X0,Z) H2(Xt,Z) H2(Xt,Z)

W4 H4(X0,Z) H2(X0,Z) H2(Xt,Z) H2(Xt,Z)

Therefore W1H
2
∞
∼= H1(E,Z) is immediate. Let E = OX(V1)|X0 . This Cartier divisor

obviously extends to the whole of X by taking OX(V1). By the discussion of Remark
4.12, we get that E ∈ Ker (c∗) as OX(V1)|Xt = 0 for t 6= 0. So E ∈ Im (H2(X0,Z)→ H2

∞)
by exactness.
Now, we will show that the image is spanned by that element. By Mayer Vietoris,
we get that dimH4(X0,Q) = 2. But the Clemens Schmid exact sequence shows, that
0 → Q ∼= H0(X0,Q) → H4(X0,Q) → H2(X0,Q) is exact and hence the dimension of
the image must be 1.
Looking at the Mayer Vietoris sequence, we get the following exact sequence

0→ H1(E,Z)→ H2(X0)→ Ẽ⊥ → 0

as the elements (f1, f2) in H2(V1,Z)⊕H2(V2,Z) that come from H2(X0,Z) are exactly
those, that satisfy f1|E = f2|E , i.e. are othorgonal to Ẽ . Taking the weight filtration,
we get the following commutative diagram
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0 0

0 H1(E,Z) ImN 0

0 EZ H2(X0,Z) KerN 0

Ẽ⊥ 0

Therefore KerN ∼= H2(X0,Z)/EZ. But as the diagram commutes, we get

Gr2H
2
∞ = KerN/ImN ∼= (H2(X0,Z)/EZ)/H1(E,Z) ∼= Ẽ⊥/ẼZ. (4.15.1)

The isomorphism is induced by taking an element α ∈ Ẽ of which we take a preimage
ᾱ ∈ H2(X0,Z). The resulting element is then c∗(ᾱ). As the cup product is natural with
respect to continuous maps we get the following diagram

(H2(V1)⊕H2(V2))× (H2(V1)⊕H2(V2)) H2(X0)×H2(X0) KerN ×KerN

H4(V1)⊕H4(V2) H4(X0) H4(Xt) ∼= Z

c∗×c∗

∪ ∪

∼= (a,b)→a+b

Now we want to show that the isomorphism (4.15.1) is even an isomorphism of lattices.
Let (A,B) = ((a, a′), (b, b′)) ∈ Ẽ⊥×Ẽ⊥. By the above diagram, we know that taking the
cup product of A and B and pulling it back to H4(Xt) ∼= Z is the same as just pushing
A and B forward via the isomorphism (4.15.1)(which is just the upper row) and then
taking the cup product. But

Z× Z ∼= H4(V1,Z)×H4(V2,Z)→ H4(Xt,Z) ∼= Z

is just taking the sum of the two elements, and hence the isomorphism (4.15.1) is an
isomorphism of lattices.
By the Hodge index theorem, we have that the signature of H2(V1,Q) ⊕ H2(V2,Q) is
(2, n) as V1, V2 are rational and hence H2(Vi,Z) = Pic(Vi). As we observed earlier
dimH2(V1,Q) + dimH2(V2,Q) = 20 and hence the signature is (2, 18). Therefore by
linear algebra it follows that Ẽ⊥/ZẼ has signature (1, 17) as Ẽ · Ẽ = 0.
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4.3. Examples

4.3.1. A D+
16 Degeneration

Let X
p−→ F4 be the double cover of the Hirzebruch surface F4

π−→ P1 considered in
Corollary 2.12 with the same notations. As we saw, it is determined by an irreducible
section of h ∈ OF4(3, 12) with smooth vanishing loci disjoint from V (Z). We now want
to alter h in two ways:

• h f2g with f, g ∈ OF4(1, 4),

• h Zg with g ∈ OF4(2, 12)

such that in the first case the vanishing loci of f, g are disjoint from V (Z). This is
possible, as f · Z = 0 = g · Z.
The following example was suggested in [Bru15]:

Example 4.16 (h f2g). Let f, g, h be chosen generically as above.

prP1

h

Z

f
g

Figure 2: f, g, h in F4.

Now consider the double cover X of

F4 × A1 (4.16.1)

defined by the equation
Z · f2g + t2Z · h, (4.16.2)

where t is the standard coordinate of A1. Again, due to the genericity of f, g, h, we
can assume that for every fixed t 6= 0 in a neighborhood U of 0, the equation (4.16.2)
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is irreducible and has smooth vanishing locus disjoint from V (Z). Hence by Corollary
2.12, for every 0 6= t ∈ U , the fiber Xt of

X → F4 × A1 → A1

is an elliptic K3 surface.

Remark 4.17. Unfortunately, this is not a Kulikov model as the central fiber of the
degeneration above is irreducible and singular.

Proposition 4.18. Blowing up X → A1 along the subvariety V defined as the vanishing
locus of t = f = 0, we get a Kulikov model X̃ with central fiber

X̃0 = F2 ∪E Bl16Fn,

for some n ∈ N, where E is an elliptic curve.

Proof. As the subvariety V
i−→ X lies completely in the central fiber X0, the blow up

does not effect the surfaces Xt for t 6= 0. Therefore the other fibers remain elliptic K3
surfaces.
As a first step, we show that one component is indeed isomorphic to F2. Let I ⊂ OX
be the ideal sheaf defined by V . Moreover let J = i−1J · OX0 . Furthermore denote
by BlJX0 → X0 the blow up along J . By [Har13], we get the following commutative
diagram

BlJX0 X̃

X0 X,

where also the upper horizontal arrow is a closed immersion. Therefore it suffices to
compute BlJX0. Taking a local chart of F4, we see that locally

X = V (w2 = Z · f2g + t2Z · h)

and
I = 〈w, f, t〉OX ,

where w is the extra coordinate coming from the double cover. Hence, locally

X0 = V (w2 = Z · f2g) and J = 〈w, f〉OX0
.

Taking coordinates U, V , such that
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f = Uw,

w = V f

we see that the blowup satisfies the following description

w2 = U2w2 · Zg ⇔ w2(1− U2 · Zg) = 0
w 6=0⇐=⇒ U2 · Zg = 1,

V 2f2 = Zf2g ⇔ f2(V 2 − Zg) = 0
f 6=0⇐=⇒ V 2 = Zg.

Hence, it is just the double cover of F4 along Zg. The induced map BlJX0 → P1 admits
a section sBl, just by the V (Z) component of the branching locus of the cover. Denote
by F a fiber of this map. Again, using Hurwitz, we get

2g − 2 = 2(2g′ − 2) + 2 = −2

as Zg has precisely two zeroes on a fiber of F4. Therefore g = 0 and F ∼= P1. From the
standard theory of double covers, we get the following formula for the canonical sheaf

ωBlX0 = p∗ωF4⊗O(V (gZ)) = p∗(−2sF−6fF+1sF+2fF) = p∗(−1sF−4fF) = −2sBl−4fBl

with BlX0
p−→ F4, and sF, fF, sBl, fBl denote the section and fiber in the corresponding

spaces. As the only Hirzebruch surface with such a canonical sheaf is F2, we are done.
Now, we want to calculate the exceptional divisor Y : By the adjunction formula, we get
that

2g(V (f))− 2 = (OF4(1, 4)⊗OF4(−2,−6)) · OF4(1, 4) = −2

in X0. Hence, g(V (f)) = 0 and V (f) ∼= P1. Therefore, if Y denotes the exceptional
divisor, we get a map

Y → P1.

Next, we calculate the fibers of this map: A local computation shows that

Y = V (w2 = f2 · Zg + t2Zh) ⊂ P(O(w)⊕O(f)⊕O(t))

where by abuse of notation the line bundles denote the pullback to V (f). Thus, for
every point p ∈ V (f) there are three cases:

1 Zh(p) 6= 0 6= Zg(p)

2 Zh(p) = 0 and Zg(p) 6= 0

3 Zg(p) = 0 and Zh(p) 6= 0.
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By genericity of f, g, h, the case where everything is zero cannot happen. In case 1 a
fiber is:

P1 ∼= V (w2 = f2 + t2) ⊂ P2.

In case 2:
P1 ∪p P1 ∼= V (w2 = f2) ⊂ P2.

In case 3:
P1 ∪p P1 ∼= V (w2 = t2) ⊂ P2.

Calculating the occurrences of case 2 and 3 we get the number by forming the intersection
product:

f · h+ f · g = 12 + 4 = 16.

As we will see later in Lemma 4.21, the degeneration is indeed a Kulikov model, and
hence E is rational. So the minimal model must indeed be Fn(n 6= 1) or P2. But by
ω2
F2

+ ω2
Y = 0, i.e. dimH2(Y ) = 10 + ω2

F2
= 18 we have Y = Bl16Fn or Bl17P2 = Bl16F1.

So indeed
Y ∼= Bl16Fn.

Next, we analyse the elliptic curve along which both surfaces are glued: This is just the
preimage of V (f) of the map

F2 → X0

i.e. even the preimage of V (f) of the double cover

F2 → F4

that we constructed above. But f ∈ OF4(1, 4), hence - as the double cover has ramifica-
tion loci V (Zg) - we get that the pullback of a section is twice a section in F2 and the
pullback of a fiber is just a fiber. Therefore

OF2(E) = 2sF2 + 4fF2 = −ωF2 .

Remark 4.19. A local computation shows that the resulting space X̃ is smooth. To
verify that it is a Kulikov model, we need the following lemma.

Lemma 4.20. Let X → ∆∗ be the restriction of an family of algebraic K3 surfaces.
Then

ωX = OX .

Proof. We have OX(Xt) = OX , as it is a pullback from the space ∆∗, which has trivial
holomorphic Picard group by [For12], as it is a non-compact Riemann surface. Hence,
by adjunction

0 = ωXt = ωX |Xt
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for all t. Hence, also dimH0(Xt, ωX |Xt) = 1 is constant for all t. Therefore, by Grauerts
semi-continuity theorem for complex proper maps (see e.g.[BHPVdV15]), we get that

p∗ωX̃

is a line bundle on ∆∗. On the other hand, we get a canonical map

p∗p∗ωX → ωX .

This is surjective on ∆∗: Fix some t ∈ ∆∗. Then

(p∗ωX)t = ωXt

just by the definition, where the latter denotes the stalk around Xt. On the other hand,
let η ∈ Xt be the generic point. Then

ωXt = ωX |η = ωX |Xt |η = OXt |η.

But the image of
OXt |η → OXt,t

meets a generator of the stalk OXt,t as Xt is irreducible. Therefore

p∗p∗ωX → ωX

is surjective and hence an isomorphism by [Har13]. But as we saw earlier, Pic(∆∗) = {0}
and hence

ωX = p∗p∗ωX = p∗O∆∗ = OX .

Lemma 4.21. The space X̃ is Calabi-Yau when restricted to the neighborhood U of the
central fiber, i.e. ωX̃ = OX̃ on U .

Proof. As above OX̃(X̃t) = OX̃ , as it is a pullback from the affine space. Hence, by
adjunction and as Xt is a K3 surface

0 = ωX̃t = ωX̃ |X̃t

for all 0 6= t ∈ U . After shrinking we may assume that U = ∆∗. By the lemma, the
canonical sheaf is trivial outside the central fiber. Denote by X1, X2 the two components
of the central fiber. Then,

ωX̃ = r1OX̃(X1) + r2OX̃(X2).

By adjunction we get

ωX1 −OX̃(X1)|X1 = ωX̃ |X1 .
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Putting the last two equations together, this leads to

ωX1 −OX̃(X1)|X1 = r1OX̃(X1)|X1 + r2OX̃(X2)|X1

= r1OX̃(X1)|X1 + r2OX1(E)

= −r1OX̃(X2)|X1 + r2OX1(E)

= (r2 − r1)OX1(E).

As OX̃ = OX̃(X̃0) = OX̃(X1) +OX̃(X2), we have

OX̃(X1)|X1 = −OX̃(X2)|X1 = −OX1(E).

But as shown above ωX1 = −OX1(E) as X1 = F2. All together we get

0 = ωX1 −OX̃(X1)|X1 = (r2 − r1)OX1(E).

Hence, as OX1(E) 6= 0, we have r2 = r1 and hence

ωX̃ = OX̃ ,

as OX̃ = OX̃(X1) +OX̃(X2).

Remark 4.22. As we will see in Section 6 want to U -polarize the degeneration. If we
have such a polarization U , we have that U |X0 ⊂ Pic(X0). We then define

Gr2H
pol
∞ = (N ∩ U |X0

⊥)/ImN.

For the well-definedness of this construction, see Section 6.

Proposition 4.23. The degeneration can be polarized, such that indeed

Gr2H
pol
∞ = D+

16.

Proof. Let
prF4

: X̃ → F4.

We define the polarization by specifying two divisors in X:

D1 = pr∗F4
OF4(1, 0)

and
D2 = pr∗F4

OF4(0, 1).

By construction it is apparent that this is a U -quasi-polarization for X, as D1|Xt is just
the section of Xt and D2|Xt is a fiber. Recalling from above,

p : X̃ → X → F4 × A1
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is the blowup of the double cover. On the other hand, we observe that by construction:

D2|X0 = p−1(p, 0) = f1 + f2

where f1, f2 are fibers of F2,Bl16Fn (as a fiber of X0, meets the base of the blow up in
one point). Doing the same for D1, we get

D1|X0 = pr−1
F4

(V (Z)) ∩X0.

But this is just the section of s1 ⊂ F2, as it does not meet the base of the blow up. By
the invariant cycle theorem, we have

〈D1|X0 , D2|X0〉Z ⊂ KerN.

Therefore we can polarize with respect to the lattice

U = 〈f1 + f2, s1〉Z ⊂ H2(F2,Z)⊕H2(Bl16Fn,Z).

If we fix the notation
si, fi (i = 1, 2)

for the section and the fiber class in the two spaces, and

ei (i = 1, . . . , 16)

the classes of the exceptional divisors in Bl16Fn. Then

E = 2s1 + 4f1 − 2s2 − (2 + n)f2 +
∑

ei.

On the other hand, we observe that

α0 = f2 + e1 + e2

αi = ei − ei+1 i = 1, . . . , 15

are roots, that satisfy

αi · E = 0,

αi · (f1 + f2) = 0,

αi · s1 = 0,

for all i. Hence, they define elements in Grpol
2 H2

∞. The set (αi) is linearly independent
in H2(F2,Z) ⊕ H2(Bl16F2,Z). But as E contains a factor s1, that is not contained in
any αi, we get that

R = 〈αi〉Z ⊂ (U, E)⊥/EZ
is a free sublattice of dimension 16. On the other hand, we observe that

α0 · α2 = −1

α0 · αi = 0 (i 6= 2)

αi · αi+1 = −1 (i > 0)

αi · αj = 0 (0 < i < j − 1).
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Hence, this sublattice corresponds to a Dynkin diagram of Type D16(−1).

But E8(−1)2 cannot contain such a sublattice: All roots in E8(−1)2 are of the form (w, 0)
or (0, w′), but as R has dimension 16, the roots αi cannot lie completely in one component
E8. Hence, we cannot have a chain α1, . . . , α15, that have intersection αi · αi+1 = −1.
Therefore, as the lattice Gr2H

pol
∞ is even, non-degenerate and unimodular (see Section

6), we get by appendix A, that

Gr2H
pol
∞ = D+

16(−1).

Example 4.24 (h  Zg). As it will turn out, the model we obtain will not be Kulikov.
But in a way it is similar to a Type II degeneration. Define X to be the double cover of
F4 × A1 defined by

Z2 · g + t · Z · h.

As in the above case, we blow up the singular locus, which is given by

V = V (Z, t).

Similar to the above, we see that the resulting central fiber V1 has one component which
is a double cover

V1 → F4 (4.24.1)

defined by g. But as g is generic and the intersection is O(0, 1) · Z2 = 2, we get that
fiberwise V1 is just a double cover of P1 ramified over 2 points, i.e. by Hurwitz we get
that the resulting space is isomorphic to P1, as

2g − 2 = 2(2g′ − 2) + 2 = −2.

Hence, by Appendix D, V1 is a Hirzebruch surface. As above the second component is
isomorphic to

V (w2 = Z2g + tZh) ⊂ P(O(w)|V (Z,t) ⊕O(Z)|V (Z,t) ⊕O(t)|V (Z,t)).

Calculating this locally, every fiber of the projection to V (Z, t) is isomorphic to P1, as

w2 = Z2 + Zg

and
w2 = Zg

define a P1 in P2. On the other hand h = 0 cannot happen over V (Z, t), as the inter-
section product h · Z = 0. Therefore it is also an Hirzebruch surface. By the dimension
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formula H2(X0,Q) = 21 from Section 4.2 for degenerations with trivial canonical bun-
dle, we see that this model cannot be Kulikov. But a local computation again shows,
that X is smooth around the origin, and that it is semi-stable. Hence,

X0 = V1 ∪E V2.

But E is just the preimage of V (Z) in V1. As the intersection g ·Z = 4, we get that E is
indeed an elliptic curve by Hurwitz’s theorem. From writing down the Clemens-Schmid
sequence as before, we get an exact sequence

0→ H1(E,Z)→W1H
2
∞ → 0.

Hence, W1 is two-dimensional as it only happens in the Type II case.1

4.3.2. A E8(−1)2 Degeneration

We want to construct a degeneration X : Xt  V1 ∪E V2 to a union of elliptic surfaces,
that respects the elliptic fibration.
To do this, we first construct a degeneration of the curve P1  P1 ∪ P1, which will be
the base of the fibration. Fix a point z ∈ P1. Let p = (z, 0) ∈ P1 × A1. Then

T = BlpP1 × A1 pr2−−→ A1

is a degeneration of P1, such that Tt = P1 for all t 6= 0. To compute the central fiber,
we observe that

(P1 × A1)0 = P1,

and the point z ∈ P1 is blown up to the exceptional divisor E ∼= P1 as it is a degeneration
of surfaces. I.e.

T0 = P1 ∪z E.

Denote by pr1 : T → P1 the projection to the first component. We now construct a
fundamental line bundle: Let

L = pr∗1OP1(2)⊗OT (−E).

Then
L|Tt = OP1(2)

for t 6= 0 as P1 ∼= Tt ↪→ T
pr1−−→ P1 is an isomorphism and O(E)|Tt = 0. On the other

hand, for t = 0, we get

L|E = pr∗1OP1(2)|E ⊗OT (−E)|E .

1In the Type III case W1 is only one dimensional.
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But the map E
pr1−−→ P1 is just constant, hence pr∗1OP1(2)|E is trivial. Furthermore

degOT (−E)|E = −E2 = 1. So,
L|E = OP1(1).

Computing it for the other component:

L|P1 = pr∗1OP1(2)|P1 ⊗OT (−E)|P1 .

Again, as in the first case pr∗1OP1(2)|P1
∼= OP1(2). And degOT (−E)|P1 = −E.P1 = −1,

as both meet transversally. Hence

L|P1 = OP1(1).

As was shown in Section 2.2, if we take a Weierstraß fibration corresponding to L, we
get a degeneration

X : Xt  V1 ∪E V2.

If each Xt is smooth (which can be achieved by choosing suitable Weierstraß data,
c.f.[Gre18]), then Xt is a K3 surface and V1, V2 are elliptic rational surfaces. Moreover

Xt X X0

P1 T P1 ∪z P1

commutes. Now, as shown in Remark 2.19, ωV1 = −OV1(E), where E is a fiber. Hence, as
in the D+

16 case, we can assume that ωX = −OX(V1) + cOX(V2). Hence by adjunction

ωV1 = (OX(V1) + ωX)|V1 = cOX(V2)|V1 = cOV1(E)

where E is the fiber along which we glue. But as every fiber is the same in the Picard
group, we get that c = −1 by assumption. Hence

ωX = −OX(V1)−OX(V2) = OX

as OX(V1) +OX(V2) = OX . Thus, this a Kulikov model of Type II.

Remark 4.25. Observe, that P1 × A1 ⊂ Fn for every n. Moreover when restricting to a
neighborhood of the origin, this is a local model for any ruled surface. Hence the above
local construction corresponds to taking any ruled surface, blowing it up at a point and
then constructing a Weierstraß model. An analysis of these degeneration of K3 surfaces
can be found in [Gre18].

Proposition 4.26. The degeneration can be polarized such that

Grpol2 (H2
∞) ∼= E8(−1)2.

33



Proof. Let
prP1 : X → T → P1.

We define
D1 = pr∗P1OP1(1),

i.e. D1|Xt is just the class of a fiber of the elliptic fibration for t 6= 0. For t = 0, we can
just assume that D1|X0 is just a fiber in the first component of X0 = V1 ∪E V2. From
the local description in Section 2.2, we see that X is a double cover of

F = P(OT ⊕ L)

with ramification loci
Z · (X3 +AXZ2 +BZ3)

where Z is the canonical section in F. Hence, the section S in X is just the preimage of
V (Z) in X. Define

D2 = O(S).

Again, by the invariant cycle theorem, we get that

s = S ∩X0 ∈ KerN.

But this is just the union of two sections s0, s1 in Vi meeting in a point on the double
curve. It is obvious that

〈D1, D2〉Z ⊂ Pic(X)

defines a U -quasi-polarization, as on every fiber Xt both are just the section and the
fiber of the elliptic fibration for Xt. Recalling from Section 4.1,

Gr2 = E⊥/EZ ⊂ H2(V1,Z)⊕H2(V2,Z)/EZ

with E = E1−E2 where Ei is the cohomology class of the double curve restricted to the
space Vi, i.e. in our case just a fiber of the elliptic fibration. But with our polarization
(s = s1 + s2, f0 = E1), we get

Gr2H
pol
∞ = (E , s, E1)⊥/EZ.

Let γ ∈ H2(Vi), such that γ · Ei = 0 and γ · si = 0. Denote H2
prim(Vi) the space of all

such γ satisfying the above. Then

H2
prim(V1)⊕H2

prim(V2) ↪→ Gr2H
pol
∞

is well-defined. Moreover it is injective: If γ = (γ1, γ2) ∈ EZ, then

0 = γ · s1 = (aE1,−aE2) · s1 = a.

Therefore γ = 0. On the other hand, it is surjective: Let γ = (γ1, γ2) ∈ Hpol
∞ be given.

Then

0 =γ · E = γ1 · E1 − γ2 · E2,

0 =γ · E1 = γ1 · E1,
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implies that also γ2 ·E2 = 0. Let a = γ1 · s1. Then, by 0 = γ · s = γ1 · s1 + γ2 · s2, we get

(γ − aE) · s1 = γ1 · s1 − aE1 · s1 = 0

(γ − aE) · s2 = γ2 · s2 + aE1 · s1 = γ2 · s2 − aE2 · s2 = 0,

as Ei · si = 1. Hence, surjectivity is shown. So

GrHpol
∞ = E8(−1)⊕ E8(−1),

as it is non-irreducible, unimodular and negative definite.
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5. Compactifications of the Moduli Space of Elliptic K3s

As the period map cannot be extended for generations for which the central fiber is
non-K3, we want to compactify the moduli space that we obtained in Section 3. We
will do this in two ways: The Baily-Borel compactification and the Mumford Toroidal
compactification. As it turns out those are espacially handy for Type II degenerations.
The first one distinguishes the different degenerations by the second graded piece of
the limit Hodge structure and the j-invariant of the double curve, whereas the toroidal
compactification is finer: it will classify the degenerations up to the whole mixed Hodge
structure.

Throughout the whole section, we specify this setting:

Setting 5.1. Let Λ = Λ2,18 and ΛC its complexification. Denote by Ω = P(ΛC) and let
D be one of the connected components of {z ∈ P(ΛC) | z2 = 0, zz > 0}2. By Γ ⊂ O(Λ)
denote the subset of its othorgonal group that leaves the components fixed. If we fix a
subspace J ⊂ ΛC, we denote by ΓJ ⊂ Γ its stabilizer, and by ΓJ the group that acts as
the identity on J .

Remark 5.2. In contrast to Section 3, we use only one component. But this does not
change the resulting space, as here we take Γ as the subset that respects the component.
Thus, the orbit spaces D/Γ in both chapters are isomorphic.

Remark 5.3. The two components of D can be specified by first taking an affinization
by taking two variables f1, f2 of C20 ∼= ΛC and specifying a sign of

=f1

f0

for f0 6= 0.

As the signature of Λ is (2, 18), every isotropic3 subspace has dimension ≤ 2. Before
we construct the general compactification, we stick with a special case that is of most
interest for us, as it corresponds to Type II degenerations. The following lemma will be
useful later on, to classify all boundary components of the compactification.

Lemma 5.4 ([Bru15]). There are exactly two Γ-orbits J, J ′ of isotropic planes in Λ,
corresponding to

• J⊥/J ∼= E8(−1)⊕ E8(−1) and

• J ′⊥/J ′ ∼= D+
16(−1).

2The two components get interchanged by taking the complex conjugate.
3A subspace is isotropic if a · a = 0 for every a ∈ J
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Moreover, there is only one such orbit of isotropic lines.

Remark 5.5. From standard lattice theory, we get that

E8(−1)2 ⊕ U2 ∼= D+
16(−1)⊕ U2.

Thus, up to isomorphism we may assume, that

J = Zf1 ⊕ Zf2 ⊂ E8(−1)2 ⊕ U2 = Λ

where fi is the first standard coordinate of U , see Appendix A, as this clearly satisfies
J⊥/J ∼= E8(−1)⊕ E8(−1). In the same manner, J ′ = Zf1 ⊕ Zf2 ⊂ D+

16(−1)⊕ U2 = Λ.

5.1. The Period Domain as Siegel Domain of the third Kind

In order to construct the compactifications, we embed D into a larger space, which will
be shown now. We follow closely [Kon99].
Fix a rational isotropic sublattice J of ΛC. Then let NJ ⊂ O(Λ ⊗ R) the subset of the
orthogonal group of the real lattice preserving J . Furthermore set

WJ = {x ∈ Rad(NJ) | (x− id)n = 0 for some n)},

i.e. the unipotent elements of the radical of NJ . Moreover denote by UJ the center of
WJ , in particular it is abelian. First we will investigate these groups further for the case
dim J = 2. By Remark 5.5, we can assume that

Λ = U ⊕ U ⊕ J⊥/J,

where both U have basis fi, si for both components and J = f1C + f2C. Consequently,
we may assume that a basis of ΛC is given by

f1, f2, w1, . . . w16, s1, s2, (5.5.1)

where (wi) is a basis for J⊥/J . Denote the corresponding coordinates by ti for i =
1, . . . , 20. Hence, in this representation, the bilinear form of the lattice looks like

A =

0 0 I
0 L 0
I 0 0

 ,

where L is the matrix of J⊥/J and I is the identity. As g ∈ NJ preserves J , it also
preserves J⊥, as

j · g(v) = g−1(j) · v = 0

for every j ∈ J, v ∈ J⊥. Therefore g ∈ NJ has a matrix representation

B =

U V W
0 X Y
0 0 Z

 ,
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with U, V,W,X, Y, Z matrices of the corresponding size. As any g respects the pairing
of the lattice, we have that

A = BTAB =

 0 0 UTZ
0 XTLX V TZ +XTLY

ZTU Y TLX + Y TV W TU + Y TLY + ZTW

 .

I.e. these are exactly those g, that satisfy

UTZ = I,

XTLX = L,

V TZ +XTLY = 0,

W TZ + Y TLY + ZTW = 0,

(5.5.2)

and moreover respect the component of Ω. As pointed out in Remark 5.3, the last
condition is equivalent to = t1t2 > 0, i.e. U has to preserve this condition, which is
equivalent to detU > 0.
Now we will analyse its unipotent radical: By [Kon99] the unipotent radical is the normal
subgroup consisting of those block matrices with trivial diagonal blocks:

WJ =


I V W

0 I Y
0 0 I

 |LY + V T = W +W T + Y TLY = 0

 . (5.5.3)

Furthermore, any such matrix as above, with V 6= 0 6= Y does not commute with every
element in WJ , as for two choices (V,W, Y ), (V ′,W ′, Y ′) and corresponding matrices
B,B′ as above, we get that

B ·B′ =

I V + V ′ W +W ′ + V Y ′

0 I Y + Y ′

0 0 I

 .

Hence, by symmetry, these commute if and only if

V Y ′ = V ′Y (5.5.4)

for every choice of V ′, Y ′ as above. But for a given Y ′, we can arrange V ′ = −(L−1Y ′)T

and W ′ = −1
2 Y

′TLY ′. Then this element is contained in WJ . Thus, (5.5.4) holds for all
such choices if and only if V ′ = Y ′ = 0. But then the condition (5.5.3) simply reads

W T = −W,

i.e. the centralizer of WJ is given by

UJ =


I 0 W

0 I 0
0 0 I

 ∣∣∣∣W =

(
0 a
−a 0

)
and a ∈ R

 .

For the next theorem, we need a small lemma:
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Lemma 5.6. Let Λ = U ⊕ J⊥/J . Then there is no element z ∈ Λ such that

z2 = 0

and
zz > 0.

Proof. As the signature of the lattice is (1, 17), we can assume that the pairing is induced
by the pairing (

1 0
0 −I17

)
in R18. Hence, for coordinates t = (t1, t2, . . . , t18), we get that

0 = t2 = t21 −
∑
i>1

t2i

and therefore ∑
i>1

t2i = t21.

On the other hand, zz > 0 yields ∑
i>1

|ti|2 < |t1|2,

which is a contradiction to the triangle inequality.

Theorem 5.7. Let DJ = UJ · D ⊂ Ω. Then

DJ ∼= (UJ ⊗ C)× Ck × F,

such that F = H is the upper half plane in C if J is a plane and F = {point} otherwise.
Furthermore the isomorphism is equivariant with respect to the action of UJ and

D = {(z, w, τ) ∈ DJ | =z − hτ (w,w) ∈ CJ}

for a quasi-hermitian form hτ (which depends real analytically on τ) and CJ a self-dual
cone in UJ .4

Proof. For a proof in the one dimensional case, see [Kon99]. Choose a basis for Λ as in
Lemma 5.4, i.e.

Λ = J⊥/J ⊕ U ⊕ U

and J = f1C⊕f2C, where fi, si is the standard basis for one of the U -components. Next
we take the projective coordinates [ti] from (5.5.1). Denote t0 = (t3, . . . , t18) the part

4Here self-dual means, that there is a positive definite form on UF , such that CJ is self dual with respect
to that form.
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that comes from J⊥/J . Let q : J⊥/J × J⊥/J → C be the induced pairing. An element
t is contained in D, iff

2t1t19 + 2t2t20 + q(t0, t0) = 0 (5.7.1)

2<t1t19 + 2<t2t20 + q(t0, t0) > 0. (5.7.2)

But if the first condition is satisfied, the second one simplifies to

2=t1=t19 + 2=t2=t20 + q(=t0,=t0) > 0.

By the foregoing lemma, we see that t20 = 0 cannot happen, as this would yield the
element ((t1, t19), t0) ∈ U ⊕ J⊥/J satisfying the assumption of the lemma, which is a
contradiction. Hence we can assume that t20 = 1 by taking the affinization. We choose
a component of D, such that =t1 > 0. Then the above condition simplifies to

2=t1=t19 + q(=t0,=t0) > 0. (5.7.3)

From (5.7.1), we get that t2 is uniquely determined by the other coordinates (as t20 = 1)5

and hence
D ↪→ C× J⊥/J ×H.

On the other hand, as we have seen before, UJ ∼= R by identifying

a 7→
(

0 a
−a 0

)
.

By checking the explicit description of UJ , one sees, that UJ acts on

C× J⊥/J ×H

just by translation in the first coordinate. Therefore we can identify the above equivari-
antly with

(UJ ⊗ C)× J⊥/J ×H.

On the other hand, for every pair (w, τ) ∈ J⊥/J × H, we can find an element z ∈ C,
such that (z, w, τ) ∈ D. And hence

DJ = (UJ ⊗ C)× J⊥/J ×H.

For the statement on the hermitian form, see [Kon99]. As the only self-dual cone in R
is R+, we get

CJ = R+ ⊂ R = UJ .

5I.e. t2 = −q(t0, t0)− 2t1t19.
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5.2. Baily-Borel Compactification

In this section, we will construct the Baily-Borel compactification, which is highly sin-
gular since the boundary has large codimension. The presented material follows [Bru15].
Let

D̂ = closure of D ⊂ D ∪ {z | z2 = 0} ⊂ {z ∈ P(ΛC) | z2 = 0} = Ω.

Clearly D ⊂ D̂. We then define D∗ to be the union of D and the interior of the images
πI of isotropic subspaces defined over Q inside D̂, i.e.

D∗ = D t
⊔
I

πI .

The topology near the boundary components must of course be defined suitably, but for
our case this is not of any interest. It is important to note, that the topology in the
boundary coincides with analytical one, obtained from D̂.
As Γ takes isotropic subspaces to isotropic subspaces, one gets a natural Γ-action on
D∗.

Mbb

Figure 3: The Baily-Borel compactification with lines (points) the boundary components
corresponding to isotropic planes (lines)

Definition 5.8. We define the Baily-Borel compactification as

Mbb = Γ\D∗.

As every component of D∗ is contained in P(ΛC), there is a tautological choice for a line
bundle L on D∗ as is explained in [L+03]:

L = {(z, x) | z ∈ D∗, x ∈ ΛC s.t. [x] = z ∈ P(ΛC) orx = 0}.

This line bundle admits a natural action of Γ, that is compatible with the action on D∗.
Hence it descends to the Baily-Borel compactification.

Definition 5.9. The line bundle Lbb constructed above is called Hodge line bundle.
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Corollary 5.10. The compactification set-theoretically looks like

Mbb =MtH/SL(2,Z) ∪H/SL(2,Z) ∪ {p},

where the one dimensional boundary components represent the two orbits of isotropic
planes and the distinguished point corresponds to the isotropic line.

Proof. Let I = f1C + f2C be an isotropic plane with fi rational. Then the interior of
image of I in D̂ is isomorphic to the upper half plane: As we have seen in the previous
section we can take an affinisation of D̂ by t0 without losing information. Then the two
components are distinguished specifying w.l.o.g. that =t1 > 0. Hence, the interior of
the image is

πI = H ⊂ P1 = P(J).

Moreover Γ interchanges all isotropic planes of one orbit. Consequently, we can assume
that for one such orbit, there is only one component, and Γ acts on H via ΓJ , i.e. those
elements g ∈ Γ that satisfy g(I) = I. Hence, as det g|I = ±1. But as g has to fix H, we
get det g|I = 1. Hence, Γ acts on H as a subgroup of SL(2,Z).
But from the discussion in the previous section, we see that any such element g ∈ SL(2,Z)
extends to an element g′ ∈ ΓJ and so, the action is via the full group SL(2,Z). Thus the
corollary follows by Lemma 5.4.

Although we worked in the analytic category, we get that

Theorem 5.11 ([L+03]). The space Mbb admits the structure of a normal analytic
ringed space.

5.3. Constrution of the Toroidal Compactification

The toroidal construction in our case is rather simple. Fix one isotropic line J . Let CJ
be as in the previous section. Again, we are following [Bru15].

Definition 5.12. An admissible fan of CJ is given by a fan σ of UJ consisting of rational
cones, that subdivide CJ , such that

• NJ ∩ Γ acts on Σ.

• The stabilizer of each cone σ ∈ Σ is finite.

• There are only finitely many NJ -orbits in Σ.

Remark 5.13. In general, one has to fix such admissible fans for every isotropic subspace,
but in our case, there is only one choice of fan for isotropic planes, as for planes, UJ is
one-dimensional.
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First we describe the construction locally, over a boundary component. Fix an isotropic
subspace J . Then as in the last section, we get a representation

D ↪→ (UJ ⊗ C)× Ck × F.

As UJ is clearly finite dimensional, we get that UJ ⊗ C ∼= Cn for some n. Hence,
UJ ⊗C/(UJ ∩ Γ) ∼= Cn/Zn, which in turn is isomorphic to (C∗)n via the isomorphism

(zj)j 7→ (exp(2πij))j

As a self-dual cone does not contain any straight line, we get that (C∗)n ⊂ TV (Σ), see
Appendix C. Therefore there is an embedding

(UJ ⊗ C)/(UJ ∩ Γ) ↪→ TV (Σ).

By this inclusion, we get

DJ/(UJ ∩ Γ) ↪→ TV (Σ)× Ck × F. (5.13.1)

We then define DTor
J as the interior of the closure of D/(UJ ∩ Γ) ⊂ TV (Σ) × Ck × F .

Moreover this set comes equipped with an action of NJ . Hence, we get the orbitspace

DTor
J /ΓJ .

for ΓJ = NJ ∩ Γ. Denote by ∂DTor
J /ΓJ = (DTor

J /ΓJ)\(D/ΓJ). Then we can form the
union

DTor =
⊔
J

DTor
J

where the union is over every isotropic subspace J . Then there is an obvious equivalence
relation R on ⊔

J

D/(UJ ∩ Γ) ⊂
⊔
J

DTor
J ,

which is induced by the action of Γ, i.e. R ⊂
⊔
J D/(UJ ∩ Γ)×

⊔
J D/(UJ ∩ Γ). Denote

by

R ⊂
⊔
J

DTor
J

its closure.
The toroidal compactification MTor is defined as

MTor = DTor/R.

The topology near the boundary components is given by the one induced by the fiber bun-
dle (5.13.1). By Lemma 5.4 and the discussion in [L+03] it follows that set-theoretically

MTor =MtDTor
I /ΓI t DTor

J /ΓJ t DTor
K /ΓK

where I, J are isotropic planes corresponding to I⊥/I = E8(−1)2, J⊥/J = D+
16(−1) and

K is an isotropic line. We get:
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Theorem 5.14 (Mumford [AMS+10]). The toroidal compactificationMTor
Σ is a compact

algebraic space. Moreover there is a proper map to the Baily-Borel compactification,
which is simply given by the identity on M and on the boundary of Type II, it is just
induced by the projection DJ/(UJ ∩ Γ) ⊂ TV (Σ)× Ck ×H→ H→ H/SL(2,Z).

Remark 5.15. In [AMS+10] it is moreover shown, that if one allows neat Γ′ ⊂ Γ the re-
sulting toroidal compactificationMTor′ is smooth. As there exist neat normal subgroups
of finite index, one has a group action G×MTor′ →MTor′ with G finite, such that the
orbit space is equal to MTor. The same also holds for the moduli space M itself, see
e.g. [Bru04].

Regarding degenerations, we get the following useful lemma:

Theorem 5.16 (Mumford [AMS+10]). For a map f : ∆∗ → Γ\D it is equivalent:6

• f extends to a map f : ∆→ Γ\DTor

• There is a map f0 : ∆→ DTorJ for some J , which induces f on ∆∗.

5.4. Type II Toroidal Boundary

We will now analyse the boundary that corresponds to the isotropic planes, following
[Kon99] and [Bru15]. As we will see later on, this corresponds to exactly the Type II
degenerations. Fix a isotropic plane J , which corresponds to either E8(−1)2 or D+

16(−1)
and denote by q : J⊥/J × J⊥/J → C the corresponding bilinear pairing. As we saw in
the previous sections, we get the map

D ⊂ (UJ ⊗ C)× C16 ×H,

with (z, w, τ) ∈ D if and only if

=z=τ + q(=w,=w) > 0,

see equation (5.7.3). As in the example in Appendix C, we see that TV (R+) = C, hence
the construction in the previous section yields:

D/(UJ ∩ ΓJ) ⊂ C× J⊥/J ×H, 7

where the first coordinate is the filling of (UJ ⊗C)/(UJ ∩ΓJ). Nonetheless, we mean by
a triple (z, w, τ) ∈ D an element in the coordinates of UJ ⊗ C × J⊥/J × H. Observing

6Here ∆∗ = {z ∈ C | 0 < |z| < 1}.
7It is important to note here that the first coordinate C is not equal to UJ ⊗ C, as it is the filing of
C∗ = C/Z.
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that (z, w, τ) ∈ D if and only if =z > −q(=w,=w)/=τ it follows that the interior of the
closure is given set-theoretically by

D/(UJ ∩ Γ) t 0× J⊥/J ×H,

as =z � 0 implies | exp(2πiz)| � 1. Moreover for fixed w ∈ J⊥/J, τ ∈ H we have that

(z, w, τ) ∈ DTor
J := D/(UJ ∩ Γ)

◦ ⊂ C× J⊥/J ×H = TV (R+)× J⊥/J ×H

if and only if z ∈ {c ∈ C | |c| < exp(−q(=w,=w)/=τ)}. Hence, we get that DTor
J is a

∆ = {z | |z| < 1}-bundle, as q is negative-definite.
Now we will analyse the effect of ΓJ on DTor

J . From our description, we saw that t20 = 1

DTor
J

δDTor
J

Figure 4: DTor
J as a ∆-bundle

and t2 = −q(w,w)− 2zτ . Hence

g =

U V W
0 X Y
0 0 Z

 ∈ NJ

acts on (z, w, τ) as

g · (z, w, τ) =


z + 1

cτ+d(−cq(w,w) + v1w + w1τ + w2)

1
cτ+d(Xw + Y

(
1
τ

)
)

aτ+b
cτ+d

 , (5.16.1)

where Z =

(
a b
c d

)
, U =

(
d −c
−b a

)
, v1 is the first row of V and (w1, w2) is the first

row of W . The division by cτ + d comes from the affinization by the coordinate t20.
As we are only concerned with the boundary, we will only analyze the second and the
third component further. Clearly, the action of ΓJ preserves the boundary. By (5.5.2),
we see that detZ = detU > 0, but it is invertible over Z, hence detU = detZ = 1 and
Z ∈ SL(2,Z). On the other hand, clearly X ∈ O(J⊥/J). Therefore by the previous
calculation, we conclude that g acts on (z, w, τ) as Z · τ in the last component, where
this is the usual SL(2,Z)-action on the upper half plane.
Moreover any Y gives rise to an element of WJ . On the boundary, g acts as

(0, w, τ) 7→ (0,
1

cτ + d
(Xw + Y

(
1
τ

)
), Zτ). (5.16.2)
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If we first quotient out G = (WJ ∩ Γ)/(UJ ∩ Γ), which is determined by Y -component,
we get that

∂DTor
J /G = 0× E ⊗ J⊥/J,

as any such g ∈ WJ simply acts by translation by Y

(
1
τ

)
in the second variable. Here

E → H is the universal elliptic curve, i.e.

(C×H)/((z, τ) ∼ (z + n+mτ, τ) for every n, m).

Hence the fiber Eτ is just an elliptic curve isomorphic to

Eτ = C/(Z + τZ).

There is a natural SL(2,Z) action on this space, namely

g · (z, τ) =

(
a b
c d

)
· (z, τ) = ((cτ + d)−1z, gτ),

which induces isomorphisms

Eτ
∼=,g−−→ Egτ .

Calculating
∂DTor

J /ΓJ

we see that the effect of Z in (5.16.2) on the middle component of

∂DTor
J /(WJ ∩ Γ) = 0× E ⊗ J⊥/J

is just multiplication by (cτ + d)−1. Hence, NJ acts on

∂DTor
J /(WJ ∩ Γ) = 0× E ⊗ J⊥/J

just as O(J⊥/J)× SL(2,Z). Hence we get:

Theorem 5.17 ([Bru15]). Let J be an isotropic plane. Then the corresponding boundary
component is isomorphic to

∂DTor
J /ΓJ = ((E ⊗ J⊥/J)/(O(J⊥/J)× SL(2,Z))

independent of the chosen fan Σ. In particular a fiber of τ of the projection map to
H/SL(2,Z) has the form

Zτ = (J⊥/J ⊗ (C/(Z + τZ)))/OE(J⊥/J). (5.17.1)

where
OE(J⊥/J) = O(J⊥/J)×Aut(E, 0).
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Proof. Only the last statement needs further explanation. By construction

Zτ = (J⊥/J ⊗ (C/(Z + τZ)))/G

with
G = {(g, h) ∈ O(J⊥/J)× SL(2,Z) |h(τ) = τ}.

But in [Hai08] it is shown that

{h ∈ SL(2,Z) |h(τ) = τ} = Aut(E, 0),

which consists just of multiplication maps.

Remark 5.18. By [Hai08], Aut(E) = {±1} for τ 6= i, e2πi/3 ∈ H/SL(2,Z). Thus, in these
cases

Zτ = (J⊥/J ⊗ (C/(Z + τZ)))/O(J⊥/J),

as multiplication by ±1 on J⊥/J ⊗ (C/(Z + τZ)) is also induced by −id ∈ O(J⊥/J).
In the other two special cases the group Aut(E) still remains finite by [Hai08].

Remark 5.19. As we will see later on, for our purpose it is necessary to map the above
isomorphically to

((E ⊗ (J⊥/J)∗)/(O(J⊥/J)× SL(2,Z)) ∼= Hom(J⊥/J, E)/(O(J⊥/J)× SL(2,Z))

via the canonical isomorphism J⊥/J ∼= (J⊥/J)∗ induced by the pairing. The fiber of
the theorem above is given by

Zτ = Aut(E)\Hom(J⊥/J,Eτ )/O(J⊥/J)

which we - by abuse of notation - abbreviate by

OE(J⊥/J)\Hom(J⊥/J,Eτ ).

In [L+03], Looijenga considered the intermediate group UJ ∩ Γ ⊂ ΓJ ⊂ ΓJ that consists
of the elements that are the identity on J . I.e. with the notation from before, these are
the matrices of the form I V W

0 X Y
0 0 I

 ∈ ΓJ .

In the paper he showed, that the boundary is of the form

O(J⊥/J)\(J⊥/J ⊗ Eτ )

in every fiber of the projection to H, which also directly follows from our description
above. The following theorem is shown in [L+03]:
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Theorem 5.20. The map
DTor
J /ΓJ → ∂DTor

J /ΓJ

is a disc bundle and the pullback of the euler class e of that bundle to a fiber as above is
nontrivial and invariant under the OE(J⊥/J)-action.

Next, we will analyze the closure of certain divisors: Let v ∈ Λ = U ⊕ U ⊕ J⊥/J . Then
v = u+ u′ + j in the respective components. Here u = (u1, u2), u′ = (u′1, u

′
2). We want

to analyze the closure of
v⊥ ⊂ D/(UJ ∩ Γ)

in DTorJ .
Let (z, w, τ) ∈ D as before. Then

(z, w, τ) · v = 0

is equivalent to

0 = τu1 + zu2 + (−q(w,w)− 2τz)u′1 + u′2 + q(w, j).

Now assume (u2, u
′
1) 6= (0, 0). Then

z =
q(w,w)u′1 − u′2 − q(w, j)− τu1

u2 − 2τu′1
.

Therefore

=z = 1
|u2−2τu′1|2

(u2u
′
1q(w,w) + 2=τu′21 q(w,w)− u2u

′
2 − 2u′1u

′
2=τ − u2(w,=j)

+2u′1(=τ(w,<j) + <τq(w,=j))−=τu1u2).

Hence

=z ∈ O(
q(w, j)

|u2 − 2τu′1|2
).

Suppose that a point (j, τ) is in the closure. That means, there is a sequence αn =
(zn, jn, τn) ∈ D such that

=zn →∞
jn → j

τn → τ ∈ H.

But clearly the last two equations contradict the first one as the bound (5.4) shows, that
=zn �∞. Hence for (u2, u

′
1) 6= 0, we have

v⊥ ∩ ∂DTor
J = ∅.

So observe for the case (u2, u
′
1) = 0: The equation reads

0 = τu1 + u′2 + q(w, j)
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or more explicitly
q(w, j) = −τu1 − u′2 (5.20.1)

and z is arbitrary. Hence

v⊥ ∩ ∂DTor
J = {(j, τ) | q(w, j) = −τu1 − u′2}.

In this case, it is important to notice that all these points are of the form (j, τ) with
q(w, j) = 0 ∈ J⊥/J ⊗ C/(Z + τZ) in DTor

J /ΓJ = ((E ⊗ J⊥/J)/(O(J⊥/J) × SL(2,Z)).
Summarizing:

Proposition 5.21. With the notation as above⋃
v2=−n

v⊥ ∩ ∂DTor
J /ΓJ = {(w, τ) | q(w, j) = 0 ∈ Eτ , q(j, j) = −n}.

Proof. This follows directly from the above and the fact, that

((u1, u2), (u′1, u
′
2), j)2 = q(j, j)

for u2 = u′1 = 0.

Remark 5.22. I.e. the restriction of
⋃
v2=−n v

⊥ ⊂MTor to a fiber

Zτ = OE(J⊥/J)\Hom(J⊥/J,Eτ )

is given by ⋃
v2=−2n

v⊥

where v⊥ = {f ∈ Hom(J⊥/J,Eτ ) | f(v) = 0 ∈ Eτ}. This is clearly a divisor, as the
union is finite, as J⊥/J is negative-definite.

Remark 5.23. As we see from equation (5.20.1), if (u2, u
′
1) = (0, 0) then v⊥ is cut out

by a single equation, i.e. the closure we computed above is indeed an analytic divisor.
In the other case this also follows, as the closure does not meet the boundary and even
by the same argument, for every point in the boundary there is a small neighborhood
which is disjoint to the closure.

5.5. Topology of Orbitspaces of Finite Group Actions

In the last section we computed the boundary structure of the toroidal compactification.
It turned out that fiberwise it is an orbitspace of a finite group action. Our goal is
now to analyze its homology. Therefore we have to recall some general theorems about
orbitspaces of finite group actions:
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Theorem 5.24 ([Loo76] and [Gre18]). Let R be an irreducible root system and L the
corresponding root lattice. Then for any elliptic curve E the space

W(L)\Hom(L,E)

is a weighted projective space. Here W(L) denotes the Weyl group.

Theorem 5.25 ([Ill83]). Let G be a compact Lie group and M be a smooth manifold
with a G-action. Then there exists an equivariant simplicial complex K and a smooth
equivariant triangulation h : K →M .

Remark 5.26. This theorem therefore applies also to finite groups G, for which Illman
found an independent proof in [Ill78].

Theorem 5.27 ([Bre72]). Let M be space with a G-group action and K → M be a
regular G-equivariant triangulation. Denote by π : M → M/G the usual projection.
Then there exists a transfer map τ : Hi(M/G, k) → Hi(M,k)G such that π∗|Hi(M,k)G

and τ are inverse to each other, whenever the field k has characteristic 0.

Remark 5.28 ([Bre72]). Bredon proves that the above condition of the triangulation
being regular can be achieved for any G-equivariant triangulation, by just passing to the
second barycentric subdivision.

Hence, we get the following corollary:

Corollary 5.29. For any smooth manifold M with a G-action, where G is a finite group,
the projection π : M →M/G induces an isomorphism

Hi(M,Q)G → Hi(M/G,Q).

Remark 5.30. By duality this result also applies to cohomology.

In the following we are only concerned with rational homology. Recall that we defined

OE(L) = O(L)×Aut(E).

Lemma 5.31. For both lattices L = E8(−1)2 or D+
16(−1) we define the variety V =

OE(L)\Hom(L,E) for an arbitrary elliptic curve E. Then this space satisfies

H1(V ) = {0} and H2(V ) ∼= Q.

Moreover, the second homology is generated by the element α, which is a pushforward
under the map H2(E16) ∼= H2(Hom(L,E))→ H2(V ) of

α =
∑

g∈O(L)

g([E0])

where E0 = E × 015.
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Proof. Case E8(−1)2:
By Corollary 5.29 we get that

Hi(V ) ∼= Hi(Hom(L,E)))OE(L).

As L is a direct summand the Weyl group W acts on both summands separately. Hence
we have

W(L)\(Hom(L,E)) ∼=W(E8(−1))\Hom(E8(−1), E))×W(E8(−1))\(Hom(E8(−1), E))).

By Theorem 5.24 we get that both factors are isomorphic weighted projective spaces
WPi(i = 1,2). Therefore, as the homology of weighted projective spaces satisfies

H0(WP,Q) ∼= Q,
H1(WP,Q) ∼= 0,

H2(WP,Q) ∼= Q,

applying Künneth’s theorem yields

H1(W(L)\(Hom(L,E))) ∼= 0

and

H2(W(L)\(Hom(L,E)))
∼= H2(WP1,Q)⊗H0(WP2,Q)⊕H2(WP2,Q)⊗H0(WP1,Q) (5.31.1)

∼= Q2.

Furthermore the injective map

Hi(V ) ∼= Hi(Hom(L,E))OE(L) → Hi(Hom(L,E))W(L)

yields H1(V,Q) ∼= 0.

Clearly the map t : L→ L which interchanges the two factors is an element ofO(E8(−1)2)
but not of W(E8(−1)2) as every reflection leaves the two components invariant. By
(5.31.1) we see, that only the elements on the diagnal of Q2 ∼= H2(W(L)\(Hom(L,E)))
are invariant under the action of t. Hence dim (H2(Hom(L,E))W(L)) ≤ 1.
Case D+

16(−1):

Recalling the construction of D+
16 we get that the integral part of the lattice is equal to its

root lattice. Looking at the definition, we see that this is isomorphic to D16. Now take
any Z-basis {ei}1≤i≤16 of D+

16. As seen in Appendix A we can assume that e16 = (1/2)16

is one of them, and all other vectors are integral. As one easily sees {e1, . . . , e15, 2e16}
is a Z-basis for D16. Hence, if we identify Hom(D+

16, E) and Hom(D16, E) via the basis
given above with E16, the map

E16 ∼= Hom(D+
16, E)

incl∗−−−→ Hom(D16, E) ∼= E16 (5.31.2)
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is just multiplication by 2 in the last component. But looking at the usual CW-structure
of an elliptic curve, we see that multiplication by 2 induces multiplication by 2 on
homology on H1(E) and multiplication by 4 on H2(E). By Künneth’s theorem we know

that incl∗ : H2(Hom(D+
16, E))

incl∗−−−→ H2(Hom(D16, E)) is a bijection.
On the other hand, let g ∈ W(D16) be given. By the construction of the Weyl group
g is a composition of reflections at roots. But those reflections extend to the whole
lattice D+

16. Hence we have a natural map W(D16) → W(D+
16) which leaves the action

on D16 ⊂ D+
16 invariant. Forming the square

Hom(D+
16, E) Hom(D+

16, E)

Hom(D16, E) Hom(D16, E)

incl∗

g∗

incl∗

g∗

we see that it is commutative. Namely let f ∈ Hom(D+
16, E). Then

g∗ ◦ incl∗(f) = g∗(f |D16) = f |D16 ◦ g = f ◦ g|D16 = incl∗ ◦ g∗(f).

Applying homology to (5.5), we get the commutative diagram

H2(Hom(D+
16, E)) H2(Hom(D+

16, E))

H2(Hom(D16, E)) H2(Hom(D16, E)).

incl∗∼=

g∗

incl∗∼=
g∗

Consequently H2(Hom(D+
16, E))W(D+

16) ∼= H2(Hom(D16, E))W(D16). But the latter space
satisfies the conditions of Theorem 5.24, hence is a weighted projective space. Again, by
taking the injective homomorphism

Hi(V ) ∼= Hi(Hom(D16, E))OE(D+
16) → Hi(Hom(D16, E))W(D+

16),

we see that dimH1(V ) = 0 and dimH2(V ) ≤ 1.
dimH2(V ) = 1:
By the above, we only need to show that there is one element of the desired form in
H2(Hom(L,E)), that is invariant under the group action of OE(L). First, fix a basis ei
of L. Under this identification we get that

Hom(L,E) ∼= E16.

Let E0 = E × 015. Then
α =

∑
g∈O(L)

[g(E0)]
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is clearly an element in H2(Hom(L,E)) that is invariant under the orthogonal group.
But as it consists of a sum of fundamental classes, it is also invariant under complex
(hence orientation preserving) automorphisms of E. Therefore α is invariant under the
group action OE(L). By Corollary 5.29, we get that π∗α 6= 0 if and only if α 6= 0. But
as we will see later in the proof of 8.15, the intersection of α with a certain divisor is
non-zero, hence α is non-zero. Consequently we get that

α = p∗α

Q-linearly spans the whole space H2(V,Q).

Remark 5.32. Regarding the proof, it also follows that

H1(V ) = {0} and H2(V ) ∼= Q

for L as in the Lemma and
V = O(L)\Hom(L,E).

5.6. Topology near the Boundary

In this section we want to show that every fundamental class of degenerations of Type
II in MTor splits, i.e.

αC = (π0)∗α0 +
∑

1≤i≤n
(πi)∗αi

where α0 ∈ H2(M,Q) and αi ∈ H2(Zi,Q) where Z1, . . . , Zn are fibers of the boundary
of MTor →Mbb and πi are the corresponding inclusions.

Firstly, we recall two lemmas proven by Looijenga in [L+03].

Lemma 5.33. Let J ⊂ Λ be an isotropic subspace. Then with the notation from Section
5.2, there is a neighborhood U ⊂ D∪πJ ⊂ D∗ of πJ such that the image of U in ΓJ\DTor

J

maps isomorphically to a neighborhood of the boundary H/SL(2,Z) = ΓJ\πJ ⊂ Mbb in
the Baily-Borel compactification.

The following proposition was proven in [Gre18] for the boundary component E8(−1)2.
We closely follow the proof with minor changes, that also allow the D+

16 case.

Proposition 5.34. Let C →MTor be a continuous map from a topological space C to
the toroidal compactification that meets the boundary only in the finitely many points in
the type II components. Then for an arbitrary α ∈ H2(C) we get that the pushforward
αC ∈ H2(MTor,Q) decomposes as

αC = (π0)∗α0 +
∑

1≤i≤n
(πi)∗αi
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where α0 ∈ H2(Γ\D,Q) and αi ∈ H2(Zi,Q) where Z1, . . . , Zn are fibers from the bound-
ary of MTor →Mbb and πi are the corresponding inclusions.

Remark 5.35. The main tool of the proof is the Euler class Looijenga constructed. But
this class only is defined for ΓJ\D. Therefore we have to compare the homology of this
space with the quotient space by the full group ΓJ .

Proof. We want to use the Mayer-Vietoris sequence, with V = M ⊂ MTor and U a
suitable neighborhood of the points meeting the boundary.
Construction of U :
Denote by pi, qj the points of C ⊂ MTor meeting the L = E8(−1)2, respectively the
L = D+

16(−1) boundary component SL(2,Z)\H. Let

ΓJ\D → ΓJ\∂DTor
J

be the ∆∗-bundle corresponding to an isotropic lattice J with J⊥/J = L.8 Denote

pbb : ΓJ\DTor,J → πJ = H

the map that is the projection to the boundary component from the description in
equation (5.13.1), i.e. induced by

C× J⊥/J ×H→ H.

For every i, j choose a representative of pi, qj in H, which by abuse of notation we denote
by the same symbol. Let Ui ⊂ πJ be a small neighborhood of pbb(pi) ⊂ πJ , such that all
such Ui’s are disjoint and contractible. Then

Ũ = p−1
bb (
⋃
i

Ui)

contracts to a disjoint union of ∆-bundles Bi over Zi = J⊥/J ⊗Eτi = p−1
bb (τi)∩ ∂DTor,J

for τi = pbb(pi) by Theorem 5.20. Moreover by Lemma 5.33, we can arrange that the
image Vi of this bundle in ΓJ\DTor,J - after a possible modification in each fibre9- maps
injectively into MTor. Doing the same for the other component, and possibly after
another modification, we can assume, that Ũ retracts to a disjoint union of such bundles
for every point pi and qj as above. Let U be the image of Ũ in MTor. By the lemma,
the image of Ũ in ΓJ\D maps isomorphically to U .
Mayer-Vietoris sequence:

The Mayer-Vietoris sequence reads

H2(U,Q)⊕H2(V,Q)→ H2(U ∪ V,Q)→ H1(U ∩ V,Q).

As C maps into U ∪ V , it suffices to show that H1(U ∩ V,Q) = 0, because then the
homology class splits even as an element of H2(U ∪ V,Q) and pushing forward gives the

8Observe that we work with the intermediate group ΓJ and not ΓJ .
9For example by replacing ∆ with {c | |c| < ε} for suitable ε’s in each fibre.
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Figure 5: Neighborhoods Ui constructed above for every τi.

desired element. But U ∩ V is just U without the boundary. To conclude, we only need
to show H1(V ◦i ,Q) = 0 for all i, where V ◦i is Vi without the boundary.
By the construction, one sees that V ◦i is just the image of B◦i , which by definition is
Bi without the zero section. But the Euler class ei ∈ H2(Zi,Z) of the ∆∗-bundles is
non-zero by the Theorem 5.20. Hence the Gysin-sequence is exact and reads

H2(B◦i ,Q)→ H2(Zi,Q)
∩ei−−→ H0(Zi,Q)→ H1(B◦i ,Q)→ H1(Zi,Q).

Mapping to the image in ΓJ\DTor,J, we get the commutative diagram

H2(Zi,Q) H0(Zi,Q) H1(B◦i ,Q) H1(Zi,Q)

H2(Yi,Q) H0(Yi,Q) H1(V ◦i ,Q) H1(Yi,Q)

where Yi ∼= OE(J⊥/J)\(J⊥/J ⊗ Eτ ) is the image in MTor. The first box commutes, as
Zi → Yi is just the map

O(J⊥/J)\(J⊥/J ⊗ Eτ )→ OE(J⊥/J)\(J⊥/J ⊗ Eτ )

and hence, is the quotient by a finite group. But the Euler class ei ∈ H2(Zi,Q) is
invariant under the group action by the theorem and hence pulls back from a non-zero
element e′i ∈ H2(Yi,Q). Then the push-pull formula shows commutativity. But by
Lemma 5.31 we have

H0(Yi,Q) = Q,
H1(Yi,Q) = 0,

H2(Yi,Q) = Q,
H0(Zi,Q) = Q,
H1(Zi,Q) = 0,

H2(Zi,Q) = Q,
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and the vertical maps between the homology of the spaces induced by Zi → Yi is an
isomorphism by Corollary 5.29.

But by the universal coefficient theorem H2(Yi,Q) ∼= Hom(H2(Yi,Q),Q). As e′i 6= 0, we

see that H2(Yi,Q)
∩e′i−−→ H2(Yi,Q) is an isomorphism and the same holds for Zi.

To conclude, we have the following diagram

Q Q H1(B◦i ,Q) 0

Q Q H1(V ◦i ,Q) 0

∼=

∼= ∼=
∼=

with the upper row being exact. Therefore H1(B◦i ,Q) = 0. On the other hand, V ◦i =

G\B◦i with G a finite group: it is just the action of

T−1T 0 0.
0 I 0
0 0 T

 with T preserving

τ , i.e. it is finite. Therefore every element y ∈ H1(V ◦i ,Q) has a preimage x ∈ H1(B◦i ,Q)
by Corollary 5.29. Hence y = 0 by a diagram chase.
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6. Extension of the Period Map for Degenerations

In this section we will study, in which way the period map

C 99KMTor

extends, where C is a degeneration of K3 surfaces.
In the last section, we saw that MTor is proper over C, as it is compact in the analytic
setting. Therefore we get the following standard extension theorem:

Lemma 6.1. Let X → C be a U -quasi-polarized degeneration with C a smooth curve.
Then the period map extends to an algebraic map

C →MTor.

Proof. Let p ∈ C be one of the finitely many points in C where the period map is not
defined. As C is smooth, OC,p is a discrete valuation ring. Let η be the generic point of
C. Hence, we have a map

Spec(OC,η)→MTor

and
Spec(OC,η)→ Spec(OC,p).

Then

Spec(OC,η) MTor

Spec(OC,p) Spec(C)

commutes. By the properness of MTor → Spec(C), we get a map Spec(OC,p) →MTor,
that commutes with the diagram. Via this map we can extend

C →MTor.

By means of this extension, we also get an extension

C →Mbb.

By a theorem in [CEZG+14], the boundary components of Mbb each parametrize the
pure Hodge structures on Gr1(H2

∞). In the case of short type II degenerations Xt  
V1 ∪E V2 we have seen that

Gr1(H2
∞) ∼= H1(E,Q)

even as Hodge structures. But the Hodge structure in this case is determined by τ for
E = C/(Z + τZ). The extension is then simply given by τ ∈ SL(2,Z)\H, see [Gre18].
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Extension for Type II degenerations

Let X → C be a Kulikov degeneration of Type II with short degenerated fibers. I.e.

X0 = V1 ∪E V2.

Then E = C/(Z+ τZ). Let N = log T be the logarithm of the monodromy as in Section
4.2. Then N2 = 0, as it is of type two. Let J = ImN . This subspace is clearly generated
rationally. As N is skew-symmetric with respect to the cup product, we get that J is
even isotropic, as

Nx ∩Ny = −x ∩N2y = 0

for any x, y ∈ H2(Xt,C). Moreover

KerN = (ImN)⊥

as 0 = Nx ∩ y = −x ∩Ny. As we saw in Section 4.2, H2
∞
∼= H2(Xt,C) for some t ∈ C

nearby the fiber. Denote by Z ⊂ Pic(X) the U -polarization. We polarize

Gr2H
2
∞ = KerN/ImN

by Z|Xt . This is possible, as by the invariant cycle theorem U ∼= Z|Xt ⊂ KerN . On the
other hand, U ∩ ImN = {0}: Assume the contrary, i.e. there is a 0 6= j ∈ U ∩ ImN . As
ImN is isotropic, we have that j · j = 0. But U ⊂ KerN = (ImN)⊥. Therefore U ⊥ j.
But this cannot happen, as U has signature (1, 1). Hence,

Grpol
2 H2

∞ = (KerN ∩ U)/ImN

is well-defined.

By Appendix A, we see that U⊥ is an unimodular even lattice of signature (2, 18), i.e. it
is isomorphic to Λ2,18. Hence, we get an isotropic plane J = ImN ⊂ Λ2,18, such that

Grpol
2 H2

∞ = J⊥/J

is even, unimodular and of signature (0, 16). Hence by Appendix A it is isomorphic to
one of the following lattices:

E8(−1)2 or D+
16(−1).

By a theorem of Deligne, as stated in [Gre18], we have for our case:

Theorem 6.2 ([Gre18]). There is a group-isomorphism

ExtMHS(Gr2H
2
∞,Gr1H

2
∞)→ Hom(Gr2H

2
∞, E) = J⊥/J ⊗ E.
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Recalling the construction of the isomorphism

E⊥/EZ ∼= Gr2H
2
∞

from Section 4.2, we see that it is constructed by taking an element

(a, b) ∈ E⊥ ⊂ H2(V1,Z)⊕H2(V2,Z),

pulling it back to H2(V1 ∪E V2,Z) by Mayer-Vietoris and then applying the Clemens
map. But as Z|Xt extends to X, we get that the Z|Xt corresponds to Z|X0 under the
above isomorphism by the invariant cycle theorem.

Let (a, b) ∈ E⊥ ⊂ H2(V1,Z)⊕H2(V2,Z). Then

a|E − b|E ∈ Pic0(E) = J(E) ∼= E,

as by definition 0 = E · (a, b) = deg a − deg b. Moreover this map factors through EZ,
as

(OV1(E),−OV2(E)) 7→ (NE/V1 ⊗NE/V1) = 0

by d-semistability. Hence we get:

Theorem 6.3 ([Fri84]). There is a morphism

Gr2H
2
∞ → J(E) ∼= E

where J(E) is the Jacobian of E. It is given by

l = (l1, l2) 7→ l1|E − l2|E ∈ Pic0(E). (6.3.1)

Recall that for a degeneration as above, we get that

MTor →Mbb

has the fiber
Zτ = OE(J⊥/J)\Hom(J⊥/J,Eτ )

over the type II boundary component corresponding to J . As Friedman proved, the
extension of the period map in our Type II case for a degeneration

Xt  V1 ∪Eτ V2

is then given by the point in Zτ corresponding to the map in (6.3.1).

59



Geometric interpretation of extension of the period map for non-Kulikov models

As previously stated, any local degeneration X → ∆ can be transformed to a Kulikov
model by successively taking an n-fold cover and then taking an birational morphism,
that just alters the central fiber. But any extension of

∆∗ →MTor

of the n-fold covering determines the extension of the original family, as this is just a
topological property. Hence, for any degneration X → C, the degenerated fibers get
mapped to the point corresponding to the constructed Kulikov model.

Remark 6.4. By taking an n-fold cover of ∆, the logarithm of the monodromy operator
changes only by a scalar multiple, i.e. N ′ = nN , as T ′ = Tn. Therefore one can directly
spot which Type the corresponding Kulikov model will be, just by taking the monodromy
of the original family. I.e. the non-Kulikov example in Section 4.3 maps to the type II
boundary as well.

Remark 6.5. Let f : X → C be a semistable degeneration. As was stated in Section 4.1
there is a birational morphism X ′ → X that is an isomorphism outside the degenerated
fibers. Therefore the period map does not change if we replace X → C by X ′ → C.

Period map for K3 surfaces with ADE singularities

Let X → ∆ be a degeneration of K3 surfaces, such that the central fiber is an irreducible
surface that has only ADE singularities. Then, by [AHVAV17], there is an n ∈ N, such
that the n-fold cover

p : t→ tn

the resulting family X̃ = X ×p ∆ admits a simultaneous resolution, i.e. there is a
birational morphism Y → X̃, such that Yt → X̃t is the minimal resolution for all t. But
by Lemma 4.20 the resulting canonical sheaf of Y is trivial outside the central fiber. But
as the central fiber is irreducible, and OY (Y0) = OY , we get that Y is a Kulikov model.
Hence by the classification Y0 is a K3 surface. By the last paragraph, the period point
of an extension

∆→MTor

is given by the one of Y0, i.e. the minimal resolution of X0.
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7. Modular Forms and Quasi-Modular Forms

7.1. Modular Forms

In this section we give a brief overview of modular forms by following [Zag08].

Let H = {z ∈ C | =z > 0} be the upper half plane. Recall the classical group action of

SL(2,Z) on H which is given by sending h ∈ H via γ =

(
a b
c d

)
to

γ · h =
ah+ b

ch+ d
.

Definition 7.1. A holomorphic map f : H → C is called a modular function of weight
k, if

f(

(
a b
c d

)
· h) = (ch+ d)kf(h).

Remark 7.2. Analysing this behaviour for

(
1 1
0 1

)
, we see that

f(z) = f(z + 1).

Considering the covering map

H z→e2πiz=q−−−−−−−→ ∆∗ = {q ∈ C | 0 < q < 1}

we see that f factors as a holomorphic map

f : H z→q−−−→ ∆∗ → C.

Therefore the map has the following form

f =

∞∑
n=−∞

ane
2πizn =

∞∑
n=−∞

anq
n.

Definition 7.3. In the above setting, a modular function that satisfies an = 0 for all
n < 0 is called modular form.

7.2. Examples

Of big importance for our constructed modular forms is the following theorem, taken
from [Zag08]:
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Theorem 7.4. The space Mk of weight k modular forms is a finite dimensional vec-
torspace. Moreover the dimensions satisfy

dimM8 = dimM10 = 1.

Therefore we only need to construct one modular form in the whole space.

Example 7.5. For k ≥ 2 the Eisenstein-modular forms are defined in the following way:

Ek(z) =
1

2

∑
c,d∈Z

gcd(c,d)=1

1

(cz + d)k
.

As is shown [Zag08] they satisfy

E8 = 1 + 480q + 61920q2 + 1050240q3 + . . .

E10 = 1− 264q − 135432q2 − 5196576q3 − . . . .

Moreover, one can show (see e.g. [Zag08]) that for n > 2

En = 1 + a1(q +
∞∑
i=2

cn)

with cn ∈ Z.

Next, we will see another way of constructing modular forms, namely from lattices.

Definition 7.6. Let L be an even positive definite lattice. The Theta series of the
lattice is defined by

Θ =
∑
x∈L

q
1
2
x2 =

∑
n>0

Rnq
n
2 ,

where Rn = ]{x ∈ L, x2 = n}.

Of special importance for elliptic K3s are the lattices D+
16 and E8 ⊕ E8, for which the

following theorem holds:

Theorem 7.7 ([Zag08]). Let L be a unimodular even lattice of dimension 2m. Then its
theta function is a modular form of weight m.

Example 7.8. As is shown in Appendix A, both lattices D+
16 and E8 ⊕E8 are even, uni-

modular and positive definite. Therefore there is only one element whose self intersection
is zero. This yields

ΘD+
16

= ΘE8⊕E8 = E8,

as dimM8 = 1.
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7.3. Quasi-Modular Forms

Definition 7.9. A function F : H → C is called an almost holomorphic modular form,
if it can be expressed as

F (z) =

p∑
r=0

fr(z) · (−4πy)r

where fr is a holomorphic function and y = =z, such that it transforms appropriately,
i.e.

F (γ · z) = (cz + d)kF (z)

for all γ =

(
a b
c d

)
∈ SL(2,Z). A holomorphic map f : H → C is called quasi-modular

form of weight k, if there is an almost holomorphic modular form F of weight k as above
such that f = f0.

Proposition 7.10. The differential Df(z) = 1
2πi

∂
∂zf(z) =

∑∞
i=0 nanq

n of a holomorphic
modular form f =

∑
anq

n of weight k is a quasi-modular form of weight k + 2.

Proof. See [BvdGHZ08].

Example 7.11. By the foregoing proposition DE8 is a quasi-modular form and by the
discussion of the last section

DE8(q) = 480(q +
∑
n≥2

cnq
n)

with cn ∈ Z. In particular DE8/480 is integral, has no constant term and the factor of
q1 is 1.
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8. Quasi-Modular Forms from Degenerations

8.1. Heegner Divisors and Noether-Lefschetz Divisors

In this section we introduce divisors that represent elements in the Picard group of K3
surfaces. We follow the description of [MP07].

Let
D = P{x ∈ Λ2,18 ⊗ C| 〈x, x〉 = 0, 〈x, x̄〉 > 0}.

and Γ = O(Λ2,18). Consequently Γ\D is the moduli space for U -quasi-polarized, hence
elliptic, K3 surfaces from Section 3. For a fixed n ∈ Z, let In = {v ∈ Λ2,18 | v2 = 2n}.
This set is clearly preserved by Γ. As Λ2,18 is unimodular, the description of the Heegner
divisors from [MP07] simplifies to

Definition 8.1. Let n 6= 0, then define the Noether-Lefschetz or Heegner divisor as

NLn =
∑
v∈In

v⊥.

Clearly the sum is Γ-invariant and by Appendix A their is only one Γ-orbit of v’s such
that v2 = 2n. Therefore, by [BvdGHZ08] the divisor above descends to an algebraic
divisor NLd ∈ Pic(Γ\D) = Pic(M).

Remark 8.2. A point p ∈ M is contained in the Noether-Lefschetz divisor if and only
if the corresponding K3 surface X has a Cartier divisor v ∈ Pic(X), such that v2 = 2n
and v is orthogonal to the polarization.

Moreover the canonical line bundle O(−1) = {([x], y) ∈ D×Λ2,18⊗C | [y] = [x]} admits
an obvious action of Γ. This action is equivariant with respect to the projectionO(−1)→
D. Hence it also descends to a line bundle ν on

M = Γ\D.

Definition 8.3. Define the Hodge line bundle as the inverse

λ = ν∗.

In our case ofMTor, we have thatM⊂MTor as a dense open subset and the complement
is of codimension 1. Hence the following definition constructs another divisor

Definition 8.4. The closure NLn of NLn in MTor is called the completed Noether Lef-
schetz divisor.
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Denote by ∂E8(−1)2MTor and ∂D+
16(−1)M

Tor the corresponding boundary components.

Remark 8.5. Recall that in Remark 5.22, we proved that

NLn ∩ Zτ =
⋃

v2=−n

v⊥ ⊂ Hom(J⊥/J,Eτ )/OE(J⊥/J) = Zτ .

Moreover in Section 5, we saw that ν - and hence λ - extend naturally to a line bundle
on Mbb.

Chern Classes of Heegner Divisors

In the following, we want to regard these divisors as cohomology classes. This is done
as follows (for a more detailed description, see [Bru04]): LetM′ = Γ′\D be the quotient
of a normal neat subgroup Γ′ ⊂ Γ of finite index. As we have seen in Remark 5.15 this
space is smooth and we have a group action G yM′ of a finite group G ∼= Γ/Γ′ such
that the orbit space is M. Denote p :M′ →M the projection.
As M′ is smooth, we get the Chern class of NL′d = p∗NLd ⊂ Γ′\D:

c1(NL′d) ∈ H2(Γ′\D,Z).

But by construction this is invariant under the G action, as NLd is Γ invariant. By
Theorem 5.29, this class is the pull back of an unique element

c(NLd) ∈ H2(M,Q).

The same construction works for the Noether-Lefschetz divisors in MTor by replacing
M withMTor in the above. Denote by p :MTor′ →MTor the corresponding projection
map.
Again, asMTor is not smooth, we have to show that the intersection product inMTor is
the same as the product in (co)homology. Let α ∈ A1(MTor). By [Ful13], α = p∗α

′ with
α′ = 1

|G|p
∗α ∈ A1(MTor′) in the smooth space. Then for the cycle map cl : A1(X) →

H2(X) as in [Ful13]:

NL ∩ α = p∗(p
∗NL ∩ α′)

= p∗(cl(p
∗NL) ∩ cl(α′))

= p∗(c1(p∗NL) ∩ cl(α′))

= p∗(p
∗c(NL) ∩ cl(α′)) by definition as p∗NL = NL

′

= c(NL) ∩ p∗cl(α′)

= c(NL) ∩ cl( 1

|G|
p∗p
∗α)

= c(NL) ∩ |G| 1

|G|
cl(α)

= c(NL) ∩ cl(α).

65



As MTor is compact cl(α) is just the fundamental class of α. Therefore computing the
intersection in MTor in (co)homology is the same as the algebraic intersection product.
By abuse of notation we denote NLd also for the cohomology class c(NLd) from above.

Intersection with a Degeneration

Now, we can define the intersection of a family and a degeneration with the Noether-
Lefschetz divisors: Let f : X → C be a degeneration. Then the period map extends to
a map

C →MTor.

Because of properness the image is a closed curve C̃ ⊂ MTor. Thus, we can define the
intersection as

C ·NLd := C̃ ·NLd,

which is just the usual algebraic intersection product in MTor. By the above, we have
that

C ·NLd = [C] ∩ c(NLd),

where [C] ∈ H2(MTor,Z) is the push forward of the fundamental class of C.

8.2. Borcherds Results - Modularity for Type I Degenerations

Here, we will present the theorem of Borcherds, which relates the different intersection
products with Noether-Lefschetz divisors. This is the main building block of the results,
which are presented in the subsequent sections.
We need the following definition of a generating series:

Definition 8.6. Let

Φ(q) = λ · q0 +
∑

n∈Z, n>0

NL−nq
n ∈ Pic(M)[[q]]

be a formal power series.

Remark 8.7. Here we heavily use that Λ2,18 is unimodular, which simplifies all construc-
tions in [MP07]. In the general case, the generating series is an element of Pic(M)[[q]]⊗
C[Λ∗\Λ].

Now, we come to the main result:
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Theorem 8.8: Borcherds, MacGraw [MP07]

The generating function Φ(q) is an element of

Pic(M)⊗Z M10,

where M10 denotes the weight 10 modular forms.

Therefore as an corollary, we get:

Corollary 8.9 (Modularity for Type I degenerations). Let α ∈ H2(M). Then

α ∩ λ+
∑

n∈Z, n>0

α ∩NL−nq
n

is a modular form of weight 10. In particular, for every Type I degeneration over a curve
C, we get that

C · λ+
∑

n∈Z, n>0

C ·NL−nq
n

is a modular form of weight 10.

8.3. Main Theorem - Quasi-Modularity for Type II Degenerations

In this section, we want to prove the following theorem: Denote by λ̄ the pull back of
the Hodge line bundle of Mbb to MTor. Then:

Theorem 8.10: Main theorem
Quasi-Modularity for Degenerations of Type II

Let
Φ(q) = λ̄ · q0 +

∑
n∈Z, n>0

NL−nq
n ∈ Pic(MTor)[[q]]

and X → C be a degeneration such that the period map extends to the Type II
boundary component. Denote by α the fundamental class of C in the toroidal
compactification MTor. Then

α ∩ Φ(q) = α ∩ λ̄ · q0 +
∑

n∈Z, n>0

α ∩NL−nq
n (8.10.1)

is a quasi-modular form of weight 10 and is an element of

ZE10 ⊕
1

480
ZDE8.
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Remark 8.11. The theorem has been proven for the case that the degeneration only
meets the E8(−1)2 boundary by François Greer in [Gre18]. In the following we will
mimic his prove for the general case.
The general idea is as follows: We decompose the homology class of the curve into
a boundary component α and one that is supported on the interior. To the latter,
Theorem 8.2 of Borcherd applies. As it will turn out, the intersection numbers NLd · α
are quadratic in d. The next lemma will investigate those further.

Throughout this whole subsection let L = D+
16(−1) or E8(−1)2 unless otherwise stated,

and 〈−,−〉 the corresponding intersection pairing.

Lemma 8.12. Let L = E8, E
2
8 , D16 or D+

16. Then every quadratic form10 q that is
invariant under the orthogonal group of the lattice, is a multiple of the pairing of the
lattice.

Remark 8.13. The proof of the lemma even generalizes to irreducible root systems with
associated Dynkin diagram only having simple edges. I.e. there is a generating set of the
lattice, that consists of roots and every two such roots v0, vn are connected by a chain
of roots v0 → v1 → . . . → vn that have intersection 〈vi, vi+1〉 = 1 and every two roots
that have intersection 6= 1 are orthogonal.

E8

Figure 6: E8-Dynkin diagram

D16

Figure 7: D16-Dynkin diagram

Proof. The root lattices E8, D16:
It is important to note, that in this case, i.e. the case of root lattices, it suffices to have
invariance under the Weyl group.
As is shown in Appendix A, E8 and D16 satisfy the property from the remark. Fix such a
generating set. For convenience, we work with the associated bilinear form (−,−) that is
clearly also invariant. Let v, v′ be two roots of the generating set that have intersection
〈v, v′〉 = 1. There are two elements in the Weyl group, i.e. the group generated by
reflections at roots, that we need: the reflection at the corresponding roots sv, sv′ . They
satisfy

sv(v) = −v,
sv′(v) = v − v′,
sv(v

′) = v′ − v.

Therefore by invariance

(v, v′) = (sv(v), sv(v
′)) = −(v, v′ − v) = (v, v)− (v, v′).

10A quadratic form is a map q : L→ Z that is equal to (v, v) for a symmetric bilinear form (v, v′).
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Thus (v, v′) = 1
2(v, v). Then

(v, v) = (sv′(v), sv′(v)) = (v − v′, v − v′) = (v, v)− 2(v, v′) + (v′, v′).

Consequently (v′, v′) = 2(v, v′) = (v, v). On the other hand, let 〈v, v′〉 = 0, then

sv(v) = −v,
sv(v

′) = v′,

s2
v = id.

Hence, we get
−(v, v′) = (sv(v), v′)) = (v, sv(v

′)) = (v, v′).

It follows that (v, v′) = 0. Therefore on the whole generating set the bilinear form (for
a fixed root v0 in the generating set) satisfies

2(v, v′) = (v0, v0)〈v, v′〉

and hence the identity holds on the whole lattice.
The lattice E8 ⊕ E8:
Let

(−,−)1 = (−,−)|(E8×0)×(E8×0),

(−,−)2 = (−,−)|(0×E8)×(0×E8),

(−,−)3 = (−,−)|(0×E8)×(E8×0),

(−,−)4 = (−,−)|(E8×0)×(0×E8).

Then
(−,−)1 + (−,−)2 + (−,−)3 + (−,−)4 = (−,−)

by bilinearity. From now on, by abuse of notation, we interpret these bilinear maps as
maps (−,−)i : E8 × E8 → Z.

As for any g ∈ O(E8), g×id ∈ O(E8⊕E8), we get that (−,−)1 is also invariant under the
orthogonal group of E8. Hence, by the above, (−,−)1 = c1〈−,−〉E8 and by symmetry
(−,−)2 = c2〈−,−〉E8 . But on the other hand, g × id shows, that

(a, b)3 = (g(a), b)

and by symmetry also (a, b)3 = (a, g(b)). Hence

(a, b)3 = (g(a), g(b)).

Therefore (a, b)3 = c3〈a, b〉E8 . But let sv ∈ O(E8) be the reflection at a root v. Then
sv(v) = −v. Therefore

(v, v)3 = (−v, v)3 = −(v, v)3
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and c3 must be zero. By symmetry, also c4 = 0. Hence

(−,−) = c1(−,−)1 + c2(−,−)2.

But as

T : E8 ⊕ E8 → E8 ⊕ E8

a⊕ b 7→ b⊕ a

is an element in O(E8 ⊕ E8), we get that

(v, v′)1 = (v ⊕ 0, v′ ⊕ 0) = (0⊕ v, 0⊕ v′) = (v, v′)2.

Take a root v ∈ E8. Then by the above

2c1 = c1〈v, v〉E8 = (v, v)1 = (v, v)2 = 2c2.

Thus, c1 = c2 and

(−,−) = (−,−)1 + (−,−)2 = c(〈−,−〉E8×0 + 〈−,−〉0×E8) = c〈−,−〉E8×E8 .

The lattice D+
16:

By Appendix A, D16 ⊂ D+
16 ⊂ Q16 both Q-linearly span the whole space Q16 and get the

intersection pairing from the canonical one in Q16. On the other hand, every element
g ∈ W(D16) extends to an automorphism of D+

16, as every reflection does so. Thus,

(−,−)|D16

is invariant under the Weyl group action. By the proof above, we get that

(−,−)|D16 = c〈−,−〉D16 . (8.13.1)

But as D16 ⊂ D+
16 both Q-linearly span the same subspace in Q16, the only bilinear form

extending 〈−,−〉D16 on D+
16 is the intersection pairing of D+

16 itself. Hence

(−,−) = c〈−,−〉D+
16
.

Lemma 8.14. Let E be an elliptic curve, 0 6= a ∈ Z. Then there are exactly a2 elements
e ∈ E, that satisfy

ae = 0 ∈ E.
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Proof. It is well known, that E is isomorphic to C/(Z ⊕ τZ) for some τ ∈ H. Hence
x+ yτ ∈ E satisfies

ax+ ayτ = 0 ∈ E
if and only if

ax+ iay ∈ Z⊕ τZ.
But this is the case if and only if

ax ∈ Z⇔ x ∈ 1

a
Z and

ay ∈ τZ⇔ y ∈ τ
a
Z.

As every x+τy has precisely one representative with 0 ≤ x, y < 1, all solutions are given
by the pairs

{x+ yτ | x =
m

a
, y =

n

a
, 0 ≤ m,n < a}

which are precisely a2-many.

1

τ 1 + τ

Figure 8: Solutions on elliptic curve with a = 2.

The following lemma is the main component of the proof of the main theorem. It follows
closely the exposition in [Gre18].

Lemma 8.15. Let α ∈ H2(OE(L)\Hom(L,E),Q) and Nn = ∪v2=−2nv
⊥ the restriction

of the Noether Lefschetz divisor as in Section 8.1. Then∑
n>0

(Nn ∩ α) qn = c ·DE8

with a constant c ∈ Q.

Proof. By Lemma 5.31 we know that dimH2(OE(L)\Hom(L,E),Q) = 1 and that α is
a multiple of the pushforward of

α =
∑

g∈O(L)

[g(E0)]
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where E0 = E × 015 ⊂ E16.

To simplify the calculation we first compute the cap product in Hom(L,E) ∼= E16 with
the pullback of ∪v2=−2dv

⊥ which is just ∪v2=−2dv
⊥ ⊂ E16. But

[g(E0)] ∩ v⊥ = [E0] ∩ g−1(v)⊥

as g induces a homeomorhism E16 → E16. Hence, we have to count the intersections
of the elliptic curve E0 with v⊥. To do this, we have to analyze the morphism E16 ∼=
Hom(L,E) again. It was chosen in such a way, that we pick generators g1, . . . , g16 of L,
and (e1, . . . , e16) ∈ E16 is sent to∑

aigi 7→
∑

aiei ∈ E.

Let v =
∑
vigi with vi ∈ Z. Hence e ∈ E0 is contained in v⊥, if and only if

v0e = 0 ∈ E.

As v0 ∈ Z, that is the case for exactly v2
0-many points in E0 by the foregoing lemma if

v0 6= 0. On the other hand, if v0 = 0, then E0 ⊂ v⊥. We can assume without loss of
generality that v1 6= 0, as v 6= 0. Hence forming the diagram

E × 015 E × E × 014

E16 E16

incl incl

id

we get by the push-pull formula

incl∗([E × 014] ∩ v⊥|E×E×014) = [E × 014] ∩ v⊥.

But v⊥|E×E×014 = E×{e ∈ E | v1e = 0}. By the foregoing lemma this is just E×{v2
1 −

points}. But
(E × 0) ∩ (E × {v2

1 − points}) = 0,

as cohomologically E × 0 can be moved to E × {p}, for an arbitrary point p, as it is a

fiber of the projection E × E pr2−−→ E.
Hence we get that

E0 ∩ v⊥ = v2
0

for every v ∈ L. Thus it is a quadratic form in v, that comes from a bilinear mapping.
So even

α ∩ v⊥

satisfies the same. But as we saw

α ∩ g(v)⊥ = g−1(α) ∩ v⊥ = α ∩ v⊥
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as α is invariant under the O(L)-action by construction. Hence, α ∩ v⊥ is a quadratic
form coming from a bilinear form, that is invariant under the orthogonal group of the
lattice. By Lemma 8.12,

α ∩ v⊥ = c · 〈v, v〉

for our two choices of L. By the push-pull formula for the map p : Hom(L,E) →
OE(L)\Hom(L,E) we get

c
∑

v2=−2d

v2 = p∗(α ∩
⋃

v2=−2d

v⊥) = α ∩
⋃

v2=−2d

v⊥.

Taking the generating series of this expression yields∑
n∈Z>0

(α ∩
⋃

v2=−2n

v⊥)qn = c
∑
n∈Z>0

∑
v2=−2n

−2nqn = −cDΘL = −cDE8

by Theorem 7.7. So it is a quasi-modular form of weight 10.

Remark 8.16. Recall from Section 5, for any continous map C →MTor that meets the
boundary in finitely many Type II points and for every α ∈ H2(C,Q) the pushforward
αC ∈ H2(MTor,Q) of α decomposes as

αC = (π0)∗α0 +
∑

1≤i≤n
(πi)∗αi

where α0 ∈ H2(Γ\D,Q) and αi ∈ H2(Zi,Q) where Zi is a fiber from the boundary of
MTor →Mbb and πi are the corresponding inclusions.

The following proves the main theorem under more general assumptions:

Theorem 8.17. Let f : C →MTor be any continuous map from a topological space C
to the toroidal compactification. Assume moreover that the map meets the boundary only
in finitely many points in the Type II components. Let αC ∈ H2(C,Z) be any homology
class and α = f∗αC the pushforward in MTor. Then

α ∩ Φ(q) ∈ ZE10 ⊕
1

480
ZDE8.

Proof. By the foregoing lemma, we may assume that α = (π0)∗α0 +
∑

i(πi)∗αi as above.
But by Borcherds result 8.9 and the push-pull formula on homology we get

(π0)∗α0 ∩ Φ(q) =(π0)∗(α0 ∩ π∗0Φ(q))

=(π0)∗(α0 ∩ (π∗0λ̄ · q0 +
∑
n∈Z
n>0

π∗0NL−nq
n))

=(π0)∗(α0 ∩ (λ · q0 +
∑
n∈Z
n>0

NL−nq
n)) ∈ QE10.
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In the same way, we see that

(πi)∗αi ∩ Φ(q) =(πi)∗(αi ∩ (π∗i λ̄ · q0 +
∑
n∈Z
n>0

π∗i NL−nq
n)).

But by Lemma 8.15, we get that∑
n∈Z, n>0

αi ∩ π∗i NL−nq
n ∈ QDE8.

As λ is the pullback of the Hodge line bundle of Mbb, we get that

αi ∩ π∗i λ̄ = 0,

as π∗i λ̄ = 0, because πi is just the inclusion of a fiber of MTor →Mbb. Hence

α ∩ Φ(q) ∈ QE10 ⊕QDE8.

By construction every intersection product α ∩NL−n is integral. Therefore we get

α ∩ Φ(q) ∈ ZE10 ⊕
1

480
ZDE8,

as
cE10 + c′DE8 = c+ (−264c+ 480c′)q + . . .

shows that c ∈ Z and c′ ∈ 1
480Z.

Remark 8.18. By Example 7.11, we see that even every quasi-modular form in 1
480ZDE8

is integral.

Structure of the Hodge Bundle

Let X
f−→ C be a family of K3 surfaces and C

p−→M the period map. Then by construc-
tion and the structure of

f∗Ω
2
X/C ↪→ R2f∗C⊗OC

which is just
H2,0(Xt) ↪→ H2(Xt,C)

in every fiber, one sees that

p∗λ ∼= (f∗Ω
2
X/C)∗ = (f∗ωX/C)∗.

If f is a semi-stable degeneration then even

p∗λ ∼= (f∗ωX/C)∗,

where ωX/C is the relative dualizing sheaf, as is shown in [Fuj03]. But by a theorem in
[CD14] f∗ωX/C is nef, i.e. it has non-negative degree. Concluding:
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Corollary 8.19. Let X
f−→ C be a degeneration as in the main theorem 8.3 that is

semi-stable. Then
C · Φ(q) = C · λ̄ · q0 +

∑
n∈Z, n>0

C ·NL−nq
n

is an element of

Z≤0E10 +
1

480
ZDE8.

Proof. The coefficient of the constant term of C ·Φ is C ·λ. But this is also the coefficient
of E10. Then

C · λ = degC λ = −degC f∗ωX/C ≤ 0

by nefness.
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9. Calculation of Noether-Lefschetz Numbers

Degeneration associated to the generic pencil of OF4(3, 12)

The general construction

In this section we will construct a degeneration as in Section 4.3.1. I.e. let

P [λ, µ] = λL+ µL′ ∈ P(H0(OF4(3, 12)))

be a generic Lefschetz pencil in OF4(3, 12). The degeneration X → P1 is then defined as
the double cover of

F4 × P1

along
(Z · P ([λ2, µ2]), [λ, µ]).

As we have seen in Sections 4.3.1 and 2.2 the generic element of this degeneration is
indeed a K3 surface.

The singular fibers

Next, we want to examine which singular fibers can occur. Recall, that in a generic
pencil, there is an open dense subset of P1 such that the fibers over these points are
smooth and irreducible by Bertini’s theorem.

By Appendix D, we have

H0(F4,O(a, b)) ∼= H0(P1, π∗O(a, b))

for a ≥ 0, where π : F4 → P1 is the ruling. On the other hand, by [Har13], we have

π∗O(a, 0) = Sa(OP1 ⊕OP1(−4)) =
⊕

i=0,...,a

O(−4i).
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Hence, we get

H0(π∗O(a, b)) = H0(π∗(O(a, 0)⊗ π∗OP1(b)))

= H0(π∗O(a, 0)⊗OP1(b))

= H0(
⊕

i=0,...,a

OP1(−4i)⊗OP1(b))

= H0(
⊕

i=0,...,a

OP1(−4i+ b))

=
⊕

i=0,...,a

H0(OP1(−4i+ b)).

As dimH0(OP1(a)) = a + 1 for a ≥ 0 and 0 otherwise, we can compute all possible
dimensions that can occur: See table 1.

We now want to analyze, which splittings

h f · g

can occur in a generic pencil. If this happens then

f ∈ O(a, b),

g ∈ O(a′, b′),

with a+ a′ = 3, b+ b′ = 12. Hence, all elements of this form for fixed a, b form a subset
of O(3, 12) with dimension

dim ≤ dimPH0(O(a, b)) + dimPH0(O(a′, b′)).

By analyzing the table 1, one sees that the codimension in PH0(O(3, 12)) is always
greater than 2, except for the case

f ∈ O(1, 0),

g ∈ O(2, 12),

which was the the degeneration we analyzed in Section 4.3.1.

Number of singular curves - Göttsche conjecture

Following the idea of [KST11], we compute the number of nodal fibers of the pencil.
Suppose, there are only ordinary double points as singularities, i.e. singularities that
analytically look like xy = 0 in C2. Denote by g the arithmetic genus of the curve in the
pencil, which satisfies

2g − 2 = O(3, 12) · (O(3, 12) + ωF4) = 18.
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Table 1: Dimensions of line bundles

L dimPH0(L)

O(0, 0) 0
O(1, 0) 0
O(2, 0) 0
O(3, 0) 0
O(0, 1) 1
O(1, 1) 1
O(2, 1) 1
O(3, 1) 1
O(0, 2) 2
O(1, 2) 2
O(2, 2) 2
O(3, 2) 2
O(0, 3) 3
O(1, 3) 3
O(2, 3) 3
O(3, 3) 3
O(0, 4) 4
O(1, 4) 5
O(2, 4) 5
O(3, 4) 5
O(0, 5) 5
O(1, 5) 7
O(2, 5) 7
O(3, 5) 7
O(0, 6) 6
O(1, 6) 9

L dimPH0(L)

O(2, 6) 9
O(3, 6) 9
O(0, 7) 7
O(1, 7) 11
O(2, 7) 11
O(3, 7) 11
O(0, 8) 8
O(1, 8) 13
O(2, 8) 14
O(3, 8) 14
O(0, 9) 9
O(1, 9) 15
O(2, 9) 17
O(3, 9) 17
O(0, 10) 10
O(1, 10) 17
O(2, 10) 20
O(3, 10) 20
O(0, 11) 11
O(1, 11) 19
O(2, 11) 23
O(3, 11) 23
O(0, 12) 12
O(1, 12) 21
O(2, 12) 26
O(3, 12) 27
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By [KST11], we have that the Euler characteristic χ(C) = 2− 2g for smooth curves and
χ(C) = 2− 2g + n for curves with n nodes, i.e

χ(C)− (2− 2g)

=1︷ ︸︸ ︷
χ(pt) = n.

Note, that this is not necessarily true for reducible curves of the form C = C1∪p1,...,pnC2.
Now suppose the pencil meets a degeneration into f · g with f ∈ O(1, 0), g ∈ O(2, 12)
once and all other curves are irreducible (which is the case for the generic pencil, as
we will see soon). Generically those f and g meet in 4 points transversally. By the
additivity of the Euler characteristic

χ(C) = χ(C1) + χ(C2)− χ(
⋃
i

pi) = χ(C1) + χ(C2)− 4.

Computing the Euler characteristic via the adjunction formula, we get

χ(C1) + χ(C2) = −(−2 + 12) = −10.

Therefore for this curve

χ(C)−
=−18︷ ︸︸ ︷

(2− 2g)χ(pt) = −10− 4− (−18) = 4.

Thus, in this case it equals the number of nodel points. Now let C → P1 be the universal
curve of the pencil, which is isomorphic to the blowup of F4 in c1(O(3, 12))2 = 36 points.
Hence by the additivity of the Euler characteristic we get

#(number of nodal singularities)

=#(number of nodal singularities in irreducible fibers) + 4

=χ(F4) + 36− (2− 2g)χ(P1) = 4 + 36 + 18 · 2 = 76.

Intersection with NL1

Let A,B ∈ O(3, 12) be chosen generically such that the related pencil P

λA+ νB

has only nodal singularities. Then the quadratic pencil

λ2A+ ν2B

contains every curve from above twice, except the ones A and B. As the pencil P is
chosen generically, we know that the reducible fibers are of the form

f · g
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for f ∈ O(1, 0), g ∈ O(2, 12). But all those elements define a hypersurface of degree one,
hence P contains only one such element. By the Göttsche formula above, we know that
the quadratic pencil hence contains 2·76 = 152 nodal singularities, where 152−2·4 = 144
lie in irreducible curves, and the other 8 nodes are contained in the two reducible ones.
Observing the dimensions of O(1, 0), we see that f = Z is the section. For a generic g,
f and g intersect in 4 points. Hence, this curve contains 4 nodes.

Now, we want to calculate the intersection with the Noether-Lefschetz divisor.

Lemma 9.1. Let X be an elliptic K3 surface that is a Weierstraß model. Then there is
no v ∈ Pic(X) such that v · f = 0, v · s = 0 and v2 = −2, where f is a fiber and s the
section.

Proof. As we saw in Section 2.2, every such K3 surface is a double cover X
c−→ F4

p−→ P1

over the curve
Z · (X3 +AXZ2 +BZ3)

with A ∈ p∗OP1(8), b ∈ p∗OP1(12). It is immediate, that c∗fF4 = fX and c∗sF4 = 2sX .
But on F4, the line bundle

a := s+ 5f

is very ample by[Har13]. On the other hand, X → F4 is a finite morphism. Hence c∗a
is ample as well. But c∗a is contained in the span of sX , fX . Therefore

c∗a · v = 0

implies that v is not effective. On the other hand, the Riemann Roch formula states

h0(X, v)− h1(X, v) + h2(X, v) = χ(v) = χ(O) +
1

2
v2 = 1− 0 + 1− 1 = 1.

Hence, either h0(X, v) 6= 0 or h2(X, v) 6= 0. The first one would be a contradiction to v
being non-effective. Consequently 0 6= h2(X, v) = h0(X,−v), where the equality comes
from Serre-duality. Therefore −v is effective. But

0 < (−v) · c∗a = −(v · c∗a) = 0,

which is a contradiction. Hence no such line bundle can exist.

Theorem 9.2. Let X → P1 be the degeneration as above. Furthermore assume, that
the period map P1 →MTor satisfies

NL1 ∩ δMTor ∩ ImP1 = ∅

and the image of the period map intersects the Noether Lefschetz divisor NL1 transver-
sally. Then

P1 ·NL1 = 144.
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Proof. Every nodal curve in the pencil yields an A1 singularity in the resulting family.
Resolving this singularity produces one −2 curve per singularity. By the assumptions
and the foregoing lemma, we get that

P1 ·NL1 = #(number of nodal points in irreducible fibers) = 152− 2 · 4,

as there are two reducible fibers with 4 nodal points each, whose period point lies in the
boundary.

Intersection with λ

To compute the degree of λ, we first observe that composing f : X → P1 with the blow
up h : Y → X as in Example 4.24 we get a semi-stable model F : Y → P1 and the
degree of the Hodge bundle does not change. By [Kle80]

ωY/P1 = ωY ⊗ F ∗ω−1
P1

and for p : F4 × P1 → P1 the canonical projection

ωF4×P1/P1 = ωF4×P1 ⊗ p∗ω−1
P1 .

Moreover for every line bundle L

F∗(L
∗ ⊗ ωX/P1) ∼= (R2F∗L)∗

and the same holds for p : F4 × P1 → P1. The map F : Y → P1 factors as

F : Y
h−→ X

g−→ F4 × P1 p−→ P1.

As we have seen in Example 4.24, the fibers of the blowup Y → X are either a point or
P1. Hence by Grauerts theorem

Rih∗OY = 0

for i > dimP1 = 1 as the map is projective since X is. Therefore

H2(h−1(U),OY ) = H2(U, h∗OY ).

Let V ⊂ P1 be an open subset. Then

H2(F−1(V ),OY ) = H2(h−1(f−1(V )),OY ) = H2(f−1(V ), h∗OY ).

Since h∗OY = OX as h : Y → X is a blow up, it follows that

R2F∗OY ∼= R2f∗OX .

The map g : X → F4 × P1 is affine by construction and therefore

H2(f−1(V ),OX) = H2(g−1(p−1(V )),OX) = H2(p−1, g∗OX)
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and
R2f∗OX = R2p∗(g∗OX).

For easier notation, we abbreviate O(a, b, c) := OF4(b, c) ⊗ p∗OP1(a) on F4 × P1. Then
by construction

g∗OX = OF4×P1 ⊕O(−1,−2,−6).

Using duality for this sheaf and ωF4×P1/P1 = O(0,−2,−6), we get

R2p∗(O(0, 0, 0)⊕O(−1,−2,−6)) = (p∗O(0,−2,−6)⊕ p∗(1, 0, 0))∗.

In total
F∗ωY/P1 = p∗O(0,−2,−6)⊕ p∗(1, 0, 0).

But using the Künneth formula for sheaf cohomology, we get for every open V ⊂ P1 that
naturally

O(0, 0, 0)(p−1(V )) ∼= OP1(V ),

and therefore
p∗O(0, 0, 0) = OP1 .

On the other hand
O(0,−2,−6)(p−1(V )) = {0}

as OF4(−2,−6) has no global sections. Thus,

p∗O(0,−2,−6) = 0.

Therefore by the projection formula F∗ωY/P1 = OP1(1).

Remark 9.3. As the degeneration Y → P1 is not semistable (because of the irreducible
nodal fibers), we can not apply the direct formula for p∗λ. We will proceed as in [MP07]:
Let α : C144 → P1 be the double cover over the points that correspond to the irreducible

nodal fibers. Denote by Ỹ
α′−→ Y the pull back of Y by this map. As explained in

[MP07] this space admits a small resolution of singularities of the fibers. The resulting
degenerations are denoted F ′ : Y ′ → C144, which is semistable, and F̃ : Ỹ → C144.

Theorem 9.4. The degeneration Y → P1 admits

degP1 λ = −1.

Proof. By theorem 4.4. in [Fuj03], we have

F̃∗ωỸ /C144
= α∗F∗ωY/P1 .

As the resolution r : Y ′ → Ỹ is a resolution of the singularities of the fibers, the
dimension of the fibers is at most 1. Again by Grauert’s theorem and duality as above,
we can conclude that

F ′∗ωY ′/C144
= F̃∗ωỸ /C144

.
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As Y ′ → C144 is semistable F ′∗ωY ′/C144
is the inverse of the Hodge bundle corresponding

to this degeneration. Therefore by the computation before, we get

degC144
λ = −2 degP1 F∗ωY/P1 = −2 degP1 O(1) = −2,

as α : C144 → P1 is a double cover. But on the other hand

−2 = degC144
λ = 2 degP1 λ

since the map C144 →Mbb factors as

C144
α−→ P1 →Mbb.

Therefore
degP1 λ = −1.

Remark 9.5. By Remark 4.3, every semistable degeneration of K3 surfaces can be trans-
formed into a Kulikov model by a birational morphism X ′ → X that only changes the
degenerated fibers. Thus, replacing X with X ′ does not change the Noether-Lefschetz
numbers and the following theorem holds for X ′, too.

Theorem 9.6. The generating series for the degeneration X → P1, with the assumptions
as in Theorem 9.2, is given by

P1 · λ̄+
∑

n∈Z, n>0

P1 ·NL−nq
n = −E10 −

263

480
DE8

= −1 + 144q1 + 67578q2 + 3470244q3 + . . .

Proof. As we have seen in Section 6, the period map of this degeneration extends to the
type II boundary. Thus, the theorem directly follows from the calculations and the main
theorem, since

aE10 + bDE8 = a+ (480b− 264a)q1 + . . .
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10. Outlook

To summarize this thesis, we found that the generating series of Noether-Lefschetz num-
bers is a quasi-modular form for type II degenerations. We needed to construct the
toroidal compactification, which had a dependence on some fan Σ. But in our case,
the calculations were invariant under choosing different Σ. Naturally, one would like to
understand this behavior in the type III case, too:
In this case the construction of the boundary is simpler, as it is even a tube domain:
One can embed the period domain

D ⊂ UJ ⊗ C ∼= C18

for J an isotropic line. But then the construction of the boundary components depends
on the chosen fan. A question is how to relate

C ·NLΣ
d

for different choices of Σ and moreover if the generating series considered in this thesis
is still a quasi-modular form.
As is shown in [ABE20], there are two ’natural’ choices for such fans: The ramification
fan Σram and the rational curve divisor fan Σrcd. The resulting toroidal compactifications
are normalizations of stable pair KSBA compactifications ofM. These compactifications
hence admit a modular description and this could yield to an different viewpoint on the
intersection products.
In [BZ19], Jan Hendrik Bruinier took a different approach, which is related more directly
to the original construction of Borcherds: He showed that for a special subgroup ΓL ⊂
O(Λ2,18) specific divisors Zn can be defined on the toroidal compactification of ΓL\D:
They are the closures of the Noether-Lefschetz divisors plus some boundary divisors with
a given multiplicity. Unfortunately it is hard to compute the multiplicities. The main
result of the paper is: ∑

i

Ziq
i ∈M10 ⊗ CH1(ΓL\D

Tor
).

Naturally, one would like to know if this theorem also extends to the moduli space of
K3 surfaces.
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A. Some Lattice Theory

Definition A.1. A lattice L is a free finitely generated Z-module, together with a
bilinear symmetric pairing 〈−,−〉 : L× L→ Z. It is called even if 〈v, v〉 ∈ 2Z for every
v ∈ L. The signature of a lattice is defined in the same way as for symmetric bilinear
forms.

Most lattices that naturally arise come from discrete subspaces of Rn:

Example A.2. The lattice Dn is defined as a subspace of Rn in the following way

Dn = {(ai)1≤i≤n |
∑

ai ≡ 0 mod 2}.

The intersection is the standard one from Rn restricted to the subspace. In the same
way we create a bigger lattice, which set-theoretically is defined by

En = Dn ∪ (Dn + (
1

2
, . . . ,

1

2
)).

for n = 8, 16. Again, the intersection pairing is given by restriction. Clearly, they are
all even and non-degenerate.

An important subclass of lattices is defined as follows:

Definition A.3. A root is an element v ∈ L, such that

〈v, v〉 = ±2.

The root lattice of L is the subspace R spanned by all roots. If R = L, we also call L a
root lattice. For each root v, we define the corresponding reflection

sv(v
′) = v′ − 〈v, v

′〉
〈v, v〉

v.

The group W(L) generated by these reflections is called the Weylgroup.

Example A.4. Clearly, Dn is a root lattice, as the elements ei = (0, . . . , 0,±1,±1, 0, . . . 0)
span the whole lattice. For the lattices E8 and E16 we will have to differentiate: Clearly
E8 is spanned by D8 and (1

2 , . . . ,
1
2). But the latter is also a root. So E8 is a root lattice

as well. On the other hand, any element in (1
2 , . . . ,

1
2) +D16 has square ≥ 4. Therefore

the sublattice D16 ⊂ E16 is the root lattice.
Therefore, from now on the lattice E16 is called D+

16.

Definition A.5. For a lattice L, we define the discriminant ∆. Therefore fix a basis
ei. Let A = (aij)i,j be the corresponding matrix of the bilinear form. Then

∆ = −detA.

If ∆ = ±1 the lattice is called unimodular.
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The following example is taken from [NS].

Example A.6. A generating set of E8 is given by the rows of the following matrix

2 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2


.

A computation of the corresponding matrix shows, that E8 is indeed unimodular.
A generating set for D+

16 is given in a similar fashion, and again one shows that D+
16 is

unimodular. It is important to note, that a generating set for D16 is given by the same
matrix, but the last row constists of the vector (1, . . . , 1).

The importance of these lattices is given by the following theorem:

Theorem A.7. [CS13] Up to automorphism there are 2 unimodular even non-degenerate
lattices, namely the irreducible lattice D+

16 and reducible one E8 ⊕ E8.

Another important example is given by the following:

Example A.8. Let U = Z2 and the intersection matrix is given by(
0 1
1 0

)
.

It is unimodular as well, but not non-degenerate. The basis is usually denoted by f, s.

As is taken from [Huy16]:

Lemma A.9. Let Λ be any lattice and U ↪→ Λ an inclusion. Then

Λ = U ⊕ U⊥.

Theorem A.10. Let Λ3,19 = U3 ⊕ E8(−1)2. Then any primitive embedding

U ↪→ Λ3,19

is unique up to isomorphism.

Theorem A.11. Let Λ be an unimodular, even lattice of signature (n+, n−) with 1 < n±.
Then any element x ∈ Λ with x2 = 2d is unique up to isomorphism.

Remark A.12. This in particular applies to the two lattices

Λ3,19 = U3 ⊕ E8 ⊕ E8

Λ2,18 = U2 ⊕ E8 ⊕ E8.

Remark A.13. Let L be an arbitrary lattice. Then −L or L(−1) denotes the same lattice,
but the intersection pairing is replaced by its negative.
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B. Some Hodge Theory

In this section, we briefly recall Hodge structures on cohomology and introduce mixed
Hodge structures.

Following [Huy16], let V be a free Z-module of finite rank, and denote by VQ and VC
the tensor product of V with the respective field.

Definition B.1. A pure Hodge structure of weight n of V (or VQ) is given by vector
spaces (V p,q)p+q=n, such that

VC =
⊕
p+q=n

V p,q

and V p,q = V q,p. A morphism of weight k of Hodge structures H1, H2 is given by a
morphism f : H1 → H2, such that f(Hp,q

1 ) ⊂ Hp+k,q+k
2 .

Remark B.2. This definition is equivalent to giving a decreasing filtration (F i)i ⊂ VC

VC ⊃ F 0 ⊃ . . . ⊃ Fn = 0

such that F p ⊕ F q = VC for all p+ q = n+ 1.
We get F p from V q,p by just setting F i =

⊕
p+q=n,p≥i V

p,q.

Definition B.3 ([PS00]). A mixed Hodge structure on the free Z-module V of finite rank
is given by

• An increasing (weight) filtration W = (Wi)i ⊂ VQ and

• an decreasing (Hodge) filtration F = (F j)j ⊂ VC,

such that F induces a pure Hodge structure of weight n on GrnW := Wn/Wn−1 in the
obvious manner. A morphism of mixed Hodge structures of weight 2l between H1, H2 is
given by a Q-linear morphism f : H1 → H2, such that

f(WiH1) ⊂Wi+2lH2,

f(F iH1) ⊂ F i+lH2.

Remark B.4. It follows that a map of mixed Hodge structures defines a morphism of
pure Hodge structures of weight 2l on the graded pieces GriH1 → Gri+2lH2.

Remark B.5. It is well known that on smooth Kähler manifolds, e.g. smooth varieties
(over C), a pure Hodge structure of weight n on the rational cohomology Hn(X,Q) is
simply given by the Hodge decomposition.
The situation is more involved, if we regard singular varieties over C. A theorem by
Deligne states, that the rational cohomology groups Hn(X,Q) can be equipped with
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a natural mixed hodge structure, such that for every morphism of algebraic varieties
f : X → Y , the map

f∗ : Hn(Y,Q)→ Hn(X,Q)

is a map of mixed Hodge structures of weight 0.

Remark B.6. In the case of K3 surfaces X, we get the Hodge decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

Moreover by the Hodge-Riemann bilinear relations, we get that the usual pairing

∩ : H2(X,C)×H2(X,C)→ H4(X,C) ∼= C, 11

satisfies

• x ∩ x = 0 and

• x ∩ x > 0

for all x ∈ H2,0(X), see e.g. [Huy16].

The following example is taken from [PS00].

Example B.7. Let X = V1 ∪E V2 be a complex complete surface, with Vi smooth and
normal crossings. Then we obtain the following sequence

H1(V1,Q)⊕H1(V2,Q)→ H1(E,Q)
δ−→ H2(X,Q).

The weight filtration for the mixed Hodge structure is then given by

0 ⊂W1 = Im(δ) ⊂W2 = H2(X,Q).

Applied to our main case, where E is an elliptic curve and Vi is rational, we obtain

0 ⊂W1 = Im(δ) ∼= H1(E) ⊂W2 = H2(X,Q)

as H1(V1,Q) = 0. Moreover in [PS00], it is shown that the Hodge structure on Gr1 = W1

is given by the Hodge structure of H1(E) coming from the variety E.

C. Toric Varieties

The following is mainly taken from [CLS11] and [Bru15]. It is a short introduction to
toric varieties and embeddings of tori into these spaces.

11The last isomorphism is canonical, as we can specify that the fundamental class of X is mapped to 1.
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Definition C.1. The n-dimensional torus T is defined as the group variety

T = (C∗)n

where the group structure is given by the componentwise multiplication.

Remark C.2. The tori from above are affine and isomorphic to

Spec(x±1 , . . . , x
±
n ).

There are two canonical lattices, which we will define next:

Definition C.3. Let T be a torus. The group of characters M is given by

M = Hom(T,C∗).12

The group of one-parameter subgroups is given by

N = Hom(C∗, T ).

Remark C.4. One can show, that every character χ of a torus T = (C∗)n is given by

χ(x1, . . . , xn) = xa11 · . . . · x
an
n ,

where (a1, . . . , an) ∈ Zn. Hence M ∼= Zn. On the other hand every one parameter
subgroup is given by

z 7→ (zb1 , . . . , zbn).

And hence, N ∼= Zn as well. Moreover we get a natural pairing

M ×N → Hom(C∗,C∗) ∼= Z

which turns out to be perfect, see [CLS11].

The building blocks of toric varieties are the affine ones:

Definition C.5. A toric variety is a variety V , that contains a torus T ⊂ V as a dense
open subset and the action T ×T → T given by the group structure extends to an action

T × V → V.

It is called affine if V is affine as a scheme.

12Here Hom denotes the group homomorphisms that are also morphisms of varieties.
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Proposition C.6 ([Bru15]). Let σ ⊂ N ⊗ R be a rational polyhedral cone, i.e. it
is a cone, that has a finite generating set which is rational. Then there is a one-to-one
correspondence between the affine toric varieties and rational polyhedral cones σ ⊂ N⊗R
given by

σ ↔ TV (σ) = Spec(C[σ∨ ∩M ]),

where C[σ∨ ∩M ] is the algebra generated by σ∨ ∩M and σ∨ ⊂M ⊗R is the dual cone,
i.e.

σ∨ = {m ∈M ⊗ R | (m,σ) ≥ 0}.13

An important example is given by the following, which is handy for the Type II cusps
in the toroidal compactification.

Example C.7. Let T = C∗ and hence N,M = Z. The cone R+ ⊂ R = N ⊗ R has dual
R+ and

Spec(C[R+ ∩M ]) = Spec(C[N]) = Spec(C[t]) ∼= C,

which clearly contains C∗ in the obvious way.

Remark C.8. Let σ be a rational cone in N ⊗ R, and σ′ ⊂ σ be a face. Then

TV (σ) ⊂ TV (σ′).

By the forgoing remark, we can glue certain affine toric varieties together, if we impose
some conditions:

Definition C.9. Let Σ be a collection of cones in N ⊗ R. It is called a fan

• if σ1, σ2 ∈ Σ, then σ1 ∩ σ2 ∈ Σ and

• f σ1 is a face of σ2 ∈ Σ, then σ1 ∈ Σ.

As it turns out, we get

Proposition C.10. Let Σ be a fan of N ⊗ R. Then, glueing the affine toric varieties
TV (σ) for all σ ∈ Σ as indicated, produces a toric variety TV (Σ). Moreover we get a
bijection between normal toric varieties and fans in N ⊗ R:

Σ↔ TV (Σ).

Proof. See [Bru15].

Remark C.11. If σ does not contain a straight line, which in our case is true, then
(C∗)n ⊂ V for n = dimN , see [CLS11].

13Here the pairing is the canonical one defined above.
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D. Hirzebruch Surfaces

Here we recall some basic facts and theorems about ruled surfaces and in particular
Hirzebruch surfaces. This section mainly follows [Har13].

Definition D.1. A surface X is called ruled surface, if there is a morphism

π : X → C

to a curve C, together with a section s : C → X, such that every fiber is isomorphic to
P1.

Remark D.2. One can show that the existence of a section follows from the other con-
ditions.

Proposition D.3. Every ruled surface X → C is of the form

P(E)→ C

where E is a locally free sheaf of rank 2 on C.

Definition D.4. A ruled surface X → P1 is called Hirzebruch surface.

Remark D.5. By a standard theorem every coherent locally free sheaf E on P1 is of the
form

⊕
1≤i≤mO(ni). Hence every Hirzebruch surface is isomorphic to

P(O(n)⊕O(m)) ∼= P(O ⊕O(m− n)).

Without loss of generality we may assume m− n ≤ 0. Define

Fn = P(O ⊕O(−n))→ P1

for n ≥ 0.

Theorem D.6. Let X = P(OP1 ⊕ OP1(−n))
π−→ P1 and OX(1) the relative invertible

sheaf. Then there is a section s : P1 → X. By abuse of notation, also denote the image
of the section by s. Then

OX(s) = OX(1).

Denote by f a fiber. We then have O(f) = π∗O(1),

Pic(X) = 〈f, s〉Z

and the intersection form is given by (
0 1
1 −n

)
.

Moreover the canonical bundle is given by

ωX = −2s− (2 + n)f.
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Calculating the cohomology we get

Proposition D.7. Let D be a divisor on Fn
π−→ P1 with D · f ≥ 0. Then

H i(Fn,O(D)) ∼= H i(P1, π∗O(D)).

Remark D.8. One can moreover show that π∗OF4 = OP1 . Hence

H i(Fn,O) = 0

for i > 0.

Example D.9. We get that

F0 = P1 × P1

F1 = BlpP2.

Moreover, except for n = 1, Fn is a minimal model by the Enrique-Kodaira classification
of surfaces.

Next we will fix some notation:

Setting D.10. Let Fn be the Hirzebruch surface. We then denote by

Z ∈ OF4(1)

the element that cuts out the section, i.e. V (Z) = s.
Moreover for simplicity we denote

OX(a, b) = OX(a)⊗ π∗OP1(b)

for every Hirzebruch surface X = Fn.
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