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1 Introduction

1.1 Overview

The Hilbert scheme X [n] of n points on a variety X is the scheme parametrizing zero dimensional length-
n subschemes of X. If X is a smooth projective surface, X [n] is smooth, and it is a (hyper-Kähler)
crepant resolution of the symmetric product X(n) = Xn/Sn via the Hilbert-Chow morphism.

In this thesis, we consider the case that X is a K3 surface, or more generally a smooth projective
surface with trivial canonical class.

The Chow groups of X [n] can be described by Nakajima operators, which define a Heisenberg algebra
action on and give a basis of the Chow rings

A∗(Hilb) =
⊕
n≥0

A∗(X [n]),

where Hilb =
∐
n≥0X

[n]. While the cup products of cohomological classes given in terms of these
operators can be computed using the work of Lehn and Sorger [13], the product of such classes in the
Chow ring has not been fully computed. The purpose of this thesis is to obtain a formula for this
product by proving that the Chow ring of X [n] is isomorphic to the orbifold Chow ring of [Xn/Sn].
This isomorphism is a case of the Motivic Hyper-Kähler Resolution Conjecture proposed by Fu, Tian
and Vial [8, Conjecture 1.3], one of several conjectures about crepant resolutions of singular spaces of
orbifolds relating their algebraic or topological invariants to certain invariants of the orbifold, based on
Ruan’s [20] cohomological Crepant Resolution Conjecture. For further discussion of these conjectures,
we refer to [8, §3].

Lehn and Sorger [13] proved that the cohomology ring H∗(X [n],Q) is isomorphic to a ring H [n] they
constructed from the cohomology H = H∗(X,Q) of X, namely the Sn invariants of⊕

g∈Sn

H⊗[n]/⟨g⟩ · g

with action by conjugation, and a product [13, (2.9)] defined naturally by the relationship of the orbits
of g, h, gh and ⟨g, h⟩, with a correction factor involving the Euler class. Fantechi and Göttsche [5] proved
that H [n] is isomorphic to the orbifold cohomology ring of X(n) (up to a sign change in the definition of
the product), originally defined by Chen and Ruan [4], [20], which Fantechi-Göttsche expressed as the
invariants of

H(Xn, Sn) =
⊕
g∈Sn

H∗((Xn)g) · g

with the natural Sn action and a product with correction factor coming from the top Chern class of
an obstruction bundle. While the absence of a Künneth decomposition for the Chow ring means we
cannot give an algebraic construction of A∗(X [n]) in the manner of Lehn-Sorger, we can still describe
its structure by obtaining an isomorphism with the orbifold Chow ring of [Xn/Sn]. This was defined
by Abramovich, Graber and Vistoli [1] in their work giving algebraic counterparts for Chen and Ruan’s
orbifold cohomology and Gromov-Witten theory, and Jarvis, Kaufmann and Kimura [11] constructed it
as the ring of invariants of a "stringy Chow ring" in a similar manner to Fantechi-Göttsche’s description
of orbifold cohomology. We define the orbifold Chow ring in Section 3, and examine its structure for
[Xn/Sn] in Section 4.

The work of De Cataldo and Migliorini [3] provides an additive isomorphism A∗(X [n]) ∼= A∗
orb(X

(n))
for all surfaces X, as proven by Fu, Tian and Vial [8, 5.2]. This isomorphism is closely related to the
Nakajima operators, as we shall see in Section 4. In particular, proving it is a ring isomorphism is
equivalent to proving that products of the Najakima basis of A∗(X [n]) can be computed by a certain
formula, given in (18).

In their preprint [7], Fu and Tian give a proof that this is a ring isomorphism, based on Voisin’s
announced theory of universally defined cycles.

In this work I present an alternate proof, following the techniques of Lehn-Sorger and adapting them
in a more geometric context. The main new input is the recent work of Maulik and Negut, [17], which
relates the operators of multiplication by certain Chern characters to the Nakajima operators, as we
recall in Theorem 2.4.
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Theorem 1.1. Let X be a smooth projective complex surface with trivial canonical class (in particular,
a K3 surface). Then there is an isomorphism of graded C-algebras

A∗(X [n]
)
C
∼= A∗

orb
(
[Xn/Sn]

)
C.

Indeed, we have an isomorphism in the category of complex Chow motives

h
(
X [n]

) ∼= horb
(
[Xn/Sn]

)
where horb([X

n/Sn]) is the orbifold Chow motive defined by Fu-Tian-Vial [8, Definition 2.5]

For non-K3 surfaces with trivial canonical class (namely abelian surfaces), this result has already
been obtained by Fu-Tian-Vial, [8, Theorem 1.4]. Our proof works for both types of surface. The use of
complex coefficients is only required to fix a sign disparity, and the theorem remains true with rational
coefficients if we introduce a sign change in the definition of the orbifold Chow ring.

The first step in proving the ring isomorphism will be proving it preserves multiplication by certain
Chern characters, which we shall describe in section 5. In 6, we describe orbifold correspondences and
operators, in order to transfer multiplication operators to the orbifold Chow ring. We put the pieces
together and complete the proof in 7

1.2 Conventions and notation

For the remainder of this thesis, all Chow rings will be taken with coefficients in the complex numbers
(or more restrictively they can be taken with Q[i]). Chern classes and characters are always taken in
the Chow ring with rational or complex coefficients, and for any x ∈ A∗(X) we denote by xd ∈ Ad(X)
the homogeneous component in degree d of x.

We will work with the language of operators between Chow rings and correspondences interchange-
ably: an operator a : A∗(X) → A∗(Y ) will here always be induced by a correspondence α ∈ A∗(X × Y )
such that ax = π2∗(α · π∗1x) for x ∈ A∗(X), where π1, π1 are the projections

X × Y

X Y

π2π1

Let αt ∈ A∗(Y ×X) be the transpose obtained from the isomorphism A∗(Y ×X) ∼= A∗(X × Y ), which
determines an operator A∗(Y ) → A∗(X).

Given another correspondence β ∈ A∗(Y × Z), we can take the composition

β ◦ α = π13∗(π
∗
23β · π∗12α) ∈ A∗(X × Z)

where πij are the projections

X × Y × Z

X × Y X × Z Y × Z

π13
π23π12

For any two correspondences α ∈ A∗(X × Y ), γ ∈ A∗(Z ×W ), we can take the product

α× γ ∈ A∗(X × Y × Z ×W ) ∼= A∗((X × Z)× (Y ×W ))

as a correspondence defining an operator A∗(X × Z) → A∗(Y ×W ).
We often work with operators of the form f : A∗(X [n]) → A∗(X [m] × Xr), which we can consider

as operators A∗(X [n]) → A∗(X [m]) parametrized by A∗(Xr). That is, for any α ∈ A∗(Xr) we have an
operator

f (α) : A∗
(
X [n]

)
→ A∗

(
X [m]

)
f(α)x = π1∗

(
π∗2 (α) · fx

)
4



X [m] ×Xt

X [m] Xt

π2π1

If g : A∗
(
X [m]

)
→ A∗

(
X [l] ×Xs

)
is another such operator, we can take their composition

gf : A∗
(
X [n]

)
→ A∗

(
X [l] ×Xs+r

)
where g goes to the first s factors of Xs+r and f to the last r, i.e.

gf := (g× idXs∗) ◦ f.

Thus if α ∈ A∗(Xr), β ∈ A∗(Xs) then gf(β × α) = g(β)f(α).
We sometimes need to reorder the indices of Xr in these operators, so if some permutation σ ∈ Sr

acts on Xr by permuting the factors, we denote

fσ(1)...σ(n) := (idX[m]∗×σ∗) ◦ f : A
∗
(
X [n]

)
→ A∗

(
X [m] ×Xs

)
.

In particular, when we take the commutator of two operators

p : A∗(Hilb) → A∗(Hilb×Xr)

q : A∗(Hilb) → A∗(Hilb×Xs),

where Hilb =
∐∞
n=0X

[n], we will implicitly reorder these indices:

[p, q] := pq− (qp)s+1...s+t,1...s : A∗(Hilb) → A∗(Hilb×Xs+t)

If α ∈ A∗ (Xr), we shall use the notation

αi1...ir := π∗i1...ir(α) ∈ A∗(Xs)

for any s and distinct integers 1 ≤ ij ≤ s. It is useful to extend this notation to the case that ij are not
distinct, to mean we intersect the corresponding indices, i.e.

αi1i1...ir−1 = π1...s,∗(∆i1,s+1 · π∗s+1,i1...ir−1
(α))

and so on.
We will need to apply similar transformations of operators: if f : A∗(X [n]) → A∗(X [m] × X) and

g : A∗(X [n]) → A∗(X [m] ×Xt) are operators, then we define operators

∆∗(f) : A
∗(X [n]) → A∗(X [m] ×X2)

∆∗(f)x = (idX[n] ×∆)∗(fx)

g|∆1...t
: A∗(X [n]) → A∗(X [m] ×X)

g|∆1...tx = (idX[n] ×∆1...t)
∗(gx)

where ∆ : X → X2 in the second line is the diagonal embedding, and ∆1...t : X → Xt is the small
diagonal embedding. Inserting parameters α ∈ A∗(X2), β ∈ A∗(X) gives

∆∗(f)(α) = f(∆∗(α)) = f(α11)

g|∆1...t(β) = g(∆∗(β)) = g(β1∆1...t)

Finally, we often work with projections from X [n] ×Xs onto the various factors, so denote by

πi1,...,ir : X [n] ×Xs → Xr

the projection onto the factors i1, . . . ir of Xr, and by

π[n],i1,...,ir : X [n] ×Xs → X [n] ×Xr

the projection onto both X [n] and the factors i1, . . . ir of Xr. In particular we denote the pushforward
along the projection away from an index i by

∫
i, i.e. for x ∈ X [n] ×Xs we have∫

i
x = π[n],1,...̂i...s,∗x
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2 Hilbert Schemes of Surfaces

2.1 K3 Surfaces

For our purposes, a K3 surface is a connected smooth projective complex algebraic surface with trivial
canonical bundle ωX ≃ OX (or equivalently c1(TX) = 0), and H1(X,OX) = 0. The only surfaces with
trivial canonical class are K3 surfaces and tori, so the latter condition is equivalent to not being a torus.

Our proof will work for any surface with trivial canonical class, but the result for Abelian surfaces
has already been proven by Fu-Tian-Vial [8, Theorem 1.5]. Let e = c2(TX) be the Euler class; for K3
surfaces Beauville and Voisin [2] proved that e = 24c where c ∈ A2 (X) represents any closed point on
a rational curve in X.

2.2 Hilbert Schemes of Points

Let X be a complex projective variety. The Hilbert scheme of n points on X is the parameter space of
closed subschemes of length n, often represented by their ideal sheaves:

X [n] = {Z ⊂ X | dimH0(Z,OZ) = n} = {I ⊂ OX | dimH0(X,OX/I) = n}

This is a projective variety, as the simplest case of a Hilbert scheme HilbP (X) constructed by
Grothendieck [10] which parametrize closed subschemes of X with Hilbert polynomial P .

In our case X is always a smooth projective surface, so X [n] is smooth of dimension 2n as proven
by Fogarty [6].

The cohomology and Chow groups of Hilbert schemes of points of surfaces can be described using
operators constructed by Nakajima [18] (see also Grojnowski [9]) as follows. Let n ≥ 0 and k ≥ 1, and
consider the closed subscheme

X [n,n+k] = {(I ⊃ J) | Supp
(
I/J

)
= {x} for some x ∈ X} ⊂ X [n] ×X [n+k] (1)

with projections
X [n,n+k]

X [n] X X [n+k]

pX
p+p− (2)

As a correspondence this defines the Nakajima operators q±k : A
∗(X [n]

)
→ A∗(X [n±k] ×X

)
by

qk = (p+ × pX)∗ ◦ p
∗
− : A∗(X [n]

)
→ A∗(X [n+k] ×X

)
q−k = (−1)k (p− × pX)∗ ◦ p

∗
+ : A∗(X [n+k]

)
→ A∗(X [n] ×X

)
These operators can be combined for each n giving operators

qk : A
∗(Hilb) → A∗(Hilb×X)

for any 0 ̸= k ∈ Z. They operators satisfy relations

[qk, ql] = kδ0k+l IdX[∗] ×∆

as correspondences A∗(Hilb) → A∗(Hilb×X2), or if α, β ∈ A∗(X)

[qk(α), ql(β)] = kδ0k+l

∫
X
(α · β) idHilb

as correspondences A∗(Hilb) → A∗(Hilb)
Note that our Nakajima operators qk, q−k correspond to Lehn-Sorger’s p−k,−pk.

Definition 2.1. 1. If λ = (λ1, . . . , λd) is a partition, denote qλ := qλ1 . . . qλd .

2. Let v be the identity in A∗(X [0]) ≃ C, sometimes called the vacuum vector.

Thus for any α ∈ A∗(Xd) and any partition λ1 + · · ·+ λd = n, we have an element

qλ1 . . . qλd(α)v ∈ A∗(X [n]).

These elements can be used to describe a basis; the precise statement will be formulated in Theorem 4.5
after giving more context
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2.3 Chern characters

Let Ξn ⊂ X [n] ×X be the universal subscheme, which is characterized by the property

Ξn ∩ ({I} ×X) = {I} × Z

for any Z ⊂ X of length n cut out by the ideal sheaf I.
The Chow ring of X [n] can also be described in terms of operators Gd : A

∗(X [n]
)
→ A∗(X [n] ×X

)
defined by multiplication by the d’th Chern character of the tautological sheaf OΞn , i.e.

Gdx = chd (OΞn) · π∗[n]x

Based on the work of Markmann [16], Negut,-Oberdieck-Yin showed

Theorem 2.2 ([19, Theorem 2.3]). Any element of A∗(X [n]) can be expressed as a sum of elements of
the form

Gd1 . . .Gdk (α) · 1X[n]

with α ∈ A∗(Xk)

In order to prove our main theorem, we need an expression for the operators Gd in terms of Nakajima
operators, which is provided by the work of Maulik and Negut [17] (the cohomological version of which
is due to Li, Qin and Wang [14]).

Definition 2.3. 1. Let n ∈ Z and d ≥ 0. A generalized partition of n with length d is a partition
consisting of (possibly negative) nonzero integers

(λ1, . . . , λd) = λ = (. . . (−2)m−2(−1)m−11m12m2 . . . )

with
∑d

j=1 λj = n =
∑

i∈Z imi. Define

|λ| = n, l(λ) = d, s (λ) =
∑
i

i2mi, and λ! =
∏
i

mi!.

and let PZ(n, d) be the set of all such generalized partitions. We sometimes use λ ⊢ n to mean λ
is a partition of n.

2. If n > 0 let P(n, d) be the set of partitions of n into d parts in the usual sense, i.e. each λj > 0
for all j (or equivalently mi = 0 for i < 0).

Now we can state the theorem of Maulik-Negut:

Theorem 2.4 ([17, Thm 1.7]). If c1(TX) = 0 and c2(TX) = e, there are operators

{Jkn : A∗ (Hilb) → A∗ (Hilb×X)}k≥0
n∈Z,

such that

J0n = −qn

Jk0 = k!

(
Gk+1 +

1

12
π∗X (e)Gk−1

)
,

which are given in terms of Nakajima operators as [17, (3.16)]

Jdn = d!

−
∑

λ∈PZ(n,d+1)

1

λ!
qλ|∆1...d+1

+
∑

λ∈PZ(n,d−1)

s (λ) + n2 − 2

24λ!
π∗X (e) qλ|∆1...d−1

 (3)

The commutator of these operators is given by, if k + k′ ≥ 3,

[Jkn, J
k′
n′ ] = (kn′ − k′n)∆∗(J

k+k′−1
n+n′ ) + Ωk,k

′

n,n′∆∗

(
π∗X(e)

12
Jk+k

′−3
n+n′

)
(4)

for some integers Ωk,k
′

n,n′ which are given in [14, 5.2] (using a different sign convention k ↔ −k)

7



Thus we have an expression for Gd in terms of Nakajima operators:

Gd =
Jd−1
0

(d− 1)!
−
π∗X (e) Jd−1

0

12 (d− 1)!
= −

∑
λ∈PZ(0,d)

1

λ!
qλ|∆1...d

+
∑

λ∈PZ(0,d−2)

s (λ) + n2

24λ!
π∗X (e) qλ|∆1...d−2

(5)

The tautological sheaf O[n] = π[n]∗ (OΞ) is a vector bundle of rank n on X [n] (as the projection
Ξ → X [n] is flat and finite of degree n), and by Grothendieck-Riemann-Roch we have

ch
(
O[n]

)
= π[n]∗

(
ch
(
OΞ2

)
π∗X (tdX)

)
.

Indeed, we also consider Chern character operators that relate more closely to O[n]

Gdx =
(
ch (OΞn) · π∗X(tdX)

)
d
π∗[n] (x) ,

where (−)d denotes taking the homogeneous component of degree d. These can be expressed as

Gd = Gd + 2π∗X(c)Gd−2 =
Jd−1
0

(d− 1)!
(6)

These Gd are denoted as Gd in cohomology by Li-Qin-Wang [15, 5.1]. We can take the total Chern
character operator

G :=
∑
d≥0

Gd

with Lehn-Sorger’s tautological classes [13, 3.6] being α[n] = G(α) In particular, G(1) = ch(O[n]).
The Chern character operators described above give a way to describe multiplication in A∗(X [n])

using Nakajima operators; in principle computing the product qλ(α)v · qν(β) can be done by obtaining
an expression for qλ(α)v in terms of Chern character operators, applying (5) to obtain an expression for
the multiplication operation and using the commutation relations to reduce the result to the Nakajima
basis. To obtain a general formula for the product, however, it is more reasonable to look to the orbifold
Chow ring of [Xn/Sn] where a product formula already exists, and work back to prove these rings are
isomorphic by comparing the action of operators Gd1 . . .Gdr(α) to the orbifold multiplication by the
image of Gd1 . . .Gdr(α) · 1X[n] .

2.4 Virasoro operators

We also consider the Virasoro operators

Ld =
1

2

∑
a+b=d
a,b∈Z

:qaqb:
∣∣
∆
= −J1d,

originally constructed in cohomology by Lehn, where :−: is the normal ordered product which rearranges
the factors qi1 . . . qir in descending order of the indices {ij}.

Lemma 2.5. These operators satisfy

[Ln, qk] = −k∆∗(qn+k)

Proof. All terms of
1

2

∑
a+b=d
a,b∈Z

[:qaqb:, qk]

vanish except those with a = −k or b = −k. The case 2k = −n has to be considered separately, so
assume −k ̸= n+ k. Since :qkqn−k: = :qn−kqk: = qkqn−k,

1

2

∑
a+b=d
a,b∈Z

[:qaqb:, qk] = [qn+kq−k, qk]

= qn+k[q−k, qk]

= −kqn+k ×∆.

8



Then we have

[Ln, qk] = −k(qn+k ×∆)|∆12

= −k
∫
2

(
∆12∆23 ·

(
qn+k ×X2

))
= −k

∫
2

(
∆123 ·

(
qn+k ×X2

))
= −k∆12 · (qn+k ×X)

= −k∆∗(qn+k)

as required.
Meanwhile if n = −2k, we get

1

2

∑
a+b=d
a,b∈Z

[:qaqb:, qk] =
1

2
[q−kq−k, qk]

=
1

2

(
q−k[q−k, qk] + ([q−k, qk]q−k)

132
)

=
1

2

(
q−k ×∆+ (q−k ×∆)132

)
.

which is ∆∗(q−k) = ∆∗(qn+k) by similar arguments to the first case for each term.

Under the assumption that t = c1(TX) vanishes, we have

[∂, qk] =

[
−1

2
J20(1), J

0
k

]
= −kJ1k = kLk

If t ̸= 0, we can still compute this commutator using [17, Theorem 1.6], which gives the expression

∂ = G3(1) = −1

6

∑
n1+n2+n3=0

:qn1qn2qn3
:(∆123)−

t

2

∞∑
k=1

kqkq−k(∆12).

Applying the Nakajima relations one can, assuming k > 0, compute the commutator

[∂, qk] = kLk +
k(k − 1)

2
tqk (7)

In particular, if k, l > 0 we have
[[∂, qk], ql] = −kl∆∗qk+l (8)

This allows us to construct the operators qk from only q1 and ∂, a crucial reduction step in our later
results.

Lemma 2.6.
qk = (−1)k−1 1

(k − 1)!
ad([∂, q1(1)])

n−1q1

Proof. This follows from repeatedly applying the relation

[[∂, q1(1)], qk] = −kqk+1.

9



3 Orbifolds

3.1 Orbifold Chow Ring

The total orbifold Chow group is abstractly defined [1, 4.4] as follows.

Definition 3.1. Let X be an orbifold. Consider the inertia stack

X1 = {(x, g) | x ∈ Ob(X ), g ∈ Aut(x)} = X ×X×X X

and X1 be its coarse moduli space. The total orbifold Chow group of X is defined as the total Chow
group of X1

A∗
orb(X ) := A∗(X1).

If X = [M/G] is a global quotient, we can construct this by first defining the stringy Chow group

A∗ (M,G) =
⊕
g∈G

A∗ (Mg) · g, (9)

which is the Chow group of the inertia variety

IG(M) :=
∐
g∈G

Mg.

There is a natural G action g : Mh → Mghg−1 on IG(M), with the inertia stack being the quotient by
this action. We denote the induced action on A∗(M,G) by x 7→ g • x, and the orbifold Chow group is
given by the invariants of this action:

A∗
orb([M/G]) = A∗(M,G)G (10)

If x ∈ A∗(M,G), we will use the notation xg ∈ A∗(Mg) for the projection onto the summand
A∗(Mg) · g.

The total stringy and orbifold Chow groups have a grading that is shifted from the original grading
of the direct summands.

Definition 3.2. Let g ∈ G be of order r, and x be a point of M fixed by g. The age or degree shifting
number of an element g at x is

a (g, x) =
m∑
j=1

αj
r

where e2πi
αj
r , j = 1, . . .m, 0 ≤ αi < 1 are the eigenvalues (repeated with multiplicity) of the action of

g on the tangent space TxM at x. In the case that Mg is connected, we say the age a (g) of g is the
constant value a (g, x) for any x.

Note that a (g) + a
(
g−1
)
= codim (Mg ⊂M).

Then the grading on the stringy Chow group is given by

Ak (M,G) =
⊕
g∈G

Ak−a(g) (Mg) (11)

assuming Mg is connected (otherwise the grading is shifted separately on each component). As the age
is invariant under conjugation, this descends to a grading on A∗

orb(M).
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3.2 The orbifold product

The ring structures on A∗(M,G) and A∗
orb(X ) are complicated to define, in particular the appearance

of an obstruction bundle on M ⟨g,h⟩ and its top Chern class. Abramovich-Graber-Vistoli define [1, 4.7]
orbifold Gromov-Witten operations, of which the ordinary product is the 3 point case with homology
class 0. Meanwhile Fantechi-Göttsche defined the product in H∗(M,G) explicitly using an obstruction
bundle constructed from a Galois cover, while Jarvis-Kaufmann-Kimura define [11, 1.6] the product in
A∗(M,G) the same way except the obstruction bundle is given as an explicit expression in K(M ⟨g,h⟩),
which is the simplest version thus the one we use.

Consider the decomposition

TM |Mg =

r−1⊕
j=0

Wg,j ,

where Wg,j is the eigen-subbundle associated to the eigenvalue e2πi
j
r Define the virtual bundle

Sg =

r−1⊕
j=0

j

r
Wg,j ∈ K0 (M

g) (12)

For g, h ∈ G, the obstruction bundle Fg,h on Mg,h := M ⟨g,h⟩ = Mg ∩Mh can be defined in the K
group as

Fg,h = Sg|Mg,h + Sh|Mg,h + S(gh)−1 |Mg,h + TMg,h − TM |Mg,h (13)

This is shown in [11] to be an actual vector bundle; its rank is

a (g) + a (h)− a (gh)− codim
(
Mg,h ⊂Mgh

)
Lemma 3.3. For any g, h,G, let H = ⟨g, h⟩

1. The vector bundles Fg,h and Fh,g on MH are isomorphic

2. Let v ∈ G, then the isomorphism v :MH →MvHv−1 gives an isomorphism v∗Fvgv−1,vhv−1
∼= Fg,h.

Proof. 1. This follows from the fact that, if l ∈ H, Sg|MH
∼= Slgl−1 |MH . Indeed, if Wg,j |MH is

the eigen-subbundle of TMMH with respect to the action of g with eigenvalue e2π
√
−1 j

r , then
Wlgl−1,j |MH = l(Wg,j |MH ) is the corresponding eigenbundle of the action of lgl−1. Thus the
summands (12) of Sg and Slgl−1 with the same coefficients are isomorphic when restricted to MH ,
so Sg|MH

∼= Slgl−1 |MH .

Since (hg)−1 = g−1(gh)−1g is conjugate to (gh)−1 in H, we have Fg,h = Fh,g as they only differ
in the terms S(gh)−1 |MH

∼= S(hg)−1 |MH .

2. By definition, Wvgv−1,j = v ·Wg,j , so Sg = v∗Svgv−1 and the claim follows.

Let g, h ∈ Sn and consider the diagram

Mg Mh

Mg,h

Mgh

ιgh

The orbifold intersection product is defined for the summands

⋆ : Ai−a(g) (Mg)⊗Aj−a(h)
(
Mh
)
→ Ai+j−a(gh)

(
Mgh

)
11



by

αg ⋆ βh = ιgh∗

(
α|Mg,h · β|Mg,h · ctop

(
Fg,h

))
· (gh)

This product is associative [11, Lemma 5.4]. By Lemma 3.3.2, it is compatible with the G action:
(g •x) ⋆ (g • y) = g • (x ⋆ y), so descends to a product on A∗

orb([M/G]), which [11, 8] is equivalent to the
other definitions of the orbifold intersection product.

When restricted to A∗(M,G)G, it is also commutative; this is immediate from the symmetry of
Abramovich-Graber-Vistoli’s definition, but in the stringy Chow ring there is a stronger statement that
the invariant subring is central:

Lemma 3.4. If x ∈ A∗(M,G)G and y ∈ A∗(M,G), x ⋆ y = y ⋆ x. In particular, the ring A∗
orb([M/G])

is commutative.

The proof is the same as that of [5, Thm 1.29], using Lemma 3.3.

4 The Hilbert Scheme and the symmetric product

4.1 The symmetric group

Let Sn be the symmetric group on n letters [n] := {1, . . . , n}. Each element of Sn has a disjoint cycle
decomposition whose cycle type is represented by a partition λ = (λ1, . . . , λr) ⊢ n which also describes
the lengths of its orbits. If λ = (1m12m23m3 . . . ), the symmetric group of lambda is defined as

Sλ = Sm1 × Sm2 × Sm3 × . . . .

We can label the orbits of g by 1, . . . , r such that λj is the length of orbit j, and Sλ acts simply
transitively on the set of such labellings (or on the orbits if a labelling is fixed).

Let Sn,λ ⊂ Sn be the conjugacy class of permutations with cycle type λ, and Cλ := |Sn,λ| be their
number. We will often abbreviate g ∈ Sn,λ as g ∈ λ.

Let Z(g) = {h ∈ Sn | hgh−1 = g} be the centralizer of g, and Zλ = |Z(gλ)| be the order of the
centralizer of any gλ ∈ λ. Z(g) is isomorphic to the semidirect product (Z/(λ1)×· · ·×Z/(λr))⋊Sλ, where
the normal subgroup Z/(λ1)×· · ·×Z/(λr) is generated by each cycle of the disjoint cycle decomposition,
so

Zλ =
∏
j≥1

jmjmj !, Cλ =
n!

Zλ
=

n!∏
j≥1 j

mjmj !

4.2 The symmetric product orbifold

Now consider the orbifold [Xn/Sn], where Sn acts on Xn by permuting the factors.
The age of an element g ∈ Sn is given by a (g) = n − |Sn/⟨g⟩| = l (g), the length of the shortest

expression of g as a product of transpositions. We also define the age of a partition λ ∈ P (n, d) to be
n− d, the age of a permutation of cycle type λ.

The coarse moduli space of [Xn/Sn] is the symmetric product X(n) = Xn/Sn. This quotient variety
is singular, with a resolution given by the Hilbert-Chow morphism

ρ : X [n] → X(n)

which takes a length-n subscheme Z ∈ X to the collection
∑

x∈Z l(OZ,x) of its points counted with
multiplicity. This is a crepant (or equivalently hyper-Kähler) resolution, meaning it preserves the
canonical bundle: ρ∗ωX(n) = ωX[n] .

As discussed in the introduction, the motivic hyper-Kähler resolution conjecture [8] posits an iso-
morphism of algebra objects h

(
X [n]

) ∼= h∗orb
(
X(n)

)
in the category of complex Chow motives, which we

shall go on to prove in this case.

Remark 4.1. In the remainder of this thesis we shall slightly abuse notation by referring to the orbifold
[Xn/Sn] as X(n); there should be no ambiguity as we will not need to refer to the quotient variety again.
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We now examine the structure of A∗
orb(X

(n)). The following lemma was proven in [5, Thm 3.8] but
we shall prove it directly using the construction (13).

Lemma 4.2. If g, h ∈ Sn, the top Chern class of Fg,h is

ctop(Fg,h) =
∏

o∈O(g,h)

π∗o(c2(X)gr(h,l)(o)) (14)

where O(g, h) is the set of orbits of ⟨g, h⟩, πo : (Xn)⟨g,h⟩ ∼= XO(g,h) → X is the projection to the o’th
component, and gr(h, l) : O(g, h) → N is the graph defect function [13, 2.7]

gr(h, l)(o) =
1

2
(|o|+ 2− |o/⟨l⟩| − |o/⟨h⟩| − |o/⟨lh⟩|)

Proof. We can decompose Xn =
∏
o∈O(g,h)X

|o| with H acting separately on each factor, and the tangent
bundle decomposes as

TXn =
⊕

o∈O(g,h)

π̄∗oTX
|o|,

where π̄o : Xn → X |o| is the projection. Then every term in (13) splits this way so we have

Fg,h =
⊕

o∈O(g,h)

π̄∗oFo;g,h,

where Fo;g,h is (13) for M = X |o|. Hence we may consider each orbit seperately, regarding H as a
subgroup of S|o| with a single orbit on {1, . . . , |o|} acting on X |o| for each o ∈ O(g, h), and have to prove
that ctop(Fo;g,h) = c2(X)gr(h,l)(o). Then MH = ∆ is the diagonal in Xn.

If g has cycle type λ = (λ1, . . . , λr), then (Xn)g ∼= Xr with

TXn|(Xn)g
∼=

r⊕
j=1

π∗j (TX
λj |∆j )

where ∆j
∼= X is the small diagonal in Xλj and πj are the projections onto the factors (Xn)g ∼=

Xr → X. Each TXλj decomposes into eigenbundles isomorphic to T∆i having eigenvalues e
√
−1πk/λj

for k = 0, . . . , λj − 1. Restricting to (Xn)H = ∆ ∼= X, which in the above description is the small
diagonal in Xr, we get

Sg|∆ =

j∑
i=1

λj−1∑
k=0

k

λj
T∆

But
∑λj−1

k=0 k = 1
2λj(λj − 1), so the coefficient is 1

2

∑j
i=1(λj − 1) = 1

2 l(g) = 1
2(n − |O(g)|). Since

TXn
∆
∼= T∆

⊕
n, we get

Fg,h =

(
1

2
(n− |O(g)|+ n− |O(h)|+ n− |O((gh)−1)|) + 1− n

)
T∆ = gr(g, h)(o) · T∆

in K(∆) (using O((gh)−1) = O(gh)), which proves the claim.

If g is of cycle type λ = (λ1, . . . , λr), and we label the orbits of g with 1, . . . , r according to their
lengths, then (Xn)g ∼= Xr. Define Xλ := Xr, and we use the notation (Xn)g ∼=λ Xλ to mean an
isomorphism determined by such a labelling.

A choice of g ∈ ν and (Xn)g ∼=ν X
ν determines an isomorphism of quotient varieties(∐

h∈ν
(Xn)h

)
/Sn ∼= Xν/Sν =: X(ν),
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so choosing representatives of each cycle type gives an isomorphism(⊕
h∈ν

A∗((Xn)h)

)Sn

∼= A∗(Xν)Sν ∼= A∗(X(ν)),

hence

A∗
orb
(
[Xn/Sn]

) ∼=⊕
ν⊢n

A∗ (Xν)Sν ∼= A∗
(∐
ν⊢n

X(ν)
)

(15)

as shown in [8, Lemma 5.3].

4.3 The additive isomorphism

Following [7, 4], for a partition ν of n consider correspondences

Γν =
(
X [n] ×X(n) Xν

)
red

= {(Z, x1, . . . , xk) | ρ (Z) = ν1x1 + · · ·+ νkxk}

This correspondence is equal to the Nakajima correspondence qν · v ∈ A∗
(
X [n] ×Xν

)
, see [19, Thm

2.4].
For any g ∈ Sn of cycle type ν, we denote Γg ∈ A∗

(
X [n] × (Xn)g

)
for the image of Γν under any

identification (Xn)g ∼=ν X
ν (Γν is symmetric under Sν so the choice of identification doesn’t matter).

Define the morphism

Γ =
∑
g∈G

1
√
−1

a(g)
Γg : A

∗
(
X [n]

)
→
⊕

A∗−a(g) ((Xn)g
)
= A∗ (Xn, Sn) .

The factor of
√
−1

−a(g) is required to make signs compatible; one could remove it and define the
morphism for rational coefficients by adding a sign change in the definition of ⋆orb.

Let ι : A∗
orb
(
[Xn/Sn]

)
→ A∗ (Xn, Sn) and p : A∗ (Xn, Sn) → A∗

orb
(
[Xn/Sn]

)
be the inclusion of and

projection onto the Sn-invariant component; in particular p is the symmetrizer

p (x) = Sym (x) :=
1

n!

∑
g∈Sn

g • x.

Then

Theorem 4.3 ([7, 4.2]).

Φ = p ◦ Γ : A∗(X [n]
)
→ A∗

orb
(
X(n)

)
Ψ =

1

n!
Γt ◦ ι : A∗

orb
(
X(n)

)
→ A∗(X [n]

)
are a pair of inverse isomorphisms of vector spaces. Moreover, they are isomorphisms in the category
of complex Chow motives

h
(
X [n]

) ∼= h∗orb
(
X(n)

)
Using (15), this reduces to the main result [3, Thm. 5.4.1] of De Cataldo and Migliorini, which

provides an isomorphism ⊕
ν⊢n

A∗(X(ν)) ∼= A∗(X [n])

using the quotient of the correspondences Γν by Sν .
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In particular, if g ∈ λ and αg ∈ A∗((Xn)g) ⊂ A∗(Xn, Sn) in the is the image of α ∈ A∗(Xλ) under
any choice of Xλ ∼=λ (Xn)g, then we have

Γtg
(
αg
)
= qλ (α) v∑

h∈Sn

(−1)a(g) Γg
(
qλ (α) v

)
= n! Sym

(
αg
)

If α ∈ A∗(Xλ)Sλ , then for each h ∈ λ there is a unique αh ∈ A∗((Xn)h) coming from any choice of
Xλ ∼=λ (Xn)h, with

Sym(αg) =
1

Cλ

∑
h∈λ

αh,

and thus
Φ(qλ(α)v) =

√
−1

a(g)
Zλ
∑
h∈λ

αh. (16)

Remark 4.4. The morphism Ψ = 1
n!Γ

t is defined on all of A∗(Xn, Sn). By the symmetry of Γ, it
satisfies

Ψ(x) = Ψ(Sym(x))

for any x ∈ A∗(Xn, Sn).
Similarly, the projection p is in the definition of Φ for purely formal reasons; the image of Γ is already

contained in the invariant subring of A∗(Xn, Sn).

A closely related consequence of [3] is the the existence of a basis of A∗(X [n]) using Nakajima
operators:

Theorem 4.5 ([19, Theorem 2.4]). There is a decomposition

A∗(X [n]) =
⊕
λ⊢n

qλ
(
A∗(Xλ)Sλ

)
i.e. a basis {qλ(α)}λ⊢n where α ranges over a basis of the symmetric part A∗(Xλ)Sλ of A∗(Xλ)

The main result of this thesis is the folowing theorem

Theorem 4.6 ( =⇒ Theorem 1.1). The maps Φ,Ψ defined above are inverse isomorphisms of rings

A∗
(
X [n]

)
∼= A∗

orb

(
X(n)

)
Using this we can compute the intersection products of the Nakajima basis qν(α)v · qλ(β)v. Indeed,

assuming α ∈ A∗(Xλ)Sλ and β ∈ A∗(Xν)Sν are already symmetric,

qν(α)v · qλ(β)v = Ψ(Φ(qλ(α)v) ⋆ Φ(qν(β)v))

= Ψ

(−1)−
3
2
(a(λ)+a(ν))(n!)2

CνCλ

∑
g∈ν
h∈λ

ιg,h∗

αh|Xg,h · βh|Xg,h ·
∏

o∈O(g,h)

π∗o(e)
gr(g,h)(o))




qν(α)v · qλ(β)v =
n!

CνCλ

∑
g∈ν
h∈λ

(−1)
1
2
(a(g,h))qκgh

ιg,h∗

αg|Xg,h · βh|Xg,h ·
∏

o∈O(g,h)

π∗o(e)
gr(g,h)(o)


 v (17)

where we abbreviate a(g, h) := a(g) + a(h)− a(g, h) (Lehn-Sorger call this quantity the degree defect),
e = 24c is the Euler class of X, ιh,l : Xh,l ↪→ Xhl is the inclusion and κhl is the cycle type of gh. We
can fix a certain g ∈ ν to simplify

qν(α)v · qλ(β)v =
n!

Cλ

∑
h∈λ

(−1)
1
2
(a(g,h))qκgh

(
ιg,h∗

(
αg|Xg,h · βh|Xg,h ·

∏
o∈O(g,h)

π∗o(e)
gr(g,h)(o)

))
v (18)
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The proof of Theorem 4.6 follows the method Lehn and Sorger [13] used to prove a cohomological
version. We prove that

Φ(x) ⋆ Φ(y) = Φ(x · y) (∗)

by the following reduction steps:

• Prove (∗) in the case x = c1(O[n])

• Develop the notion of orbifold correspondences, letting us consider elements and operators of
orbifold Chow rings parametrized by A∗(Xs), and transfer operators from the Hilbert scheme side
to the orbifold side

• Reduce to the case that y = q1z ∈ A∗
orb(X

[n] ×Xs)

• Prove (∗) in the case x = c(O[n]) (and hence x = chd(O[n])) by using the commutator [c(O[∗]), q1]
to reduce to c1(O[n])

• Prove that the operators Gd transfer properly from the Hilbert scheme to the orbifold side by
looking at their commutator with q1 and using the transfer property to reduce to Gd(1)

• Prove the case x = Gd1 . . .Gds(α), which gives the claim for all x ∈ A∗(X [n]).

5 Properties of tautological Chern classes and Chern character oper-
ators

5.1 Chern classes and their commutators

In this section we obtain some properties of Chern classes and characters of the tautological sheaf and
multiplication by them, in order to prove the isomorphisms Φ and Ψ are multiplicative for c1(O[n]).Let
X be any smooth projective surface. The work of Lehn [12] gives a description of the Chern classes of
tautological sheaves on X [n] in terms of Nakajima operators.

Proposition 5.1. We have the following commutators

1. c
(
O[n+1]

)
q1 − q1c

(
O[n]

)
= [∂, q1]c

(
O[n]

)
2. [G, q1] = ∆∗(exp(ad ∂)q1)

Proof. This proposition and proof is a modification of Lehn’s result in cohomology [12, Thm 4.2], with
the first claim being more specific and the second more general as required in this context. Consider
the diagram (2) used to define the operator q1:

X [n] X [n,n+1] X [n+1]

X

ϕ ψ

σ

where X [n,n+1] is the nested Hilbert scheme (1). By previous results of Lehn’s paper, there is an exact
sequence on X [n,n+1] ×X

0 → σ∗XO∆X
⊗ π∗1Λ → ψ∗

X(OΞn+1) → ϕ∗X(OΞn) → 0 (19)

where Λ = OX[n,n+1](−E) is a line bundle defined by the exceptional divisor E of X [n,n+1] considered
as a blow-up of X [n] ×X, but its identity is irrelevant aside from being a line bundle. Let λ = c1(Λ).

1. The exact sequence (19) pushes forward to

0 → Λ → ψ∗(O[n+1]) → ϕ∗(O[n]) → 0
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so ψ∗c(O[n+1]) = ϕ∗c(O[n])(1 + λ). Then

c(O[n+1])q1x = π∗
X[n+1](c(O[n+1]))(ψ × σ)∗(ϕ

∗(x))

= (ψ × σ)∗(ψ
∗(c(O[n+1]))ϕ∗(x))

= (ψ × σ)∗((1 + λ)ϕ∗(c(O[n+1])x))

= q1c(O[n])x+ (ψ × σ)∗(λϕ
∗(c(O[n+1])x)).

If we look at the component with degree 1 specifically we find

[∂, q1]x = c1(O[n+1])q1x− q1c1(O[n])x = (ψ × σ)∗(λϕ
∗(c0(O[n+1])x))

= (ψ × σ)∗(λϕ
∗(x)),

hence the operator x 7→ (ψ × σ)∗(λϕ
∗(x)) is just [∂, q1]. We obtain

c(O[n+1])q1x− q1c(O[n])x = [∂, q1]c(O[n+1])x

as required.

2. Now consider the Chern characters of (19)

ψ∗
X ch(OΞn+1)− ψ∗

X ch(OΞn+1) = σ∗X ch(O∆)π
∗
1 exp(λ) (20)

There are two morphisms

(ψ, σ)X , (ψX , σ) : X
[n,n+1] ×X → X [n+1] ×X ×X

where σ : X [n,n+1] → X goes to the second and third factor respectively. They are related by
(ψ, σ)X = (idX[n+1] × tw)(ψX , σ) where tw : X ×X → X ×X exchanges the factors.

There is a commutative diagram with cartesian squares

X ×X

X [n] ×X X [n,n+1] ×X X [n+1] ×X ×X

X [n] X [n,n+1] X [n+1] ×X

π1

ϕX

σX

(ψX ,σ)

π1 π13

π32

ϕ

(ψ,σ)

Then we have

Gq1x = π∗12(ch(OΞn+1))π
∗
2(tdX) · π∗13(ψ, σ)∗(ϕ∗(x))

= π∗12(ch(OΞn+1))π
∗
2(tdX) · (ψX , σ)∗(π∗1ϕ∗(x))

= (ψX , σ)∗((ψX , σ)
∗(π∗12 ch(OΞn+1)π

∗
2(tdX)) · π∗1ϕ∗(x))

= (ψX , σ)∗(ψ
∗
X(ch(OΞn+1))π

∗
2(tdX)π∗1ϕ

∗(x)).

On the other hand, we have

q1Gx = ((ψ, σ)X)∗((ϕX)
∗(ch(OΞn)π

∗
2(tdX)π̄∗1x))

= ((ψ, σ)X)∗(ϕ
∗
X(ch(OΞn))π

∗
2(tdX)π∗1ϕ

∗x).

Taking the commutator [G, q1]x = Gq1x − (q1G)21x, observe that after applying the twist the
expressions above only differ by replacing ϕ∗X(ch(OΞn)) with ψ∗

X(ch(OΞn+1)), so applying (20) we
get

Gq1x− (q1G)21x = (ψX , σ)∗(σ
∗
X ch(O∆)π

∗
1 exp(λ)π

∗
2(tdX)π∗1ϕ

∗x)

= (ψX , σ)∗(σ
∗
X(ch(O∆)π

∗
2(tdX))π∗1(exp(λ)ϕ

∗x))

= π∗32(ch(O∆)π
∗
2(tdX)) · (ψX , σ)∗(π∗1(exp(λ)ϕ∗x))

= π∗32(ch(O∆)π
∗
2(tdX)) · π∗13(ψ, σ)∗(exp(λ)ϕ∗x)
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Applying the Grothendieck-Riemann-Roch theorem to the diagonal embedding ∆ : X → X ×X,
we find ch(O∆)π

∗
1 td(X) = ∆∗(X) = ∆, so

[G, q1] = π∗2,3∆ · π∗13(exp(ad ∂)q1) = ∆∗(exp(ad ∂)q1)

From the second part of this lemma, we obtain what Li, Qin and Wang called the transfer property:

Corollary 5.2.
[Gd, q1] = ∆∗[Gd(1), q1]

Proof. If x ∈ A∗(X [n]), we have

∆∗[Gd(1), q1]x = ∆∗(π[n]2,∗(∆∗(exp(ad ∂)q1))) = ∆∗(exp(ad ∂)q1)

since the following diagram with the diagonal embedding and the projection commutes, which remains
true after taking the product with X [n].

X X ×X

X

∆

id
π2

Next we verify in Chow Lehn’s description of the total Chern class c
(
O[n]

)
of the tautological sheaf.

Proposition 5.3 ([12, Thm 4.6]).

∑
n≥0

c
(
O[n]

)
= exp

∑
k≥1

(−1)k−1

k
qk (1)

 v

Proof. Let c(1) be the operator of multiplication by c(O[n]) on A∗(X [n]), and C(1) = c(1)q1(1)c(1)
−1.

By the previous proposition, we have C(1) = q1(1)+q′1(1) where q′ := [∂, q1]. The result follows formally
from the relations

[q′1(1), qk] = −kqk+1 (21)
q′1(1)v = 0 (22)

(which are immediate consequences of (8) and (7)) by Lehn’s proof of a more general version of the
statement in cohomology, which we reproduce in this context.∑

n≥0

c
(
O[n]

)
= c(1)

∑
n≥0

1X[n]

= c(1) exp(q1(1))v

= c(1) exp(q1(1))c(1)
−1v

= exp(c(1)q1(1)c(1)
−1)v

= exp(C(1))v

To compute
1

n!
(q1(1) + q′1(1))

nv

we use the relation [q′1(1), qk] = −kqk+1 to commute the q′1(1) to the right and apply q′1v = 0, obtaining
terms of the form

(ν1 − 1)! . . . (νs − 1)!(−1)ν1−1qν1(1) . . . (−1)νs−1qνs(1) = α!
∏
i≥1

(
(−1)i−1qi(1)

i

)αi
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where α = (1α12α2 . . . ) = (ν1, ν2, . . . ) is some partition of n, with α! = ν1!ν2! . . . . Such a term arises
from commuting νj − 1 operators q′1(1) from the left with one q1(1) for each νj , so the number of terms
with a given partition is the number of ways to arrange νj identical items for each νj (with the rightmost
one being taken as q1(1) and the others as q′1(1) ) into a string of length n. This is just the number of
ways to partition a set of n elements according to the partition α, which is given by

1

α1!α2! . . .

n!

α!
.

Hence

exp(C(1))v =
∑
α

∏
i≥1

1

αi!

(
(−1)i−1qi(1)

i

)αi

v

=
∏
i≥1

∑
αi≥0

1

αi!

(
(−1)i−1qi(1)

i

)αi

v

=
∏
i≥1

exp

(
(−1)i−1qi(1)

i

)
v

= exp

∑
i≥1

(−1)i−1qi(1)

i

 v.

5.2 Chern classes in the orbifold Chow ring

Remark 5.4. While the results of the previous subsection hold for any smooth projective surface X,
henceforth we shall require that c1(X) = 0.

The next step is to determine the image of c(O[n]) in A∗
orb(X

(n)) and then prove our isomorphism
respects multiplication by it, starting with the first Chern class.

Define the element
εn =

∑
g∈Sn

√
−1

a(g)
sgn

(
g
)
· g ∈ A∗

orb

(
X(n)

)
.

Using the previous description of c
(
O[n]

)
, we check that

Proposition 5.5 ([13, Prop. 4.3]).
Ψ
(
εn
)
= c
(
O[n]

)
Proof. The proof is identical to that of Lehn-Sorger except for the factors of

√
−1

a(g) which cancel out;
we reproduce it here for completeness.

Recall that the number of permutations g ∈ Sn of cycle type λ = (λ1, . . . , λs) = (1m12m2 . . . ) is
given by

Cλ =
n!∏

k≥1 k
mkmk!

,
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which have sign sgn(λ) := sgn(g) = (−1)
∑s

j=1(λj−1). Thus

Ψ(εn) =
1

n!

∑
g∈G

1
√
−1

a(g)
Γtg(

√
−1

a(g)
sgn(g) · g)

=
1

n!

∑
λ⊢n

Cλ sgn(λ)qλ1 . . . qλs(1)v

=
∑
λ⊢n

(−1)
∑s

j=1(λj−1)∏
k≥1 k

mkmk!
qλ1(1) . . . qλs(1)v

=
∑
m∈NN

+∑
k kmk=n

∏
k

1

mk!

(
(−1)k−1

k
qk(1)

)mk

v

=

(
exp

(∑
k

(−1)k−1

k
qk(1)

)
v

)
n

meaning the part of exp
(∑

k
(−1)k−1

k qk(1)
)
v ∈ A∗(Hilb) in the direct summand A∗(X [n]). By Proposi-

tion 5.3, this is c(O[n])

To prove that ck
(
O[n]

)
is multiplicative, we start with c1

(
O[n]

)
= Ψ

(
εn2
)
, where εn2 is the degree-2

component of εn:

Proposition 5.6 (following [13, 4.4]). We have

Ψ
(
εn2 ⋆ y

)
= c1

(
O[n]

)
Ψ
(
y
)

for all y ∈ A∗
orb
(
X(n)

)
.

Proof. The proof is a small modification of Lehn-Sorger’s argument to account for the fact that we
cannot decompose qλ(α) as a composition of individual qλi(αi), and also include the sign changes.

As Ψ is linear and defined on all of A∗(X,Sn), we may assume without loss of generality that
y = α · h ∈ A∗(Xn, Sn) for some h ∈ Sn, α ∈ A∗((Xn)g).

Consider multiplication of y by some transposition τ = (i j), considered as both an element of Sn
and the element 1 · τ Let h be of cycle type λ = (λ1, . . . , λs). There are two cases to consider: either
the indices i and j appear in the same cycle of h or different cycles.

In the first case, h = (ix2 . . . xl)(jz2 . . . zm)h
′ and τh = (ix2 . . . xljz2 . . . zm)h

′. Then a(τh) = a(h)+1
and the multiplication is given by τ ⋆ y = inc∗h(α) · τh, as the graph defect at the relevant orbit is
0 = 1

2(l +m+ 2− (l +m− 1)− 2− 1). As inch is the diagonal embedding of the first component, this
can be written as α112...s−1 · τh.

(Xn)τ (Xn)h X2 ×Xλ′

(Xn)τ,h X ×Xλ′

(Xn)τh X ×Xλ′

inch

In the second case, h = (ix2 . . . xljz2 . . . zm)h
′ and τh = (ix2 . . . xl)(jz2 . . . zm)h

′, so a(τh) = a(h) − 1.
The graph defect is again 0 and the multiplication is given by τ ⋆y = incτh,∗(α) ·τh = (∆12α13...s+1) ·τh.

(Xn)τ (Xn)h X ×Xλ′

(Xn)τ,h X ×Xλ′

(Xn)τh X2 ×Xλ′

incτh
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Considering multiplication by the whole of εn2 = −
√
−1
∑

i<j(i j), we see that the first case occurs
λīλj̄ times with i, j occurring in the ī’th and j̄’th cycles. The second occurs λī times for each partition
of λī into the ordered pair (l,m) up to double counting. Thus

n!Ψ(εn2y) =−
√
−1

1−(a(h)+1)∑
j<k

λjλkqλ1 . . . qλj−1
qλj+λkqλj+1

. . . q̂λk . . . qλs(α1...j−1,j,j+1...k−1,j,k...s−1)v

−
√
−1

1−(a(h)−1)

2

∑
j

λj
∑

l+m=λj

qλ1 . . . qλj−1
qlqλj+1

. . . . . . qλsqm(α1...s∆j,s+1)v

=−
√
−1

a(h)∑
j<k

λjλkqλ1 . . . qλj−1
qλj+λkqλj+1

. . . q̂λk . . . qλs(α1...j−1,j,j+1...k−1,j,k...s−1)v

+

√
−1

a(h)

2

∑
j

λj
∑

l+m=λj

qλ1 . . . qλj−1
qlqλj+1

. . . . . . qλsqm(α1...s∆j,s+1)v

On the other hand,
n!c1

(
O[n]

)
Ψ(y) = i−a(h)∂qλ1 . . . qλs(α)v

so we apply the relations

[∂, qk] = kLk

[Ld, qk] = −k∆∗(qd+k)

∂v = 0

Lnv =
1

2

∑
k+l=n
k,l>0

qkql|∆

Commuting ∂ to the end, we get

c1
(
O[n]

)
Ψ(y) =

√
−1

−a(h)
(λ1Lλ1qλ2 . . . qλs(α) + · · ·+ λsqλ1 . . . qλs−1Lλs(α)).

Commuting the operators Lλi to the end gives a term

−
√
−1

−a(h)
λiλjqλ1 . . . qλi−1

qλi+λjqλi+1
. . . q̂λj . . . qλs(α1...i−1,i,i+1...j−1,i,j...s−1)

arising from each [Lλi , qλj ], and terms

√
−1

−a(h) 1

2

∑
i

λi
∑

l+m=λi

qλ1 . . . qλi−1
qlqλi+1

. . . . . . qλsqm(α1...s∆i,s+1)

arising from Lλi · v, which proves the equality.

Remark 5.7. In the proof of the last proposition we have seen that the graph defect of a transposition
with any element is zero, which will be useful to recall later.

6 Orbifold Correspondences

6.1 Orbifold Nakajima operators

In order to proceed with the proof, we need to work with orbifold correspondences of the form

α ∈ A∗
orb(X

(n) ×Xs),

where X(n) ×Xs = [(Xn ×Xs)/Sn] is an orbifold with Sn acting trivially on the Xs factor. Then we
can work with operators A∗

orb(X
(n)) → A∗

orb(X
(m) ×Xs) parametrized by Xs similar to the Nakajima

and Chern character operators on the Hilbert scheme side, such that intersecting with the pullback of
a class in A∗(Xs) and pushing down to A∗

orb(X
(m)) gives an operator A∗

orb(X
(n)) → A∗

orb(X
(m))
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In particular, we need to define an analogue r1 : A∗
orb(X

(n)) → A∗
orb(X

(n+1) ×X) of the Nakajima
operator q1. Indeed, for any k ≥ 0 we can define rk : A∗

orb(X
(n)) → A∗

orb(X
(n+k) × X) as the linear

extension of
rk · αg =

1

(n)!

∑
ϕ:[n]↪→[n+k]

(αϕ(1)...ϕ(n)∆ϕ̄,n+k+1) ϕ∗g

where for any injection ϕ : [n] ↪→ [n + k], ϕ∗g ∈ Sn+k is the permutation that has the induced action
of g on ϕ([n]) and the trivial action on [n+ k] \ ϕ([n]), and ∆ϕ̄,n+k+1 is the diagonal along the indices
[n+ k] \ ϕ([n]) and n+ k + 1.

This is well defined as if α ∈ A∗((Xn)g), then

αϕ(1)...ϕ(n)∆ϕ̄,n+k+1 ∈ A∗((Xn+k)ϕ∗g ×X),

and by summing over all ϕ we ensure rkαg lies in the symmetric part A∗
orb(X

(n+k) × X), so indeed
defines an operator between the orbifold Chow rings. We only require the simplest version r1, which
can be expressed as the operator induced by the map

A∗ (Xn, Sn) → A∗
(
Xn+1 ×X,Sn+1

)
αg 7→

n+1∑
i=1

(α1...i−1,n+1,i+1,...n∆i,n+2)ϕi,∗g

=

n+1∑
i=1

(i n+ 1) • ((α1......n∆n+1,n+2)g)

where • denotes the action of Sn+1 on the stringy Chow ring and ϕi : [n] ↪→ [n + 1] is the increasing
injection that avoids i.

Define the morphism

pn+1
n : A∗(Xn, Sn) → A∗(Xn+1, Sn+1) (23)

pn+1
n (αg) = π∗1...n(α)ι(g)

where π1...n : (Xn+1)ι(g) → (Xn)g is the projection Xn+1 → Xn onto the first n factors, restricted to
the g-invariant diagonals.

Then r1 is given by

r1(x) =

n+1∑
i=1

(i n+ 1) • (π∗(n+1)p
n+1
n (x) ⋆∆n+1,n+2) (24)

where we abbreviate ∆n+1,n+2 = ∆n+1,n+2 · 1Sn+1 .
The map pn+1

n does not preserve the invariant subring, but it does respect the products:

Lemma 6.1.
pn+1
n (x ⋆ y) = pn+1

n (x) ⋆ pn+1
n (y)

Proof. For any h, l ∈ Sn, ι(hl) = ι(h)ι(l) and ι(⟨h, l⟩) = ⟨ι(h), ι(l)⟩, so

(Xn+1)ι(h) = (Xn)h ×X, (Xn+1)ι(h),ι(l) = (Xn)h,l ×X

Recall that the obstruction class can be characterized as

ctop
(
Fι(h),ι(l)

)
=

∏
o∈O(ι(h),ι(l))

π∗o
(
c2(X)gr(ι(h),ι(l))(o)

)
,
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with the orbits O(ι(h), ι(l)) consisting of the orbits O(h, l) (as subsets of {1, . . . , n}) as well as {n+1}.
The graph defect of o ∈ O(h, l) remains the same, and is zero for {n + 1}). Hence ctop(Fι(h),ι(l)) =
π∗1...nctop(Fh,l) by the commutativity of the diagram

(Xn+1)ι(g),ι(h) XO(g,h) ×X XO(g,h) (Xn)g,h

X

∼

πo

π1...n

πo πo

∼

πo

As the diagram

(Xn+1)ι(g) (Xn+1)ι(g),ι(h) (Xn+1)ι(gh)

(Xn)g (Xn)g,h (Xn)gh

π1...n

incι(g) incι(gh)

π1...n π1...n

incg incgh

is fibred (i.e. commutes with both squares being cartesian), we have

pn+1
n (αg ⋆ βh) = π∗1...nincgh,∗

(
α|Xg,h · β|Xg,h · ctop

(
Fg,h

))
= incgh,∗

(
π∗1...n(α|Xg,h) · π∗1...n(β|Xg,h) · π∗1...n

(
ctop

(
Fg,h

)))
= incgh,∗

(
π∗1...n(α)|Xι(g),ι(h) · π∗1...n(β)|Xι(g),ι(h) · ctop

(
Fι(g),ι(h)

))
= pn+1

n (αg) ⋆ p
n+1
n (βh)

6.2 Projection operators

We also have to work with projections of the form

π(n),i1...it : X
(n) ×Xs → X(n) ×Xt

πi1...it : X
(n) ×Xs → Xt

for t ≤ s, and distinct 1 ≤ i1 . . . it ≤ s and the induced pullback/pushforward morphisms

π(n),i1...it,∗ : A
∗(X(n) ×Xs, Sn) → A∗(X(n) ×Xt, Sn)

αg 7→
(
π(Xn)g ,i1...it,∗(α)

)
g

π∗(n),i1...it : A
∗(X(n) ×Xt, Sn) → A∗(X(n) ×Xs, Sn)

αg 7→
(
π∗(Xn)g ,i1...it

(α)
)
g

π∗i1...it : A
∗(Xt) → A∗(X(n) ×Xs, Sn)

β 7→
(
π∗i1,...it(β)

)
1Sn

where π(Xn)g ,i1...it : (X
n)g ×Xs → (Xn)g ×Xt is the obvious projection.

These satisfy the following important properties:

Lemma 6.2. The pullbacks π∗(n),i1...it and π∗i1...it are ring homomorphisms

π∗(n),i1...it(x) ⋆ π
∗
(n),i1...it

(y) = π∗(n),i1...it(x ⋆ y)

π∗i1...itα ⋆ π
∗
i1...itβ = π∗i1...it(α · β),

and the pushforward and pullback along the map π(n),i1...it satisfy the projection formula

x ⋆ π(n),i1...it,∗(y) = π(n),i1...it,∗(π
∗
(n),i1...it

x ⋆ y)
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Proof. The first two claims are straightforward:

1. If Fg,h and F ′
g,h are the obstruction bundles on (Xn)g,h ×Xt and (Xn)g,h ×Xs respectively, then

F ′
g,h = π∗(Xn)g ,i1...it

(Fg,h), (25)

and

2. The obstruction bundle F1,1 is trivial.

For the third claim, let g, h ∈ Sn, α ∈ A∗((Xn)g), β ∈ A∗((Xn)g) and consider the product

αg ⋆ π(n),i1...it,∗(βh) = incgh,∗
(
α|Xg,h×Xt · (π(Xn)h,i1...it,∗(β)|Xg,h×Xt) · ctop(Fg,h)

)
gh

= incgh,∗
(
α|Xg,h×Xt · π(Xn)g,h,i1...it,∗(β|Xg,h×Xs) · ctop(Fg,h)

)
gh

and applying the projection formula for π(Xn)g,h,i1...it ,

= incgh,∗
(
π(Xn)g,h,i1...it,∗(π

∗
(Xn)g,h,i1...it

(α|Xg,h×Xt · ctop(Fg,h)) · β|Xg,h×Xs)
)
gh

= π(Xn)g,h,i1...it,∗

(
incgh,∗(π∗(Xn)g,h,i1...it

(α|Xg,h×Xt · ctop(Fg,h)) · β|Xg,h×Xs)
)
gh

(by push-pull)

= π(n),i1...it,∗

(
incgh,∗(π∗(Xn)g,h,i1...it

(α)|Xg,h×Xs · β|Xg,h×Xs) · ctop(F
′
g,h)gh

)
(by (25))

= π(n),i1...it,∗

(
π∗(n),i1...it(αg) ⋆ βh

)

As π(n),i1...it,∗ and π∗(n),i1...it are Sn-equivariant and the image of π∗i1...it is Sn-invariant, they restrict
to morphisms between orbifold Chow rings

A∗
orb(X

(n) ×Xt) A∗
orb(X

(n) ×Xs) A∗(Xt)

π∗
(n),i1...it

π(n),i1...it,∗
π∗
i1...it

These let us safely work with classes and operators parametrized by Xs:

Definition 6.3. If x ∈ A∗
orb(X

(n) ×Xs) and β ∈ Xs, then

x(β) := π(n),∗
(
x ⋆ π∗1...sβ) ∈ A∗

orb(X
(n)
)

Similarly, if p : A∗
orb(X

(m)) → A∗
orb(X

(n) ×Xs) is an operator, then p(β) : A∗
orb(X

(m)) → A∗
orb(X

(n)) is
the operator

y 7→ π(n),∗(py ⋆ π
∗
1...sβ)

6.3 Transferring correspondences

To transfer these kinds correspondence between the orbifold and Hilbert scheme sides, we define

ΦXs : A∗(X [n] ×Xs) ⇄ A∗
orb(X

(n) ×Xs) : ΨXs

by replacing in the definition of Φ and Ψ the correspondences

Γg : A
∗(X [n]) ⇄ A∗((Xn)g) : Γtg

with the products of correspondences

(Γg × idXs∗) : A
∗(X [n] ×Xs) ⇄ A∗((Xn)g ×Xs) : (Γtg × idXs∗),

Then
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Proposition 6.4. ΦXs and ΨXs define inverse isomorphisms of vector spaces.

Proof. All the pieces of Theorem 4.3 still go through after taking the product with the correspondence
idXs∗ = ∆Xs ∈ A∗(Xs ×Xs). In particular we still have isomorphisms(∐

g∈ν
(Xn)g ×Xs

)
/Sn ∼= X(ν) ×Xs.

and if
Γ̂ : A∗

((∐
ν⊢n

X(ν)
))

→ A∗(X [n])

is the correspondence giving the isomorphism of de Cataldo-Migliorini, then the product

Γ̂×∆Xs : A∗
((∐

ν⊢n
X(ν)

)
×Xs

)
→ A∗(X [n] ×Xs)

remains an isomorphism. This follows directly from the fact that the product of correspondences is
compatible with composition:

(Γ× Λ) ◦ (Γ′ × Λ′) = (Γ ◦ Γ′)× (Λ ◦ Λ′),

for any correspondences
X Y X ′

Z W Z ′

Γ′ Γ

Λ′ Λ

In order to transfer operator correspondences between the orbifold and Hilbert scheme side, we need
the following properties

Lemma 6.5.

ΦXsπ∗[n],i1,...it = π∗(n),i1,...itΦXt

ΦXtπ[n],i1,...it,∗ = π(n),i1,...it,∗ΦXs

ΦXs(x · π∗i1,...itα) = ΦXs(x) ⋆ π∗i1,...itα

Proof. For the first two claims, we have to prove equalities of correspondences

(Γg × idXs∗) ◦ (idX[n]∗×π
∗
i1,...it) = (idX(n)∗×π

∗
i1,...it) ◦ (Γg × idXt∗),

(Γg × idXt∗) ◦ (idX[n]∗×πi1,...it,∗) = (idX(n)∗×πi1,...it,∗) ◦ (Γg × idXs∗)

which both follow from basic properties of correspondences: for any Λ ∈ A∗(Y × Z), then

(Γg × idZ∗) ◦ (idX(n) ×Λ) = Γg × Λ = (idX[n] ×Λ) ◦ (Γg × idY ∗)

For the third claim, we have π∗i1,...itα = (Xn×αi1,...it)1Sn by definition. Thus for any β ∈ A∗((Xn)g),
we have the product

βg ⋆ π∗i1,...itα = (β · ([(Xn)g]× αi1,...it))g. (26)

Then if
X [n] ×Xs (Xn)g ×X [n] ×Xs (Xn)g ×Xs

ϕXsψXs
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are the projections, we compute

ΦXs(x) ⋆ π∗i1,...itα =
∑
g∈G

1
√
−1

a(g)
ϕXs,∗((Γg ×Xs) · ψ∗

Xsx)g ⋆ π∗i1,...itα

applying (26) gives

=
∑
g∈G

1
√
−1

a(g)

(
ϕXs,∗((Γg ×Xs) · ψ∗

Xsx) · ([(Xn)g]× αi1,...it)
)
g

=
∑
g∈G

1
√
−1

a(g)
ϕXs,∗((Γg ×Xs) · ψ∗

Xsx · ([(Xn)g ×X [n]]× αi1,...it))g

(by the projection formula)

=
∑
g∈G

1
√
−1

a(g)
ϕXs,∗((Γg ×Xs) · ψ∗

Xs(x · (X [n] × αi1,...it)))g

=
∑
g∈G

1
√
−1

a(g)
ϕXs,∗((Γg ×Xs) · ψ∗

Xs(x · πi1,...itα))g

= ΦXs(x · π∗i1,...itα)

It follows from these relations that ΦXs is compatible with operator correspondences parametrized
by Xs:

Corollary 6.6. If y ∈ A∗(X [n] ×Xs) and β ∈ A∗(Xs), then

(ΦXs(y))(β) = Φ(y(β))

Now we verify that r1 is indeed the orbifold equivalent of q1, compatible with the isomorphisms
Φ,Ψ.

Proposition 6.7.
ΨXr1 = q1Ψ : A∗

orb
(
X(n)

)
→ A∗

(
X [n+1] ×X

)
and equivalently

r1Φ = ΦXq1 : A
∗(X [n]

)
→ A∗

orb

(
X(n+1) ×X

)
Proof. We prove the first statement directly, from which the second follows by Proposition 6.4.

Let λ be a partition of n with length l, let g ∈ Sn be of cycle type λ, and let α ∈ A∗((Xn)g). As
we have defined Ψ and r1 on all of A∗(Xn, Sn), we only need to prove ΨX(r1x) = q1Ψ(x) for x = αg.
Let αλ ∈ A∗(Xλ) be the image of α under some choice of isomorphism f : (Xn)g ∼=λ Xλ so that
Γtg(α) = qλ(αλ)v. Hence q1 · Γtg(α) = q1 · qλ(αλ)v = qλ(αλ)q1v, and thus q1 ·Ψ is given by:

q1 ·Ψ(αg) =
1

√
−1

a(g)
n!
qλ(αλ)q1v.

Meanwhile if gi = (i n+ 1)ι(g)(i n+ 1) for 1 ≤ i ≤ n+ 1, the action of r1 is given by

r1 · αg =
n+1∑
i=1

(α1...i−1,n+1,i+1...n∆i,n+2)gi.

To compute ΨX(r1 · αg), we first apply the correspondence Γtgi × idX∗ to the summand (r1 · αg)gi
corresponding to gi:(

Γtgi × idX∗
)(
(r1 · αg)gi

)
=
(
Γtgi × idX∗

)
(α1...i−1,n+1,i+1...n∆i,n+2)

= ψX,∗((Γgi ×X) · ϕ∗X(α1...i−1,n+1,i+1...n∆i,n+2))
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Consider the isomorphism (Xn+1)gi ∼= Xλ×X which identifies the i’th factor with X and the rest with
Xλ using the chosen isomorphism f : (Xn)g ∼= Xλ. We can describe its effect on the above expression:

Γgi ×X X [n] × (Xn+1)gi ×X (Xn+1)gi ×X α1...i−1,n+1,i+1...n∆i,n+2

qλq1v ×X X [n] ×Xλ ×X ×X Xλ ×X ×X αλ ×∆

⊂
∼

ϕX

∼

⊂

⊂
π1...l+2 ⊂

(abusing notation on the right side by using the ⊂ symbol to mean elements of the Chow ring).
Hence (

Γtgi × idX∗
)(
(r1 · αg)gi

)
= πX[n],l+2((qλq1v ×X) · π∗1...l+2(αλ ×∆))

= πX[n],l+2((qλq1v ×X) · π∗1...l(αλ) · (X [n] ×∆l+1,l+2))

Due to the factor of ∆l+1,l+2, projecting onto the l + 2 factor is equivalent to projecting onto the l + 1
factor, with the result being(

Γtgi × idX∗
)(
(r1αg)gi

)
= πX[n],l+1(qλq1v · π

∗
1...lαλ) = qλ(αλ)q1v.

Hence we obtain ΨX(r1 · αg):

ΨX(r1 · αg) =
1

(n+ 1)!

n+1∑
i=1

1
√
−1

a(gi)

(
Γtgi × idX∗

)(
(r1αg)gi

)
=

1
√
−1

a(ι(g))
n!
qλ(αλ)q1v

which equals q1Ψ(αg) as required.

7 Multiplication by Chern characters

7.1 Chern classes continued

We now pick up where we left off in proving the isomorphisms Φ,Ψ are multiplicative, starting with the
case of Chern classes of the tautological sheaf.

Let ι : Sn → Sn+1 be the inclusion induced by [n] ↪→ [n+ 1], and τi be the transposition (i n+ 1).

Lemma 7.1. Recall the morphism pn+1
n : A∗(Xn, Sn) → A∗(Xn+1, Sn+1) (23). We have

εn+1 − pn+1
n (εn) = −

√
−1

n+1∑
i=1

τi ⋆ p
n+1
n (εn) = (εn+1

2 − pn+1
n (εn2 )) ⋆ p

n+1
n (εn)

Proof. That the second and third expression are equal is immediate. We have

pn+1
n (εn) =

∑
σ∈Sn

(√
−1

a(g)
sgn(σ)

)
· ι(σ)

The product τi ⋆ ι(σ) is just τi · ι(σ), as the graph defect g(τ, h) is always 0 when τ is a transposition
and (Xn+1)τi,ι(σ) = (Xn+1)τi·ι(σ) so incτiι(σ) is trivial. Indeed if i is in the disjoint cycle (i i2 . . . is) of
σ, then the invariant subscheme of τi(i i2 . . . is) = (n+1 i i2 . . . is) is the diagonal ∆ii1...is,n+1, which is
intersection of the invariant subschemes ∆i,n+1 of τi and ∆ii1...is of (n+ 1 i i2 . . . is).

As l(τiι(σ)) = l(σ) + 1, the RHS of the claim is

−
n∑
i=1

∑
σ∈Sn

(√
−1

a(g)+1
sgn(σ)

)
· (τiι(σ)) =

n∑
i=1

∑
σ∈Sn

(√
−1

a(τiι(g))
sgn(τiι(σ))

)
· (τiι(σ)),

so all that remains to prove is that every element of Sn+1 \ ι(Sn) can be written uniquely in the form
(i n + 1)ι(σ) for some 1 ≤ i ≤ n, σ ∈ Sn. Such an expression exists because any cycle containing
n + 1 can be decomposed as (n + 1 i2 . . . is) = (i2 n + 1)(i2 . . . is). This expression is unique as if
(i n+1)ι(σ) = (j n+1)ι(σ′) with i ̸= j, then ι(σ′) = (i j n+1)ι(σ), but this permutes σ−1(i) 7→ n+1
so cannot lie in ι(Sn). If (i n+1)ι(σ) = (i n+1)ι(σ′) then σ = σ′ as ι is injective, so the decomposition
is indeed unique.
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Using this we obtain our version of [13, Prop. 4.6], to match Proposition 5.1 on the orbifold side.

Proposition 7.2. εn+1r1 − r1ε
n =

(
εn+1
2 r1 − r1ε

n
2

)
εn

Proof. We have

εn+1 ⋆ r1y − r1 · (εn ⋆ y) =π∗(n+1)ε
n+1 ⋆

n+1∑
i=1

(i n+ 1) • (π∗(n+1)p
n+1
n y ⋆∆n+1,n+2)


−
n+1∑
i=1

(i n+ 1) • (π∗(n+1)p
n+1
n (εn ⋆ y) ⋆∆n+1,n+2).

As π∗(n+1)ε
n+1 is symmetric, we can move it inside the action of

∑n+1
i=1 (i n+ 1):

εn+1 ⋆ r1y − r1 · (εn ⋆ y) =
n+1∑
i=1

(i n+ 1) •
(
π∗(n+1)((ε

n+1 − pn+1
n (εn)) ⋆ pn+1

n y) ⋆∆n+1,n+2

)
=

n+1∑
i=1

(i n+ 1) •
(
π∗(n+1)((ε

n+1
2 − pn+1

n (εn2 )) ⋆ p
n+1
n εn ⋆ pn+1

n y) ⋆∆n+1,n+2

)
(by the previous lemma)

=
n+1∑
i=1

(i n+ 1) •
(
π∗(n+1)(ε

n+1
2 ⋆ pn+1

n (εn ⋆ y)) ⋆∆n+1,n+2

)
−
n+1∑
i=1

(i n+ 1) •
(
π∗(n+1)p

n+1
n (εn2 ⋆ ε

n ⋆ y) ⋆∆n+1,n+2

)
= εn+1

2 ⋆ r1(ε
n ⋆ y)− r1(ε

n
2 ⋆ ε

n ⋆ y),

as required.

This allows us to prove inductively that Ψ preserves multiplication by the elements εdd and the Chern
classes cd(O[n]) of the tautological sheaf, using the ideas in [13, Prop. 4.7].

Proposition 7.3.
Φ(c(O[n])y) = εn ⋆ Φ (y)

for all y ∈ A∗(X [n]
)
.

Proof. We prove a slightly stronger claim: that for any partition λ ⊢ n of length s,

ΦXs(π∗
X[n]c(O[n]) · qλv) = π∗(n)ε

n ⋆ ΦXs(qλv).

Lemma 2.6 allows us to reduce to the claim that, if y ∈ A∗(X [n] ×Xs) is given by any composition of
the operators q1 and ∂ applied to the vacuum vector, then

ΦXs(π∗[n]c(O
[n]) · y) = π∗(n)ε

n ⋆ ΦXs(y).

We can prove this by induction on the length of y as an expression in ∂, q1. The base case Φ(c(O[0])v) =
Φ(v) = 1S0 ⋆ Φ (v) is trivial.

Case 1: y = ∂z with z ∈ A∗(X [n] ×Xs) satisfying the induction hypothesis

ΦXs

(
π∗[n]c(O

[n]) · z
)
= π∗(n)(ε

n) ⋆ ΦXs(z).

Then by Proposition 5.6, we have

ΦXs(y) = ΦXs

(
π∗[n]c2(O

[n]) · z
)
= π∗(n)(ε

n
2 ) ⋆ ΦXs(z)
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and
ΦXs

(
π∗[n]c(O

[n])y
)
= ΦXs

(
π∗[n]
(
c2(O[n])c(O[n])

)
· z
)
= π∗(n)(ε

n
2 ) ⋆ ΦXs

(
π∗[n]c(O

[n]) · z
)
.

Using the induction hypothesis, the above expression becomes π∗(n)(ε
n
2 ⋆ ε

n) ⋆ΦXs(z). As the product ⋆
is commutative, we can move εn2 back inside Φ to get

ΦXs

(
π∗[n]c(O

[n])y
)
= π∗(n)ε

n ⋆ ΦXs

(
π∗[n]c2(O

[n])z
)
= π∗(n)ε

n ⋆ ΦXs(y)

as required.
Case 2: y = q1z, with z ∈ A∗(X [n−1] ×Xs−1) satisfying the induction hypothesis

ΦXs−1

(
π∗[n−1]c(O

[n−1]) · z
)
= π∗(n−1)ε

n−1 ⋆ ΦXs−1(z).

Then ΦXs(y) = r1ΦXs−1(z) by Proposition 6.7, so

π∗(n)(ε
n) ⋆ ΦXs(y) = π∗(n)(ε

n) ⋆ r1ΦXs−1(z) = [ε•, r1]ΦXs−1(z) + r1 · (π∗(n−1)(ε
n) ⋆ ΦXs−1(z))

By the induction hypothesis, the second term equals

r1ΦXs−1

(
π∗[n−1]c(O

[n−1]) · z
)
= ΦXs

(
q1 · (π∗[n−1]c(O

[n−1]) · z)
)
.

Meanwhile by the previous proposition, the first term is:

[ε•, r1]Φ
n
Xs(z) = π∗(n)(ε

n
2 ) ⋆ r1

(
π∗(n−1)(ε

n−1) ⋆ ΦXs−1(z)
)
− r1

(
π∗(n−1)(ε

n−1
2 ⋆ εn−1) ⋆ ΦXs−1(z)

)
= π∗(n)(ε

n
2 ) ⋆ r1

(
ΦXs−1(π∗[n−1]c(O

[n−1])z)
)
− r1

(
ΦXs−1(π∗[n−1](c2(O

[n−1])c(O[n−1])) · z)
)

(by the induction hypothesis)

= π∗(n)(ε
n
2 ) ⋆ ΦXs(q1 · (π∗[n−1]c(O

[n−1])z))− ΦXs(q1 · (π∗[n−1](c2(O
[n−1])c(O[n−1])) · z))

= ΦXs

(
π∗[n]c2(O

[n])q1 · (π∗[n−1]c(O
[n−1])z)− q1 · (π∗[n−1](c2(O

[n−1])c(O[n−1])) · z)
)

= ΦXs([∂, q1] · (π∗[n−1]c(O
[n−1])z))

which by Proposition 5.1 is

= ΦXs(π∗[n]c(O
[n])q1z − q1 · (π∗[n−1]c(O

[n−1])z))

Thus adding the terms together gives

π∗(n)(ε
n) ⋆ ΦXs(y) = ΦXs(π∗[n]c(O

[n])q1z) = ΦXs(π∗[n]c(O
[n])y)

as required.

As Φ respects multiplication by the total Chern class of O[n], it must also by the individual Chern
classes cd(O[n]), as we can see by taking homogeneous y ∈ A∗(X [n]) and looking at the components of
Φ(c(O[n])y) in each degree. It follows that the same holds true for components chd(O[n]) = Gd(1) of
the Chern character

Corollary 7.4. Φ(Gd(1)y) = Φ(Gd(1)1[n]) ⋆ Φ(y)

7.2 Orbifold Chern character operators

The next step is to define analogues of the Chern character operators Gd for A∗
orb(X

(n)), then prove
they also satisfy the transfer property. Using this we will prove that ΦXs preserves multiplication by
Chern character operators by the same method as the previous proposition.

Define operators Fd : A
∗
orb(X

(n)) → A∗
orb(X

(n) ×X) for d ≥ 0 as:

Fdx := ΦX(Gd1X[n]) ⋆ π∗(n)x

or more explicitly, Fdx = ΦX(chd(OΞn)π
∗
1(tdX)) ⋆ π∗(n)x

It follows that
Fd(β)x = Φ(Gd(β)1X[n]) ⋆ x. (27)

The following lemma is our version of [13, (4.8)], but where Lehn-Sorger had to derive an expression
for a[n] using vertex algebra calculus, we are provided with the analogous expression for Gd by the work
of Maulik-Negut [17] as given in Theorem 2.4.
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Lemma 7.5. There is an expression

Gd1X[n] =
∑
|λ|≤n

q1(1)
n−|λ|

(n− |λ|)!
π∗X(cd,λ)qλ|∆

|λ|!
v

where the sum is over all partitions λ ⊢ m for m ≤ n, with coefficients cd,λ = c′d,λ + c′′d,λ · e, for
c′d,λ, c

′′
d,λ ∈ Q which depend only on d and λ; in particular they are independent of n.

Proof. Putting together (3) and (6), we have the following expression for Gd:

Gd = −
∑

λ∈PZ(0,d)

1

λ!
qλ|∆1...d

+
∑

λ∈PZ(0,d−2)

s (λ)− 2

24λ!
π∗X (e) qλ|∆1...d−2

Hence

Gd1X[n] =

−
∑

k≤min(n,d−1)
λ∈P(k,d−k)

1

λ!
qλq

k
−1|∆1...d

+
∑

k≤min(n,d−3)
λ∈P(k,d−2−k)

s (λ)− 2

24λ!
π∗X (e) qλq

k
−1|∆1...d−2

 · 1

n!
q1(1)

nv

= −
∑

k≤n,d−1
λ∈P(k,d−k)

1

λ!(n− k)!
qλ|∆q1(1)n−kv +

∑
k≤n,d−3

λ∈P(k,d−2−k)

s (λ)− 2

24λ!(n− k)!
π∗X (e) qλ|∆q1(1)n−kv

which has the required form.

Following the ideas of [13, 4.11], let λ ⊢ m for some m ≤ n, choose some gλ ∈ Sm of cycle type λ
and define

Bn
λ =

√
−1

a(gλ)
(
n

|λ|

)
Sym(∆gλ

1...m,n+1 · gλ) ∈ A∗
orb(X

(n) ×X),

where we identify gλ with its image in Sn under the inclusion {1, . . . ,m} ↪→ {1, . . . , n}, and ∆gλ
1...m,n+1

is the diagonal with the given indices in (Xn)gλ ×X = (Xm)gλ ×Xn−m ×X.

Proposition 7.6.

ΨX(B
n
λ) =

q1(1)
n−|λ|

(n− |λ|)!
qλ|∆
|λ!|

· v

Proof. If l is the length of λ ⊢ m, the right hand side can be rewritten as

π[n],1,∗

(
π∗1...l(∆1...l)

q1(1)
n−m

(n−m)!

qλ
m!
v

)
=

1

|λ|!(n−m)!
π[n],1,∗

(
π∗1...,l(∆1...l)qλq

n−m
1 v

)
Meanwhile

(Γtgλ × idX∗)(∆
gλ
1...m,n+1) = ψX,∗((Γgλ ×X) · ϕ∗X∆

gλ
1...m,n+1)

= ψX,∗((Γgλ ×X) · (X [n] ×∆gλ
1...m,n+1))

We have an isomorphism (Xn)gλ ∼= Xλ ×Xn−m = X l+n−m such that, if L = l + n−m+ 1 we get the
following identifications:

Γgλ ×X X [n] × (Xn)gλ ×X (Xn)gλ ×X ∆gλ
1...m,n+1

qλq
n−m
1 v ×X X [n] ×Xλ ×Xn−m ×X Xλ ×Xn−m ×X ∆1...l,L

⊂

∼

ϕX

∼

⊂

⊂ π1...L ⊂
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Thus we have
(Γtgλ × id)(∆gλ

1...m,n+1) = π[n],1,∗((qλq
n−m
1 v ×X) · (X [n] ×∆1...l,L)),

which is equal to π[n],1,∗(qλqn−m1 v · (X [n] ×∆1...l)) because projecting away from the L’th factor gives:∫
L
(qλq

n−m
1 v ×X) · (X [n] ×∆1...l,L) = qλq

n−m
1 v ·

∫
L
(X [n] ×∆1...l,L)

= qλq
n−m
1 v · (X [n] ×∆1...l).

Hence we compute

ΨX(B
n
λ) =

1

n!

(
n

m

)(∑
g∈G

(Γtgλ × idX∗)

)
(Sym(∆gλ

1...m,n+1gλ))

=
1

n!

(
n

m

)
qλq1(1)

n−mv,

as each of the n! terms in

Sym(∆gλ
1...m,n+1gλ) =

1

n!

∑
σ∈Sn

∆σgλσ
−1

1...m,n+1 · (σgλσ
−1)

contributes 1
n!qλq1(1)

n−m when Γtσgλσ−1 × idX∗ is applied. Expanding the binomial coefficient and
cancelling gives

ΨX(B
n
λ) =

1

|λ|!(n− |λ|)!
qλq1(1)

n−m

Combining the the previous two results, we obtain:

Corollary 7.7. In A∗
orb(X

(n) ×X), we have the equality:

ΦX(Gd1X[n]) =
∑
|λ|≤n

π∗X(cd,λ)B
n
λ . (28)

Now we can derive the transfer property for Fd.

Proposition 7.8 (based on [13, Prop. 4.12]). Let B•
λ : A∗

orb(X
(n)) → A∗

orb(X
(n) ×X) for all n be the

family of operators given by B•
λx = Bn

λ ⋆ π
∗
(n)x for x ∈ A∗

orb(X
(n)), with Bn

λ = 0 if n < |λ|. Then we
have the following equality of operators:

[B•
λ, r1] = ∆∗[B

•
λ(1), r1] : A

∗
orb(X

(n)) → A∗
orb(X

(n+1) ×X2).

Consequentially, the operators Fd satisfy the transfer property:

[Fd, r1] = ∆∗[Fd(1), r1]

Proof. For clarity we refer to the factors of X in e.g. X(n)×X2 with the indices a, b. Let x ∈ A∗
orb(X

(n))
and consider the action of [B•

λ, r1] on x. We may assume |λ| ≤ n+ 1 otherwise the result is zero.
We compute the first term:

B•
λr1x =

√
−1

a(gλ)
(
n+ 1

|λ|

)
Sym(∆1...m,agλ) ⋆

 n∑
i=1

(i n+ 1) • (π∗(n+1)p
n+1
n (x) ⋆∆n+1,b)

 ,

(with the expression in brackets already symmetric, so it can be moved inside Sym)

=
√
−1

a(gλ)
(
n+ 1

|λ|

) n∑
i=1

Sym

(
(∆1...m,agλ) ⋆

(
(i n+ 1) • (π∗(n+1)p

n+1
n (x) ⋆∆n+1,b)

))

B•
λr1x =

√
−1

a(gλ)
(
n+ 1

|λ|

) n+1∑
i=1

Sym
(
((i n+ 1) • (∆gλ

1...m,agλ)) ⋆ (π
∗
(n+1)p

n+1
n (x) ⋆∆n+1,b))

)
, (29)
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using the fact that Sym((i n + 1) • y) = Sym(y). For |λ| < i ≤ n + 1, the action of (i n + 1) has no
effect on (∆1...m,a)gλ , so that part of the sum gives

√
−1

a(gλ)
(
n+ 1

|λ|

)
(n+ 1− |λ|) Sym

(
(∆gλ

1...m,agλ) ⋆ (π
∗
(n+1)p

n+1
n (x) ⋆∆n+1,b)

)
=

√
−1

a(gλ)
(
n+ 1

|λ|

)
(n+ 1− |λ|) Sym

(
((∆gλ

1...m,agλ) ⋆ π
∗
(n+1)p

n+1
n (x)) ⋆∆n+1,b

)
=

√
−1

a(gλ)
(
n+ 1

|λ|

)
(n+ 1− |λ|) Sym

(
pn+1
n,X2((∆

gλ
1...m,agλ) ⋆ π

∗
(n)x) ⋆∆n+1,b

)
=

√
−1

a(gλ)
(
n+ 1

|λ|

)
(n+ 1− |λ|) Sym

(
pn+1
n,X2(Sym(∆gλ

1...m,agλ) ⋆ π
∗
(n)x) ⋆∆n+1,b

)

where pn+1
n,X2 is the operator pn+1

n × idX2∗ : A∗(Xn ×X2, Sn) → A∗(Xn+1 ×X2, Sn+1). As everything
inside the outer Sym is already symmetric in the indices 1, . . . , n, we can simplify the symmetrizer as
Sym(−) = 1

n+1

∑n+1
i=1 (i n+ 1) • (−). Thus the above expression becomes:

√
−1

a(gλ)
(
n+ 1

|λ|

)
(n+ 1− |λ|)

n+ 1

n∑
i=1

(i n+ 1) •
(
pn+1
n,X2(Sym(∆gλ

1...m,agλ) ⋆ π
∗
(n)x) ⋆∆n+1,b

)

=
n∑
i=1

(i n+ 1) •

pn+1
n,X2

(
√
−1

a(gλ)
(
n

|λ|

)
Sym(∆gλ

1...m,agλ) ⋆ π
∗
(n)x

)
⋆∆n+1,b


= (r1B

•
λ)
b,ax,

i.e. r1B
•
λ with the indices a, b swapped. Not in particular that this is zero if |λ| = n + 1, so nothing

goes wrong in the edge case.
Thus taking the commutator [B•

λ, r1] leaves the terms of (29) with i ≤ |λ|:

[B•
λ, r1]x =

(
n+ 1

|λ|

) |λ|∑
i=1

Sym
(
((i n+ 1) • (∆gλ

1...m,agλ)) ⋆ (π
∗
(n+1)p

n+1
n (x) ⋆∆n+1,b)

)

=

(
n+ 1

|λ|

) |λ|∑
i=1

Sym
((

∆
gλ,i
1...i−1,n+1,i+1,...m,agλ,i

)
⋆ π∗(n+1)p

n+1
n (x) ⋆∆n+1,b

)

where gλ,i = (i n+ 1)gλ(i n+ 1). We have the product(
∆
gλ,i
1...i−1,n+1,i+1,...m,agλ,i

)
⋆
(
∆n+1,b1Sn+1

)
=
(
∆
gλ,i
1...i−1,n+1,i+1,...m,a ·∆n+1,b

)
gλ,i

=
(
∆
gλ,i
1...i−1,n+1,i+1,...m,a,b

)
gλ,i

so we can simplify:

[B•
λ, r1]x =

(
n+ 1

|λ|

) |λ|∑
i=1

Sym
((

∆
gλ,i
1...i−1,n+1,i+1,...m,a,bgλ,i

)
⋆ π∗(n+1)p

n+1
n (x)

)
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We hence obtain

∆∗[B
•
λ(1), r1]x =

(
n+ 1

|λ|

) |λ|∑
i=1

∫
c
Sym

((
∆
gλ,i
1...i−1,n+1,i+1,...m,c,agλ,i

)
⋆ π∗(n+1)p

n+1
n (x) ⋆∆ab

)

=

(
n+ 1

|λ|

) |λ|∑
i=1

Sym

((∫
c
∆
gλ,i
1...i−1,n+1,i+1,...m,c,agλ,i

)
⋆∆ab ⋆ π

∗
(n+1)p

n+1
n (x)

)

=

(
n+ 1

|λ|

) |λ|∑
i=1

Sym
((
∆
gλ,i
1...i−1,n+1,i+1,...m,a,bgλ,i

)
⋆ π∗(n+1)p

n+1
n (x)

)
= [B•

λ, r1]x,

So the first claim is proved.
The second claim reduces to the first using (28). In particular, we have

Fd =
∑
λ

π∗1(cd,λ)B
•
λ,

where we sum over all partitions λ (but Bn
λ = 0 for n < |λ|). Thus the commutator is given by

[Fd, r1] =
∑
λ

π∗1(cd,λ)[B
•
λ, r1] =

∑
λ

π∗1(cd,λ)∆∗[B
•
λ(1), r1] =

∑
λ

∆∗
(
π∗1(cd,λ)[B

•
λ(1), r1]

)
,

and on the other hand we have

∆∗[Fd(1), r1] =
∑
λ

∆∗[B
•
λ(cd,λ), r1] =

∑
λ

∆∗

(∫
1
π∗1(cd,λ)∆∗[B

•
λ(1), r1]

)
.

The last expression can be rewritten as∑
λ

∆∗

(∫
1
∆∗
(
π∗1(cd,λ)[B

•
λ(1), r1]

))
=
∑
λ

∆∗
(
π∗1(cd,λ)[B

•
λ(1), r1]

)
which proves the claim.

7.3 Proof of the main theorem

Finally we prove that Φ transforms the operators Gd into Fd using similar methods as [13, 4.13], before
deriving Theorem 4.6 as a consequence.

Proposition 7.9. Let y ∈ Ak(X [n]). Then

FdΦ(y) = ΦX(Gdy)

Proof. As in the proof of Proposition 7.3, we actually prove that FdΦXs(y) = ΦXs+1(Gdy) when y = qλv
for any λ ∈ P(n, s), by reducing to the case that y is any composed string of the operators ∂ and q1
and using induction on the length of the string.

Case 1: y = ∂z, where z ∈ A∗(X [n]×Xs) satisfies the induction hypothesis ΦXs+1(Gdz) = FdΦXs(z).
Then by Proposition 5.6, ΦXs(y) = π∗(n)ε

n
2 ⋆ ΦXs(z) and

ΦXs+1(Gdy) = ΦXs+1(∂Gdz) = π∗(n)ε
n
2 ⋆ ΦX(Gdz)

since the multiplication operators ∂,Gd commute. Using the induction hypothesis and the fact that the
multiplication operator Fd commutes with multiplication by εn2 , we get:

FdΦXs(y) = Fd(π
∗
(n)ε

n
2 ⋆ ΦXs(z)) = π∗(n)ε

n
2 ⋆ FdΦXs(z) = π∗(n)ε

n
2 ⋆ ΦXs+1(Gdz) = ΦXs+1(Gdy),

as required.
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Case 2: y = q1z, where z ∈ A∗(X [n−1] ×Xs−1) satisfies the induction hypothesis
ΦXs(Gdz) = FdΦXs−1(z). Then ΦXs(y) = ΦXs(q1z) = r1ΦXs−1(z) by Proposition 6.7, so we obtain

FdΦXs(y) = Fdr1ΦXs−1(z) = [Fd, r1]ΦXs−1(z) + (r1FdΦXs−1(z))21

By the induction hypothesis, the second term is

(r1ΦXs(Gdz))
21 = (ΦXs+1(q1Gdz))

21

while by the transfer property the first term is

(∆∗[Fd(1), r1])ΦXs−1(z) = π∗12∆12 ⋆ π
∗
(n),2...s+1(Fd(1)r1ΦXs−1(z))

− π∗12∆12 ⋆ π
∗
(n),2...s+2(r1Fd(1)ΦXs−1(z)).

We know from (27) and Corollary 7.4 that Fd(1)Φ(x) = Φ(Gd(1)) ⋆Φ(x) = Φ(Gd(1)x), so this becomes

∆∗[Fd(1), r1]ΦXs−1(z) = π∗12∆12 ⋆ π
∗
(n),2...s+2(ΦXs(Gd(1)q1z)))

− π∗12∆12 ⋆ π
∗
(n),2...s+2(Φ

n
Xs(q1Gd(1)z))

= ΦXs+1(π∗12∆12 · π∗(n),2...s+2([Gd(1), q1]z))

= ΦXs+1(∆∗[Gd(1), q1]z)

= ΦXs+1([Gd, q1]z).

Adding the terms together, we get

FdΦ
n
Xs(y) = ΦnXs+1(([Gd, q1]z) + ΦnXs+1(q1Gdz)

= ΦnXs+1(Gdq1z)

= ΦnXs+1(Gdy)

as required.

Now we obtain the main result, Theorem 4.6, by proving that Φ is a ring isomorphism.

Proof of Theorem 4.6. By Theorem 2.2, we only need to prove that Φ(x · y) = Φ(x) ⋆ Φ(y) for x =
Gd1 . . .Gds(β)1X[n] , i.e. that

Φ(Gd1 . . .Gds(β)1X[n]) ⋆ Φ(x) = Φ(Gd1 . . .Gds(β)x)

From the previous result, we have

Fd1 . . .Fds(β)Φ(x) = Φ(Gd1 . . .Gds(β)x),

but Fd1 . . .Fds(β) is just the operator of multiplication by Fd1 . . .Fds(β)1X(n) :

Fd1 . . .Fds(β)y = π(n),∗

(
π∗(n),1ΦX(Gd11X[n]) ⋆ · · · ⋆ π∗(n),sΦX(Gds1X[n]) ⋆ π∗(n)y ⋆ π

∗
1...sβ

)
= π(n),∗

(
π∗(n),1ΦX(Gd11X[n]) ⋆ · · · ⋆ π∗(n),sΦX(Gds1X[n]) ⋆ π∗1...sβ

)
⋆ y

= π(n),∗

(
π∗(n),1ΦX(Gd11X[n]) ⋆ · · · ⋆ π∗(n),sΦX(Gds1X[n]) ⋆ π∗(n)1X(n) ⋆ π∗1...sβ

)
⋆ y

= (Fd1 . . .Fds(β)1X(n)) ⋆ y.

Hence we have

Fd1 . . .Fds(β)Φ(x) = (Fd1 . . .Fds(β)Φ(1X[n])) ⋆ Φ(x) = Φ(Gd1 . . .Gds(β)1X[n]) ⋆ Φ(x)

which proves the theorem.
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8 Examples

We now apply (18)

qν(α)v · qλ(β)v =
n!

Cλ

∑
h∈λ

(−1)
1
2
(a(g,h))qκgh

ιg,h∗

αh|Xg,h · βl|Xg,h ·
∏

o∈O(g,h)

π∗o(eX)
gr(g,h)(o)


 v

to give a multiplication table for A∗(X [n]), by first computing the products αg ⋆ βh for each pair (g, h)
up to simultaneous conjugation. As the inclusions Sn ↪→ Sm for m > n just add singleton orbits of
⟨g, h⟩ with no graph defect, the product in these factors is the ordinary intersection product so we only
need to compute αg ⋆ βh in the smallest Sn where a given conjugacy class of pairs (g, h) appears.

8.1 n = 2

The Chow ring of X [2] has a basis {q2 (α) , q1q1 (Γ)} where α ranges over a basis of A∗ (X) and Γ over
a basis of A∗ (X2

)S2 . In particular,

A0
(
X [2]

)
= q1q1 (C · 1X2) v

A1
(
X [2]

)
= q1q1

(
A1
(
X2
))

v ⊕ q2 (C · 1X) v

A2
(
X [2]

)
= q1q1

(
A2
(
X2
))

v ⊕ q2

(
A1 (X)

)
v

A3
(
X [2]

)
= q1q1

(
A3
(
X2
))

v ⊕ q2

(
A2 (X)

)
v

A4
(
X [2]

)
= q1q1

(
A4
(
X2
))

v

The identity is given by 1
2q1q1 (1) v. The elements of Sn are classified as S2,(1,1) = {1} with age 0,

S2,(2) = {(12)} with age 1, and all graph defects vanish. The products in A∗(X2, S2) are

α121S2 ⋆ α121S2 = (α12β12)1S2

α121S2 ⋆ β2(12) = (α11β1)(12)

α1(12) ⋆ β1(12) = ∆∗(α1β1)1S2 a((12), (12)) = 2

= (α1β1∆12)1S2

Thus the products in A∗(X [3]) are given by:

q1q1(Γ)v · q1q1(Λ)v = 2q1q1(Γ · Λ)
q1q1(Γ)v · q2(β)v = 2q2(Γ|∆ · β)

= 2q2(Γ11β)

q2(α)v · q2(β)v = −2q1q1(∆∗(αβ)).
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8.2 n = 3

The Chow ring of X [3] has a basis {q3 (α) , q2q1 (Γ) , q1q1q1 (Λ)} where α ranges over a basis of A∗ (X),
Γ over a basis of A∗ (X2

)
and Γ over a basis of A∗ (X3

)S3 . In particular,

A0
(
X [2]

)
= q31 (C · 1X3) v

A1
(
X [2]

)
= q31

(
A1
(
X3
))

v ⊕ q2q1 (C · 1X2) v

A2
(
X [2]

)
= q31

(
A2
(
X3
))

v ⊕ q2q1

(
A1
(
X2
))

v ⊕ q3 (C · 1X2) v

A3
(
X [2]

)
= q31

(
A3
(
X3
))

v ⊕ q2q1

(
A2
(
X2
))

v ⊕ q3

(
A1 (X)

)
v

A4
(
X [2]

)
= q31

(
A4
(
X3
))

v ⊕ q2q1

(
A3
(
X2
))

v ⊕ q3

(
A2 (X)

)
v

A5
(
X [2]

)
= q31

(
A5
(
X3
))

v ⊕ q2q1

(
A4
(
X2
))

v

A6
(
X [2]

)
= q31

(
A6
(
X3
))

v

The identity is given by 1
6q1q1q1 (1) v. The elements of S3 are classified as 1 ∈ (1, 1, 1) with age 0,

(12), (13), (23) ∈ (2, 1) with age 1, and (123), (132) ∈ (3) with age 2. The nontrivial graph defects are
gr((123), (123)) which is 1

2(3 + 2− 1− 1− 1) = 1 on the only orbit {1, 2, 3}, and gr((123), (132)) which
is 1

2(3 + 2− 1− 1− 3) = 0 on {1, 2, 3}.
The new products in A∗(X3, S3) are as follows, where for the product gh we list other g′ ∈ S3 such

that the pair (g′, h) is conjugate to (g, h) in the third column:

α1231S3 ⋆ β1(123) = (α111β1)(123)

α12(12) ⋆ β1(123) = (α11β1∆12)(23) a((12), (123)) = 2 (23), (13)

α1(123) ⋆ β1(123) = (α1β1e1)(132) a((123), (123)) = 2

α1(132) ⋆ β1(123) = (α1β1∆123)1S3 a((132), (123)) = 4

Thus the products in A∗(X [3]) are given by:

q1q1q1(Γ)v · q1q1q1(Λ)v = 6q1q1q1(Γ · Λ)
q1q1q1(Γ)v · q2q1(Λ)v = 6q2q1(Γ112 · Λ)

q2q1(Γ)v · q2q1(Λ)v =
6

3
(−q1q1q1(Γ13Λ13∆12)v + 2q3(Γ11Λ11)v)

= 4q3(Γ11Λ11)v − 2q1q1q1(Γ13Λ13∆12)v

q1q1q1(Γ)v · q3(Λ)v = 6q3(Γ111 · Λ)
q2q1(Γ)v · q3(Λ)v = −6q2q1(Γ11Λ1∆12)v

q3(α)v · q3(β)v = 3(q1q1q1(∆∗(αβ))v − q3(αβe)v).

8.3 n = 4

The Chow ring of X [4] has a basis

q4 (α) , α ∈ A∗(X)

q3q1 (α) , α ∈ A∗(X2)

q2q2 (α) , α ∈ A∗(X2)S2

q2q1q1 (α) , α ∈ A∗(X3)1×S2

q1q1q1q1 (α) , α ∈ A∗(X4)S4
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The identity is given by 1
24q1q1q1q1 (1) v. The elements of S4 are classified as S4,(1,1,1,1) = {1S4} with

age 0, S4,(2,1,1) = {(12), (13), (14), (23), (24), (34)} with age 1,

S4,(3,1) = {(123), (132), (124), (142), (134), (143), (234), (243)}

with age 2, S4,(2,2) = {(12)(34), (13)(24), (14)(23)} with age 2, and

S4,(2,2) = {(1234), (1243), (1324), (1342), (1423), (1432)}

with age 3.
The new products in A∗(X4, S4) are

α123(14) ⋆ β12(123) = (α111β11)(1234) a(g, h) = 0 (24), (34)

α12(124) ⋆ β12(123) = (α11β11∆12)(14)(23) a(g, h) = 2 (234), (143)

α12(134) ⋆ β12(123) = (α11β11∆12)(124) a(g, h) = 2 (142), (243)

α12341S4 ⋆ β1(1234) = (α1111β1)(1234) a(g, h) = 0

α123(12) ⋆ β1(1234) = (α111β1∆12)(234) a(g, h) = 2 (23), (34), (14)

α123(13) ⋆ β1(1234) = (α111β1∆12)(12)(34) a(g, h) = 2 (24)

α12(123) ⋆ β1(1234) = (α11β1e1)(1342) a(g, h) = 2 (234), (134), (124)

α12(132) ⋆ β1(1234) = (α11β1∆123)(34) a(g, h) = 4 (243), (143), (142)

α12341S4 ⋆ β12(12)(34) = (α1122β12)(12)(34) a(g, h) = 0

α123(12) ⋆ β12(12)(34) = (α133β13∆12)(34) a(g, h) = 2 (34)

α123(13) ⋆ β12(12)(34) = (α111β11)(1234) a(g, h) = 0 (23), (14), (34)

α12(123) ⋆ β12(12)(34) = (α11β11∆12)(134) a(g, h) = 2 (132), (124), (142), (134),

(143), (234), (243)

α1(1234) ⋆ β1(1234) = (α1β1e1∆12)(13)(24) a(g, h) = 4

α1(1243) ⋆ β1(1234) = (α1β1e1∆12)(142) a(g, h) = 4 (1423), (1342), (1324)

α1(1432) ⋆ β1(1234) = (α1β1∆1234)1S4 a(g, h) = 6

α12(12)(34) ⋆ β1(1234) = (α11β1∆123)(24) a(g, h) = 4 (14)(23)

α12(13)(24) ⋆ β1(1234) = (α11β1e1)(1432) a(g, h) = 2

Thus the products in A∗(X [4]) are given by:

q41(α)v · q1q1q1q1(β)v = 24q1q1q1q1(α · β)
q41(α)v · q2q1q1(β)v = 24q2q1(α1123 · β)
q41(α)v · q2q2(β)v = 24q2q2(α1122 · β)
q41(α)v · q3q1(β)v = 24q3q1(α1112 · β)
q41(α)v · q4(β)v = 24q4(α1111 · β)

q2q1q1(α)v · q2q1q1(β)v =
24

6
(−q1q1q1q1(α134β134∆12)v + 5q3q1(α112β112)v)

= 20q3q1(α112β112)v − 4q1q1q1q1(α134β134∆12)v

q2q1q1(α)v · q3q1(β)v =
24

6
(−3q2q1q1(α113β13∆12)v + 3q4(α111β11)v)

= 12q4(α111β11)v − 12q2q1q1(α113β13∆12)v

q2q1q1(α)v · q2q2(β)v =
24

6
(2q2q1q1(α133β13∆12)v + 4q4(α111β11)v)

= 16q4(α111β11)v + 8q2q1q1(α133β13∆12)v
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q3q1(α)v · q3q1(β)v =
24

8
(q41(α14β14∆123)v − q3q1(αβe1)v − 3q3q1(α11β11∆12)v − 3q2q2(α11β11∆12)v)

= 3q41(α14β14∆123)v − 3q3q1(αβe1)v − 9q3q1(α11β11∆12)v − 9q2q2(α11β11∆12)v)

q3q1(α)v · q2q2(β)v = −24q3q1(α11β11∆12)v

q2q1q1(α)v · q4(β)v =
24

6
(−4q3q1(α111β1∆12)v − 2q2q2(α111β1∆12)v)

= −16q3q1(α111β1∆12)v − 8q2q2(α111β1∆12)v

q3q1(α)v · q4(β)v =
24

8
(−4q4(α11β1e1)v + 4q2q1q1(α11β1∆123)v)

= 12q2q1q1(α11β1∆123)v − 12q4(α11β1e1)v

q2q2(α)v · q4(β)v =
24

3
(2q2q1q1(α11β1∆123)v − q4(α11β1e1)v)

= 16q2q1q1(α11β1∆123)v − 8q4(α11β1e1)v

q4(α)v · q4(β)v =
24

6
(q2q2(α1β1e1∆12)v + 4q3q1(α1β1e1∆12)v − q41(α1β1∆1234)v)

= 4q2q2(α1β1e1∆12)v + 16q3q1(α1β1e1∆12)v − 4q41(α1β1∆1234)v
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